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Abstract

The thesis offers an investigation into the analysis of so-called iterated generating functions

and the schemes that produce them. Beginning with the study of some ad hoc scheme formula-

tions, the notion of an iterated generating function is introduced and a mechanism to produce

arbitrary finite sequences established. The development of schemes to accommodate infinite

sequences leads—in the case of the Catalan sequence—to the discovery of what are termed

Catalan polynomials whose properties are examined. Results are formulated for these polyno-

mials through the algebraic adaptation of classical root-finding algorithms, serving as a basis

for the synthesis of new generalised results for other infinite sequences and their associated

polynomials.
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Chapter 1

Introduction

1.1 Overview

In mathematics, and particularly the field of combinatorics, the concept of a generating func-

tion is a well-known and useful one. In its most basic form, it is defined as a univariate formal

power series whose coefficients, taken in ascending order of power, are elements of a numerical

sequence. Alternatively a generating function may be expressed in closed form, the Taylor

series expansion of which represents the required power series.

Various types of generating function exist, two of the most well-documented being the ordinary

and exponential varieties. Iterated generating functions, however, are generated from a recur-

sive procedure and take the form of a series of polynomials which may be said to “converge”

towards a power series, where the number of terms within each polynomial which correspond

to terms of the power series increases with each iteration.

Compared to other types of generating functions, the iterated variety appears to be relatively

obscure, with very little material on the subject known to exist. Therefore, it is the aim of this

thesis to provide a better general understanding of the phenomenon through the presentation

of a recent in-depth investigation (originally published as a series of articles by Clapperton et

al. (2008a, 2008b, 2008c, 2009, 2010, 2011a)).

A convenient starting point is the relatively recent discovery of work conducted by a 17th-

century Chinese mathematician which relates to the use of iterated generating functions to

produce a popular integer sequence in discrete mathematics: the Catalan numbers. Recognis-
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ing that the recursive procedure can be adapted for other known integer sequences, we begin

by demonstrating its use in generating the Large Schröder and Motzkin numbers—these being

related to the Catalan sequence—proceeding to other sequences with similar characteristics in a

later chapter. The primary means of identifying suitable sequences is the “Online Encyclopedia

of Integer Sequences” (O.E.I.S.), an electronic repository containing information on hundreds

of thousands of known sequences in discrete mathematics.

Preceding the main focus of the thesis—iterated generating functions for infinite sequences—we

first present a new result concerning the construction of iterative generating schemes for arbi-

trary finite sequences, which we use as motivation to begin the examination of infinite sequences.

The first area of study with regard to the infinite variety concerns a generalisation of the

quadratic functional equation which governs the ordinary generating function (o.g.f.) of a “tar-

get” sequence, i.e., a sequence whose elements are known. By imposing a recurrence scheme

on the sequence and matching terms, the original governing equation specific to that sequence

is shown to be recoverable. In the case of the Catalan numbers, methodically increasing the

degree of the polynomial coefficients in the governing equation and re-applying the scheme

results in the appearance of a series of “Catalan polynomials”, whose role in generating finite

Catalan subsequences is identified and formalised.

A further point of interest is the network of relationships between Catalan, Chebyshev and

Dickson polynomials, continued fractions and Dyck paths—in particular the discovery that the

Catalan polynomials are directly expressible in terms of Chebyshev polynomials enabling a

catalogue of properties to be readily compiled for the former based on existing literature.

The algebraic adaptation of a suite of iterative numerical root-finding schemes formulated

by Householder is found to produce pairs of Catalan polynomials (with associated non-linear

identities), ratios of which are shown to form Padé approximants to the o.g.f. of the Catalan

sequence. Generalisation of the Householder suite of algorithms allows similar identities for

other integer sequences to be obtained.

Finally, previous results concerning recurrence properties of the Catalan polynomials allow for

the formulation of a number of identities linking the polynomials (and subsequently, generalised

polynomial families) with their derivatives.
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1.2 Background and Related Literature

The Catalan numbers ({c0, c1, c2, c3, c4, c5, . . .} = {1, 1, 2, 5, 14, 42, . . .}) are a sequence of posi-

tive integers, probably most well-known in the field of combinatorics as forming the solutions

to a variety of counting problems. Among the considerable number of these formulated over

the years (see Stanley (1999) for an extensive compilation) are the following examples:

• Euler’s polygon division problem, where the number of unique ways in which an n-

sided convex polygon can be dissected into triangles by connecting its vertices with non-

intersecting diagonals is the (n− 1)th number from the Catalan sequence, or cn−2,

• the number of unique ways in which a string of n characters can be parenthesised, the

solution being cn−1,

• the number of unique monotonic paths through a square grid of n-by-n cells, where no

path may encroach beyond the diagonal of the grid; the solution to this problem is the

Catalan number cn+1.

Although named after Belgian mathematician Eugène Charles Catalan, the initial discovery of

the sequence was, until relatively recently, attributed to Leonhard Euler. Whilst studying the

problem of triangulated polygon division in the mid-1700s, Euler discovered that the solutions

were elements of a sequence which would, following further work by Catalan (and others) al-

most a century later, come to be known as the Catalan sequence.

In 1988, historian Luo Jianjin published an article demonstrating an earlier awareness of the

Catalan sequence by Mongolian scholar Ming Antu, who in the early 18th century had studied

infinite series expansions of trigonometric functions in which the Catalan sequence appears.

Luo also detailed (initially in the context of vector multiplication and, in a subsequent publi-

cation (Luo, 1993), in terms of polynomial algebra) a non-linear recursive method for creating

a finite polynomial which acts as a generating function for Catalan subsequences, where with

each recursion, one additional term is included within the new generating function whose co-

efficient is the next term of the Catalan sequence. It is this process which has been used as a

starting point to develop the idea of an iterated generating function.

Due to the relative obscurity of Luo’s work in the Western world, the result was reported by

Larcombe (1999, 1999/2000), and inductively proven by Larcombe and Fennessey (1999).
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Further analysis shows that the iterated generating functions produced by Luo’s recursive al-

gorithm can alternatively be obtained by discretisation of the quadratic functional equation

which governs the o.g.f. of the Catalan sequence. Moreover, this method can also be adapted

for other well-known integer sequences in combinatorics.

As previously stated, in contrast to the extensive availability of material on the more common

types of generating functions (a particularly comprehensive reference being Wilf (1994)), it

appears that very little has been written concerning iterative generating functions, the only

other relevant literature found to date being a recent publication by Koepf (2010) concerning

the algebraic adaptation of the Newton-Raphson method, a popular quadratically convergent

numerical root-finding algorithm. When used to generate subsequences, the algebraic method

is found to retain the quadratic convergence rate of its numerical predecessor.

Koepf’s most recent work is an extension of two previous publications, the first of these being

a prior discussion by von zur Gathen and Gerhard (1999) of an algebraic implementation of

Newton-Raphson iteration, and the second being one by Koepf himself in 2006 in which von zur

Gathen and Gerhard’s previous findings are used to symbolically produce truncated power se-

ries as solutions to implicit equations. In this work, it is demonstrated that the derivation of the

formula for the modified Newton-Raphson method can also be applied to higher-order schemes

(where the benefit of accelerated convergence is typically offset by a proportional increase in

the computational complexity of the schemes’ implementation). The specific algorithms used

comprise a suite known as “Householder” schemes, of which the Newton-Raphson second-order

and Halley’s third-order methods are both members.

As a starting point in our investigation of the phenomenon of iterated generating functions, we

will introduce the classical methods of generating Catalan numbers, consider Ming’s algorithm

for producing an iterated generating function for the Catalan sequence, and look briefly at a

more natural method of obtaining the same results which is readily applied to other sequences.
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1.3 Catalan Sequence Generation and Iterated

Generating Functions

A number of methods exist (see Koshy (2009, p. 106) for an overview) to calculate the general

term of the Catalan sequence directly; for example, by the use of formulae involving binomial

coefficients

cn =
1

n+ 1

(
2n

n

)
, n ≥ 0, (1.1)

and

cn =

(
2n

n

)
−
(

2n

n+ 1

)
, n ≥ 0, (1.2)

or sequentially, by the following recursive formulae

c0 = 1, cn+1 =
n∑
i=0

cicn−i, n ≥ 0, (1.3)

and

c0 = 1, cn+1 =
2(2n+ 1)

n+ 2
cn, n ≥ 0. (1.4)

In contrast with the above purely numerical methods, the Catalan sequence can also be pro-

duced algebraically by expanding the well-known o.g.f. C(x), say, as a Maclaurin series

C(x) =
1−
√

1− 4x

2x
=
∞∑
n=0

cnx
n

= 1 + x+ 2x2 + 5x3 + 14x4 + 42x5 + · · · ; (1.5)

note that C(x) satisfies the quadratic equation 0 = 1 − C(x) + xC2(x), of which the o.g.f. is

one (and the appropriate) solution.

1.3.1 Discretisation: Ming’s Method

Whilst the above are all well-established methods of generating the Catalan sequence, the use of

algebraic iterative methods such as Ming’s recursion is far less common. The algorithm begins

by setting polynomials A1(x) = 1 and A2(x) = x, and defining subsequent values of Ar(x) by

the recursion1

Ar+1(x) = xAr(x)

(
2
r−1∑
k=1

Ak(x) + Ar(x)

)
, r ≥ 2. (1.6)

1The version presented here differs slightly from Luo’s formulation in that the exponents in both the initial

and resulting polynomials are offset by 1. However, the mechanism of recurrence remains unaffected.
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Iterating using the above then produces the following series of polynomials:

A1(x) = 1

A2(x) = x

A3(x) = 2x2 + x3

A4(x) = 4x3 + 6x4 + 6x5 + 4x6 + x7

A5(x) = 8x4 + 20x5 + 40x6 + 68x7 + 94x8 + · · ·+ x15

A6(x) = 16x5 + 56x6 + 152x7 + 376x8 + · · ·+ x31

... (1.7)

Setting Cr(x) =
∑r

i=1Ai(x), i.e. the sum of polynomials A1(x) to Ar(x), we obtain:

C1(x) = 1

C2(x) = 1 + x

C3(x) = 1 + x+ 2x2 + x3

C4(x) = 1 + x+ 2x2 + 5x3 + 6x4 + 6x5 + 4x6 + x7

C5(x) = 1 + x+ 2x2 + 5x3 + 14x4 + 26x5 + 44x6 + 69x7 + 94x8 + · · ·+ x15

C6(x) = 1 + x+ 2x2 + 5x3 + 14x4 + 42x5 + 100x6 + 221x7 + 470x8 + · · ·+ x31

... (1.8)

another series of polynomials of exponentially increasing length. From the above, it is imme-

diately apparent that limr→∞{Cr(x)} = C(x), or in other words, as r increases, the series of

polynomials slowly converges towards (1.5), i.e. the power series that would result from the

Maclaurin expansion of the Catalan sequence’s o.g.f. Another observation is that the rate of

convergence is linear; that is to say, with each iteration, one additional coefficient within the

new polynomial is found to be a Catalan number. Hence, at any stage of the iterative process,

the first r Catalan numbers are represented by the first r coefficients in Cr(x).

1.3.2 Discretisation: A Natural Method

As demonstrated by Larcombe and Fennessey (1999), an alternative means of obtaining the

series of polynomials resulting from Ming’s recursion is by a simple, and entirely natural, alge-

braic adaptation of an elementary method used in numerical analysis to find the fixed points

(or roots) of a function.
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To summarise the original numerical method—a full derivation and analysis can be found in

Burden and Faires (2010, Section 2.2, p. 56), for example—given a function f(x) = 0, we know

that by setting f(x) = x − g(x), a new function x = g(x) is formed (the solutions of which

are the roots of f(x)). A recursion scheme is then constructed by discretising this function to

form xn+1 = g(xn). By using an initial approximation to the root (or one of the roots), x0,

successive values of xn generated by this procedure may gradually converge towards the true

value(s) of x; convergence in this sense is not an issue for us as we implement the method of

discretisation algebraically.

If the full Catalan sequence as defined in (1.5), C(x), is considered to be the root whose

“value” in terms of x we wish to find, the construction of a suitable recursion scheme can

begin by rearranging the Catalan sequence’s o.g.f. into a governing equation, this being the

aforementioned quadratic

0 = 1− C(x) + xC2(x). (1.9)

Moving the linear term in C(x) to the left-hand side and discretising then yields

Cr+1(x) = 1 + xC2
r (x). (1.10)

Finally, setting the initial value C0(x) = 0 and iterating using the above formula produces a

series of polynomials identical to those generated by Ming’s recursion:

C1(x) = 1

C2(x) = 1 + x

C3(x) = 1 + x+ 2x2 + x3

C4(x) = 1 + x+ 2x2 + 5x3 + 6x4 + 6x5 + 4x6 + x7

C5(x) = 1 + x+ 2x2 + 5x3 + 14x4 + 26x5 + 44x6 + 69x7 + 94x8 + · · ·+ x15

C6(x) = 1 + x+ 2x2 + 5x3 + 14x4 + 42x5 + 100x6 + 221x7 + 470x8 + · · ·+ x31

... (1.11)

Whilst in the above example, the value of C0(x) is set to zero for simplicity, it should be noted

that other initial values (either numerical or polynomial in x) will also produce subsequences

which converge to the Catalan sequence with equal efficiency. For example, setting C0(x) = x

7



instead yields the following:

C1(x) = 1 + x3

C2(x) = 1 + x+ 2x4 + x7

C3(x) = 1 + x+ 2x2 + x3 + 4x5 + 4x6 + 2x8 + 6x9 + 4x12 + x15

C4(x) = 1 + x+ 2x2 + 5x3 + 6x4 + 6x5 + 12x6 + 17x7 + 24x8 + · · ·+ x31

C5(x) = 1 + x+ 2x2 + 5x3 + 14x4 + 26x5 + 44x6 + 85x7 + 142x8 + · · ·+ x63

C6(x) = 1 + x+ 2x2 + 5x3 + 14x4 + 42x5 + 100x6 + 221x7 + 502x8 + · · ·+ x127

... (1.12)

where once again, the first r terms of Cr(x) contain Catalan numbers as polynomial coefficients.

Many other infinite sequences exist whose generating functions are of a form such that their

governing equations can be discretised in the same manner, creating a recurrence relation of

the form Gr+1(x) = f(x,Gr(x)) (f being polynomial in Gr(x) with functional (polynomial)

coefficients in x). In each case, the recursion produces a series of polynomials whose coefficients

converge linearly in number towards the terms of the infinite sequence.

Additional examples can be found in the form of two integer sequences which are closely related

to the Catalan numbers: the Large Schröder2 and Motzkin sequences. As in the case of the

Catalan numbers, the elements of both of these sequences represent the solutions to a range

of counting problems (for a detailed introduction and historical background, refer to Stanley

(1997) and Donaghey and Shapiro (1977) for the Schröder and Motzkin numbers, respectively).

In this work, however, the main property of interest is the similarity in the composition of each

sequence’s o.g.f. to that of the Catalan sequence.

The Schröder sequence (no. A006318 in the O.E.I.S.) has the o.g.f.

S(x) =
1− x−

√
1− 6x+ x2

2x
=
∞∑
n=0

snx
n

= 1 + 2x+ 6x2 + 22x3 + 90x4 + 394x5 + · · · (1.13)

2Named as such to distinguish it from the Small Schröder sequence, the elements of the Large Schröder

sequence are, with the exception of the leading term, exactly double those of the Small Schröder sequence. As

only the Large Schröder sequence will feature in this work, it will hereafter be referred to simply as the Schröder

sequence.
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which satisfies the quadratic governing equation

0 = 1− (1− x)S(x) + xS2(x). (1.14)

Rearrangement of the linear term in S(x) and discretisation forms the recurrence

Sr+1(x) = 1 + xSr(x) + xS2
r (x), r ≥ 0, (1.15)

which, when used in conjunction with the initial value S0(x) = 0, results in the following series

of polynomials:

S1(x) = 1

S2(x) = 1 + 2x

S3(x) = 1 + 2x+ 6x2 + 4x3

S4(x) = 1 + 2x+ 6x2 + 22x3 + 36x4 + 52x5 + 48x6 + 16x7

S5(x) = 1 + 2x+ 6x2 + 22x3 + 90x4 + 232x5 + 564x6 + 1268x7

+ 2448x8 + · · ·+ 256x15

S6(x) = 1 + 2x+ 6x2 + 22x3 + 90x4 + 394x5 + 1320x6 + 4184x7

+ 12804x8 + · · ·+ 65536x31

... (1.16)

In a similar manner to the previous example for the Catalan numbers, each polynomial Sr(x)

incorporates Schröder numbers as its first r coefficients.

Finally, the Motzkin sequence (no. A001006 in the O.E.I.S.) has the o.g.f.

M(x) =
1− x−

√
1− 2x− 3x2

2x2
=
∞∑
n=0

mnx
n

= 1 + x+ 2x2 + 4x3 + 9x4 + 21x5 + · · · (1.17)

which satisfies the quadratic governing equation

0 = 1− (1− x)M(x) + x2M2(x). (1.18)

Rearrangement and discretisation creates the recursion scheme

Mr+1(x) = 1 + xMr(x) + x2M2
r (x), r ≥ 0, (1.19)
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and produces the following series of polynomials when initialised at M0(x) = 0:

M1(x) = 1

M2(x) = 1 + x+ x2

M3(x) = 1 + x+ 2x2 + 3x3 + 3x4 + 2x5 + x6

M4(x) = 1 + x+ 2x2 + 4x3 + 8x4 + 13x5 + 18x6 + 23x7 + 27x8 + · · ·+ x14

M5(x) = 1 + x+ 2x2 + 4x3 + 9x4 + 20x5 + 41x6 + 76x7 + 133x8 + · · ·+ x30

M6(x) = 1 + x+ 2x2 + 4x3 + 9x4 + 21x5 + 50x6 + 115x7 + 250x8 + · · ·+ x62

... (1.20)

where once again, the same phenomenon of convergence can be observed.

The examples of Catalan, Schröder and Motzkin presented here serve only to illustrate, in

algebraic fixed-point iteration, one of the most elementary methods of producing iterated gen-

erating functions. All three of these sequences possess governing equations with extremely

similar characteristics—primarily that they are quadratic with monomial coefficients in x—

with the consequence that the polynomials output by the schemes also exhibit a high degree of

structural similarity.

Nevertheless, in the course of this study, it will be seen that there exist a great many additional

known sequences with more disparate attributes, for which the same methodology can be

applied with equal effect. In some cases, the degree of either the discretised functional equation

or its polynomial coefficients is cubic or higher; in others, the values of the coefficients are

such that the resulting polynomials contain more than one correct sequence term with each

iteration. The form of iterated generating functions, and the properties they possess, will be

further explored.
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Chapter 2

Iterated Generating Functions for

Finite Sequences

2.1 Introduction

Most sequences of interest are infinite ones. Here, however, a result (theorem) is presented con-

cerning the construction of iterated generating function schemes for finite sequences, offering a

standalone chapter in which a new result is given, proved and demonstrated for interest using

a selection of sequence types. We then move on to the study of infinite sequences in the next,

and subsequent, chapters.

Given a “target” finite sequence, whose terms may be either known (i.e., which may already

be included in a repository such as the O.E.I.S.), or entirely arbitrary, the objective is to es-

tablish a recurrence scheme designed to output iterated generating functions which gradually

converge toward the target sequence in the usual manner through the coefficients of the terms

they contain. Due to the potentially arbitrary nature of the sequence terms, the existence of

either a closed form expression for generating them numerically or an alternative generating

function in closed form is not a prerequisite.

Two different proofs are provided—one inductive, one from first principles—which, in con-

junction with supporting examples, show the theorem to be consistent in a natural limiting

context.
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2.2 Result

The theorem is as follows:

Theorem 2.1. Let, for integer m ≥ 2, {v1, v2, v3, . . . , vm} be an arbitrary finite sequence of

integers, and define polynomials f(x) = f(x;m) = v1 + (v2 − v1)x + [v3 − (v1 + v2)]x2 + · · · +

[vm−(v1 + · · ·+vm−1)]xm−1 and g(x) = g(x;m) = 1+x+x2 + · · ·+xm−2, of degree m−1,m−2,

respectively. Then, with F1(x) = v1, the first-order scheme

Fi+1(x) = f(x) + xg(x)Fi(x), i ≥ 1,

generates polynomials F2(x), F3(x), F4(x), . . . , where, for some ∆i(x) ∈ Z[x],

Fi(x) = v1 + v2x+ v3x
2 + · · ·+ vix

i−1 + xi∆i(x), i = 1, . . . ,m.

In other words, for i = 1, . . . ,m, the polynomial Fi(x) produced by the scheme is an o.g.f. for

the subsequence {v1, v2, v3, . . . , vi}, whilst for i > m, Fi(x) is an o.g.f. for the complete sequence

{v1, v2, v3, . . . , vm}.

Noting that deg{f(x)} = m−1 and deg{g(x)} = m−2, it is evident that if deg{Fi(x)} = p ≥ 0,

say, then deg{Fi+1(x)} = max{deg{f(x)}, deg{xg(x)Fi(x)}} = max{m− 1, 1 + (m− 2) + p} =

m − 1 + p. Starting with the degree zero polynomial F1(x) = v1, the recursive procedure in-

creases the degree of the next iterate by m− 1 each time.

Before detailing the proofs of Theorem 2.1, it is necessary to make some remarks concerning

the notion of “preservation” exhibited by any iterated generating function scheme, where poly-

nomial terms whose coefficients match target sequence elements are retained without alteration

in the next iterated polynomial as determined by the recurrence—in general one or more new

“correct” terms are added and preserved at each step, obeying a linear convergence rate.

Remark 2.2. Firstly, for the particular scheme under consideration it is easy to show that

successive polynomials possess the required characteristic of preservation—adding after F2(x)

(which would contain any lead string of zeros in the chosen target sequence; see Remark 2.5,

and Footnote 1, p. 20) one and only one new term which is then preserved—by considering

Fn+2(x)− Fn+1(x) = f(x) + xg(x)Fn+1(x)− [f(x) + xg(x)Fn(x)]

= x[Fn+1(x)− Fn(x)]g(x). (2.1)
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The observation is immediate since the lead term of g(x) is non-zero. To see this, suppose

that Fn(x), Fn+1(x) agree up to and including terms in xr−1, say. Then Fn+1(x) − Fn(x) =

arx
r + ar+1x

r+1 + ar+2x
r+2 + · · · (for some integers ar 6= 0, ar+1, ar+2, . . .), so that by (2.1)

Fn+2(x) − Fn+1(x) = x[Fn+1(x) − Fn(x)]g(x) = (arx
r+1 + ar+1x

r+2 + ar+2x
r+3 + · · · )g(x),

whence Fn+1(x), Fn+2(x) agree up to and including terms in xr.

Remark 2.3. Secondly, the actual level of agreement between successive polynomials is readily

established by first re-writing (2.1) as

Fi+1(x)− Fi(x) = x[Fi(x)− Fi−1(x)]g(x), (2.2)

and self-applying it i− 2 times to give

Fi+1(x)− Fi(x) = xi−1[F2(x)− F1(x)]gi−1(x), i ≥ 1. (2.3)

Now denoting by ∆f (x) ∈ Z[x] the polynomial v2 − v1 + [v3 − (v1 + v2)]x + · · · + [vm − (v1 +

· · · + vm−1)]xm−2 then f(x) = v1 + x∆f (x). Since F1(x) = v1 the scheme gives F2(x) =

f(x) + xg(x)F1(x) = v1 + x[∆f (x) + v1g(x)], so that F2(x)− F1(x) = x[∆f (x) + v1g(x)] and in

turn (2.3) reads, for i ≥ 1,

Fi+1(x)− Fi(x) = xi[∆f (x) + v1g(x)]gi−1(x)

= xi{v2 + [v3 + (i− 2)v2]x+ · · · } (2.4)

after a little algebra. Thus, Fi(x) and Fi+1(x) agree in general up to and including terms in xi−1

at least (this would be increased by one term if v2 were zero, and by two terms if additionally

v3 were zero).

2.3 Proofs of Theorem 2.1

Proof I (by induction). Theorem 2.1 holds for i = 1 since F1(x) = v1 = v1 + x1∆1(x) where

∆1(x) = 0 ∈ Z[x]. Although it is not necessary to show that it is also valid for i = 2, 3, it is

instructive to see this before showing that a general inductive step can be made. For i = 2,

F2(x) = f(x) + xg(x)F1(x)

= v1 + (v2 − v1)x+ [v3 − (v1 + v2)]x2 + · · ·+ [vm − (v1 + · · ·+ vm−1)]xm−1

+ v1x(1 + x+ x2 + · · ·+ xm−2)

= v1 + v2x+ (v3 − v2)x2 +O(x3)

= v1 + v2x+ x2∆2(x), (2.5)
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where ∆2(x) = v3 − v2 +O(x) ∈ Z[x]. Taking F2(x) = v1 + v2x+ x2∆2(x) from (2.5), then for

i = 3 a similar procedure yields

F3(x) = f(x) + xg(x)F2(x)

= v1 + v2x+ v3x
2 + [v4 − v3 + ∆2(x)]x3 +O(x4)

= v1 + v2x+ v3x
2 + x3∆3(x), (2.6)

where ∆3(x) = v4 − v2 + O(x) ∈ Z[x]. Suppose, therefore, the result is true for some i = k ∈

[1,m− 1], so that for some ∆k(x) ∈ Z[x],

Fk(x) = v1 + v2x+ v3x
2 + · · ·+ vkx

k−1 + xk∆k(x), k ∈ [1,m− 1], (2.7)

and consider

Fk+1(x) = f(x) + xg(x)Fk(x)

= f(x) + x[v1 + v2x+ v3x
2 + · · ·+ vkx

k−1 + xk∆k(x)]

× (1 + x+ x2 + · · ·+ xm−2), (2.8)

by assumption. Now we know by (2.4) that for k ≥ 1 Fk+1(x) − Fk(x) = xk∆(x) (∆(x) =

∆(x; k) = v2 + [v3 + (k − 2)v2]x+ · · · ∈ Z[x]), so that

Fk+1(x) = Fk(x) + xk∆(x)

= v1 + v2x+ v3x
2 + · · ·+ vkx

k−1 + xk∆k(x) + xk∆(x)

= v1 + v2x+ v3x
2 + · · ·+ vkx

k−1 + xk∆∗(x) (2.9)

using (2.7) (the hypothesis), where ∆∗(x) = ∆∗(x; k) = ∆k(x) + ∆(x) ∈ Z[x]. Thus, from

Remark 2.2 it suffices to show that

[xk]{Fk+1(x)} = vk+1 (2.10)

in order to complete the proof. Writing, from (2.8),

Fk+1(x) = f(x) + [v1 + v2x+ v3x
2 + · · ·+ vkx

k−1 + xk∆k(x)]

× (x+ x2 + x3 + · · ·+ xm−1), (2.11)

then noting that k ≤ m− 1 the term in xk is identified precisely as

[vk+1 − (v1 + · · ·+ vk)]x
k

+ v1 · xk + v2x · xk−1 + v3x
2 · xk−2 + · · ·+ vkx

k−1 · x

= vk+1x
k. (2.12)
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Proof II (from first principles). Consider first the given recursive scheme, with F1(x) = v1,

which we write as

Fn(x) = f(x) + xg(x)Fn−1(x), n ≥ 2, (2.13)

and re-apply n− 2 times to give, for n ≥ 2,

Fn(x) = f(x)[1 + xg(x) + x2g2(x) + · · ·+ xn−2gn−2(x)] + xn−1gn−1(x)F1(x)

= f(x)
n−2∑
i=0

[xg(x)]i + v1[xg(x)]n−1

= f(x)

(
1− [xg(x)]n−1

1− xg(x)

)
+ v1[xg(x)]n−1. (2.14)

Note that (2.14) can also be obtained by first re-applying (2.2) i− 2 times, so that

Fi+1(x)− Fi(x) = x[Fi(x)− Fi−1(x)]g(x)

= x2[Fi−1(x)− Fi−2(x)]g2(x)

...

= xi−1[F2(x)− F1(x)]gi−1(x), i ≥ 1 (2.15)

(this is (2.3)), and then summing both sides over the range i = 1, . . . , n − 1, which gives, for

n ≥ 2,

Fn(x)− F1(x) = [F2(x)− F1(x)]
n−1∑
i=1

[xg(x)]i−1

= [F2(x)− F1(x)]

(
1− [xg(x)]n−1

1− xg(x)

)
; (2.16)

now F1(x) = v1 by definition, and, from the given scheme, F2(x) = f(x) + xF1(x)g(x) =

f(x) + v1xg(x), (2.16) duly yielding (2.14) after a little rearrangement.

Continuing, the function g(x) is itself a geometric series which is summable as g(x) =
∑m−2

i=0 xi =

(1− xm−1)/(1− x), whereupon Fn(x) is expressed in the form

Fn(x) = f(x)

(
1− x

1− 2x+ xm

)
+ {v1 − f(x)(1− x)(1− 2x+ xm)−1}[xg(x)]n−1. (2.17)

Since gn−1(x) = 1 + x∆1(x), say (where ∆1(x) = ∆1(x;m,n) ∈ Z[x] is a finite polynomial with

non-zero lead term n−1), and (1−x)(1−2x+xm)−1 = 1+x∆2(x) (∆2(x) = ∆2(x;m) ∈ Z[[x]]

being an infinite series in x), then (2.17) reduces to

Fn(x) = f(x)

(
1− x

1− 2x+ xm

)
+ xn−1{v1[1 + x∆1(x)]− f(x)[1 + x∆3(x)]}, (2.18)
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where ∆3(x) = ∆3(x;m,n) = ∆1(x) + ∆2(x) + x∆1(x)∆2(x) ∈ Z[[x]], and in turn, with

∆4(x) = ∆4(x;m,n) = v1∆1(x)− f(x)∆3(x) ∈ Z[[x]],

Fn(x) = f(x)

(
1− x

1− 2x+ xm

)
+ [v1 − f(x)]xn−1 + ∆4(x)xn. (2.19)

Now let

F (x) = F (x;m) = v1 + v2x+ v3x
2 + · · ·+ vmx

m−1, (2.20)

containing v1, . . . , vm as coefficients. It is straightforward to show that(
1− 2x+ xm

1− x

)
F (x) = (1− x− x2 − · · · − xm−1)F (x)

= f(x) + xm∆†(x), (2.21)

for some degree m − 2 polynomial ∆†(x) = ∆†(x;m) ∈ Z[x], comprising the function f(x)

together with terms in xm, . . . , x2(m−1). This gives the first r.h.s. term of (2.19) as(
1− x

1− 2x+ xm

)
f(x) = F (x)−

(
1− x

1− 2x+ xm

)
xm∆†(x)

= F (x)− [1 + x∆2(x)]xm∆†(x)

= F (x) + xm∆5(x), (2.22)

where ∆5(x) = ∆5(x;m) = −[1 + x∆2(x)]∆†(x) ∈ Z[[x]], so that, with f(x) = v1 + x∆f (x) as

before (i.e., Remark 2.3), (2.19) reads

Fn(x) = F (x) + xm∆5(x) + {v1 − [v1 + x∆f (x)]}xn−1 + ∆4(x)xn

= F (x) + xn∆∗(x) + xm∆5(x), (2.23)

where ∆∗(x) = ∆∗(x;m,n) = ∆4(x) −∆f (x) ∈ Z[[x]]. In other words, for 2 ≤ n ≤ m, Fn(x)

agrees with F (x) up to and including terms in xn−1. Since ∆∗(x),∆5(x) ∈ Z[[x]], there must be

cancellation in many terms within the r.h.s. of (2.23) in order that Fn(x) ∈ Z[x] for n ≥ 2. The

term xn∆∗(x) acts as a “curtain” which reveals more of the function F (x) with each successive

value of n = 1, . . . ,m (it works for n = 1 since F1(x) = v1 by definition), that which is exposed

being unaffected by the term xm∆5(x) which simply adds terms in x whose powers are greater

than the highest in F (x). For n ≤ m Fn(x) = v1 +v2x+ · · ·+vnx
n−1 +O(xn), whilst for n > m

Fn(x) = F (x) +O(xm). This completes the proof.

2.4 Examples

The following examples illustrate the use of Theorem 2.1 in constructing recurrence schemes

for a range of finite sequences whose terms are arbitrary (with the exception of Example 1). In
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each case, the preserving nature of the scheme is clearly indicated, both up to and beyond the

terms of the target sequence.

Example 1 (m = 6)

Consider the subsequence of Catalan numbers

{1, 1, 2, 5, 14, 42} = {v1, v2, v3, v4, v5, v6}, (2.24)

for which Theorem 2.1 yields a recurrence scheme

Fi+1(x) = 1 + x3 + 5x4 + 19x5 + x(1 + x+ x2 + x3 + x4)Fi(x), i ≥ 1. (2.25)

Initialising the scheme at F1(x) = v1 = 1 produces a series of polynomials F2(x), F3(x), F4(x),

. . ., with associated finite sequences of coefficients as follows:

F1(x) : {1},

F2(x) : {1,1, 1, 2, 6, 20},

F3(x) : {1,1,2, 4, 10, 30, 30, 29, 28, 26, 20},

F4(x) : {1,1,2,5, 13, 37, 47, 76, 103, 127, 143, 133, 103, 74, 46, 20},

F5(x) : {1,1,2,5,14, 41, 58, 104, 178, 276, 390, 496, 582, 609, 580, 499, . . .},

F6(x) : {1,1,2,5,14,42, 63, 120, 222, 395, 657, 1006, 1444, 1922, 2353, 2657, . . .},

F7(x) : {1,1,2,5,14,42, 64, 126, 244, 461, 842, 1457, 2400, 3724, 5424, 7382, . . .},

F8(x) : {1,1,2,5,14,42, 64, 127, 251, 490, 937, 1737, 3130, 5404, 8884, 13847, . . .},

F9(x) : {1,1,2,5,14,42, 64, 127, 252, 498, 974, 1869, 3542, 6545, 11698, 20092, . . .},

F10(x) : {1,1,2,5,14,42, 64, 127, 252, 499, 983, 1915, 3720, 7135, 13428, 24628, . . .},
... (2.26)

Example 2 (m = 11)

Consider the finite sequence

{3,−5, 0, 0, 0, 0, 4, 6, 0, 0,−2} = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11}, (2.27)

for which the theorem yields a recurrence scheme (i ≥ 1)

Fi+1(x) = 3− 8x+ 2x2 + 2x3 + 2x4 + 2x5 + 6x6 + 4x7 − 8x8 − 8x9 − 10x10

+ x(1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9)Fi(x), (2.28)
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which, when initialised at F1(x) = 3, produces the following series of sequences:

F1(x) : {3},

F2(x) : {3,−5, 5, 5, 5, 5, 9, 7,−5,−5,−7},

F3(x) : {3,−5,0, 5, 10, 15, 24, 31, 26, 21, 14, 14, 19, 14, 9, 4 . . .},

F4(x) : {3,−5,0,0, 5, 15, 34, 56, 75, 101, 120, 141, 160, 179, 188, 187, . . .},

F5(x) : {3,−5,0,0,0, 5, 24, 56, 100, 175, 274, 401, 547, 707, 886, 1069, . . .},

F6(x) : {3,−5,0,0,0,0, 9, 31, 75, 175, 348, 629, 1035, 1582, 2289, 3175, . . .},

F7(x) : {3,−5,0,0,0,0,4, 11, 30, 105, 278, 633, 1267, 2302, 3884, 6173, . . .},

F8(x) : {3,−5,0,0,0,0,4,6, 5, 35, 138, 423, 1061, 2328, 4630, 8514, . . .},

F9(x) : {3,−5,0,0,0,0,4,6,0, 5, 38, 183, 611, 1672, 4000, 8630, . . .},

F10(x) : {3,−5,0,0,0,0,4,6,0,0, 3, 48, 236, 847, 2519, 6519, . . .},

F11(x) : {3,−5,0,0,0,0,4,6,0,0,−2, 8, 61, 297, 1144, 3663, . . .},

F12(x) : {3,−5,0,0,0,0,4,6,0,0,−2, 3, 16, 77, 374, 1518, . . .},
... (2.29)

Example 3 (m = 4)

The theorem also holds for target sequences drawn from rings other than Z, as demonstrated

in the following example in which v1, . . . , vm ∈ C. For the finite sequence

{3− 2ι, 1 + ι, 3− 3ι,−4} = {v1, v2, v3, v4}, (2.30)

the theorem yields the recurrence scheme (i ≥ 1)

Fi+1(x) = 3− 2ι+ (−2 + 3ι)x− (1 + 2ι)x2 + (−11 + 4ι)x3 + x(1 + x+ x2)Fi(x). (2.31)
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Using the initial value F1(x) = 3− 2ι generates the following series of sequences:

F1(x) : {3 − 2ι},

F2(x) : {3 − 2ι,1 + ι, 2− 4ι,−8 + 2ι},

F3(x) : {3 − 2ι,1 + ι,3 − 3ι,−5− ι,−5− ι,−6− 2ι,−8 + 2ι},

F4(x) : {3 − 2ι,1 + ι,3 − 3ι,−4,−1− 3ι,−7− 5ι,−16− 4ι,−19− ι,−14,−8 + 2ι},

F5(x) : {3 − 2ι,1 + ι,3 − 3ι,−4,−2ι,−2− 6ι,−12− 8ι,−24− 12ι,−42− 10ι, . . .},

F6(x) : {3 − 2ι,1 + ι,3 − 3ι,−4,−2ι,−1− 5ι,−6− 8ι,−14− 16ι,−38− 26ι, . . .},

F7(x) : {3 − 2ι,1 + ι,3 − 3ι,−4,−2ι,−1− 5ι,−5− 7ι,−7− 15ι,−21− 29ι, . . .},

F8(x) : {3 − 2ι,1 + ι,3 − 3ι,−4,−2ι,−1− 5ι,−5− 7ι,−6− 14ι,−13− 27ι, . . .},

F9(x) : {3 − 2ι,1 + ι,3 − 3ι,−4,−2ι,−1− 5ι,−5− 7ι,−6− 14ι,−12− 26ι, . . .},

F10(x) : {3 − 2ι,1 + ι,3 − 3ι,−4,−2ι,−1− 5ι,−5− 7ι,−6− 14ι,−12− 26ι, . . .},
... (2.32)

Example 4 (m = 5)

In this final example, v1, . . . , vm ∈ Q. Consider the finite sequence{
1

2
,−2

3
,−1

4
,
1

2
,
1

8

}
= {v1, v2, v3, v4, v5}, (2.33)

for which the theorem yields the recurrence scheme (i ≥ 1)

Fi+1(x) =
1

2
− 7

6
x− 1

12
x2 +

11

12
x3 +

1

24
x4 + x(1 + x+ x2 + x3)Fi(x). (2.34)
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Using the initial value F1(x) = 1
2

generates the following series of sequences:

F1(x) :
{

1
2

}
,

F2(x) :
{

1
2
,−2

3
, 5

12
, 17

12
, 13

24

}
,

F3(x) :
{

1
2
,−2

3
,−1

4
, 7

6
, 41

24
, 41

24
, 19

8
, 47

24
, 13

24

}
,

F4(x) :
{

1
2
,−2

3
,−1

4
, 1
2
, 19

24
, 47

24
, 13

3
, 167

24
, 31

4
, 79

12
, 39

8
, 5

2
, 13

24

}
,

F5(x) :
{

1
2
,−2

3
,−1

4
, 1
2
, 1
8
, 3

8
, 3, 91

12
, 337

24
, 21, 205

8
, 157

6
, 521

24
, 29

2
, 95

12
, 73

24
, . . .

}
,

F6(x) :
{

1
2
,−2

3
,−1

4
, 1
2
, 1
8
,− 7

24
, 3

4
, 4, 133

12
, 25, 365

8
, 273

4
, 521

6
, 189

2
, 88, 1687

24
, . . .

}
,

F7(x) :
{

1
2
,−2

3
,−1

4
, 1
2
, 1
8
,− 7

24
, 1

12
, 13

12
, 55

12
, 373

24
, 245

6
, 2057

24
, 3599

24
, 5417

24
, 7085

24
, 4051

12
, . . .

}
,

F8(x) :
{

1
2
,−2

3
,−1

4
, 1
2
, 1
8
,− 7

24
, 1

12
, 5

12
, 1, 131

24
, 511

24
, 1489

24
, 440

3
, 7009

24
, 12053

24
, 9079

12
, . . .

}
,

F9(x) :
{

1
2
,−2

3
,−1

4
, 1
2
, 1
8
,− 7

24
, 1

12
, 5

12
, 1

3
, 29

24
, 167

24
, 169

6
, 2155

24
, 5651

24
, 12529

24
, 24071

24
, . . .

}
,

F10(x) :
{

1
2
,−2

3
,−1

4
, 1
2
, 1
8
,− 7

24
, 1

12
, 5

12
, 1

3
, 13

24
, 49

24
, 107

12
, 110

3
, 1009

8
, 2883

8
, 21011

24
, . . .

}
,

... (2.35)

Remark 2.4. The case m = 2 is sufficiently tractable to be dealt with in generality. For a target

sequence {v1, v2}, say, then with g(x) = 1

Fn(x) = f(x)

(
1− xn−1

1− x

)
+ v1x

n−1

= f(x)(1 + x+ x2 + x3 + · · ·+ xn−2) + v1x
n−1 (2.36)

for n ≥ 2, via (2.14). Since f(x) = v1 + (v2 − v1)x, (2.36) gives

Fn(x) = v1 + v2(x+ x2 + x3 + · · ·+ xn−1), n ≥ 2, (2.37)

after some cancellation, yielding polynomials F2(x), F3(x), F4(x), F5(x), . . . , with coefficient se-

quences {v1, v2}, {v1, v2, v2}, {v1, v2, v2, v2}, {v1, v2, v2, v2, v2}, etc.

Remark 2.5. We have already mentioned (in Remark 2.2) that should the target sequence con-

tain a lead zero (or string of zeros), then this (these) will be accommodated in F2(x).1 The

polynomial F2(x) will also deliver additional terms if one or more zero(s) appear(s) in the target

1This is simply because the initial fixed polynomial F1(x) = v1 = 0 can be regarded as generating {0},

or {0, 0}, or {0, 0, 0}, . . . , as appropriate. To illustrate, suppose, for instance, {v1, v2, v3, v4, v5, v6, v7, v8} =

{0, 0, 0, 8, 5, 0, 0,−3}. Then F2(x) = 8x3 − 3x4 − 13x5 − 13x6 − 16x7 7−→ {v1, v2, v3, v4,−3,−13,−13,−16},

F3(x) 7−→ {v1, v2, v3, v4, v5,−8,−21,−37,−37,−37,−37,−45,−42,−29,−16}, etc., with v6 = v7 = 0, v8 = −3

each added in separate iterations (i.e., in F4(x), F5(x), F6(x)).
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sequence after v1 6= 0. For example, suppose {v1, v2, v3, v4, v5} = {−2, 0, 0, 4,−6}. We find that

F2(x) = −2+4x3−10x4 7−→ {v1, v2, v3, v4,−10}, F3(x) 7−→ {v1, v2, v3, v4, v5,−6,−6,−6,−10},

F4(x) 7−→ {v1, v2, v3, v4, v5,−2,−8,−14, −24,−28,−22,−16,−10}, etc.

Remark 2.6. To finish, we show how Theorem 2.1 is consistent in the limit m→∞, where the

target sequence is now an infinite one whose generating function is F (x;∞) = v1 +v2x+v3x
2 +

v4x
3 + · · · . Since, in the limit,

f(x;∞) = v1 + (v2 − v1)x+ [v3 − (v1 + v2)]x2 + [v4 − (v1 + v2 + v3)]x3 + · · ·

= (1− x− x2 − x3 − · · · )(v1 + v2x+ v3x
2 + v4x

3 + · · · )

= (1− 2x)(1− x)−1F (x;∞), (2.38)

and

g(x;∞) = 1 + x+ x2 + x3 + · · · = (1− x)−1, (2.39)

the scheme according to Theorem 2.1 reads, for i ≥ 1,

Fi+1(x) = f(x;∞) + xg(x;∞)Fi(x)

=
1

1− x
[(1− 2x)F (x;∞) + xFi(x)]. (2.40)

Suppose the series F (x;∞) defining the infinite target sequence {vm}∞1 has an o.g.f. closed form

Go(x), say. Then

Fi+1(x) =
1

1− x
[(1− 2x)Go(x) + xFi(x)]. (2.41)

With reference to (1.9),(1.10) (relating to the Catalan sequence example), (2.41) must be

a discretised version of an equation for the same function Go(x), and we see this trivially;

suppressing the subscripts i, i+ 1 it reads

F (x) =
1

1− x
[(1− 2x)Go(x) + xF (x)], (2.42)

which is satisfied by F (x) = Go(x).

2.5 Summary

Given a finite sequence of values, we have demonstrated in this chapter the formulation of a

recursive scheme, which, through a simple mechanism, produces a series of iterated generating

functions steadily converging to the full target sequence in the same manner exhibited by the
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schemes seen in Chapter 1. We conclude with a couple of general comments.

Firstly, it should be noted that the scheme presented in Theorem 2.1 is far from unique where

the objective of reproducing a target finite sequence is concerned, as is evident from the fol-

lowing observation.

Given v1, v2, . . . , vm (from any ring), we have a simple algorithm to construct a first-order

scheme which sequentially produces terms in the target sequence {v1, v2, . . . , vm}, m ≥ 1. Now,

if, for r ≥ 1, {u1, u2, . . . , ur} is a second sequence, we can use the algorithm to construct a new

first-order scheme—different to the first one—and iteratively generate the combined sequence

{v1, v2, . . . , vm, u1, u2, . . . , ur} which necessarily includes {v1, v2, . . . , vm}. Thus, we see that

there are an infinite number of distinct first-order schemes, whose basic structure is as given in

Theorem 2.1 based on the defined functions f(x), g(x), that will each generate {v1, v2, . . . , vm};

if f(x;m), g(x;m) are such that the scheme generates {v1, v2, . . . , vm}, then increasing the tar-

get sequence to {v1, v2, . . . , vm, u1, u2, . . . , ur} merely adds r extra terms into both f, g.

It is also possible that there may be other first-order recurrences of a different fundamental

nature, or indeed higher-order schemes, which are able to produce iterated generating functions

converging towards an arbitrary finite sequence.
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Chapter 3

Iterated Generating Functions for

Infinite Sequences

3.1 Introduction

Returning to recurrence schemes for infinite integer sequences—a subject which was earlier

briefly introduced in the context of the Catalan, Schröder and Motzkin sequences—the main

focus of this chapter will be a methodology for recovering a recurrence scheme for an infinite

sequence whose first few terms, at least, are known. Equating (or “matching”) constants in a

proposed recursive scheme (of general form) with terms from a sequence itself creates a system

of equations which can be solved simultaneously to determine the values of the constants and

so recover the expected recurrence available from natural o.g.f. discretisation as seen in Chapter

2. We look at some examples and the processes involved, from which automation of the pro-

cedures yield the discovery of so-called Catalan polynomials which, as well as being intimately

connected to algorithms delivering Catalan number subsequences, have interesting properties

which are examined in subsequent chapters.

Before introducing this procedure, however, it is first necessary to outline a number of addi-

tional sequences for which iterated generating function schemes can be constructed, thereby

providing a more diverse range of sequences to be utilised as a basis for term-matching.

As previously noted, the recursive schemes for the three integer sequences discussed so far share

a number of characteristics, with two being of particular interest. The first is that the equation

governing the sequence’s o.g.f. is quadratic with first- or second-order polynomial (or constant)
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coefficients. The subsequent discretisation of such an equation results in a recursive function

of the form

Gr+1(x) = Ω1(x) + Ω2(x)Gr(x) + Ω3(x)G2
r(x), (3.1)

where Ω1(x),Ω2(x),Ω3(x) are (at most) quadratic in x.

A second similarity between the recurrence schemes for the Catalan, Schröder and Motzkin

sequences is that after each iteration, only a single correct sequence term is included within the

new generating function.

However, using the O.E.I.S. as a reference, it is possible to locate many more instances of known

integer sequences which can be generated by the same method, but which do not necessarily

share these attributes, as the following examples demonstrate.

3.2 Discretisation: Further Examples

Fibonacci Sequence

The Fibonacci sequence (or sequence no. A000045 in the O.E.I.S.) has

{0, 1, 1, 2, 3, 5, 8, 13, . . .} = {f0, f1, f2, f3, f4, f5, f6, f7, . . .}, (3.2)

say, as its first few terms. Unlike previous examples, its o.g.f.

F (x) =
x

1− x− x2
(3.3)

does not contain a radical, and can be rearranged trivially and discretised as

Fr+1(x) = x+ (x+ x2)Fr(x), r ≥ 0. (3.4)

When initialised at F0(x) = 0, a series of polynomials F1(x), F2(x), F3(x), . . . is produced with

associated subsequences {f0, f1}, {f0, f1, f2, 1}, {f0, f1, f2, f3, 2, 1}, {f0, f1, f2, f3, f4, 4, 3, 1}, etc.

Sequence A052709

Sequence no. A052709 in the O.E.I.S. has

{0, 1, 1, 3, 9, 31, 113, 431, . . .} = {a0, a1, a2, a3, a4, a5, a6, a7, . . .}, (3.5)
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as its first few terms. Its o.g.f.

A(x) =
1−
√

1− 4x− 4x2

2(1 + x)
(3.6)

can be rearranged into a governing equation

0 = x− A(x) + (1 + x)A2(x) (3.7)

and discretised as

Ar+1(x) = x+ (1 + x)A2
r(x), r ≥ 0. (3.8)

When initialised at A0(x) = 0, the scheme generates polynomials with associated subsequences

as follows:

A1(x) : {a0, a1},

A2(x) : {a0, a1, a2, 1},

A3(x) : {a0, a1, a2, a3, 5, 5, 3, 1},

A4(x) : {a0, a1, a2, a3, a4, 23, 45, 75, 109, 133, 131, 101, 59, 25, 7, 1},
... (3.9)

Similarly to previous examples, the scheme adds a single correct sequence term to each new

generating function.

Sequence A077957

Sequence no. A077957 (or “powers of 2 alternating with zeros”) in the O.E.I.S. begins

{1, 0, 2, 0, 4, 0, 8, 0, . . .} = {b0, b1, b2, b3, b4, b5, b6, b7, . . .}. (3.10)

Its o.g.f.

B(x) =
1

1− 2x2
(3.11)

can be rearranged into a governing equation

0 = 1− (1− 2x2)B(x) (3.12)

and discretised as

Br+1(x) = 1 + 2x2Br(x), r ≥ 0. (3.13)
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Using B0(x) = 0, the following subsequences result:

B1(x) : {b0},

B2(x) : {b0, b1, b2},

B3(x) : {b0, b1, b2, b3, b4},

B4(x) : {b0, b1, b2, b3, b4, b5, b6},
... (3.14)

Two observations can be made regarding this particular result, both of which are in contrast

with those from previous schemes: firstly, that two correct sequence terms are added with each

iteration, as opposed to the more usual single term; and secondly, the resulting subsequences

are entirely composed of terms from sequence A077957, with no extraneous terms following.

By inference, as r increases, the degree of the resulting polynomials increases at a linear, rather

than exponential, rate.

Sequence A025252

Sequence no. A025252 in the O.E.I.S. begins

{0, 0, 1, 2, 1, 6, 9, 12, . . .} = {d0, d1, d2, d3, d4, d5, d6, d7, . . .}. (3.15)

Its o.g.f.

D(x) =
1− x2 − 4x3 −

√
1− 2x2 − 8x3 + x4

4x3
(3.16)

can be rearranged into a governing equation

0 = x2 + 2x3 − (1− x2 − 4x3)D(x) + 2x3D2(x) (3.17)

and discretised as

Dr+1(x) = x2 + 2x3 + (x2 + 4x3)Dr(x) + 2x3D2
r(x), r ≥ 0. (3.18)

Using D0(x) = 0, the following subsequences result:

D1(x) : {d0, d1, d2, d3},

D2(x) : {d0, d1, d2, d3, d4, d5, 8, 2, 8, 8},

D3(x) : {d0, d1, d2, d3, d4, d5, d6, d7, 40, 46, 48, 122, 128, 152, 296, 272,

288, 456, 320, 192, 256, 128},
... (3.19)
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As for the previous example, two correct sequence terms are added with each iteration.

A point of interest is that sequence A025252 is but one member of a particular family of 55

sequences which possess the common characteristic that sequence elements are in all cases

defined by variations of a simple convolution formula. Each sequence in the family is also

associated with an o.g.f. which satisfies a quadratic governing equation, thereby enabling a

similar recurrence scheme to be constructed.

3.3 Recurrence Scheme Recovery

It is notable that all the sequences previously referenced are at least reasonably well-documented

(either in existing literature or the O.E.I.S.) insofar that formulae for their o.g.fs can be found

with little difficulty. However, there may be cases where although the terms of a sequence are

known or calculable, the sequence’s o.g.f. is not, precluding the usual method of constructing

a recurrence scheme through discretisation. In such circumstances, the usefulness of a method

of recovering the recurrence scheme using only the initial terms of the sequence (and a set of

constraints placed on the scheme) becomes apparent.

In the methodology presented here, it is assumed that if a closed form expression for a sequence’s

o.g.f. exists, it satisfies a quadratic governing equation. From this assumption it follows that a

recurrence scheme may be proposed which is of the form

Gr+1(x) = f(Gr(x); Ω1(x),Ω2(x),Ω3(x)) = Ω1(x) + Ω2(x)Gr(x) + Ω3(x)G2
r(x), (3.20)

which is a functional relation containing polynomial coefficients Ω1(x),Ω2(x),Ω3(x) initially

of unspecified degree. However, by setting constraints on the degrees of Ω1(x),Ω2(x),Ω3(x),

a set of constants is created whose members can be “tracked” through a series of recursions,

combined and equated with a known sequence term at each stage. The consequence of this

process is that a gradually-expanding system of equations is created which, at some stage, can

be solved completely, yielding values for all constants and thereby reconstructing the original

recurrence relation.
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Catalan Sequence

This first example demonstrates how term-matching can be used to recover the natural re-

currence scheme for the Catalan sequence.

Consider a recurrence scheme based on equation (3.20), with the constraint imposed that

all polynomial coefficients are linear in x. Substituting Ω1(x) = α + βx, Ω2(x) = γ + δx,

Ω3(x) = ε+ ζx, equation (3.20) now reads

Gr+1(x) = α + βx+ (γ + δx)Gr(x) + (ε+ ζx)G2
r(x). (3.21)

Setting G0(x) = 0, we first see that G1(x) = α + βx, giving trivially that α = [x0]{G1(x)} =

c0 = 1. Thus, G1(x) = 1 + βx which is fed back into the updated recurrence Gr+1(x) =

1 + βx+ (γ + δx)Gr(x) + (ε+ ζx)G2
r(x), to give, with r = 1,

G2(x) = 1 + γ + ε+ [δ + ζ + β(1 + γ + 2ε)]x+ β(βε+ δ + 2ζ)x2 + β2ζx3. (3.22)

We now have, therefore,

[x0]{G2(x)} = c0 = 1 = 1 + γ + ε,

[x1]{G2(x)} = c1 = 1 = δ + ζ + β(1 + γ + 2ε), (3.23)

from which ε = −γ and

δ + ζ + β(1− γ) = 1 (3.24)

follow immediately. The recursion becomes now Gr+1(x) = 1 + βx + (γ + δx)Gr(x) + (−γ +

ζx)G2
r(x) and duly yields, after a little work using G2(x) = 1 +x+β(−βγ+ δ+ 2ζ)x2 +β2ζx3,

G3(x) = 1 + (β − γ + δ + ζ)x+ [−γ + δ + 2ζ + βγ(βγ − δ − 2ζ)]x2 + · · · . (3.25)

Since the lead term of G3(x) is correct, we write

[x1]{G3(x)} = c1 = 1 = β − γ + δ + ζ,

[x2]{G3(x)} = c2 = 2 = −γ + δ + 2ζ + βγ(βγ − δ − 2ζ). (3.26)

The first of these equations, when combined with (3.24), yields 0 = (β − 1)γ, with two cases

γ = 0 and β = 1 to consider.
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Case 1: γ = 0

The equations in (3.26) reduce to

β + δ + ζ = 1,

δ + 2ζ = 2, (3.27)

so we require another equation involving at least one of β, δ and ζ. Since the recurrence reduces

to Gr+1(x) = 1 +βx+ δxGr(x) + ζxG2
r(x), it suffices to use G3(x) = 1 +x+ 2x2 + · · · , without

explicitly knowing the term in x3, for then

G4(x) = 1 + βx+ δxG3(x) + ζxG2
3(x)

= 1 + (β + δ + ζ)x+ (δ + 2ζ)x2 + (2δ + 5ζ)x3 + · · ·

= 1 + x+ 2x2 + (2δ + 5ζ)x3 + · · · (3.28)

by (3.27), from which we can only take

[x3]{G4(x)} = c3 = 5 = 2δ + 5ζ (3.29)

to go with (3.27); these equations have the unique solution δ = β = 0, ζ = 1, and the solution

scheme is

Gr+1(x) = 1 + xG2
r(x), (3.30)

as expected.

Case 2: β = 1

Despite the fact that this case results in a redundant solution scheme, the details are still

worth mentioning. First, (3.26) simplifies to

− γ + δ + ζ = 0 (3.31)

and

− γ + δ + 2ζ + γ(γ − δ − 2ζ) = 2. (3.32)

Taking G3(x) to the same order as in Case 1, the recurrence formula at the corresponding point

generates

G4(x) = 1 + (1− γ + δ + ζ)x+ (−3γ + δ + 2ζ)x2 + · · ·

= 1 + x+ (−3γ + δ + 2ζ)x2 + · · · (3.33)
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using (3.31), and we need only write down

[x2]{G4(x)} = c2 = 2 = −3γ + δ + 2ζ. (3.34)

From this, replacing δ + 2ζ with 2 + 3γ then (3.32) contracts conveniently to γ = 0, leaving

(3.31),(3.34) as simultaneous equations in δ, ζ and resulting in the scheme

Gr+1(x) = 1 + x− 2xGr(x) + 2xG2
r(x). (3.35)

Since it was unnecessary to match [x3]{G4(x)} to c3, we have arrived at a scheme which will

give generating functions containing c0, c1, c2 in correct places as coefficients, but which may

immediately break down in G4(x). This proves to be so, for we see that

G1(x) = c0 + c1x 7−→ {c0, c1},

G2(x) = c0 + c1x+ c2x
2 + 2x3 7−→ {c0, c1, c2, 2},

G3(x) = c0 + c1x+ c2x
2 + 6x3 + 12x4 + · · ·+ 8x7

7−→ {c0, c1, c2, 6, 12, 16, 16, 8},

G4(x) = c0 + c1x+ c2x
2 + 6x3 + 20x4 + · · ·+ 128x15

7−→ {c0, c1, c2, 6, 20, 56, 128, 264, 496, 832, 1216, 1472, 1408, 1024, 512, 128},

G5(x) 7−→ {c0, c1, c2, 6, 20, 72, 240, 712, . . . , 262144, 32768}, (3.36)

and so on. This is equivalent to the discretisation of a governing equation 0 = 1 + x − (1 +

2x)G(x) + 2xG2(x), whose solution

G(x) =
1 + 2x−

√
1− 4x− 4x2

4x
(3.37)

is the o.g.f. of a sequence {1, 1, 2, 6, 20, 72, 272, 1064, . . .} (unlisted in the O.E.I.S.).

Having successfully recovered the original recurrence relation of the Catalan sequence (in Case

1), two observations can now be made. The first is that the polynomials generated in this pro-

cess have a tendency to expand rapidly in length, excessively so given that higher-degree terms

do not contribute in any useful way to subsequent iterations. As such, this can be severely

prohibitive if the calculations are to be performed by hand, particularly in the case of more

complex schemes where the degree of either the original recurrence relation or its functional

coefficients is higher, thereby necessitating the evaluation of more unknowns to recover the

scheme. A typical example here is the Motzkin sequence, whose original recurrence relation is

quadratic with quadratic coefficients.
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One method of removing this impediment is by truncating the polynomials at each point in

the iterative process, having captured the requisite number of terms—a technique which can

obviously be applied to any linearly convergent scheme whose order is known.

In the case of the Catalan sequence (see Appendix A), applying truncation not only simplifies

the coefficient-matching procedure, but also has the effect of eliminating the element of redun-

dancy (i.e., Case 2, p. 29).

The second point of interest is to note that whilst in the above example, only one term from the

Catalan sequence was matched at each stage of the iterative process, it is possible to attempt

matching two or more terms with each recursion instead. However, when this is carried out, it is

apparent that the whole algorithm degenerates. Using the Catalan sequence as an example once

again, we firstly obtain G1(x) = α+βx as before, giving trivially that α = [x0]{G1(x)} = c0 = 1,

together with β = [x1]{G1(x)} = c1 = 1. This then produces

G2(x) = 1 + γ + ε+ (1 + γ + δ + 2ε+ ζ)x+ (δ + ε+ 2ζ)x2 + ζx3, (3.38)

so that we can write

[x0]{G2(x)} = c0 = 1 = 1 + γ + ε,

[x1]{G2(x)} = c1 = 1 = 1 + γ + δ + 2ε+ ζ,

[x2]{G2(x)} = c2 = 2 = δ + ε+ 2ζ,

[x3]{G2(x)} = c3 = 5 = ζ, (3.39)

with no solution. It is clear that permitting even more terms to be matched will generate only

these same equations.

Schröder Sequence

Applying (3.21) and repeating the process of matching the coefficients of iterated generat-

ing functions to terms of the Schröder sequence produces a repeat scenario in that we find

there are once more two solution strands. As hoped, the first recovers the natural recur-

rence relation of the sequence (i.e. equation (1.15)), whilst the (redundant) second strand

offers a scheme which is a discretisation of the quadratic 0 = 1 + 2x − (1 + 3x)G(x) +

3xG2(x) governing the sequence (again unlisted in the O.E.I.S.) {1, 2, 6, 30, 162, 954, 5886, . . .} =

{s0, s1, s2, 30, 162, 954, 5886, . . .}. As for the previous Catalan example, appropriate truncation
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of polynomials at each iteration eliminates the redundant solution.

Also as before, attempting to impose a recurrence scheme in which multiple sequence terms are

matched per iteration results in an invalid solution set.

Sequence A052709

As before, we impose (3.21), for r ≥ 0 (G0(x) = 0), so that G1(x) = α + βx, and α =

[x0]{G1(x)} = a0 = 0. Substituting G1(x) = βx into the modified recurrence Gr+1(x) =

βx+ (γ + δx)Gr(x) + (ε+ ζx)G2
r(x) yields

G2(x) = β(1 + γ)x+ β(βε+ δ)x2 + β2ζx3, (3.40)

whence

[x1]{G2(x)} = a1 = 1 = β(1 + γ). (3.41)

Continuing, with G2(x) = x+ β(βε+ δ)x2 + β2ζx3,

G3(x) = βx+ (γ + δx)G2(x) + (ε+ ζx)G2
2(x)

= (β + γ)x+ [δ + ε+ (βε+ δ)βγ]x2 + [β(δ + 2ε)(βε+ δ) + β2γζ + ζ]x3 + · · · , (3.42)

from which we can write

[x1]{G3(x)} = a1 = 1 = β + γ, (3.43)

and

[x2]{G3(x)} = a2 = 1 = δ + ε+ (βε+ δ)βγ. (3.44)

Writing, from (3.41), β = 1
1+γ

, then (3.43) reduces to γ = 0, ⇒ β = 1. We also have now that

δ + ε = 1 (3.45)

by (3.44), and a simplified form of G3(x),

G3(x) = x+ x2 + (δ + 2ε+ ζ)x3 + · · · . (3.46)

We need only use G3(x) = x+ x2 + · · · in the updated recurrence

Gr+1(x) = x+ δxGr(x) + (ε+ ζx)G2
r(x), (3.47)

for we find that

G4(x) = x+ δxG3(x) + (ε+ ζx)G2
3(x)

= x+ (δ + ε)x2 + (δ + 2ε+ ζ)x3 + · · ·

= x+ x2 + (δ + 2ε+ ζ)x3 + · · · (3.48)
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by (3.45), giving

[x3]{G4(x)} = a3 = 3 = δ + 2ε+ ζ. (3.49)

One more iteration is required to complete the solution scheme. The polynomial G5(x) is

obtained as

G5(x) = x+ δxG4(x) + (ε+ ζx)G2
4(x)

= x+ (δ + ε)x2 + (δ + 2ε+ ζ)x3 + (3δ + 7ε+ 2ζ)x4 + · · ·

= x+ x2 + 3x3 + (3δ + 7ε+ 2ζ)x4 + · · · (3.50)

by (3.45),(3.49), so that

[x4]{G5(x)} = a4 = 9 = 3δ + 7ε+ 2ζ; (3.51)

equations (3.45), (3.49) and (3.51) have unique solution δ = 0, ε = ζ = 1 and (3.47), with G

replaced by A, reads as (3.8). Note that this time there is no element of redundancy in the

process, with only the expected scheme delivered.

As before, no valid schemes are forthcoming when imposing a scheme in which multiple sequence

terms are matched per iteration.

3.4 Concluding Remarks and a New Result

As previously mentioned, although successful, the formulations seen above are tedious and

error-prone to accomplish by hand, and allow no easy experimentation to examine the possible

relation(s) between the structure of an initial scheme and any final (convergent) form reached

after term-matching. Fortunately, the relative simplicity of the methodology involved enables

the automation of the procedure using a computer algebra system without too much difficulty.

Development of a working algorithm allows us to experiment a little more with the form of the

recurrence relation imposed on such schemes, and in the case of the Catalan numbers, leads to

an interesting result.

If the degree of the initial recurrence relation is increased from quadratic (as in equation (3.21)

used in the previous example for the Catalan sequence) to cubic, i.e.

Gr+1(x) = α + βx+ (γ + δx)Gr(x) + (ε+ ζx)G2
r(x) + (η + θx)G3

r(x), (3.52)
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it is found that the familiar solution Gr+1(x) = 1 + xG2
r(x) is once again recovered, with the

additional cubic term in Gr(x) being eliminated during the process.

Increasing the degree of the function’s polynomial coefficients from linear to quadratic (and

higher) whilst retaining the quadratic functional degree is found to produce solutions which

still contain one or more indeterminate unknown(s), with no resulting explicit solutions.

However, reducing the imposed scheme to a linear degree in Gr(x) does, by contrast, provide

a considerable number of solutions as the functional coefficients are altered, as can be seen in

the following results (in which the implementation of the quadratic case is demonstrated).

Linear Functional Coefficients:

Gr+1(x) = 1− x+ 2xGr(x)

Quadratic Functional Coefficients:

Gr+1(x) = 1− 3x+ x2 + (4x− 3x2)Gr(x)

Implementation (Initial Value G1(x) = c0 = 1):

G2(x) : {c0, c1,−2},

G3(x) : {c0, c1, c2,−11, 6},

G4(x) : {c0, c1, c2, c3,−50, 57,−18},

G5(x) : {c0, c1, c2, c3, c4,−215, 378,−243, 54},

G6(x) : {c0, c1, c2, c3, c4, 41,−902, 2157,−2106, 945,−162},

G7(x) : {c0, c1, c2, c3, c4, 41, 122,−3731, 11334,−14895, 10098,−3483, 486},

G8(x) : {c0, c1, c2, c3, c4, 41, 122, 365,−15290, 56529,−93582, 85077,−44226, . . .},
...

Cubic Functional Coefficients:

Gr+1(x) = 1− 5x+ 6x2 − x3 + (6x− 10x2 + 4x3)Gr(x)

Quartic Functional Coefficients:

Gr+1(x) = 1− 7x+ 15x2 − 10x3 + x4 + (8x− 21x2 + 20x3 − 5x4)Gr(x) (3.53)
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Clearly, if the general form of the scheme possesses insufficient degrees of freedom as in the

above cases, it is impossible to recover the natural discretisation of a sequence’s o.g.f., implying

that terms of the associated infinite sequence cannot be generated indefinitely either. However,

it is apparent when executing each of these schemes iteratively that they generate Catalan

subsequences of, respectively, 3, 5, 7 and 9 terms before “failing”. From these, and further

investigative computations (seeking schemes which give but an even number of Catalan terms),

it has been possible to identify a class of polynomials—of which those appearing above are

special cases—and both formalise and subsequently prove a general theorem in which they play

an integral part in generating finite Catalan subsequences, the details of which are given in the

next chapter together with a comprehensive description of the polynomials themselves.
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Chapter 4

Catalan Polynomials

4.1 Introduction and Theorem

In the previous chapter, it was discovered that placing a specific set of constraints on an al-

gorithm designed to recover a recurrence scheme for the Catalan sequence would, instead of

recovering the sequence’s natural recurrence relation, generate schemes which appear to produce

a finite number of Catalan terms before “failing”. In each case, the linear recurrence relation

generated incorporates two polynomials of equal degree as functional coefficients, which are

found to form part of a series of polynomials which will hereafter be referred to as Catalan

polynomials.

The general form of the Catalan polynomial Pn(x), say, is given by

Pn(x) =

b 1
2
nc∑

i=0

(
n− i
i

)
(−x)i, n ≥ 0. (4.1)

It can also be expressed as a specialisation of the Gaussian hypergeometric function1 ((a)i, (b)i,

(c)i here denoting falling factorials)

2F1

(
a, b

c

∣∣∣∣ z) =
∞∑
i=0

(a)i(b)i
(c)i

zi

i!
, |z| < 1. (4.2)

With a = −1
2
n, b = −1

2
(n− 1), c = −n and z = 4x, it is found that

Pn(x) = 2F1

(
−1

2
n,−1

2
(n− 1)

−n

∣∣∣∣ 4x

)
=
∞∑
i=0

(
−1

2
n
)
i

(
−1

2
(n− 1)

)
i

(−n)i

(4x)i

i!
. (4.3)

1Although hypergeometric functions will not be discussed further in this work, a comprehensive treatment

of the subject can be found in Petkovšek et al. (1996).
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The first few polynomials are:

P0(x) = 1

P1(x) = 1

P2(x) = 1− x

P3(x) = 1− 2x

P4(x) = 1− 3x+ x2

P5(x) = 1− 4x+ 3x2

P6(x) = 1− 5x+ 6x2 − x3

P7(x) = 1− 6x+ 10x2 − 4x3

P8(x) = 1− 7x+ 15x2 − 10x3 + x4

P9(x) = 1− 8x+ 21x2 − 20x3 + 5x4

... (4.4)

Based on the results outlined in the last chapter (3.53), we theorise and prove the following

statement:

Theorem 4.1. For any integer n ≥ 0, the first-order scheme

Fi+1(x) = Pn(x) + [1− Pn+1(x)]Fi(x); F1(x) = c0,

produces polynomials F1(x) = c0, F2(x), F3(x), . . . , where Fi(x) acts as an o.g.f. for the finite

subsequence {c0, c1, c2, . . . , ci−1}, i = 1, . . . , n+ 1.

However, before presenting the proof, it is pertinent to outline the essential properties of the

Catalan polynomials for reasons of both completeness and interest.

4.2 Mathematical Properties of the Polynomials

4.2.1 Linear Recurrence Property and Closed Form

From (4.1), it is a straightforward matter to verify that the Catalan polynomials satisfy the

basic second-order linear recurrence

0 = xPn(x)− Pn+1(x) + Pn+2(x); P0(x) = P1(x) = 1, (4.5)
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from which the closed form

Pn(x) =
1

2n+1

(
1 +
√

1− 4x
)n+1 −

(
1−
√

1− 4x
)n+1

√
1− 4x

(4.6)

is readily established.

Proof. The associated characteristic equation 0 = λ2 − λ + x of (4.5) has roots λ1(x) = 1
2
(1 +

r(x)), λ2(x) = 1
2
(1− r(x)) (defining r(x) =

√
1− 4x for convenience). For λ1 6= λ2, the general

solution Pn(x) = A(x)λn1 (x) + B(x)λn2 (x) yields simultaneous equations 1 = A(x) + B(x) =

A(x)λ1(x) + B(x)λ2(x) from the initial values of P0(x), P1(x), with solutions A(x) = (1 −

λ2(x))/(λ1(x) − λ2(x)) = λ1(x)/r(x) and B(x) = 1 − A(x) = −λ2(x)/r(x), from which (4.6)

follows.

Remark 4.2. The case λ1 = λ2 excluded from the proof corresponds to x taking (maximum)

value 1
4
. It gives a general solution Pn(1

4
) = (Cn + D)(1

2
)n, and in turn a particular one

Pn(1
4
) = (n+1)(1

2
)n which can be checked for any n ≥ 0. Note that an alternative means to find

Pn(1
4
) is to set it up as the limit Pn(1

4
) = 2−(n+1) limr(x)→0+{[(1+r(x))n+1−(1−r(x))n+1]/r(x)},

which is easily dealt with using L’Hôpital’s Rule for limits with indeterminate forms.

4.2.2 Fibonacci Numbers and Cyclotomic Polynomials

The well-known Lucas polynomials ln(x), say, satisfy the recurrence 0 = ln(x) + xln+1(x) −

ln+2(x) (l0(x) = 2, l1(x) = x), whilst the related and illustrious Fibonacci polynomials fn(x),

say, satisfy the identical recurrence 0 = fn(x) + xfn+1(x) − fn+2(x) (f0(x) = 0, f1(x) = 1),

each of which is similar in structure to (4.5) (see Koshy (2001, pp. 459, 443, resp.)). We

note, as a point of interest, that the Catalan polynomials are connected to the Fibonacci se-

quence for at x = −1 the Catalan polynomials replicate the Fibonacci numbers—that is to say,

{P0(−1), P1(−1), P2(−1), P3(−1), P4(−1), . . .} = {1, 1, 2, 3, 5, . . .}. The cyclic (period 6) se-

quence {Pn(1)}∞0 = {1, 1, 0,−1,−1, 0, . . .} arises from a cyclotomic polynomial (see O.E.I.S. se-

quence no. A010892).

4.2.3 Chebyshev and Dickson Polynomials

It should be noted that the Catalan polynomials, as they are called here, are not new polynomi-

als, the r.h.s. of (4.1),(4.6) having been equated in a paper on number theory by Mandl (1891,

p. 236). In 2006, the ordered sequence of coefficients {1; 1; 1,−1; 1,−2; 1,−3, 1; 1,−4, 3; . . .}

was entered as sequence no. A115139 into the O.E.I.S. by W. Lang, who lists some properties
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in connection with work on integral and inverse powers of the Catalan sequence o.g.f. C(x). In

this (Lang, 2000), we see that the Catalan polynomials are related to Chebyshev polynomials

of the second kind Un(x) according to

Pn(x) = (
√
x)nUn

(
1

2
√
x

)
, n ≥ 0, (4.7)

(4.6) being immediate from the corresponding closed form for Un(x) found in, e.g., Rivlin (1990,

Problem 1.2.20, p. 10)

Un(x) =

(
x+
√
x2 − 1

)n+1 −
(
x−
√
x2 − 1

)n+1

2
√
x2 − 1

. (4.8)

Likewise we have the o.g.f.
1

1− t+ xt2
=
∞∑
n=0

Pn(x)tn (4.9)

directly from that of these Chebyshev polynomials (or from (4.5) in standard combinatorics

fashion). We can also appeal to the fact that Un(x) = En(2x, 1) is a special case of the general

two-parameter Dickson polynomial of the second kind (Lidl et al. (1993, Definition 2.2, p. 9)),

En(x, a) =

b 1
2
nc∑

i=0

(
n− i
i

)
(−a)ixn−2i, (4.10)

to obtain a succinct matrix format for our Catalan polynomials; since, for n ≥ 0 (Lidl et

al. (1993, (2.4), p. 11)),

En(x, a) = (1, x)

(
0 −a
1 x

)n(
1

0

)
, (4.11)

then

Pn(x) =
(√

x
)n
En(1/

√
x, 1)

=
(√

x
)n (

1, 1/
√
x
)(0 −1

1 1√
x

)n(
1

0

)
, n ≥ 0, (4.12)

which we verify here for the first few values of n:

P0(x) =
(
1, 1/
√
x
)(1 0

0 1

)(
1

0

)

=
(
1, 1/
√
x
)(1

0

)
= 1;
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P1(x) =
√
x
(
1, 1/
√
x
)(0 −1

1 1√
x

)(
1

0

)

=
(√

x, 1
)(0

1

)
= 1;

P2(x) = x
(
1, 1/
√
x
)(−1 − 1√

x

1√
x

1
x
− 1

)(
1

0

)

= x
(
1, 1/
√
x
)(−1

1√
x

)

= x

(
−1 +

1

x

)
= 1− x;

P3(x) = x
√
x
(
1, 1/
√
x
)(− 1√

x
1− 1

x

1
x
− 1 1√

x

(
1
x
− 2
))(1

0

)

=
(
x
√
x, x
)(− 1√

x

1
x
− 1

)

= −x+ x

(
1

x
− 1

)
= 1− 2x;

P4(x) = x2
(
1, 1/
√
x
)( 1− 1

x
1√
x

(
2− 1

x

)
1√
x

(
1
x
− 2
)

1
x2
− 3

x
+ 1

)(
1

0

)

= x2
(
1, 1/
√
x
)( 1− 1

x

1√
x

(
1
x
− 2
))

= x2

[
1− 1

x
+

1

x

(
1

x
− 2

)]
= 1− 3x+ x2;

P5(x) = x2
√
x
(
1, 1/
√
x
)( 1√

x

(
2− 1

x

)
− 1
x2

+ 3
x
− 1

1
x2
− 3

x
+ 1 1√

x

(
1
x2
− 4

x
+ 3
))(1

0

)

=
(
x2
√
x, x2

)( 1√
x

(
2− 1

x

)
1
x2
− 3

x
+ 1

)

= x2

(
2− 1

x

)
+ x2

(
1

x2
− 3

x
+ 1

)
= 1− 4x+ 3x2, (4.13)

and so on.
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With a little work, an alternative matrix format can be established for Pn(x). By defining the

matrices

L(x) =

(
1 1

0 −
√
x

)
and M(x) =

(
1 x

−1 0

)
, (4.14)

which have the property that (
0 −

√
x

√
x 1

)
= L(x)M(x)L−1(x), (4.15)

we can re-write (4.12) as

Pn(x) =
(√

x
)n (

1, 1/
√
x
)(0 −1

1 1√
x

)n(
1

0

)

=
(
1, 1/
√
x
)( 0 −

√
x

√
x 1

)n(
1

0

)

=
(
1, 1/
√
x
) [

L(x)M(x)L−1(x)
]n(1

0

)

=
(
1, 1/
√
x
)
L(x)Mn(x)L−1(x)

(
1

0

)
. (4.16)

Noting that (
1, 1/
√
x
)

L(x) = (1, 0),

L−1(x)

(
1

0

)
=

(
1

0

)
, (4.17)

(4.16) can now be written as

Pn(x) = (1, 0)Mn

(
1

0

)

= (1, 0)

(
1 x

−1 0

)n(
1

0

)
. (4.18)

The aforementioned text by Lidl et al. (1993, Lemma 2.17, p. 16) also permits Pn(x) to be

expressed in terms of an n× n tri-diagonal matrix as

Pn(x) =
(√

x
)n

det





1√
x

1 0 · · · 0 0 0

1 1√
x

1 · · · 0 0 0

0 1 1√
x
· · · 0 0 0

...

0 0 0 · · · 1√
x

1 0

0 0 0 · · · 1 1√
x

1

0 0 0 · · · 0 1 1√
x




, (4.19)

and the closed form for En(x, 1) from Lidl et al. (1993, p. 16) also recovers (4.6).
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4.2.4 Continued Fractions and Dyck Paths

One further characteristic of the Catalan polynomials is that the ratio Pn(x)/Pn+1(x) is, for

n ≥ 0, the nth continued fraction associated with the Catalan sequence (based on the re-

arrangement C(x) = 1
1−xC(x)

of the sequence’s governing equation (1.9)) which, when expanded

as a Maclaurin series, describes an o.g.f. with n+1 Catalan numbers c0, . . . , cn as the coefficients

of terms x0, . . . , xn. Defining the 0th continued fraction as P0(x)/P1(x) = 1 = c0, we observe

that

P1(x)

P2(x)
=

1

1− x
= c0 + c1x+ · · · ,

P2(x)

P3(x)
=

1

1− x
1−x

= c0 + c1x+ c2x
2 + · · · ,

P3(x)

P4(x)
=

1

1− x
1− x

1−x

= c0 + c1x+ c2x
2 + c3x

3 + · · · , (4.20)

etc.2 Recall that a Dyck path (of length 2n) is an even path in the x-y plane from the origin

(0, 0) to the point (2n, 0), using steps (1, 1) (north-east) and (1,−1) (south-east), which does

not fall below the x-axis anywhere. Whilst cn is the number of unconstrained Dyck paths of

length 2n (and also by Peart and Woan (2001) the number of paths of length 2(n + 1) with

no peak at height 2), this set of continued fractions counts Dyck paths with bounded height:

1/(1 − x) counts paths with height at most 1, 1/(1 − x/(1 − x)) counts paths of height at

most 2, and so on. A useful reference here is a paper by Flajolet (1980) on combinatorial

interpretations of continued fractions, whose properties in relation to the Catalan numbers

continue to be developed in a lattice path context and others such as ordered trees and sequences

in permutations (see, for instance, Jani and Rieper (2000), or Brändén et al. (2002)).

4.2.5 Other Properties

We finish this subsection by listing some other properties of the Catalan polynomials.

Non-Linear Recurrences

Rather than (4.5) being used to derive the closed form (4.6) as shown, the latter could serve

2Let CFn(x) be the nth continued fraction. Since CFn+1(x) = 1/(1− xCFn(x)) by definition, it is a simple

matter to prove inductively that CFn(x) = Pn(x)/Pn+1(x) for n ≥ 0 using the Catalan polynomial recursion

(4.5).
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as a starting point to validate (or deduce) (4.5) by hand. Equally, (4.6) confirms the following

non-linear recurrence (originally found through experimental computation)

0 = P 2
n(x)− P2n−1(x)− x2P 2

n−2(x), n ≥ 2. (4.21)

This can be combined with (4.5) to yield the similar recurrence

0 = P 2
n(x)− P2n(x)− xP 2

n−1(x), n ≥ 1. (4.22)

Neither (4.21) nor (4.22) appear in literature explicitly, and of course each can be re-written in

terms of the aforementioned Chebyshev or Dickson polynomials (indeed, the Dickson polyno-

mial version of (4.22) appears in Lidl et al. (1993, Lemma 2.16, p. 15)), where it is notable in

giving the more general result

0 = Pr+s(x)− Pr(x)Ps(x) + xPr−1(x)Ps−1(x), r, s ≥ 1, (4.23)

of which (4.22) is the instance r = s = n. Finally, the identity found in Lidl et al. (1993, p. 16)∑n
i=0 E2i(x, 1) = E2

n(x, 1) immediately yields

n∑
i=0

xn−iP2i(x) = P 2
n(x), n ≥ 0, (4.24)

a result also available through “telescoping” by writing (4.22) as P2i(x) = P 2
i (x) − xP 2

i−1(x),

and then multiplying both sides by xn−i and summing over i (this requires P−1(x) = 0; see the

proof of the subsequent lemma).

Governing Differential Equation

The differential equation satisfied by the Catalan polynomials is, from Lidl et al. (1993, Theo-

rem 2.15(ii), p. 15) with some work,

0 = n(n− 1)Pn(x) + [n+ 2(3− 2n)x]P ′n(x) + x(4x− 1)P ′′n (x). (4.25)

Divisibility Properties

It is a simple matter, combining (4.5) with (4.21), to show that P2n+1(x) is divisible by Pn(x),

with
P2n+1(x)

Pn(x)
= Pn+1(x)− xPn−1(x), n ≥ 1. (4.26)

Computations affirm that for n ≥ 2 the polynomial P2n+1(x) contains Pn(x) as a factor, with

those polynomials which are irreducible being Pr(x) for r = 4, 6, 10, 12, 16, 18, . . . (each one less
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than the primes from 5 onwards). A corollary of (4.26) (also a consequence of Lidl et al. (1993,

Lemma 2.19(ii), p. 16) listed in terms of Chebyshev polynomials) is that, defining Rn(x) to be

the ratio

Rn(x) =
P2n+1(x)

(
√
x)

n+1
Pn(x)

, (4.27)

then

Rn(x)|√x=±1,± 1
2
,± 1

3
,± 1

4
,... ∈ Z, n ≥ 0, (4.28)

with the caveat that for specific values of n = 2, 5, 8, 11, . . . , Rn(x)|√x=±1 is undefined since both

Pn(1) and P2n+1(1) are zero.3 Considering those evaluations of Rn(x) at
√
x = 1, 1

2
, 1

3
, 1

4
, . . . ,

for a moment, another couple of observations are that (i) Rn(x)|√x= 1
2

= 2 ∀n ≥ 0 (following

trivially from the fact that (Remark 4.2) Pn(1
4
) = (n + 1)(1

2
)n), and (ii) {R0(x)|√x=1, 1

2
, 1
3
, 1
4
,...}

generates the sequence of natural numbers {1, 2, 3, 4, . . .} (since R0(x) = 1√
x
). Results for

evaluations at
√
x = −1,−1

2
,−1

3
,−1

4
, . . . , are immediate, for it is easy to see that

Rn(x)|√x=−1,− 1
2
,− 1

3
,− 1

4
,... =

{
−Rn(x)|√x=1, 1

2
, 1
3
, 1
4
,... n (even) = 0, 2, 4, 6, . . .

Rn(x)|√x=1, 1
2
, 1
3
, 1
4
,... n (odd) = 1, 3, 5, 7, . . .

(4.29)

Another divisibility property to be noted is that (by Lidl et al. (1993, Lemma 2.18(ii), p. 16))

the ratio

Qn(x) =

Pn−1(x)
(
√
x )n−1 −

(
1
x
− 4
) 1

2
(n−1)

n
(4.30)

also satisfies the arithmetic relation

Qn(x)|√x=±1,± 1
2
,± 1

3
,± 1

4
,... ∈ Z (4.31)

for all odd prime n, with the additional observations that (i) Q1(x)|√x=±1,± 1
2
,± 1

3
,± 1

4
,... = 0, (ii)

Q3(x)|√x=±1,± 1
2
,± 1

3
,± 1

4
,... = 1, and (iii) for prime n ≥ 3 then Qn(x)|√x=± 1

2
= 1.

Roots

Empirical evidence suggests that for n ≥ 2, Pn(x) possesses bn/2c roots which are all real

and positive. In fact Lidl et al. (1993, p. 16) state a closed form for all roots of the Chebyshev

polynomial En(x, 1), based on its tri-diagonal matrix form, so that we can write

Pn(x) =
(√

x
)n n∏

λ=1

(
1√
x
− 2 cos

(
λπ

n+ 1

))
, n ≥ 1. (4.32)

3See the cyclic sequence {Pn(1)}∞0 in Section 4.2.2. These values of n are given by n = 3m − 1 (integer

m = 1, 2, 3, . . .), whence 2n+ 1 = 3(2m)− 1 is of the same form.

44



Initial cases are readily verified by hand, the first non-trivial one being the following:

n = 4: Noting that cos(π/5) = 1
4
(1+
√

5), cos(2π/5) = 1
4
(−1+

√
5), cos(3π/5) = − cos(2π/5) =

−1
4
(−1 +

√
5) and cos(4π/5) = − cos(π/5) = −1

4
(1 +

√
5), (4.32) reads

P4(x) =
(√

x
)4

4∏
λ=1

(
1√
x
− 2 cos

(
λπ

5

))
,

= x2

(
1√
x
− 2 cos

(π
5

))( 1√
x
− 2 cos

(
2π

5

))
×(

1√
x
− 2 cos

(
3π

5

))(
1√
x
− 2 cos

(
4π

5

))
= x2

(
1√
x
− 1

2

(
1 +
√

5
))( 1√

x
− 1

2

(
−1 +

√
5
))
×(

1√
x

+
1

2

(
−1 +

√
5
))( 1√

x
+

1

2

(
1 +
√

5
))

= x2

(
1

x
− 1

4

(
1 +
√

5
)2
)(

1

x
− 1

4

(
−1 +

√
5
)2
)

= x2

[
4−

(
1 +
√

5
)2
x
]

4x

[
4−

(
−1 +

√
5
)2
x
]

4x

=
1

16

[
4−

(
6 + 2

√
5
)
x
] [

4−
(

6− 2
√

5
)
x
]

=
1

16

(
16− 48x+ 16x2

)
= 1− 3x+ x2. (4.33)

In the absence of any other proof, we look ourselves at the roots of Pn(x) from first principles

using the closed form (4.6) as follows. We can assume that x 6= 1
4

(for we know that Pn(1
4
) =

2−n(n + 1) 6= 0 ∀n ≥ 0), so solutions of the equation Pn(x) = 0 are those of the equation

(1 + r(x))n+1 − (1 − r(x))n+1 = 0 where r(x) =
√

1− 4x. Similarly, since Pn(0) = 1 6= 0

∀n ≥ 0 we can further assume that x 6= 0, whence r(x) 6= 1 and we seek instead solutions of

the equation

0 =

(
1 + r(x)

1− r(x)

)n+1

− 1, (4.34)

which is straightforward. Writing 1 = exp(2πλi) in standard fashion (λ ∈ Z), then

1 + r(x)

1− r(x)
= exp(2πλi/(n+ 1)), λ = 1, 2, 3, . . . , n, (4.35)

where λ = 0 is excluded because it clearly coincides with the discounted solution x = 1
4
. We

also note that values of λ where 2λ = n + 1 are also excluded since the r.h.s. here is then

exp(iπ) = −1, which is a contradiction (this will exclude one single potential solution for any
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given n odd). Rearranging gives, setting θ = θ(λ) = 2πλ/(n+ 1),

r(x) =
eiθ − 1

eiθ + 1
(4.36)

and, squaring both sides,

x =
1

4

[
1−

(
eiθ − 1

eiθ + 1

)2
]

=
eiθ

(eiθ + 1)2

=

((
eiθ + 1

)2

eiθ

)−1

=
(
eiθ + 2 + e−iθ

)−1

=
1

2

1

1 + cos(θ)
. (4.37)

Thus, the equation 0 = Pn(x) has solutions xλ(n) from this line of argument, where, for n ≥ 2,

xλ(n) =
1

2

1

1 + cos (θ(λ))
=

1

4 cos2
(

1
2
θ(λ)

) =
1

4 cos2
(
λπ
n+1

) , (4.38)

although since the degree of Pn(x) is known to be bn/2c some of those will necessarily be

repeated as the index λ ≥ 1 runs along its designated values. By way of example, consider the

case n = 5, for which λ takes values 1,2,4 and 5 (λ = 3 is removed for here 2λ = n + 1 as

mentioned above), yielding roots

1

4 cos2
(
π
6

) , 1

4 cos2
(
π
3

) , 1

4 cos2
(

2π
3

) , 1

4 cos2
(

5π
6

) =
1

3
, 1, 1,

1

3
; (4.39)

thus, the two distinct roots 1, 1
3

of P5(x) = 1−4x+3x2 = (1−x)(1−3x) are correctly identified.

4.3 Proof of Theorem 4.1

It is apparent that the basic form of the recurrence stated in Theorem 4.1 is

Fr+1(x) = f(x) + xg(x)Fr(x), (4.40)

which was discussed in Chapter 2 in relation to a finite target sequence. Here, f(x) = f(x;n) =

Pn(x) and g(x) = g(x;n) = [1 − Pn+1(x)]/x (note that for n > 0 the numerator 1 − Pn+1(x)

always has a non-zero lead term in x so that g(x) contains no inverse powers of x; g(x) = 0

identically for n = 0). In view of this we know in advance (by Remarks 2.2 and 2.3) that, for

any fixed n, the resulting iterative scheme will yield a succession of associated sequences which
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are “preserving” and singly-linear (i.e., one correct sequence term is added per iteration) in

their convergence rate, although this is not necessary for the proof itself.

We will show that, for n ≥ 0, i = 1, . . . , n+ 1,

Fi(x) = c0 + c1x+ c2x
2 + · · ·+ ci−1x

i−1 + xi∆i(x) (4.41)

for some ∆i(x) = ∆i(x;n) ∈ Z[x], arguing by induction on i.

The latter part of the proof relies on the use of the following lemma (see also Appendix B):

Lemma 4.3. For integer n ≥ 1,

Cn(x) =
C(x)Pn−1(x)− Pn−2(x)

xn−1
.

Note that in Lang (2000, (1), p. 408) the assertion is made that every positive integer power

of the o.g.f. C(x) has a form Cn(x) = pn−1(x) + qn−1(x)C(x) for certain polynomials pn−1(x),

qn−1(x) each of degree n − 1 in 1/x. In the proof of Proposition 1 therein (p. 411)—where a

different (non-inductive) line of reasoning is made by Lang—they are shown to be related to

Chebyshev polynomials of the second kind, and we see qn−1(x) = −xpn(x), and further that

pn(x) = −x−nPn−1(x), which reconstructs the lemma.

Proof of Lemma 4.3. By induction. Defining an additional polynomial P−1(x) = 0 (also con-

sistent with n = −1 in (4.12)), Lemma 4.3 clearly holds for n = 1. Suppose it is true for some

n = k ≥ 1, and consider

Ck+1(x) = C(x)Ck(x)

= C(x)

(
C(x)Pk−1(x)− Pk−2(x)

xk−1

)
(by assumption)

=
C2(x)Pk−1(x)− C(x)Pk−2(x)

xk−1

=
1

xk−1

[(
C(x)− 1

x

)
Pk−1(x)− C(x)Pk−2(x)

]
(by (1.9))

=
1

xk
[C(x){Pk−1(x)− xPk−2(x)} − Pk−1(x)] . (4.42)

Setting n → k − 2 in the linear recursion (4.5), and rearranging, gives Pk−1(x) − xPk−2(x) =

Pk(x) (which holds for k ≥ 1), and so Ck+1(x) = 1
xk

[C(x)Pk(x) −Pk−1(x)] as required.
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As far as Theorem 4.1 is concerned, for n = 0 we require F1(x) = c0 + x∆1(x), which holds

trivially by the initial value for F1(x) choosing ∆1(x) = 0. Thus, the result is valid for i = 1,

so that we have by hypothesis, for some i = k ∈ [1, n] (n ≥ 1), (4.41) as

Fk(x) = c0 + c1x+ c2x
2 + · · ·+ ck−1x

k−1 + xk∆k(x), (4.43)

∆k(x) = ∆k(x;n) ∈ Z[x]. We can re-write this as

Fk(x) = c0 + c1x+ c2x
2 + · · ·+ ck−1x

k−1 + xk∆k(x)

+ (ckx
k + ck+1x

k+1 + · · · )− (ckx
k + ck+1x

k+1 + · · · )

= C(x)− (ckx
k + ck+1x

k+1 + · · · ) + xk∆k(x)

= C(x) + xk∆∗(x), (4.44)

where ∆∗(x) = ∆∗(x; k, n) = ∆k(x) − ck − ck+1x − ck+2x
2 − · · · ∈ Z[[x]] is an infinite series.

Now, directly from the scheme, employing (4.44) gives

Fk+1(x) = Pn(x) + [1− Pn+1(x)]Fk(x)

= Pn(x) + [1− Pn+1(x)][C(x) + xk∆∗(x)]

= C(x) + Pn(x)− C(x)Pn+1(x) + [1− Pn+1(x)]xk∆∗(x), (4.45)

and since [x]{Pn+1(x) − 1} = [x]{Pn+1(x)} = −n for n ≥ 1, then at this point we can write

1 − Pn+1(x) = x∆(n)(x) for some finite polynomial ∆(n)(x) ∈ Z[x], whence, with ∆†(x) =

∆†(x; k, n) = ∆(n)(x)∆∗(x) ∈ Z[[x]],

Fk+1(x) = C(x) + Pn(x)− C(x)Pn+1(x) + xk+1∆†(x)

= C(x)− xn+1Cn+2(x) + xk+1∆†(x) (4.46)

by Lemma 4.3. Now since the lead term of Cn+2(x) is cn+2
0 6= 0 then xn+1Cn+2(x) contains

terms in xn+1, xn+2, xn+3, . . . , whilst xk+1∆†(x) has terms in xk+1, xk+2, xk+3, etc. This means,

since k ∈ [1, n], that Fk+1(x) agrees with C(x) up to and including the term in xk, upholding

the inductive step for (4.46) reads, equivalently,

Fk+1(x) = c0 + c1x+ c2x
2 + · · ·+ ckx

k + xk+1∆k+1(x), (4.47)

for some ∆k+1(x) = ∆k+1(x;n) = ∆†(x) − xn−kCn+2(x) + ck+1 + ck+2x + ck+3x
2 + · · · ∈ Z[x]

(note that there must be cancellation between a host of terms for ∆k+1(x) ∈ Z[x]).
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Computer output confirms, for fixed n ≥ 0, that the set of polynomials F1(x), F2(x), F3(x),

F4(x), . . . , Fn+1(x) serve to generate Catalan subsequences {c0}, {c0, c1}, {c0, c1, c2}, {c0, c1, c2,

c3}, . . . , {c0, c1, c2, . . . , cn}, and we give instances of the finite polynomials ∆i(x) = ∆i(x;n)

associated with them (for n = 0, . . . , 5), together with an accompanying remark:

n = 0: Scheme is Fi+1(x) = 1

Since F1(x) = c0 by default, then ∆1(x; 0) = 0.

n = 1: Scheme is Fi+1(x) = 1 + xFi(x)

Clearly ∆1(x; 1) = 0, and F2(x) = c0 + c1x⇒ ∆2(x; 1) = 0.

n = 2: Scheme is Fi+1(x) = 1− x+ 2xFi(x)

Again we have ∆1(x; 2) = 0, with F2(x) = c0+c1x⇒ ∆2(x; 2) = 0, and F3(x) = c0+c1x+c2x
2 ⇒

∆3(x; 2) = 0.

n = 3: Scheme is Fi+1(x) = 1− 2x+ x(3− x)Fi(x)

We have ∆1(x; 3) = 0, with F2(x) = c0 + c1x− x2 ⇒ ∆2(x; 3) = −1, F3(x) = c0 + c1x+ c2x
2 −

4x3 +x4 ⇒ ∆3(x; 3) = −4+x, and F4(x) = c0 +c1x+c2x
2 +c3x

3−14x4 +7x5−x6 ⇒ ∆4(x; 3) =

−14 + 7x− x2.

n = 4: Scheme is Fi+1(x) = 1− 3x+ x2 + x(4− 3x)Fi(x)

We have ∆1(x; 4) = 0, ∆2(x; 4) = −2, ∆3(x; 4) = −11 + 6x, ∆4(x; 4) = −50 + 57x− 18x2 and

∆5(x; 4) = −215 + 378x− 243x2 + 54x3.

n = 5: Scheme is Fi+1(x) = 1− 4x+ 3x2 + x(5− 6x+ x2)Fi(x)

We have ∆1(x; 5) = 0, ∆2(x; 5) = −3 + x, ∆3(x; 5) = −20 + 24x − 9x2 + x3, ∆4(x; 5) =

−111+242x−209x2+83x3−15x4+x5, ∆5(x; 5) = −583+1881x−2608x2+· · ·+178x5−21x6+x7

and ∆6(x; 5) = −2994 + 12917x− 24909x2 + · · ·+ 309x7 − 27x8 + x9.

Remark 4.4. Computations also reveal that, for n ≥ 0,

Fn+2(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n + (cn+1 − 1)xn+1 + · · · ; (4.48)

in other words, when the iterative process first fails the first incorrect term is that in xn+1,

whose coefficient is out by precisely 1. This is straightforward to deduce from Theorem 4.1 and
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its proof. The actual scheme gives, with i = n+ 1,

Fn+2(x) = Pn(x) + [1− Pn+1(x)]Fn+1(x)

= · · ·

= C(x)− xn+1Cn+2(x) + xn+2∆†(x) (4.49)

by a repeat proof argument (here, ∆†(x) = ∆†(x;n + 1, n)). Thus, Fn+2(x) agrees with

C(x) up to and including the term in xn, and we have trivially that [xn+1]{Fn+2(x)} =

[xn+1]{C(x)} − [x0]{Cn+2(x)} = cn+1 − 1, holding for n ≥ 0. This observation is readily

interpreted in terms of Dyck paths on setting a path height restriction of y = h ≥ 1, say, for

whilst there are cn paths of length 2n for n = 0, . . . , h, the number of paths of length 2(h+1) is

evidently ch+1−1 since there is just a single path (consisting of h+1 consecutive north-east steps

followed by h+ 1 consecutive south-east steps, peaking at the point (h+ 1, h+ 1)) which would

violate the restriction; in this scenario Ph(x)/Ph+1(x) =
∑h

i=0 cix
i + (ch+1 − 1)xh+1 + · · · (by

way of an example, when h = 6 we anticipate that P6(x)/P7(x) =
∑6

i=0 cix
i + (c7− 1)x7 + · · · ,

which is indeed correct).

To conclude this chapter, it will be shown that Theorem 4.1 is, as required, consistent in the

limit n→∞. By consideration of the scheme as stated, we need to show that

lim
n→∞

{
Pn(x)

Pn+1(x)

}
= C(x). (4.50)

Whilst evidently true from the continued fraction interpretation of the Catalan polynomials,

we can make a formal argument using the definition of Pn(x) (4.6). This is achieved by first

noting that the bounds 1 < 1 + r(x) < 1 +
√

2 and 1−
√

2 < 1− r(x) < 1 are easily determined

for the function r(x) =
√

1− 4x over the interval |x| < 1/4. Consider, therefore, the ratio

Pn(x)

Pn+1(x)
= 2

(1 + r(x))n+1 − (1− r(x))n+1

(1 + r(x))n+2 − (1− r(x))n+2

=
2

1 + r(x)

1− qn+1(x)

1− qn+2(x)
, (4.51)

where q(x) = (1−r(x))/(1+r(x)) is monotonic with bounds −1 < q(x) ≤ 1 over its full domain

x ∈ (−∞, 1
4
] (we find dq/dx = −2(dr/dx)/(1 + r(x))2 = 4/[r(x)(1 + r(x))2] > 0 for x < 1/4

since r(x) > 0). Thus, over the interval |x| < 1/4 in particular, |q(x)| < 1 (more precisely, the

bounds on r(x) yield4 (1−
√

2)/(1 +
√

2) = −0.1716 < q(x) < 1), so qn(x)→ 0 as n→∞, and

Pn(x)

Pn+1(x)
→ 2

1 + r(x)
= C(x). (4.52)

4Or, alternatively, having established the increasing monotonicity of q(x) over (− 1
4 ,

1
4 ), we can write down

the bounds on q(x) here as q(−1/4) < q(x) < q(1/4).
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Whilst this has been formally argued pointwise over the interval [−1
4
, 1

4
], it is true that the

ratio Pn(x)/Pn+1(x) converges to C(x) in the sense that the resulting power series of the ratio

contains ever more terms in agreement as n increases (see Theorem 5.6 later, and Section 6.5).

4.4 Summary and Concluding Remarks

In this chapter, it has been shown that, as a result of the Catalan polynomials’ association with

Chebyshev and Dickson polynomials, an extensive catalogue of their properties can be readily

compiled through adaptation of results found in existing literature.

Although first discovered in the course of this study through the mechanism of term-matching,

the existence of more direct means of generating the Catalan polynomials (i.e., the closed form

(4.6) and matrix formulae (4.12) and (4.18)) raises the possibility of their generalisation to

accommodate other infinite sequences such as the Schröder and Motzkin numbers—a subject

which will be further explored in due course.

Another association of interest is that the Catalan polynomials are found to form so-called

Padé approximants, firstly in the context of the algebraic implementation of the type of nu-

merical root-finding algorithms examined by Koepf (2006 and 2010), and secondly in relation

to the continued fractions they comprise, as discussed briefly in Section 4.2.4 (Lemma 4.3 here

encapsulating the required criterion for successive ratios of neighbouring pairs of polynomials

to form such approximants). This topic will be discussed in the next chapter.
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Chapter 5

A Class of Non-Linear Identities for

Catalan Polynomials

5.1 Introduction

In Chapter 1, the concept of iterated generating functions was first introduced in the context of

the algebraic adaptation of fixed-point iteration, an elementary numerical root-finding method.

The recursive schemes generated by this method were found to deliver generating functions

which converge to the o.g.f. of the associated infinite sequence at a linear rate.

Extending this subject, the first section of this chapter will focus on the construction of it-

erative schemes specifically for the Catalan sequence via the algebraic adaptation of a more

complex suite of root-finding algorithms known as Householder’s methods, in which the well-

known quadratically convergent Newton-Raphson method features as the Householder method

of lowest order, followed immediately by the cubically convergent Halley’s method.

The fact that the iterative schemes generated by the adapted methods produce generating

functions (in the form of ratios of polynomials) which converge to the Catalan sequence at an

accelerated rate, reflecting their original numerical counterparts, is not surprising—however, of

particular interest is that in each case, the ratios delivered by the schemes consist of pairs of

Catalan polynomials. This enables us to utilise some of the recurrence properties exhibited by

Catalan polynomials (detailed in Chapter 4 and revisited in the next section) to formulate a

new class of non-linear identities.
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Additionally, it is found that isolated Catalan polynomial ratios form so-called Padé approxi-

mants to the o.g.f. of the Catalan sequence, leading to a new proof of a stronger result which

states that all such polynomial ratios are Padé approximants.

5.2 Summary of Recurrence Properties

Before starting our exploration of Householder algorithms, it is first convenient to collate and

summarise for later reference the three recurrences found to be satisfied by the Catalan poly-

nomials in Chapter 4.

It was previously noted that the two non-linear identities

0 = P 2
n(x)− P2n−1(x)− x2P 2

n−2(x) (5.1)

and

0 = P 2
n(x)− P2n(x)− xP 2

n−1(x) (5.2)

hold, each of which can be deduced from the other in combination with the basic linear recur-

rence

0 = xPn(x)− Pn+1(x) + Pn+2(x); P0(x) = P1(x) = 1. (5.3)

5.3 Newton-Type Iteration

5.3.1 Newton-Raphson Method

Given a sufficiently differentiable univariate function f(z) = 0, say, and an initial approximation

to a root of the function, z0, the Newton-Raphson numerical method (see Burden and Faires

(2010, Section 2.3, p. 67) for a comprehensive derivation and methodology) utilises the iterative

scheme

zr+1 = zr −
f(zr)

f ′(zr)
, r = 0, 1, 2, . . . (5.4)

to generate a series of values z1, z2, . . ., where as r increases, zr represents a progressively better

approximation of the true root, z.

Now, as before, let C(x) be the o.g.f. for the Catalan sequence, satisfying the quadratic

0 = 1− C(x) + xC2(x). (5.5)

53



By replacing C(x) with z and considering x to be a parameter to z, (5.5) can be re-written as

0 = 1− z + xz2 = f(z) = f(z;x), (5.6)

where f ′(z) = ∂f
∂z

. This gives an algebraic scheme

zr+1 = zr −
1− zr + xz2

r

−1 + 2xzr

=
1− xz2

r

1− 2xzr
, (5.7)

which we execute as

Fr+1(x) =
1− xF 2

r (x)

1− 2xFr(x)
, r ≥ 0, (5.8)

subject to F0(x) = 1 (the first term of the Catalan sequence). The functions resulting from the

scheme are found to be:

F1(x) =
1− x
1− 2x

=
P2(x)

P3(x)
,

F2(x) =
1− 5x+ 6x2 − x3

1− 6x+ 10x2 − 4x3
=
P6(x)

P7(x)
,

F3(x) = · · · = P14(x)

P15(x)
,

F4(x) = · · · = P30(x)

P31(x)
, (5.9)

and so on, suggesting that the rth iterate Fr(x) is related to the Catalan polynomials as

Fr(x) =
Pα(r)−1(x)

Pα(r)(x)
, r ≥ 0, (5.10)

where α(r) = 2r+1 − 1 and reflects the quadratic convergence rate of the Newton-Raphson

scheme (equation (5.10) is also consistent with the 0th iterate: F0(x) = 1 = P0(x)/P1(x) =

Pα(0)−1(x)/Pα(0)(x)). Noting that the function α(r) has the property that α(r+ 1) = 2α(r) + 1,

then as an assertion (5.10) would, if true, mean that the algorithm produces polynomial ratios

F1(x), F2(x), F3(x), . . ., such that

Fr+1(x) =
1− x[Pα(r)−1(x)/Pα(r)(x)]2

1− 2x[Pα(r)−1(x)/Pα(r)(x)]

=
Pα(r+1)−1(x)

Pα(r+1)(x)

=
P2α(r)(x)

P2α(r)+1(x)
. (5.11)

Thus, in order to establish (5.10) we need to show that, for integer n ≥ 0,

1− x[Pn−1(x)/Pn(x)]2

1− 2x[Pn−1(x)/Pn(x)]
=

P2n(x)

P2n+1(x)
. (5.12)
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This can be achieved by making use of identities (5.1) to (5.3), writing:

1− x[Pn−1(x)/Pn(x)]2

1− 2x[Pn−1(x)/Pn(x)]
=

P 2
n(x)− xP 2

n−1(x)

P 2
n(x)− 2xPn−1(x)Pn(x)

=
P2n(x)

P 2
n(x)− 2xPn−1(x)Pn(x)

(by (5.2))

=
P2n(x)

P 2
n(x)− 2xPn−1(x)Pn(x) + x2P 2

n−1(x)− x2P 2
n−1(x)

=
P2n(x)

[Pn(x)− xPn−1(x)]2 − x2P 2
n−1(x)

=
P2n(x)

P 2
n+1(x)− x2P 2

n−1(x)
(by (5.3))

=
P2n(x)

P2n+1(x)
, (5.13)

by (5.1). Equating the denominator of the first and last r.h.s. expressions in the lines above

yields the new identity

Pn(x)[Pn(x)− 2xPn−1(x)] = P2n+1(x), (5.14)

which is verifiable directly using the closed form

Pn(x) =
1

2n+1

(
1 +
√

1− 4x
)n+1 −

(
1−
√

1− 4x
)n+1

√
1− 4x

. (5.15)

Once again, the relative simplicity of the processes involved allows the straightforward im-

plementation using computer algebra software of an algorithm designed to generate pairs of

identities. Having empirically determined (5.10) as a plausible relation, the program would

assume that it holds, equate the first and last r.h.s. ratios of (5.13) and declare the pair in this

case as (5.2),(5.14).

We can, therefore, summarise the results as follows. By executing the classic Newton-Raphson

algorithm symbolically, clearly identifiable ratios of Catalan polynomials emerge at each stage

of the iterative process. Exhibiting the anticipated quadratic convergence rate, the scheme

leads naturally to a pair of polynomial identities (5.2),(5.14) of corresponding degree 2. As will

be demonstrated in the next section, this phenomenon is repeated when the order of the scheme

is increased. Before moving on to the third-order (Halley’s) method, however, two remarks can

be made regarding this second-order algorithm.

Remark 5.1. From the initial value F0(x) = 1 we find that for r ≥ 0, Fr(x) has, in Maclaurin

series form, Catalan numbers as coefficients of its first 2r+1 − 1 terms, these being certain

instances of the continued fractions associated with the Catalan sequence o.g.f. previously
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discussed in Section 4.2.4 in relation to Dyck paths. With a starting value F0(x) of either

0 or 2, only 2r − 1 first coefficients of Fr(x) are Catalan numbers, both schemes operating

identically whilst iterating exactly one step behind that detailed above. This is simple to

explain, for imposing F1(x) (as opposed to F0(x)) = 1 on (5.8) gives

F1(x) = 1 =
1− xF 2

0 (x)

1− 2xF0(x)
, (5.16)

rearrangement of which gives 0 = xF0(x)[2 − F0(x)] with solutions F0(x) = 0, 2. Note that

if F0(x) (constant) ≥ 3 then Fr(x), as delivered by (5.8), contains no Catalan polynomial as

either a numerator or denominator (although its series form continues to display 2r−1 Catalan

numbers as first coefficients, as expected).

Remark 5.2. We confirm that the Newton-Raphson iterations set up are consistent in the limit

r →∞. If we regard (5.8) as a discretised version of the equation

F (x) =
1− xF 2(x)

1− 2xF (x)
, (5.17)

then a rearrangement trivially recovers (5.5) with F (x) replacing C(x); in other words,

limr→∞{Fr(x)} = C(x).

5.3.2 Halley’s Method

Halley’s method (a simple extension of Newton-Raphson) uses the recurrence scheme

zr+1 = zr −
2f(zr)f

′(zr)

2f ′2(zr)− f(zr)f ′′(zr)
, r = 0, 1, 2, . . . , (5.18)

a repeat implementation of which, with f(z) as in (5.6), gives rise to the particular algorithm

Fr+1(x) =
1− 3xFr(x) + x2F 3

r (x)

1− x− 3xFr(x) + 3x2F 2
r (x)

. (5.19)

Using the initial value F0(x) = 1 as before and executing the above scheme for r ≥ 0, we find

that

F1(x) =
P4(x)

P5(x)
,

F2(x) =
P16(x)

P17(x)
,

F3(x) =
P52(x)

P53(x)
,

F4(x) =
P160(x)

P161(x)
, (5.20)
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etc., suggesting this time that

Fr(x) =
Pβ(r)−1(x)

Pβ(r)(x)
, r ≥ 0, (5.21)

where β(r) = 2 · 3r− 1 so that the expected cubic convergence of the scheme is captured. Since

β(r + 1) = 3β(r) + 2 then (5.21) is sufficient for the following to hold for integer n ≥ 0:

1− 3x[Pn−1(x)/Pn(x)] + x2[Pn−1(x)/Pn(x)]3

1− x− 3x[Pn−1(x)/Pn(x)] + 3x2[Pn−1(x)/Pn(x)]2
=
P3n+1(x)

P3n+2(x)
. (5.22)

That is to say,

P 3
n(x)− 3xPn−1(x)P 2

n(x) + x2P 3
n−1(x) = P3n+1(x),

Pn(x)[(1− x)P 2
n(x)− 3xPn−1(x)Pn(x) + 3x2P 2

n−1(x)] = P3n+2(x), (5.23)

both degree 3 identities once again being verifiable by computer with no difficulty.

Remark 5.3. As in Remark 5.2, we can remove the subscripts throughout (5.19), then re-write

(and this time factorise) the resulting equation to arrive at 0 = [xF 2(x)−F (x)+1][1−2xF (x)].

Since the solution F (x) = 1
2x

cannot be expanded as a power series in x, we take the other

solution as the correct one which confirms that Halley’s scheme, applied in this symbolic context,

holds in the limit r →∞.

5.4 Higher-Order Results

Recalling that the rate of convergence exhibited by the second-order Newton-Raphson method

is characterised by the function α(r) = 2r+1− 1 = 2 · 2r − 1, and similarly for Halley’s method,

β(r) = 2 ·3r−1, a potential pattern is already discernable, which, by extension, permits a fully

automated approach to the generation of identities for Catalan polynomials. In this section, we

present a selection of results for higher-order schemes based on a suite of numeric algorithms

described by an elegant and compact formulation.

5.4.1 Householder Iteration

As previously mentioned, the Newton-Raphson method and Halley’s method are both to be

found as members of a general family of iterative algorithms due to Householder (1970, (14),

p. 169), these being specialisations of a method earlier devised by Schröder to find roots of

non-linear univariate functions. For a p+ 2 times continuously differentiable function f(z), let
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z = a be a zero of f (but not df/dz). Then, given an initial value z0 sufficiently close to a,

successive iterates zr, zr+1 delivered by the scheme

zr+1 = zr + (p+ 1)

dp

dzp

{
1

f(z)

} ∣∣∣∣
z=zr

dp+1

dzp+1

{
1

f(z)

} ∣∣∣∣
z=zr

(5.24)

will, for some constant K > 0, satisfy the inequality |zr+1−a| ≤ K|zr−a|p+2 in a neighbourhood

of a, meaning that the recursive process will converge to the zero z = a. We call (5.24) the

Householder scheme of O(p), with an order p+2 convergence rate, noting that the cases p = 0, 1

recover (5.4) and (5.18), respectively.

5.4.2 Householder Quartic Scheme

Setting p = 2 in (5.24) results in the scheme

zr+1 = zr −
3f(zr)[2f

′2(zr)− f(zr)f
′′(zr)]

6f ′3(zr) + f 2(zr)f ′′′(zr)− 6f(zr)f ′(zr)f ′′(zr)
. (5.25)

Subsequent computations affirm the conjecture that this quartic algorithm, applied to (5.6)

(with zr replaced by Fr(x) again), generates polynomial ratios obeying the rule

Fr(x) =
Pγ(r)−1(x)

Pγ(r)(x)
, r ≥ 0, (5.26)

with γ(r) = 2 · 4r − 1. The same line of reasoning as made in the other cases above then leads

to two further identities, of commensurate degree 4, thus:

(1− x)P 4
n(x)− 4xPn−1(x)P 3

n(x)

+ 6x2P 2
n−1(x)P 2

n(x)− x3P 4
n−1(x) = P4n+2(x),

Pn(x)[Pn(x)− 2xPn−1(x)]×

[(1− 2x)P 2
n(x)− 2xPn−1(x)Pn(x) + 2x2P 2

n−1(x)]

= P4n+3(x). (5.27)
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5.4.3 Further Identities

The degree 5 identities resulting from the p = 3 instance of (5.24) are

(1− 2x)P 5
n(x)− 5x(1− x)Pn−1(x)P 4

n(x)

+ 10x2P 2
n−1(x)P 3

n(x)

− 10x3P 3
n−1(x)P 2

n(x) + x4P 5
n−1(x) = P5n+3(x),

Pn(x)[(1− 3x+ x2)P 4
n(x)− 5x(1− 2x)Pn−1(x)P 3

n(x)

+ 10x2(1− x)P 2
n−1(x)P 2

n(x)

− 10x3P 3
n−1(x)Pn(x) + 5x4P 4

n−1(x)] = P5n+4(x). (5.28)

The degree 6 identities yielded by the p = 4 instance of (5.24) are

(1− 3x+ x2)P 6
n(x)− 6x(1− 2x)Pn−1(x)P 5

n(x)

+ 15x2(1− x)P 2
n−1(x)P 4

n(x)

− 20x3P 3
n−1(x)P 3

n(x)

+ 15x4P 4
n−1(x)P 2

n(x)− x5P 6
n−1(x) = P6n+4(x),

Pn(x)[Pn(x)− 2xPn−1(x)]×

[(1− x)(1− 3x)P 4
n(x)− 2x(2− 5x)Pn−1(x)P 3

n(x)

+ x2(7− 10x)P 2
n−1(x)P 2

n(x)

− 6x3P 3
n−1(x)Pn(x) + 3x4P 4

n−1(x)] = P6n+5(x). (5.29)

5.5 Padé Approximants

An interesting observation is that the ratios of Catalan polynomials resulting from the various

Householder schemes comprise “Padé approximants” to the Catalan sequence o.g.f. C(x).

The two primary applications of Padé approximants are: (i) in providing efficient rational

approximations to a host of functions (including many so-called “special” mathematical func-

tions), and (ii) in yielding quantitative information about functions known only from their

power series form and qualitative behaviour. It is in the first context that our interest lies.

Although variations exist (see, for example, von zur Gathen and Gerhard (1999, (22), p. 112)),

there seems to be a general consensus as to the definition of such an approximant which we

state formally here (with reference to Baker and Graves-Morris (1996, Section 1.1, p. 1) and
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Gil et al. (2007, Section 9.2, p. 276)):

Definition 5.4. Given a function f(x) and integers m, p ≥ 0, the order (m, p) Padé approxi-

mant of f(x) is the rational function

u(x)

v(x)
=
u0 + u1x+ u2x

2 + · · ·+ umx
m

1 + v1x+ v2x2 + · · ·+ vpxp

which, when expanded as a Maclaurin series, has cancellation strictly in its first m + p + 1

terms with the corresponding series form of f(x). In other words, for some ∆(x) ∈ Z[[x]] with

non-zero lead term,

u(x)− f(x)v(x) = O(xm+p+1) = xm+p+1∆(x).

In an informative summary paper by Gragg (1972, Theorem 3.1, p. 10), a result due to

Frobenius—recognised for the original concept of the so-called Padé Table and his develop-

ment of basic aspects of the theory—is noted which states that there always exists a reduced

order (m, p) approximant to the series form of f(x) = f0 + f1x+ f2x
2 + · · · (for which u(x) and

v(x) are relatively prime, with u(0) = f0, v(0) = 1).

5.5.1 Padé Approximants via Newton-Raphson Method

We write an nth approximant of C(x) as the rational pn(x) = un(x)/vn(x), n ≥ 1. Let the initial

(first) approximant be p1(x) = c0 = 1, so that u1(x) = v1(x) = 1. It is immediate from (5.9)

that the Newton-Raphson scheme yields successive approximants with u2(x) = P2(x) = 1− x,

v2(x) = P3(x) = 1 − 2x, then u3(x) = P6(x), v3(x) = P7(x), and so on, where deg{un(x)} =

deg{vn(x)} = 2n−1 − 1. Now from the algorithm itself we also have

un+1(x)

vn+1(x)
= pn+1(x) =

1− xp2
n(x)

1− 2xpn(x)

=
1− x[un(x)/vn(x)]2

1− 2x[un(x)/vn(x)]

=
v2
n(x)− xu2

n(x)

vn(x)[vn(x)− 2xun(x)]
, (5.30)

giving relations

un+1(x) = v2
n(x)− xu2

n(x),

vn+1(x) = vn(x)[vn(x)− 2xun(x)], (5.31)
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so that in turn

un+1(x)− C(x)vn+1(x) = v2
n(x)− xu2

n(x)− C(x)vn(x)[vn(x)− 2xun(x)]

= [1− C(x)]v2
n(x)− xu2

n(x) + 2xC(x)un(x)vn(x)

= [−xC2(x)]v2
n(x)− xu2

n(x) + 2xC(x)un(x)vn(x) (by (5.5))

= −x[un(x)− C(x)vn(x)]2. (5.32)

If u1(x) − C(x)v1(x) is of general order xd, say (that is, O(xd) w.r.t. its lead term), it is

straightforward to see, via (5.32), the order of un(x) − C(x)vn(x) is x(d+1)2n−1−1. Thus, since

by (5.5) u1(x) − C(x)v1(x) = 1 − C(x) = −xC2(x), then d = 1 and un(x) − C(x)vn(x) =

O(x2n−1), whence we conclude that the general rational pn(x) is in fact precisely an order

(2n−1 − 1, 2n−1 − 1) Padé approximant of C(x) because 2n − 1 = (2n−1 − 1) + (2n−1 − 1) + 1 =

deg{un(x)}+ deg{vn(x)}+ 1.

This result is perhaps not that surprising for the Newton-Raphson root-finding scheme is known

to be particularly efficient (see, for example, Burden and Faires (2010, Section 2.3, p. 67)) and

Padé approximants offer, in some sense, the best (local) approximation of a given function.

In view of this it is even less surprising to see the phenomenon repeated as a consequence of

executing algorithms of Halley and higher order.

5.5.2 Padé Approximants via Halley’s Method

The correlation between equations (5.31) and the identities (5.2),(5.14) is clear. Adopting the

same notation as above we are, therefore, able to write down the recurrences

un+1(x) = v3
n(x)− 3xun(x)v2

n(x) + x2u3
n(x),

vn+1(x) = vn(x)[(1− x)v2
n(x)− 3xun(x)vn(x) + 3x2u2

n(x)], (5.33)

directly from (5.23), noting that, with u1(x) = v1(x) = 1 again, the Halley scheme yields an nth

approximant pn(x) = un(x)/vn(x) (comprising, as we have seen, ratios of certain neighbouring

pairs of Catalan polynomials) for which deg{un(x)} = deg{vn(x)} = 3n−1 − 1. This time we

have

un+1(x)− C(x)vn+1(x)

= x2u3
n(x)− 3x2C(x)u2

n(x)vn(x)

− 3x[1− C(x)]un(x)v2
n(x) + [1− (1− x)C(x)]v3

n(x), (5.34)
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and, once more applying (5.5) to replace 1 − C(x) with −xC2(x) in the third r.h.s. term,

and similarly (in regard to the last term) writing 1 − (1 − x)C(x) = 1 − C(x) + xC(x) =

−xC2(x) + xC(x) = xC(x)[1− C(x)] = xC(x)[−xC2(x)] = −x2C3(x), (5.34) contracts to

un+1(x)− C(x)vn+1(x)

= x2u3
n(x)− 3x2C(x)u2

n(x)vn(x)

+ 3x2C2(x)un(x)v2
n(x)− x2C3(x)v3

n(x)

= x2[un(x)− C(x)vn(x)]3. (5.35)

We readily see from this result that un(x)−C(x)vn(x) is O(x2·3n−1−1), and (since 2 · 3n−1− 1 =

(3n−1− 1) + (3n−1− 1) + 1 = deg{un(x)}+ deg{vn(x)}+ 1) establish that in this case for n ≥ 1

the general rational pn(x) is an order (3n−1 − 1, 3n−1 − 1) Padé approximant of C(x).

Although not detailed here, higher-order schemes (Householder quartic and beyond) have been

implemented computationally and found to output Padé approximants commensurate with

their order. This leads to the following conjecture which as yet remains unproven (although

supporting results are presented in the next chapter):

Conjecture 5.5. From an initial first approximant u1(x)/v1(x) = 1 of the Catalan o.g.f. C(x),

the O(p) Householder scheme delivers a series of order ((p + 2)n−1 − 1, (p + 2)n−1 − 1) Padé

approximants un(x)/vn(x) of C(x) (n = 2, 3, 4, . . .).

The degrees of un(x), vn(x) are the same by virtue of the fact that, based on the specific cases ex-

amined computationally, we anticipate that the schemes output rationals PΩp(r)−1(x)/PΩp(r)(x)

for the rth iterate (r ≥ 0), where Ωp(r) = 2(p + 2)r − 1 (Ω0(r),Ω1(r),Ω2(r) corresponding to

α(r), β(r), γ(r), resp.); we would then have deg{PΩp(r)−1(x)} = b1
2
(Ωp(r)− 1)c = (p+ 2)r− 1 =

b1
2
Ωp(r)c = deg{PΩp(r)(x)}.

In fact, all Catalan polynomial ratios P0(x)/P1(x), P1(x)/P2(x), P2(x)/P3(x), etc., are Padé ap-

proximants, and we explore this idea further in Chapter 6 in relation to additional polynomials

associated with other sequences (namely, Schröder and Motzkin).
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5.5.3 Theorem

Having observed the emergence of Padé approximants from the Newton-type schemes described

generally by (5.24), we are in a position to theorise the order of each successive approxima-

tion within any given Householder algorithm. It has long been established (as noted by Gragg

(1972)) that certain sequences of rational functions within a Padé Table1 can correspond to

those convergents of a particular continued fraction, and it is indeed the case that ratios of

Catalan polynomials fulfil this role in the context of approximating the Catalan sequence o.g.f.2

Accordingly, drawing on the previously formulated result of Theorem 4.1 (with associated state-

ment (4.41)), we can construct a first principles proof of the following statement:

Theorem 5.6. The ratio Pn(x)/Pn+1(x) of Catalan polynomials is, for n ≥ 0, an order

(b1
2
nc, b1

2
(n+ 1)c) Padé approximant of the Catalan sequence o.g.f. C(x).

Proof. Noting that each denominator function P1(x), P2(x), P3(x), . . . , has a (non-zero) lead

term of 1 (as is required), we need to show that, for n ≥ 0, there exists a power series ∆(n)(x) ∈

Z[[x]] for which

Pn(x)− C(x)Pn+1(x) = xb
1
2
nc+b 1

2
(n+1)c+1∆(n)(x)

= xn+1∆(n)(x). (5.36)

Consider Theorem 4.1, and the first-order scheme given. Rather than appealing to the form of

the general Catalan polynomial Pn(x) as a binomial coefficient sum (4.1), we will instead use

our knowledge of this result to construct an appropriate argument in a succinct manner. For

n ≥ 0, i = 1, . . . , n+ 1, we know that (see (4.41))

Fi(x) = c0 + c1x+ c2x
2 + · · ·+ ci−1x

i−1 + xi∆i(x) (5.37)

for some ∆i(x) = ∆i(x;n) ∈ Z[x], and so for i = n+ 1 in particular,

Fn+1(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n + xn+1δ1(x), (5.38)

1A table of order (α, β) Padé approximants in which α, β ≥ 0 vary. Mechanisms for constructing such tables

are well documented.
2Note that because ratios of Catalan polynomials form sequential continued fraction approximations of C(x)

which are readily interpreted combinatorially in terms of Dyck paths (previously discussed in Section 4.2.4),

it is immediate that limn→∞ {Pn(x)/Pn+1(x)} = C(x) (a formal argument having been made in the previous

chapter, (4.50) to (4.52)).
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where δ1(x) = δ1(x;n) = ∆n+1(x;n) ∈ Z[x]. Furthermore, by the nature of the linear scheme

(adding, and subsequently preserving, but one new term per iteration3) it follows that

Fn+2(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n + xn+1δ2(x), (5.39)

for which δ2(x) = δ2(x;n) ∈ Z[x] must necessarily possess the same lead term as δ1(x). Writing

L(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n, we thus have

Fn+1(x) = L(x) + xn+1δ1(x),

Fn+2(x) = L(x) + xn+1δ2(x). (5.40)

Now, directly from the scheme itself,

Fn+2(x) = Pn(x) + [1− Pn+1(x)]Fn+1(x), (5.41)

into which substitution of equations (5.40) yields

xn+1δ3(x) = Pn(x)− Pn+1(x)[L(x) + xn+1δ1(x)] (5.42)

after a little rearrangement (δ3(x) = δ3(x;n) = δ2(x)− δ1(x) ∈ Z[x], and has no constant (lead)

term). Of course, writing δ4(x) = δ4(x;n) = cn+1 +cn+2x+cn+3x
2 + · · · ∈ Z[[x]], we can express

C(x) as

C(x) = L(x) + xn+1δ4(x), (5.43)

whence (5.42) reads

xn+1δ3(x) = Pn(x)− Pn+1(x)[C(x) + xn+1δ5(x)], (5.44)

with δ5(x) = δ5(x;n) = δ1(x)−δ4(x) ∈ Z[[x]]. Finally, defining ∆(n)(x) = δ3(x)+Pn+1(x)δ5(x) ∈

Z[[x]], this can be written as

Pn(x)− C(x)Pn+1(x) = xn+1∆(n)(x), (5.45)

as required.

3This observation is dealt with at the start of Section 4.3.
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Some quick computations confirm Theorem 5.6, where we see that

∆(0)(x) = −(1 + 2x+ 5x2 + 14x3 + 42x4 + · · · ),

∆(1)(x) = −(1 + 3x+ 9x2 + 28x3 + 90x4 + · · · ),

∆(2)(x) = −(1 + 4x+ 14x2 + 48x3 + 165x4 + · · · ),

∆(3)(x) = −(1 + 5x+ 20x2 + 75x3 + 275x4 + · · · ),

∆(4)(x) = −(1 + 6x+ 27x2 + 110x3 + 429x4 + · · · ),

∆(5)(x) = −(1 + 7x+ 35x2 + 154x3 + 637x4 + · · · ),

∆(6)(x) = −(1 + 8x+ 44x2 + 208x3 + 910x4 + · · · ), (5.46)

etc.

5.5.4 Remarks

To conclude this section on Padé approximants, we make a few pertinent remarks, the first

of which concerns a particular type of continued fraction known as a c-continued fraction (or

simply C-fraction). In a publication by Perron (1977, Theorem 3.2, p. 108), a general association

between C-fractions and power series representations of a function is stated, of which we have

here but one instance. This theorem is quoted thus:4

For every c-continued fraction there is a power series B0(x) = 1 + d1x + d2x
2 +

d3x
3 + · · · which, in the case of an infinite continued fraction, is defined uniquely in

such a way that the successive ratios (continuands) Aλ(x)/Bλ(x) have Taylor series

which with increasing λ have more and more coefficients in common with B0(x), at

least up to xλ. If the continued fraction is finite with depth n, then the latter is true

for the Taylor series of An(x)/Bn(x) for every λ ≤ n.♣

♣Obviously the initial term 1 of the continued fraction and series could be replaced

by any other constant c0. However, for uniformity it is generally convenient to set

c0 = 1.

4With thanks to Prof. Dr. Wolfram Koepf for translation from the original German.
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As alluded to in Footnote 2, p. 63, we have already seen in (4.20) that the respective 0th, 1st,

2nd, 3rd, . . . , continued fractions for C(x) are

P0(x)

P1(x)
=

1

1
= c0,

P1(x)

P2(x)
=

1

1− x
= c0 + c1x+ · · · ,

P2(x)

P3(x)
=

1

1− x
1−x

= c0 + c1x+ c2x
2 + · · · ,

P3(x)

P4(x)
=

1

1− x
1− x

1−x

= c0 + c1x+ c2x
2 + c3x

3 + · · · , (5.47)

etc. Meanwhile, a C-fraction has a clear association with a formal complex power series at the

origin and is defined in the Handbook of Cuyt et al. (2008, (2.3.1), p. 35) as having general

form

CF (z) = b0 +K
∞
m=1

amzαm
1


= b0 +

a1z
α1

1 + a2zα2

1+
a3z

α3

1+···

(5.48)

for b0 ∈ C, am ∈ C \ {0}, αm ∈ N (K in (5.48) denoting an infinite fraction, being taken from

the German word “Kettenbruch”, and analogous to the sum Σ). Thus, our series of approxi-

mants (5.47) are described by 1
x
CF (x) on setting b0 = 0, a1 = 1, a2 = a3 = a4 = · · · = −1,

α1 = α2 = α3 = · · · = 1, where in fact CF (x) here is what is known as a regular C-fraction

(because each term in x appearing is a linear one). The correspondence between the approx-

imants5 and the Catalan numbers they contain in series form (5.47) is then given by Cuyt et

al. (2008, Theorems 2.4.1 (A),(B), p. 39), and a later connection with regular C-fractions and

specifically Padé approximants is covered by a couple of results in Section 4.3 thereof, pp. 64–65.

Remark 5.7. It is worth mentioning that in fact the series ∆(n)(x) has a clearly identifiable

closed form ∆(n)(x) = −Cn+2(x) (= −
∑∞

i=0
n+2

2i+n+2

(
2i+n+2

i

)
xi as a binomial coefficient series).

This follows trivially from Lemma 4.3 (originally due to Lang (2000)), which is used to prove

Theorem 4.1. Although the said lemma establishes (5.36) immediately, the proof provided here

is felt to be instructive in its own right.

5Considered in Cuyt et al. (2008) to be the 1st - 4th approximants, which appears to be a standard notation.
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5.6 Summary and Concluding Remarks

In this chapter, it has been observed that the algebraic adaptations of the Householder suite

of algorithms deliver ratios of Catalan polynomials which in all cases are found to be Padé

approximants. Through an automated process based on the recurrence properties known to

hold for Catalan polynomials, these ratios can be equated to form identities which are believed

to be quite unusual in terms of their structure and indigenous levels of non-linearality.

A few additional observations can now be made regarding these results. Firstly, although the

algebraicised Householder schemes developed so far have focused exclusively on the Catalan

sequence, thereby producing the immediately recognisable Catalan polynomial ratios, subse-

quent analysis has shown that Householder schemes specialised for other sequences, including

the Schröder and Motzkin sequences, yield polynomials which are structurally and functionally

similar to the Catalan polynomials. Furthermore, it is apparent that the processes involved

can, to some extent, be generalised. This subject will be explored in detail in the next chapter.

Secondly, it is worth noting that where the symbolic adaptation of numerical root-finding meth-

ods is concerned, no higher-order algorithms other than the class of Householder methods have

been investigated or implemented in the course of this work, although a considerable number

are known to exist. Therefore, although believed to be unusual, it is not known if the phe-

nomenon of Catalan (or generalised) polynomial ratios resulting from the execution of such

schemes is indeed commonplace.

Finally, another result can be detailed concerning the Catalan polynomial identities. Noting

that the identities are readily expressible in terms of the aforementioned Chebyshev and (lesser-

known) Dickson polynomials, we can now also describe a new suite of identities for these classes

of polynomials. Since, for n ≥ 0, the general Chebyshev polynomial of the second kind Un(x) is

related to Pn(x) as Un(x) = (2x)nPn
(

1
4x2

)
(see (4.7)), then, for instance, equations (5.2),(5.14)

become

[Un(x)− Un−1(x)][Un(x) + Un−1(x)] = U2n(x),

2Un(x)[xUn(x)− Un−1(x)] = U2n+1(x), (5.49)
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whilst (5.23) yields

2xU3
n(x)− 3Un−1(x)U2

n(x) + U3
n−1(x) = U3n+1(x),

Un(x)[(2x− 1)(2x+ 1)U2
n(x)− 6xUn−1(x)Un(x) + 3U2

n−1(x)] = U3n+2(x), (5.50)

and so on.

Remark 5.8. It is an immediate consequence of the two identities (5.49) that the general Cheby-

shev polynomial Un(x) is reducible over the ring Z[x] for n ≥ 2, a fact noted by Rayes and

Trevisan (2006, Corollary 2, p. 509) before the first identity, for U2n(x), is used to formulate a

primality criterion (Corollary 3, p. 510). Other than in the text of Rivlin (1990, p. 229) (who

gives the formula for U2n+1(x) in a slightly different form and also remarks on the reducibility

of Un(x)), the equations (5.49) are not to be found explicitly in the literature. It is interesting

to see that, as in (5.49),(5.50) shown here, Chebyshev identities are always available as an

“even/odd” pair from their Catalan polynomial counterpart pair.
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Chapter 6

Householder-Derived Identities for

Generalised Polynomials

6.1 Introduction

In the previous chapter, a result was described whereby the (specialised) symbolic adaptation

of a suite of numerical root-finding methods due to Householder led to the formation of ratios

of Catalan polynomials, combinations of which were shown to satisfy non-linear identities. Al-

though derivation of low-level results was performed manually, it was found that higher-order

results could, without too much difficulty, be obtained and verified by computer automation of

the processes involved.

A natural question arising from these results, and briefly mentioned in the concluding remarks

to the discussion, was whether specialisations (or indeed, a generalisation) of the Householder

algorithm could be developed for other integer sequences in which similar phenomena might be

observed. By conducting a thorough analysis of the Householder methodology, the results of

which will be presented in this chapter, this question will be answered (in the affirmative).

A second observation which also will be expanded upon was that the ratios produced constitute

Padé approximants to the o.g.f. of the Catalan sequence, again raising the possibility that other

specialisations might also produce Padé approximants to the o.g.fs of their associated sequences.

However, as we will see in due course, this does not always prove to be the case.
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6.2 The Householder Function and a Generalised

Polynomial

6.2.1 Preliminary Results

To begin, some new results concerning a generalisation of the Householder function will be de-

rived. Recounting the numerical method for reference, we define (suppressing the z dependency

for convenience) the function

Hp(f) = Hp(f(z); z) = z + (p+ 1)

dp

dzp

{
1

f(z)

}
dp+1

dzp+1

{
1

f(z)

} (6.1)

in terms of a p+ 1 continuously differentiable function f(z), and let z = a be a zero of f (but

not df/dz). Then, given an initial value z0 sufficiently close to a, successive iterates zr, zr+1

delivered by the scheme

zr+1 = Hp(f)|z=zr (6.2)

will, for some constant K > 0, satisfy the inequality |zr+1−a| ≤ K|zr−a|p+2 in a neighbourhood

of a, meaning that the recursive process will converge to the zero z = a. We call (6.2) the

Householder scheme of O(p), with an order p + 2 convergence rate, noting that the respective

cases p = 0, 1 recover the well-known quadratically convergent Newton-Raphson and cubically

convergent Halley root-finding algorithms for which

H0(f) = z − f(z)

f ′(z)
,

H1(f) = z − 2f(z)f ′(z)

2f ′2(z)− f(z)f ′′(z)
; (6.3)

the next two schemes are based on the functions

H2(f) = z − 3f(z)[2f ′2(z)− f(z)f ′′(z)]

6f ′3(z) + f 2(z)f ′′′(z)− 6f(z)f ′(z)f ′′(z)
,

H3(f) = z − 4f(z)[6f ′3(z)− 6f(z)f ′(z)f ′′(z) + f 2(z)f ′′′(z)]

24f ′4(z)− 36f(z)f ′2(z)f ′′(z) + 6f 2(z)f ′′2(z) + 8f 2(z)f ′(z)f ′′′(z)− f 3(z)f (4)(z)
.

(6.4)

When implemented algebraically for the equation governing the o.g.f. of the Catalan sequence

0 = 1−G(x) + xG2(x), (6.5)

the O(p) Householder scheme—using

f(z) = f(z;x) = 1− z + xz2 (6.6)

70



pertaining to (6.5)—will output from some initial value (degree zero polynomial) ratios of poly-

nomials whose Maclaurin series expansions successively agree more closely with G(x). More-

over, when the initial value is 1 = c0 (or, in this case, equivalently 0 or 2 (by Remark 5.1))

these ratios are found to be isolated ratios of neighbouring (i.e., adjacent) Catalan polynomials

whose separation reflects the exponential convergence rate, base p+ 2, commensurate with the

O(p) algorithm.

It is evident from (6.1) that in order to construct a generalised Householder scheme, an ex-

pression for the nth derivative of the reciprocal function 1/f(z) is a prerequisite. The manner

in which this is achieved is somewhat unusual, the general Catalan polynomial Pn(x) being

included explicitly in the resulting expression.

Theorem 6.1. Let f(z) = f(z;x) be a quadratic in z of the form f(z) = A(x)z2+B(x)z+C(x),

where A(x), B(x), C(x) ∈ Z[x]. Then, for n ≥ 0,

dn

dzn

{
1

f(z)

}
= (−1)nn!

f ′n(z)

fn+1(z)
Pn

(
A(x)f(z)

f ′2(z)

)
.

Proof. This is done inductively. For n = 0 both sides are 1/f(z). Suppose the result holds for

some n = k ≥ 0, and consider

dk+1

dzk+1

{
1

f(z)

}
=

d

dz

dk

dzk

{
1

f(z)

}
=

d

dz

{
(−1)kk!

f ′k(z)

fk+1(z)
Pk

(
A(x)f(z)

f ′2(z)

)}
(by assumption)

= (−1)kk!
d

dz

 f ′k(z)

fk+1(z)

b 1
2
kc∑

i=0

(
k − i
i

)(
−A(x)f(z)

f ′2(z)

)i by (4.1)

= (−1)kk!

b 1
2
kc∑

i=0

(
k − i
i

)
[−A(x)]iF (z; i, k), (6.7)

where

F (z; i, k) =
d

dz

{
f ′(k−2i)(z)

fk+1−i(z)

}
. (6.8)

Applying the Quotient Rule to (6.8), we obtain the derivative function F (z; i, k) in the form

F (z; i, k) =
f ′(k+1)(z)

fk+2(z)

[
2(k − 2i)A(x)

(
f(z)

f ′2(z)

)i+1

− (k + 1− i)
(
f(z)

f ′2(z)

)i]
, (6.9)

where f ′′(z) has been replaced by 2A(x), substitution of which into (6.7) yields, writing

Q(z;x) = −A(x)f(z)

f ′2(z)
, (6.10)
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dk+1

dzk+1

{
1

f(z)

}
= (−1)k+1(k + 1)!

f ′(k+1)(z)

fk+2(z)

b 1
2
kc∑

i=0

(
k − i
i

)
×[

k + 1− i
k + 1

Qi(z;x) + 2
k − 2i

k + 1
Qi+1(z;x)

]
. (6.11)

Thus, the inductive step is upheld if we can show that

Gk(z;x) =

b 1
2
kc∑

i=0

(
k − i
i

)[
k + 1− i
k + 1

Qi(z;x) + 2
k − 2i

k + 1
Qi+1(z;x)

]
= Pk+1(−Q(z;x))

=

b 1
2

(k+1)c∑
i=0

(
k + 1− i

i

)
Qi(z;x). (6.12)

There are two cases to consider: Case A (k even) and Case B (k odd). For brevity, only Case

A is set out here, Case B being arguable along similar lines.

Case A: Let k (even) = 2m (m = 0, 1, 2, . . .). Then since b1
2
kc = bmc = bm + 1

2
c = b1

2
(2m +

1)c = b1
2
(k + 1)c, consider

Gk(z;x) =
1

k + 1

b 12 (k+1)c∑
i=0

(
k − i
i

)
(k + 1− i)Qi(z;x)

+ 2

b 1
2

(k+1)c∑
i=0

(
k − i
i

)
(k − 2i)Qi+1(z;x)


=

1

k + 1

b 12 (k+1)c∑
i=0

(
k − i
i

)
(k + 1− i)

+ 2

b 1
2

(k+1)c+1∑
i=1

(
k − i+ 1

i− 1

)
(k − 2i+ 2)

Qi(z;x). (6.13)

The summand of the second bracketed sum vanishes (i) at the upper limit i = b1
2
(k+ 1)c+ 1 =

1
2
k + 1 (since here the term k − 2i + 2 = 0), and (ii) for an additional lower index value i = 0

(since it would contain the binomial coefficient
(
k+1
−1

)
= 0), so that, as required,

Gk(z;x) =
1

k + 1

b 1
2

(k+1)c∑
i=0

[(
k − i
i

)
(k + 1− i) + 2

(
k − i+ 1

i− 1

)
(k − 2i+ 2)

]
Qi(z;x)

=

b 1
2

(k+1)c∑
i=0

(
k + 1− i

i

)
Qi(z;x). (6.14)

Note that it is possible, with some work, to obtain Theorem 6.1 from Schwatt (1962, (12),

p. 3), this being a comprehensive repository of all manner of exotic formulae. An alternative
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proof, using analytic function theory, is offered in Appendix C for interest, together with a first

principles constructive proof.

As an immediate consequence of Theorem 6.1 we have the following corollary whereby we can

re-state the form of Hp(f), for the general quadratic f(z) = A(x)z2 + B(x)z + C(x), in terms

of Catalan polynomials:

Corollary 6.2. For p ≥ 0,

Hp(f) = z − f(z)

f ′(z)

Pp(A(x)f(z)/f ′2(z))

Pp+1(A(x)f(z)/f ′2(z))
.

Moving on, let f(z) satisfy the given quadratic, and define from it a polynomial

αn(x) = αn(A(x), B(x), C(x))

= (1, 0)

(
−B(x) A(x)

−C(x) 0

)n(
1

0

)
. (6.15)

Lemma 6.3. For n ≥ 0,

0 = A(x)C(x)αn(x) +B(x)αn+1(x) + αn+2(x).

Lemma 6.4. For p, q ≥ 1,

0 = A(x)C(x)αp−1(x)αq−1(x)− αp(x)αq(x) + αp+q(x).

In the special case A(x) = x, B(x) = −1, C(x) = 1, f(z) reads as in (6.6) (in line with

the governing equation (6.5) for the Catalan sequence o.g.f. G(x)) and αn(x) = αn(x,−1, 1)

(6.15) coincides with the Catalan polynomial Pn(x) as described by (4.18). Lemma 6.3 then

recovers the linear recurrence (4.5), and likewise the non-linear recursion 0 = xPp−1(x)Pq−1(x)−

Pp(x)Pq(x) + Pp+q(x) given by (4.23) is the same specialisation of Lemma 6.4.

Proof of Lemma 6.3. Write (
−B(x) A(x)

−C(x) 0

)
= M(x), (6.16)

and define polynomials αn(x) = αn(A(x), B(x), C(x)), βn(x) = βn(A(x), B(x), C(x)) ∈ Z[x]

according to the power law (
αn(x)

βn(x)

)
= Mn(x)

(
1

0

)
, n ≥ 0, (6.17)
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noting that α0(x) = 1, β0(x) = 0. Then(
αn+1(x)

βn+1(x)

)
= Mn+1(x)

(
1

0

)

= M(x)Mn(x)

(
1

0

)

= M(x)

(
αn(x)

βn(x)

)
, (6.18)

with component equations

αn+1(x) = −B(x)αn(x) + A(x)βn(x),

βn+1(x) = −C(x)αn(x), (6.19)

which combine trivially to give Lemma 6.3.

Proof of Lemma 6.4. We first note that (6.17) can now be written as(
αn(x)

−C(x)αn−1(x)

)
= Mn(x)

(
1

0

)
(6.20)

for n ≥ 0 (where it is understood that α−1(x) = 0), and we consider the polynomial

−αp+q(x) = (−1, 0)

(
αp+q(x)

−C(x)αp+q−1(x)

)

=
1

C(x)
(1, 0)D(x)

(
αp+q(x)

−C(x)αp+q−1(x)

)
, (6.21)

where D(x) is the diagonal matrix

D(x) =

(
−C(x) 0

0 A(x)

)
. (6.22)

Noting further that D(x),M(x) have the property that

D(x)M(x) = [M(x)]TD(x), (6.23)
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we can continue from (6.21) as follows (using (6.20),(6.23) as appropriate):

−αp+q(x) =
1

C(x)
(1, 0)D(x)Mp+q(x)

(
1

0

)

=
1

C(x)

(
1

0

)T

D(x)Mp(x)Mq(x)

(
1

0

)

=
1

C(x)

(
1

0

)T

[Mp(x)]TD(x)Mq(x)

(
1

0

)

=
1

C(x)

[
Mp(x)

(
1

0

)]T
D(x)Mq(x)

(
1

0

)

=
1

C(x)

(
αp(x)

−C(x)αp−1(x)

)T

D(x)

(
αq(x)

−C(x)αq−1(x)

)

=
1

C(x)
(αp(x),−C(x)αp−1(x))

(
−C(x)αq(x)

−A(x)C(x)αq−1(x)

)
= A(x)C(x)αp−1(x)αq−1(x)− αp(x)αq(x). (6.24)

Remark 6.5. Although Lemmas 6.3, 6.4 differ qualitatively we remark, noting α0(x) = 1,

α1(x) = −B(x) by definition (6.15), that Lemma 6.4 contains Lemma 6.3 as the instance

p = n+ 1, q = 1.

6.2.2 Further Results

Lemma 6.6. Let f(z) = A(x)z2 + B(x)z + C(x), where A(x), B(x), C(x) ∈ Z[x]. Then the

function Hp(f) satisfies, for p ≥ 0, the recurrence

Hp+1(f) = z − f(z)

f ′(z)− A(x)[z −Hp(f)]
.

Proof. From Corollary 6.2 we have

Hp(f) = z − f(z)

f ′(z)

Pp(Q̂(z;x))

Pp+1(Q̂(z;x))
, (6.25)

where Q̂(z;x) = −Q(z;x) = A(x)f(z)/f ′2(z), which, when rearranged, reads

Pp(Q̂(z;x))

Pp+1(Q̂(z;x))
=
f ′(z)

f(z)
[z −Hp(f)]. (6.26)

Re-writing the linear recurrence (4.5) (with x = z, n = p) gives

z
Pp(z)

Pp+1(z)
= 1− Pp+2(z)

Pp+1(z)
, (6.27)
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so that

Q̂(z;x)
Pp(Q̂(z;x))

Pp+1(Q̂(z;x))
= 1− Pp+2(Q̂(z;x))

Pp+1(Q̂(z;x))
. (6.28)

Consider, now,

f(z)− Q̂(z;x)f ′(z)[z −Hp(f)]

f(z)
= 1− Q̂(z;x)

f ′(z)

f(z)
[z −Hp(f)]

= 1− Q̂(z;x)
Pp(Q̂(z;x))

Pp+1(Q̂(z;x))

= 1−

(
1− Pp+2(Q̂(z;x))

Pp+1(Q̂(z;x))

)

=
Pp+2(Q̂(z;x))

Pp+1(Q̂(z;x))

=
f(z)

f ′(z)[z −Hp+1(f)]
, (6.29)

having employed both (6.26),(6.28) as needed. On replacing Q̂(z;x) with A(x)f(z)/f ′2(z) in

(6.29), Lemma 6.6 follows after some simple algebraic manipulation.

Defining δp(f) = z −Hp(f), Corollary 6.7 below is an obvious deduction from Lemma 6.6.

Corollary 6.7. Let f(z) = A(x)z2 + B(x)z + C(x), where A(x), B(x), C(x) ∈ Z[x]. Then the

function Hp(f) has, for p ≥ 0, a continued fraction representation given by

Hp(f) = z − δp(f),

where

δp+1(f) =
f(z)

f ′(z)− A(x)δp(f)
.

Each representation involves f(z), f ′(z) only; for example, with δ0(f) = z −H0(f) = z − [z −

f(z)/f ′(z)] = f(z)/f ′(z), then

H0(f) = z − δ0(f) = z − f(z)

f ′(z)
,

H1(f) = z − δ1(f) = z − f(z)

f ′(z)− A(x)f(z)
f ′(z)

,

H2(f) = z − δ2(f) = z − f(z)

f ′(z)− A(x)f(z)

f ′(z)−A(x)f(z)

f ′(z)

, (6.30)

etc.
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6.2.3 Generalised Polynomial Ratios

Motivated by the work in Chapter 5, in which algebraic Householder schemes specialised for

the Catalan sequence were found to output pairs of Catalan polynomials with associated non-

linear identities, we are now in a position to apply Lemmas 6.3, 6.4 and 6.6 in examining the

output from the O(n) Householder scheme when executed at a “point” of the form z(x) =

αk(x)/αk+1(x). In particular, we suppose that for some integer `, say,

Hn(f)|z(x)=αk(x)/αk+1(x) =
α`(x)

α`+1(x)
, (6.31)

and we identify explicitly the r.h.s. polynomial ratio output (in other words, ` = `(k, n)).

Directly from Lemma 6.6,

Hn+1(f)|z(x)=αk(x)/αk+1(x) =
αk(x)

αk+1(x)
−

A(x)[ αk(x)
αk+1(x)

]2 +B(x)[ αk(x)
αk+1(x)

] + C(x)

2A(x)[ αk(x)
αk+1(x)

] +B(x)− A(x){ αk(x)
αk+1(x)

− α`(x)
α`+1(x)

}

=
1

αk+1(x)
×[

αk(x)−
A(x)α2

k(x) +B(x)αk(x)αk+1(x) + C(x)α2
k+1(x)

A(x)αk(x) +B(x)αk+1(x) + A(x)αk+1(x)[ α`(x)
α`+1(x)

]

]

=
A(x)αk(x)[ α`(x)

α`+1(x)
]− C(x)αk+1(x)

A(x)αk(x) +B(x)αk+1(x) + A(x)αk+1(x)[ α`(x)
α`+1(x)

]

=
A(x)αk(x)α`(x)− C(x)αk+1(x)α`+1(x)

A(x)αk(x)α`+1(x) +B(x)αk+1(x)α`+1(x) + A(x)αk+1(x)α`(x)

=
A(x)αk(x)α`(x)− C(x)αk+1(x)α`+1(x)

A(x)αk(x)α`+1(x) + αk+1(x)[A(x)α`(x) +B(x)α`+1(x)]

=
A(x)αk(x)α`(x)− αk+1(x)α`+1(x)

A(x)αk(x)α`+1(x)− αk+1(x)α`+2(x)
(6.32)

if we set C(x) = 1 in Lemma 6.3 which gives A(x)α`(x) + B(x)α`+1(x) = −α`+2(x). Further-

more, for this same specialisation of C(x) Lemma 6.4 can be written as A(x)αk(x)αq−1(x) −

αk+1(x)αq(x) = −αk+q+1(x), and when used for separate values q = `+1, `+2, (6.32) simplifies

to merely

Hn+1(f)|z(x)=αk(x)/αk+1(x) =
αk+`+2(x)

αk+`+3(x)
. (6.33)

Now with H0(f) = z − f(z)/f ′(z), then

H0(f)|z(x)=αk(x)/αk+1(x) =
αk(x)

αk+1(x)
−
A(x)[ αk(x)

αk+1(x)
]2 +B(x)[ αk(x)

αk+1(x)
] + 1

2A(x)[ αk(x)
αk+1(x)

] +B(x)

=

...

=
α2k+2(x)

α2k+3(x)
(6.34)
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if we repeat, albeit in a simpler manner, the essential steps which produced (6.33). Thus, we

have provided—noting that the imposition of C(x) = 1 is a necessary one—an inductive proof

of the following:

Theorem 6.8. Let f(z) = A(x)z2 + B(x)z + 1, where A(x), B(x) ∈ Z[x]. Then the O(n)

Householder scheme (6.2) has the property that, for n ≥ 0,

Hn(f)|z(x)=αk(x)/αk+1(x) =
α(n+2)(k+1)+n(x)

α(n+2)(k+1)+n+1(x)
.

Using previous work on the Catalan sequence to verify Theorem 6.8, it is easiest to set n = p,

k = n− 1, whence, with A(x) = x, B(x) = −1, it reads, for p ≥ 0,

Hp(f)|z(x)=Pn−1(x)/Pn(x) =
P(p+2)n+p(x)

P(p+2)n+p+1(x)
, (6.35)

recovering the respective p = 0, 1, 2 results

H0(f)|z(x)=Pn−1(x)/Pn(x) =
P2n(x)

P2n+1(x)
,

H1(f)|z(x)=Pn−1(x)/Pn(x) =
P3n+1(x)

P3n+2(x)
,

H2(f)|z(x)=Pn−1(x)/Pn(x) =
P4n+2(x)

P4n+3(x)
, (6.36)

as seen (explicitly or otherwise) in (5.12), (5.22) and (5.27); the further instances p = 3, 4 are

covered by (5.28),(5.29). It is also evident that Theorem 6.8, in generating the specific ratios

seen above, supports Conjecture 5.5.

6.3 Schröder and Motzkin Householder Schemes

As a further illustration of the theory described in the previous section, we turn our attention

to the Schröder and Motzkin sequences, using the matrix formula (6.15) to generate a series of

polynomials for each which are analogous to the Catalan polynomials. Consequently, we are

in a position to construct specialised Householder schemes which accommodate the quadratic

equation governing the o.g.f. of each of these sequences in the expectation that similar non-linear

polynomial identities can be formulated.

6.3.1 Schröder and Motzkin Polynomials

The quadratic equation governing the o.g.f.

S(x) =
1− x−

√
1− 6x+ x2

2x
=
∞∑
i=0

six
i (6.37)
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for the Schröder sequence is

0 = 1 + (x− 1)S(x) + xS2(x), (6.38)

with which, from (6.15), are associated Schröder polynomials1

S0(x) = 1,

S1(x) = 1− x,

S2(x) = 1− 3x+ x2,

S3(x) = 1− 5x+ 5x2 − x3,

S4(x) = 1− 7x+ 13x2 − 7x3 + x4,

S5(x) = 1− 9x+ 25x2 − 25x3 + 9x4 − x5,

S6(x) = 1− 11x+ 41x2 − 63x3 + 41x4 − 11x5 + x6,

S7(x) = 1− 13x+ 61x2 − 129x3 + 129x4 − 61x5 + 13x6 − x7, (6.39)

etc., of general form

Sn(x) = αn(x, x− 1, 1) = (1, 0)

(
1− x x

−1 0

)n (
1

0

)
.

Similarly, we see that there exists a set of corresponding Motzkin polynomials

M0(x) = 1,

M1(x) = 1− x,

M2(x) = 1− 2x,

M3(x) = 1− 3x+ x2 + x3,

M4(x) = 1− 4x+ 3x2 + 2x3 − x4,

M5(x) = 1− 5x+ 6x2 + 2x3 − 4x4,

M6(x) = 1− 6x+ 10x2 − 9x4 + 2x5 + x6,

M7(x) = 1− 7x+ 15x2 − 5x3 − 15x4 + 9x5 + 3x6 − x7, (6.40)

etc., expressed generally as

Mn(x) = αn(x2, x− 1, 1) = (1, 0)

(
1− x x2

−1 0

)n (
1

0

)
1Although the notation used here coincides with that used in Chapter 1 to illustrate the mechanism of the

Schröder and Motzkin recurrence schemes ((1.16) and (1.20), respectively), it must be emphasised that these

sets of polynomials are entirely distinct.
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and arising from the equation

0 = 1 + (x− 1)M(x) + x2M2(x) (6.41)

for the o.g.f.

M(x) =
1− x−

√
1− 2x− 3x2

2x2
=
∞∑
i=0

mix
i. (6.42)

The o.g.fs for the polynomials themselves are known to be

1

1 + (x− 1)y + xy2
=
∞∑
n=0

Sn(x)yn (6.43)

and
1

1 + (x− 1)y + x2y2
=
∞∑
n=0

Mn(x)yn, (6.44)

which we will see later are merely special cases of a more general result (Lemma 6.12).

From (6.39), it is apparent that, similarly to binomial coefficients comprising the non-signed

coefficients of the Catalan polynomials, the non-signed coefficients of the Schröder polynomials

are instances of the Delannoy numbers (sequence no. A008288 in the O.E.I.S.), a prominent two-

dimensional sequence in the area of path-counting problems. The general Schröder polynomial

is found to be expressible by

Sn(x) =
n∑
i=0

di,n−i(−x)i, n ≥ 0, (6.45)

where, for i, j ≥ 0, the Delannoy numbers di,j comprise the symmetric array

1 1 1 1 1 · · ·
1 3 5 7 9 · · ·
1 5 13 25 41 · · ·
1 7 25 63 129 · · ·
1 9 41 129 321 · · ·
...

. . .

=

d0,0 d0,1 d0,2 d0,3 d0,4 · · ·
d1,0 d1,1 d1,2 d1,3 d1,4 · · ·
d2,0 d2,1 d2,2 d2,3 d2,4 · · ·
d3,0 d3,1 d3,2 d3,3 d3,4 · · ·
d4,0 d4,1 d4,2 d4,3 d4,4 · · ·

...
. . .

, (6.46)

the ordered non-signed coefficients of the Schröder polynomials representing the anti-diagonals

of the above array.

By contrast, there currently exists no O.E.I.S. sequence corresponding to the coefficients (either

signed or unsigned) of the Motzkin polynomials.
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6.3.2 Polynomial Identities

The phenomenon observed in Section 6.2.3 (whereby input ratios of generalised polynomials

to the Householder schemes were seen to form non-linear identities in conjunction with the

polynomial ratios output by the schemes) has been shown to recover results seen in Chapter 5.

It is found to be repeated in the computations made when Householder algorithms are applied

in the context of the Schröder and Motzkin sequences, both of which have C(x) = 1 in their

governing o.g.f. quadratics (6.38),(6.41). The resulting identities from the p = 0, 1 Householder

schemes are given below by way of illustration.

Schröder Identities

Householder p = 0 (Newton-Raphson) Scheme

S2n(x) = S2
n(x)− xS2

n−1(x),

S2n+1(x) = Sn(x)[(1− x)Sn(x)− 2xSn−1(x)]. (6.47)

Householder p = 1 (Halley) Scheme

S3n+1(x) = (1− x)S3
n(x)− 3xSn−1(x)S2

n(x) + x2S3
n−1(x),

S3n+2(x) = Sn(x)[(1− 3x+ x2)S2
n(x)− 3x(1− x)Sn−1(x)Sn(x) + 3x2S2

n−1(x)]. (6.48)

Motzkin Identities

Householder p = 0 (Newton-Raphson) Scheme

M2n(x) = M2
n(x)− x2M2

n−1(x),

M2n+1(x) = Mn(x)[(1− x)Mn(x)− 2x2Mn−1(x)]. (6.49)

Householder p = 1 (Halley) Scheme

M3n+1(x) = (1− x)M3
n(x)− 3x2Mn−1(x)M2

n(x) + x4M3
n−1(x),

M3n+2(x) = Mn(x)[(1− 2x)M2
n(x)− 3x2(1− x)Mn−1(x)Mn(x) + 3x4M2

n−1(x)]. (6.50)
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Remark 6.9. The Schröder and Motzkin specialisations of Lemmas 6.3, 6.4 are

0 = xSn(x) + (x− 1)Sn+1(x) + Sn+2(x),

0 = xSp−1(x)Sq−1(x)− Sp(x)Sq(x) + Sp+q(x), (6.51)

and

0 = x2Mn(x) + (x− 1)Mn+1(x) +Mn+2(x),

0 = x2Mp−1(x)Mq−1(x)−Mp(x)Mq(x) +Mp+q(x). (6.52)

Setting p = q = n in the second identities of (6.51),(6.52) reproduces the first identity in each

of (6.47),(6.49).

Remark 6.10. We remarked in Section 4.2.2 that {Pn(±1)}∞0 each correspond to a known

O.E.I.S. sequence. It is also found that sequences A000129 (Pell sequence) and A056594 (a pe-

riod 4 sequence whose o.g.f. is the inverse of the 4th cyclotomic polynomial) are {Sn(−1)}∞0 =

{1, 2, 5, 12, 29, 70, 169, . . .} and {Sn(1)}∞0 = {1, 0,−1, 0, 1, 0,−1, . . .}. Likewise, {Mn(−1)}∞0 =

{1, 2, 3, 4, 5, 6, . . .} is the sequence of natural numbers (A000027), whilst {Mn(1)}∞0 = {Sn(1)}∞0 .

6.4 Further Theory and Results

With αn(x) = αn(A(x), B(x), C(x)) defined as in (6.15), we move on by offering a result in

which this general polynomial is expressed directly in terms of a general Catalan polynomial.

Theorem 6.11. Let A(x), B(x), C(x) ∈ Z[x] satisfy the quadratic 0 = A(x)y2 +B(x)y+C(x).

For n ≥ 0,

αn(x) = αn(A(x), B(x), C(x)) = [−B(x)]nPn

(
A(x)C(x)

B2(x)

)
.

We set out three quite different proofs of Theorem 6.11, the third being a succinct proof which

overlaps in nature with one in Appendix C for Theorem 6.1.

Proof I. Proof I utilises a result which identifies a closed form for the o.g.f. of the polynomials

α0(x), α1(x), α2(x), etc. (when specialised as appropriate, Lemma 6.12 is seen to recover (4.9),

(6.43) and (6.44) given earlier):

Lemma 6.12. 2 Let F (x, y) =
∑∞

n=0 αn(x)yn be the o.g.f. for the polynomials α0(x), α1(x),

α2(x), . . . . Then

F (x, y) =
1

A(x)C(x)y2 +B(x)y + 1
.

2A matrix-based proof of Lemma 6.12 is given in Appendix D.
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Proof of Lemma 6.12. From Remark 6.5 we note once more that α0(x) = 1, α1(x) = −B(x).

Consider

F (x, y) =
∞∑
n=0

αn(x)yn = α0(x) + α1(x)y + α2(x)y2 + · · · , (6.53)

and let series s1(x, y), s2(x, y) be

s1(x, y) =
∞∑
n=0

αn+1(x)yn = α1(x) + α2(x)y + α3(x)y2 + · · · ,

s2(x, y) =
∞∑
n=0

αn+2(x)yn = α2(x) + α3(x)y + α4(x)y2 + · · · , (6.54)

so that

s1(x, y) =
F (x, y)− α0(x)

y
=
F (x, y)− 1

y
,

s2(x, y) =
F (x, y)− α0(x)− α1(x)y

y2
=
F (x, y)− 1 +B(x)y

y2
. (6.55)

Directly from Lemma 6.3 we can now write

0 = A(x)C(x)αn(x) +B(x)αn+1(x) + αn+2(x)

=
∞∑
n=0

[A(x)C(x)αn(x) +B(x)αn+1(x) + αn+2(x)]yn

= A(x)C(x)
∞∑
n=0

αn(x)yn +B(x)
∞∑
n=0

αn+1(x)yn +
∞∑
n=0

αn+2(x)yn

= A(x)C(x)F (x, y) +B(x)s1(x, y) + s2(x, y)

= A(x)C(x)F (x, y) +B(x)

(
F (x, y)− 1

y

)
+
F (x, y)− 1 +B(x)y

y2

=
[A(x)C(x)y2 +B(x)y + 1]F (x, y)− 1

y2
, (6.56)

and the result follows.

Proof I of Theorem 6.11 concludes as follows. Let G(x, y) = A(x)C(x)y2 + B(x)y + 1. Then

Lemma 6.12 gives
∂n

∂yn
{F (x, y)} =

∂n

∂yn

{
1

G(x, y)

}
(6.57)

which, employing Theorem 6.1,

= (−1)nn!
(∂G
∂y

)n

Gn+1(x, y)
Pn

(
A(x)C(x)G(x, y)

(∂G
∂y

)2

)

= (−1)nn!
[2A(x)C(x)y +B(x)]n

[A(x)C(x)y2 +B(x)y + 1]n+1
Pn

(
A(x)C(x)[A(x)C(x)y2 +B(x)y + 1]

[2A(x)C(x)y +B(x)]2

)
. (6.58)
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Since, however, we can write down that

αn(x) =
1

n!

∂n

∂yn
{F (x, y)}

∣∣∣∣
y=0

(6.59)

then by (6.57),(6.58) the r.h.s. of (6.59) duly simplifies to give

αn(x) = [−B(x)]nPn

(
A(x)C(x)

B2(x)

)
. (6.60)

Proof II. We require the following subsidiary result, from which Theorem 6.11 is immediate:

Lemma 6.13. Noting that P−1(x) = 0, then for n ≥ 0,(
1 x

y 0

)n(
1

0

)
=

(
Pn(−xy)

yPn−1(−xy)

)
.

Proof of Lemma 6.13. By induction. The result holds for n = 0, both sides being (1, 0)T .

Suppose, therefore, that it is true for some n = k ≥ 0, and consider(
1 x

y 0

)k+1(
1

0

)
=

(
1 x

y 0

)(
1 x

y 0

)k(
1

0

)

=

(
1 x

y 0

)(
Pk(−xy)

yPk−1(−xy)

)
(by assumption)

=

(
Pk(−xy) + xyPk−1(−xy)

yPk(−xy)

)

=

(
Pk+1(−xy)

yPk(−xy)

)
(6.61)

as required, since the linear recurrence (4.5) gives, with x, n replaced with −xy, k − 1, resp.,

Pk(−xy) + xyPk−1(−xy) = Pk+1(−xy).

Proof II of Theorem 6.11 now follows easily, for Lemma 6.13 gives(
1 −A(x)/B(x)

C(x)/B(x) 0

)n(
1

0

)
=

(
Pn(A(x)C(x)/B2(x))

C(x)
B(x)

Pn−1(A(x)C(x)/B2(x))

)
, (6.62)

whence, starting from the definition of αn(x) (6.15),

αn(x) = (1, 0)

(
−B(x) A(x)

−C(x) 0

)n(
1

0

)

= [−B(x)]n(1, 0)

(
1 −A(x)/B(x)

C(x)/B(x) 0

)n(
1

0

)

= [−B(x)]n(1, 0)

(
Pn(A(x)C(x)/B2(x))

C(x)
B(x)

Pn−1(A(x)C(x)/B2(x))

)

= [−B(x)]nPn

(
A(x)C(x)

B2(x)

)
. (6.63)
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Finally, for this short third proof, we utilise the same recurrence for Qn(u, v) = (−v)nPn(u) as

given in Appendix C in the form of (C1),

0 = uv2Qn(u, v) + vQn+1(u, v) +Qn+2(u, v). (6.64)

Proof III. Setting

u(x) =
A(x)C(x)

B2(x)
, v(x) = B(x), (6.65)

(6.64) now reads, in terms of Qn(x) = Qn(u(x), v(x)),

0 = A(x)C(x)Qn(x) +B(x)Qn+1(x) +Qn+2(x). (6.66)

Comparing with Lemma 6.3, and noting that Q0(x) = P0(u(x)) = 1 = α0(x), Q1(x) =

−v(x)P1(u(x)) = −v(x) = −B(x) = α1(x), we have shown that, ∀n ≥ 0, αn(x) = Qn(u(x),

v(x)) = [−v(x)]nPn(u(x)), which is Theorem 6.11.

As a result of Theorem 6.11, closed forms are available for the Schröder and Motzkin polyno-

mials as corollaries to it. It is straightforward to show, using Theorem 6.11 in conjunction with

the closed form (4.6) for Pn(x) and denoting a discriminant function
√
B2(x)− 4A(x)C(x) by

∆(x) = ∆(A(x), B(x), C(x)), that for n ≥ 0,

αn(x) =
1

2n+1

[−B(x) + ∆(x)]n+1 − [−B(x)−∆(x)]n+1

∆(x)
, (6.67)

or

αn(x) = An(x)
Rn+1

+ (x)−Rn+1
− (x)

R+(x)−R−(x)
(6.68)

where

R+(x) =
−B(x) + ∆(x)

2A(x)
,

R−(x) =
−B(x)−∆(x)

2A(x)
. (6.69)

The Schröder and Motzkin polynomials are now delivered as follows:

Corollary 6.14. With ∆S(x) = ∆(x, x− 1, 1) =
√

1− 6x+ x2, then for n ≥ 0,

Sn(x) = (1− x)nPn

(
x

(1− x)2

)
=

1

2n+1

[1− x+ ∆S(x)]n+1 − [1− x−∆S(x)]n+1

∆S(x)
.

Corollary 6.15. With ∆M(x) = ∆(x2, x− 1, 1) =
√

1− 2x− 3x2, then for n ≥ 0,

Mn(x) = (1− x)nPn

(
x2

(1− x)2

)
=

1

2n+1

[1− x+ ∆M(x)]n+1 − [1− x−∆M(x)]n+1

∆M(x)
.
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Remark 6.16. We note that (6.67) can be formulated from consideration of the characteristic

equation 0 = λ2 +B(x)λ+A(x)C(x) associated with Lemma 6.3 (this gives the aforementioned

discriminant function ∆(x)). With roots λ1,2(x) = 1
2
(−B(x) ± ∆(x)) and general solution

αn(x) = A1(x)λn1 (x)+A2(x)λn2 (x) (for λ1 6= λ2), the result follows from applying the initial con-

ditions α0(x) = 1, α1(x) = −B(x) to solve for A1(x), A2(x). Such a route to it is alluded to when

stating (4.6), which is recovered by (6.67) with ∆(x) = ∆(A(x), B(x), C(x)) = ∆(x,−1, 1).

To conclude, we state one more result—and specialisations thereof which in turn lead to con-

sideration of Padé approximation in the context discussed previously—before summarising the

work presented in this chapter and indicating future possible topics for study.

Lemma 6.17. Let N(x) be an o.g.f. satisfying the quadratic 0 = A(x)N2(x) +B(x)N(x) +

C(x)—where A(x), B(x), C(x) ∈ Z[x]—from which are defined general polynomials αn(x), βn(x)

as in (6.16) and (6.17). Then for n ≥ 1,

Nn(x) =
αn−1(x)N(x) + βn−1(x)

An−1(x)
.

Proof. Noting that the result holds for n = 1 (both sides are N(x)), we assume it holds for

some n = k ≥ 1 and argue inductively. Consider

Nk+1(x) = N(x)Nk(x)

= N(x)

(
αk−1(x)N(x) + βk−1(x)

Ak−1(x)

)
(by assumption)

=
αk−1(x)N2(x) + βk−1(x)N(x)

Ak−1(x)

=
1

Ak−1(x)

(
αk−1(x)

[−B(x)N(x)− C(x)]

A(x)
+ βk−1(x)N(x)

)
=

1

Ak(x)
{[A(x)βk−1(x)−B(x)αk−1(x)]N(x)− C(x)αk−1(x)}

=
1

Ak(x)
[αk(x)N(x) + βk(x)] (6.70)

on employing equations (6.19) with n = k − 1. The inductive step is upheld, and the proof

completed.

If we re-write Lemma 6.17 as, using (6.19),

Nn+2(x) =
N(x)αn+1(x)− C(x)αn(x)

An+1(x)
, n ≥ 0, (6.71)

then the Catalan specialisation A(x) = x, B(x) = −1 (not actually used here) and C(x) = 1 of

(6.71) (with N(x) = G(x), αn(x) = Pn(x)) recovers the result seen in Lemma 4.3 for powers of

the Catalan sequence o.g.f. G(x), whilst those versions for Schröder and Motzkin o.g.f. powers

are immediate:
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Corollary 6.18. For n ≥ 0,

Sn+2(x) =
S(x)Sn+1(x)− Sn(x)

xn+1
.

Corollary 6.19. For n ≥ 0,

Mn+2(x) =
M(x)Mn+1(x)−Mn(x)

x2(n+1)
.

6.5 Padé Approximation by Polynomial Ratio

It was previously shown that ∀n ≥ 0, the ratio Pn(x)/Pn+1(x) of Catalan polynomials is an or-

der (b1
2
nc, b1

2
(n+ 1)c) Padé approximant of the Catalan sequence o.g.f. G(x) (refer to Theorem

5.6 and its associated proof); we are now able to make corresponding statements in relation to

Schröder and Motzkin polynomials, and their respective o.g.fs.

Recall that given a function f(x) and integers m, p ≥ 0, the order (m, p) Padé approximant of

f(x) is the rational function

u(x)

v(x)
=
u0 + u1x+ u2x

2 + · · ·+ umx
m

1 + v1x+ v2x2 + · · ·+ vpxp
(6.72)

which, when expanded as a Maclaurin series, has cancellation strictly in its first m + p + 1

terms with the corresponding series form of f(x). In other words, for some Θ(x) ∈ Z[[x]] with

non-zero lead term,

u(x)− f(x)v(x) = xm+p+1Θ(x). (6.73)

There always exists a reduced order (m, p) approximant to the series form of f(x) = f0 + f1x+

f2x
2 + · · · (for which u(x) and v(x) are relatively prime, with u(0) = f0, v(0) = 1).

6.5.1 Approximation of the Schröder Polynomials

Consider first the role of the Schröder polynomials in potentially forming Padé approximants

in a similar fashion by successive ratio. If the general ratio Sn(x)/Sn+1(x) is to be such an

approximant then, since by Corollary 6.18 Sn(x)− S(x)Sn+1(x) = xn+1ΘS
n(x) (where ΘS

n(x) =

−Sn+2(x) ∈ Z[[x]]), we must have that deg{Sn(x)} + deg{Sn+1(x)} = n. This is never true,

however, for deg{Sn(x)} = n, and so we conclude that for n ≥ 0 Sn(x)/Sn+1(x) is not a Padé

approximant of S(x).
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6.5.2 Approximation of the Motzkin Polynomials

Corollary 6.19, noting that deg{Mn(x)} = bb1
3
nc + 1

3
(2n + 1)c, leads with a little work to the

following conclusion: for n ≥ 0 the ratio Mn(x)/Mn+1(x) of Motzkin polynomials is not a Padé

approximant of M(x) excepting those values n = 0, 3, 6, 9, . . . , when it is an approximant of

order (n, n + 1). In this latter instance, setting n = 3k (k = 0, 1, 2, . . . ,) it is elementary to

show that deg{Mn(x)} + deg{Mn+1(x)} = n + (n + 1) = 2n + 1, which is the required con-

dition.3 Noting that M0(x) = 1 is degree zero, the sequence of Motzkin polynomial degrees

{deg{Mn(x)}}∞1 = {1, 1, 3, 4, 4, 6, 7, 7, 9, . . .} is listed as O.E.I.S. sequence no. A117571, being

those coefficients of terms in the expansion of (1 + 2x2)/[(1− x)(1− x3)].

Remark 6.20. Those Motzkin polynomial ratios M3n(x)/M3n+1(x), n = 0, 1, 2, etc., shown to

be Padé approximants of M(x), satisfy (6.72) in that the lead term of αn(x) generally, and so

Mn(x) in particular, have ∀n ≥ 1 a (constant) lead term of unity.

Remark 6.21. We emphasise, for clarity, that the definition of a Padé approximant used here

seems to be a standard one, with the non-zero lead term of Θ(x) referring implicitly to the

constant term therein. Clearly, since the difference Sn(x) − S(x)Sn+1(x) is a power series

in terms of only O(xn+1) and higher, the ratio Sn(x)/Sn+1(x)—when written in the form

of (6.72)—can never provide an approximant to S(x) without Θ(x) containing inverse pow-

ers of x which violates the definition of an approximant (we would have to write Sn(x) −

S(x)Sn+1(x) = x2(n+1)Θ(x), where Θ(x) = −Sn+2(x)/xn+1). We clarify the conclusion made

for ratios of successive Motzkin polynomials as approximants to M(x) by noting that the differ-

ence Mn(x)−M(x)Mn+1(x)—being a series comprising terms in x2(n+1) and higher order—offers

an extra power of x to Θ(x) when n is not a multiple of 3, in which cases the lead term of

Θ(x) would fail to possess a standalone constant; by the definition we are using this is not a

Padé approximant, although it could possibly be regarded as an approximant of different type

(actually offering an extra single term of agreement between Mn(x)/Mn+1(x) and M(x)).

Directly from Lemma 6.17 it is possible to deduce the following statement:

Corollary 6.22. Let N(x) be an o.g.f. satisfying the quadratic 0 = A(x)N2(x) +B(x)N(x) +

C(x)—where A(x), B(x), C(x) ∈ Z[x]—from which is defined the general polynomial αn(x) =

3Corollary 6.19 gives, writing ΘM
n (x) = −Mn+2(x) ∈ Z[[x]], that the difference Mn(x)−M(x)Mn+1(x) has

the form x2(n+1)ΘM
n (x).
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(1, 0)M(x)
(

1
0

)
, with M(x) as in (6.16). Then, if A(x), C(x) are of particular form A(x) = xa,

C(x) = c, for integers a ≥ 1, c 6= 0, the ratio αn(x)/αn+1(x) is, for n ≥ 0, a Padé approximant

of 1
c
N(x) of order (deg{αn(x)}, deg{αn+1(x)}) if deg{αn(x)}+ deg{αn+1(x)} = a(n+ 1)− 1.

Corollary 6.22 recovers those conditions pertaining to the Catalan, Schröder and Motzkin poly-

nomials as forming ratio approximants to their respective o.g.fs G(x), S(x) and M(x) (for which

c = 1 in each case and values of a are, in order, a = 1, 1, 2).

6.6 Summary

This chapter marks the conclusion of our study into the development of generalised algebraic

Householder schemes for integer sequences, and as such, a few final observations will now be

made regarding the results presented here, along with some speculative remarks regarding top-

ics appropriate for future investigation.

Given a sequence o.g.f. N(x) which satisfies the general quadratic 0 = A(x)N2(x) +B(x)N(x)+

C(x) (A(x), B(x), C(x) ∈ Z[x]), we have developed here some theory which can be applied to

any such sequence (of which there are many in existence), showing that associated polynomial

families exist and how—in the case when C(x) = 1—non-linear identities are generated natu-

rally from so-called Householder schemes when applied algebraically. Instances relating to the

Schröder and Motzkin sequences have been presented in full, taking place within the framework

of results given in previous work on Catalan polynomials to which reference has been made

throughout. It remains to be seen

• if sequences whose o.g.fs satisfy a cubic equation with functional coefficients, or one of

higher order, lend themselves to the type of treatment set out here through any associated

polynomial families;

• if polynomial families such as those seen here have any application in the context of pro-

ducing iterated generating functions as described in Chapter 3 (for the Catalan sequence).
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Chapter 7

Further Identities for Polynomial

Families

7.1 Introduction

In this chapter, we utilise some of the recurrence properties known to hold for the Catalan poly-

nomials in the construction of an additional set of identities involving both the polynomials

and their derivatives. Following the work presented in Chapter 6, we are also in a position to

derive new identities for generalised polynomial families, the Schöder and Motzkin polynomials

being two specific instances which we use as examples.

One identity involving derivatives of the Catalan polynomials has already arisen, this being

(4.25) (originally from Lidl et al. (1993)):

0 = n(n− 1)Pn(x) + [n+ 2(3− 2n)x]
dPn(x)

dx
+ x(4x− 1)

d2Pn(x)

dx2
. (7.1)

7.2 Identities for Catalan Polynomials

7.2.1 Summary of Properties

As we have seen in previous chapters, various forms exist for the general (n + 1)th Catalan

polynomial. Summarising those discovered so far, for n ≥ 0 we have the binomial sum

Pn(x) =

b 1
2
nc∑

i=0

(
n− i
i

)
(−x)i, (7.2)
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the hypergeometric series form

Pn(x) = 2F1

(
−1

2
n,−1

2
(n− 1)

−n

∣∣∣∣ 4x

)
, (7.3)

the two matrix forms

Pn(x) =
(√

x
)n (

1, 1/
√
x
)(0 −1

1 1√
x

)n(
1

0

)
(7.4)

and

Pn(x) = (1, 0)

(
1 x

−1 0

)n(
1

0

)
, (7.5)

and closed form

Pn(x) =
1

2n+1

(
1 +
√

1− 4x
)n+1 −

(
1−
√

1− 4x
)n+1

√
1− 4x

, (7.6)

this last being derived from the basic linear recurrence

0 = xPn(x)− Pn+1(x) + Pn+2(x); P0(x) = P1(x) = 1. (7.7)

The bi-variate function
1

1− t+ xt2
=
∞∑
n=0

Pn(x)tn (7.8)

has also been found to act as an o.g.f. for the Catalan polynomials.

7.2.2 Identities

Identity I

d

dx
[Pn+1(x)− xPn−1(x)] = −(n+ 1)Pn−1(x), n ≥ 1.

Proof. Consider, from (7.2),

Pn+1(x)− xPn−1(x) =

b 1
2

(n+1)c∑
i=0

(
n+ 1− i

i

)
(−x)i − x

b 1
2

(n−1)c∑
i=0

(
n− 1− i

i

)
(−x)i

=

b 1
2

(n+1)c∑
i=0

(
n+ 1− i

i

)
(−x)i +

b 1
2

(n−1)c∑
i=0

(
n− 1− i

i

)
(−x)i+1

=

b 1
2

(n+1)c∑
i=0

(
n+ 1− i

i

)
(−x)i +

b 1
2

(n+1)c∑
i=1

(
n− i
i− 1

)
(−x)i

= 1 +

b 1
2

(n+1)c∑
i=1

[(
n+ 1− i

i

)
+

(
n− i
i− 1

)]
(−x)i

= 1 + (n+ 1)

b 1
2

(n+1)c∑
i=1

1

i

(
n− i
i− 1

)
(−x)i. (7.9)
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Thus,

d

dx
[Pn+1(x)− xPn−1(x)] = −(n+ 1)

b 1
2

(n+1)c∑
i=1

(
n− i
i− 1

)
(−x)i−1

= −(n+ 1)

b 1
2

(n−1)c∑
i=0

(
n− 1− i

i

)
(−x)i

= −(n+ 1)Pn−1(x). (7.10)

Identity II

dPn(x)

dx
= − 1

2n−1

n−2∑
i=0

(i+ 2)2iPi(x), n ≥ 2.

Proof. Identity I can be re-written trivially using (7.7) in the form

(n+ 1)Pn−1(x) =
d

dx
[Pn(x)− 2Pn+1(x)]. (7.11)

Denoting by ′ a derivative with respect to x, this gives, employing it for values of n ≥ 1,

20 · 2P0(x) = 20P ′1(x)− 21P ′2(x),

21 · 3P1(x) = 21P ′2(x)− 22P ′3(x),

22 · 4P2(x) = 22P ′3(x)− 23P ′4(x),

...

2n−3 · (n− 1)Pn−3(x) = 2n−3P ′n−2(x)− 2n−2P ′n−1(x),

2n−2 · nPn−2(x) = 2n−2P ′n−1(x)− 2n−1P ′n(x), (7.12)

and adding the l.h.s. terms creates a “telescoping” effect in the r.h.s., so that

n−2∑
i=0

2i · (i+ 2)Pi(x) = 20P ′1(x)− 2n−1P ′n(x) = −2n−1P ′n(x), (7.13)

whence the result.

Remark 7.1. We can evaluate Identity II at x = 0, which, noting that for n ≥ 2, Pn(0) = 1

and P ′n(0) = −(n − 1), then contracts to
∑n

i=0(i + 2)2i = (n + 1)2n+1 or, rearranging (noting

that the sum
∑n

i=0 2i is but a geometric series with closed form 2n+1 − 1), the simpler result∑n
i=0 i2

i = 2[1 + (n− 1)2n].

Identity III

(1− 4x)
dPn(x)

dx
= (n+ 1)Pn−1(x)− 2nPn(x), n ≥ 1.
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Proof. We first establish a couple of subsidiary identities to which we make appeal as part of

the proof. Let N be a k × k matrix such that |N − Ik| 6= 0, where Ik is the k × k identity

matrix. Then
n∑
i=0

Ni = (Nn+1 − Ik)(N− Ik)
−1 (7.14)

and
n∑
i=0

iNi = (nNn+2 − (n+ 1)Nn+1 + N)(N− Ik)
−2. (7.15)

Utilising the fact that Pn(x) has the matrix form (7.5), we set for convenience R to be the row

vector (1, 0), M = M(x) to be the 2 × 2 matrix (1, x;−1, 0) and C to be the column vector

(1, 0)T , so that Pn(x) = RMnC.

This allows us to write, from Identity II,

−2n−1P ′n(x) =
n−2∑
i=0

(i+ 2)2iPi(x)

= R

[
n−2∑
i=0

(i+ 2)2iMi

]
C

= Rf(M, n)C, (7.16)

where f(M, n) = f(M(x), n) =
∑n−2

i=0 (i+ 2)2iMi. We first split f(M, n) into a sum of terms

f(M, n) =
n−2∑
i=0

i(2M)i + 2
n−2∑
i=0

(2M)i. (7.17)

Directly from (7.15) we have

n−2∑
i=0

i(2M)i = [(n− 2)(2M)n − (n− 1)(2M)n−1 + 2M](2M− I2)−2, (7.18)

and likewise (7.14) yields

n−2∑
i=0

(2M)i = [(2M)n−1 − I2](2M− I2)−1

= [(2M)n−1 − I2](2M− I2)(2M− I2)−2, (7.19)

together giving

f(M, n) = [n(2M)n − (n+ 1)(2M)n−1 − 2M + 2I2](2M− I2)−2

=
n(2M)n − (n+ 1)(2M)n−1 − 2M + 2I2

1− 4x
, (7.20)
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since

(2M− I2)−2 =

(
1 2x

−2 −1

)−2

=
1

1− 4x
I2. (7.21)

Finally, we back-substitute (7.20) in (7.16) to complete the proof:

−2n−1(1− 4x)P ′n(x) = R[n(2M)n − (n+ 1)(2M)n−1 − 2M + 2I2]C

= −R[(n+ 1)(2M)n−1 + 2M− n(2M)n − 2I2]C

= −[(n+ 1)2n−1RMn−1C + 2RMC− n2nRMnC− 2RI2C]

= −[(n+ 1)2n−1Pn−1(x) + 2P1(x)− n2nPn(x)− 2P0(x)]

= −2n−1[(n+ 1)Pn−1(x)− 2nPn(x)]. (7.22)

Identity IV

(n+ 2)x
dPn(x)

dx
= (n+ 1)

dPn+1(x)

dx
− ndPn+2(x)

dx
, n ≥ 0.

Proof. Recalling (7.11),

(n+ 1)Pn−1(x) = P ′n(x)− 2P ′n+1(x), (7.23)

or, equivalently,

(n+ 2)Pn(x) = P ′n+1(x)− 2P ′n+2(x), (7.24)

we can substitute both of these into Identity III to read

(1− 4x)P ′n(x) = P ′n(x)− 2P ′n+1(x)− 2n
1

n+ 2
[P ′n+1(x)− 2P ′n+2(x)], (7.25)

which gives the result after a little rearrangement.

7.3 Identities for Generalised Polynomials

7.3.1 Summary of Properties

Any sequence of integers whose o.g.f. N(x) satisfies the quadratic

0 = A(x)N2(x) +B(x)N(x) + C(x), (7.26)

with functional coefficients A(x), B(x), C(x) ∈ Z[x], can be considered to give rise naturally to

a family of associated polynomials

αn(x) = αn(A(x), B(x), C(x))

= (1, 0)

(
−B(x) A(x)

−C(x) 0

)n(
1

0

)
, (7.27)
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the first few of which have explicit general form

α0(x) = 1,

α1(x) = −B(x),

α2(x) = B2(x)− A(x)C(x),

α3(x) = 2A(x)B(x)C(x)−B3(x),

α4(x) = B4(x)− 3A(x)B2(x)C(x) + A2(x)C2(x),

α5(x) = 4A(x)B3(x)C(x)− 3A2(x)B(x)C2(x)−B5(x), (7.28)

etc.; for the specialisation A(x) = x, B(x) = −1, C(x) = 1 then (7.26) becomes the familiar

equation 0 = xN2(x) − N(x) + 1 for the Catalan sequence o.g.f. and (7.27) contracts to (7.5)

(αn(x,−1, 1) = Pn(x), with (7.28) recovering the Catalan polynomials P0(x) = P1(x) = 1,

P2(x) = 1− x, P3(x) = 1− 2x, P4(x) = 1− 3x+ x2, P5(x) = 1− 4x+ 3x2, . . .).

The Schröder and Motzkin polynomials are recoverable via the specialisations A(x) = x,

B(x) = x − 1, C(x) = 1 and A(x) = x2, B(x) = x − 1, C(x) = 1, respectively, or in other

words, Sn(x) = αn(x, x− 1, 1) and Mn(x) = αn(x2, x− 1, 1).

It has also previously been shown that the generalised polynomials can be expressed directly

in terms of the Catalan polynomials according to

αn(x) = [−B(x)]nPn

(
A(x)C(x)

B2(x)

)
. (7.29)

7.3.2 Identities

Identity V

For n ≥ 1,
d

dx
{αn(x)} = [(n+ 1)ω1(x)]αn−1(x) + [nω2(x)]αn(x),

where

ω1(x) =
2A(x)C(x) d

dx
{B(x)} −B(x)[A(x) d

dx
{C(x)}+ C(x) d

dx
{A(x)}]

B2(x)− 4A(x)C(x)
,

ω2(x) =
B(x) d

dx
{B(x)} − 2[A(x) d

dx
{C(x)}+ C(x) d

dx
{A(x)}]

B2(x)− 4A(x)C(x)
.
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Proof. Our starting point is (7.29). Differentiating both sides w.r.t. x, and denoting by

P ′n(A(x)C(x)/B2(x)) the derivative of Pn w.r.t. its argument, we obtain

d

dx
{αn(x)} = n[−B(x)]n−1 d

dx
{−B(x)}Pn

(
A(x)C(x)

B2(x)

)
+ [−B(x)]nP ′n

(
A(x)C(x)

B2(x)

)
d

dx

{
A(x)C(x)

B2(x)

}
= n

1

B(x)

d

dx
{B(x)}αn(x)

+ [−B(x)]nP ′n

(
A(x)C(x)

B2(x)

)
d

dx

{
A(x)C(x)

B2(x)

}
(7.30)

using (7.29), which is rearranged to

P ′n

(
A(x)C(x)

B2(x)

)
=

d
dx
{αn(x)} − n 1

B(x)
d
dx
{B(x)}αn(x)

[−B(x)]n d
dx

{
A(x)C(x)
B2(x)

} , (7.31)

holding for n ≥ 0. Now, from Identity III,

d

dx
{Pn(x)} =

(n+ 1)Pn−1(x)− 2nPn(x)

1− 4x
, n ≥ 1, (7.32)

which as x→ A(x)C(x)/B2(x) reads

P ′n

(
A(x)C(x)

B2(x)

)
=
B2(x)[(n+ 1)Pn−1(A(x)C(x)/B2(x))− 2nPn(A(x)C(x)/B2(x))]

B2(x)− 4A(x)C(x)
, (7.33)

whence, equating (7.31),(7.33) and employing (7.29) once more,

d

dx
{αn(x)} − n 1

B(x)

d

dx
{B(x)}αn(x)

= −B2(x)
d

dx

{
A(x)C(x)

B2(x)

}
(n+ 1)B(x)αn−1(x) + 2nαn(x)

B2(x)− 4A(x)C(x)
(7.34)

after a little work; finally, noting that

d

dx

{
A(x)C(x)

B2(x)

}
=
B(x)[A(x) d

dx
{C(x)}+ C(x) d

dx
{A(x)}]− 2A(x)C(x) d

dx
{B(x)}

B3(x)
, (7.35)

(7.34) leads to Identity V after further algebraic manipulation.

Instances of Identity V

The Catalan specialisation of Identity V is merely (7.32), whilst versions for the aforemen-

tioned Schröder and Motzkin polynomials are seen to be, for n ≥ 1,

(1− 6x+ x2)
d

dx
{Sn(x)} = [(n+ 1)(1 + x)]Sn−1(x)− [n(3− x)]Sn(x), (7.36)

and

(1− 2x− 3x2)
d

dx
{Mn(x)} = [2(n+ 1)x]Mn−1(x)− [n(1 + 3x)]Mn(x), (7.37)
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both of which have been verified computationally using the algebraic closed forms for Sn(x),

Mn(x) delivered by (7.27); many other examples could, of course, have been given here.

Identity VI

For n ≥ 1,

−(n+ 1)
ωn1 (x)

ω2(x)

n∑
i=1

(
−ω2(x)

ω1(x)

)i
1

i(i+ 1)

d

dx
{αi(x)} = (n+ 1)ωn1 (x) + [(−1)n+1ωn2 (x)]αn(x).

Proof. It can be shown inductively (though the details are omitted here for brevity) that an

arbitrary recurrence

yn = δnzn−1 + εnzn, n ≥ 1, (7.38)

leads to the following identity:

n∑
i=1

[
n∏

j=i+1

δj

i−1∏
l=1

εl

]
(−1)i+1yi = z0

n∏
j=1

δj + (−1)n+1zn

n∏
l=1

εl. (7.39)

Setting yn = yn(x) = d
dx
{αn(x)}, zn = zn(x) = αn(x), δj = δj(x) = (j+1)ω1(x) and εl = εl(x) =

lω2(x) (so that (7.38) reads as Identity V), and noting that by definition (7.27) α0(x) = 1 = z0,

Identity VI is yielded directly from (7.39) after elementary simplification of both sides.

Instances of Identity VI

The Catalan, Schröder and Motzkin polynomial instances of the result are, for n ≥ 1,

(n+ 1)(1− 4x)
n∑
i=1

2i−1

i(i+ 1)

d

dx
{Pi(x)} = n+ 1− 2nPn(x), (7.40)

(n+ 1)(1− 6x+ x2)(1 + x)n
n∑
i=1

(
3− x
1 + x

)i
1

i(i+ 1)

d

dx
{Si(x)}

= (3− x){(n+ 1)(1 + x)n − (3− x)nSn(x)}, (7.41)

(n+ 1)(1− 2x− 3x2)(2x)n
n∑
i=1

(
1 + 3x

2x

)i
1

i(i+ 1)

d

dx
{Mi(x)}

= (1 + 3x){(n+ 1)(2x)n − (1 + 3x)nMn(x)}. (7.42)

As before, combining (7.40), (7.41) and (7.42) with the closed forms for Pn(x), Sn(x) and Mn(x)

respectively allows for a general computational verification of each of the above, supporting the

proof.
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7.4 Summary

In this chapter, development of previous work on Catalan polynomials has led to the formulation

of six new identities; four for the Catalan polynomials themselves, and two additional identities

for a general polynomial family, in which the Catalan, Schröder and Motzkin polynomials

feature as special cases. All identities involve polynomial derivatives, with some displaying a

considerable level of complexity. Note that the derivative element d
dx
{αi(x)} within the sum

of Identity VI can be replaced with a corresponding expression in αi−1(x), αi(x) directly from

Identity V to create an additional identity in which derivatives are absent; in some sense the

result is one in which a “telescoping” effect is evident.
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Chapter 8

Summary and Conclusions

In this thesis, an investigation into the analysis of so-called iterated generating functions, and

the schemes that produce them, has been made. The presentation has been set out in an or-

derly way which reflects the natural chronology of the work. The primary results obtained in

each chapter can be summarised thus:

Starting with the notion of an iterated generating function, the basic iterative method demon-

strated by Larcombe and Fennessey (1999) has been shown to have an application in generating

integer sequences other than the Catalan sequence.

In Chapter 2, arbitrary finite sequences have been briefly examined in context, and a method

devised for reproducing such sequences by means of first-order recurrence schemes.

The focus switches in Chapter 3 to infinite sequences, where an algorithm is developed for

recovering the recurrence scheme of a suitable sequence. This leads to the emergence of the

Catalan polynomials, these being of particular interest not simply due to their role in creating

Catalan sequence iterated generating function schemes, but also due to their properties which

have been noted (using existing results from the literature) and further developed in Chapter 4.

In Chapters 5 and 6, the creation of non-linear Catalan polynomial identity pairs through the

algebraic execution of the suite of (numeric) Householder root algorithms has been presented,

and the Catalan polynomials themselves have been shown to have applications in providing

Padé approximants to the Catalan sequence o.g.f. Moreover, this phenomenon is sometimes

repeated for other polynomials associated with their namesake sequences.
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To conclude, a number of identities linking the Catalan (and generalised) polynomials with

their derivatives have been presented in Chapter 7, and verified computationally for the Cata-

lan, Schröder and Motzkin instances.

As a general remark, it is difficult to overstate the usefulness of computer algebra systems in

this type of work. Without the availability of Maple, the CAS package used here, or a simi-

lar alternative, it is reasonable to assume that the majority of the computations presented in

this thesis could not otherwise have been performed, the complexity of the algorithms through

which they are generated precluding the possibility of their derivation by hand. Indeed, many

of the theorems discussed in this work were initially formulated using empirical evidence gained

through computational experimentation.

It is clear that where areas suitable for future study are concerned, a number of opportunities

exist. Apart from the specifics noted at the end of each chapter, one obvious general possibility

would be to re-examine all of the topics covered in this thesis in relation to sequences whose

governing o.g.fs are cubic or higher degree, but some of the concepts considered here seem

non-trivial to extend in this way. However, even though we have restricted our attention to

iterated generating functions schemes for sequences with a quadratic o.g.f. equation, we have

nonetheless found many interesting problems to examine, with features which will be of interest

within the general area of discrete mathematics.

In addition, two areas of immediate further interest have arisen as a direct consequence of this

study (although neither involves iterated generating functions in anything more than a periph-

eral role): firstly, ongoing work concerning the Catalan polynomials, where particular topics of

interest are their factorisation/divisibility properties, their generalisation as polynomials, and

their role in the construction and analysis of periodic sequences; and secondly, the development

of closed forms (based on matrices and binomial sums) for the Householder-derived identities

presented in Chapter 6, which have since been published as Clapperton et al. (2012).

Finally, it is worth noting that not all sequences can be produced by means of iterated generating

functions since there are only a countable number of schemes and an uncountable number of

sequences. This means that there must exist “impossible” sequences with no generating schemes

of the type considered here; a class of such sequences is established in Clapperton et al. (2011b).
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Appendices

Appendix A

In this exercise we apply (3.21), matching coefficients of terms of the polynomials G1(x), G2(x),

G3(x), . . . , to Catalan sequence terms as before, but this time truncating the polynomials en

route. First, we clearly have [x0]{G1(x)} = [x0]{α + βx} = α = c0 = 1 once more. This time,

however, we use G1(x) = 1 (truncated) in the next iteration, which is

G2(x) = 1 + βx+ (γ + δx)G1(x) + (ε+ ζx)G2
1(x)

= 1 + γ + ε+ (β + δ + ζ)x, (A1)

giving [x0]{G2(x)} = c0 = 1 = 1 + γ + ε, i.e.,

0 = γ + ε, (A2)

and

[x1]{G2(x)} = c1 = 1 = β + δ + ζ. (A3)

With G2(x) = 1 + x in correct truncated form,

G3(x) = 1 + βx+ (γ + δx)G2(x) + (ε+ ζx)G2
2(x)

= 1 + γ + ε+ (β + γ + δ + 2ε+ ζ)x+ (δ + ε+ 2ζ)x2 + ζx3

= 1 + (1 + γ + 2ε)x+ (δ + ε+ 2ζ)x2 + ζx3, (A4)

employing (A2),(A3), from which we may write [x1]{G3(x)} = c1 = 1 = 1 + γ + 2ε, i.e.,

0 = γ + 2ε, (A5)

and

[x2]{G3(x)} = c2 = 2 = δ + ε+ 2ζ. (A6)
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Now γ = ε = 0 by (A2) and (A5), whence (A6) becomes

δ + 2ζ = 2. (A7)

Equations (A3),(A7) are those of (3.27). If we now modify the recurrence accordingly and

impose it—with G2(x) = 1 + x + 2x2 (truncated)—to generate G4(x), we merely reproduce

(3.29) (see (3.28)), and in turn the scheme (3.30) from the repeat β, δ, ζ solution.
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Appendix B

In this section, we verify Lemma 4.3, noting that the case n = 1 is already accounted for in its

proof; those steps in any individual case which draw on a previous one are so obvious as to be

left unmarked:

n = 2:

Rearranging the quadratic (1.9) it reads trivially

xC2(x) = C(x)− 1 = P1(x)C(x)− P0(x). (B1)

n = 3:

Again (1.9) gives

x2C3(x) = xC2(x)− xC(x)

= C(x)− 1− xC(x)

= (1− x)C(x)− 1

= P2(x)C(x)− P1(x). (B2)

n = 4:

Again (1.9) gives

x3C4(x) = x2C3(x)− x2C2(x)

= x2C3(x)− x[xC2(x)]

= (1− x)C(x)− 1− x[C(x)− 1]

= (1− 2x)C(x)− (1− x)

= P3(x)C(x)− P2(x). (B3)

n = 5:

Again (1.9) gives

x4C5(x) = x3C4(x)− x3C3(x)

= x3C4(x)− x[x2C3(x)]

= (1− 2x)C(x)− (1− x)− x[(1− x)C(x)− 1]

= (1− 3x+ x2)C(x)− (1− 2x)

= P4(x)C(x)− P3(x). (B4)

Instances of Lemma 4.3 for n > 5 are dealt with similarly.
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Appendix C

For completeness, two additional proofs of Theorem 6.1 are presented here, the first of which

utilises analytic function theory and originates from Clapperton et al. (2010, Appendix A), its

inclusion therein having been suggested by a referee.

Proof I. Consider the recurrence (4.5). Replacing x by u and defining, for n ≥ 0, Qn(u, v) =

(−v)nPn(u) it reads

0 = uv2Qn(u, v) + vQn+1(u, v) +Qn+2(u, v). (C1)

Denoting, w.r.t. a general complex function F (z), say, Dn(z) to be

Dn(z) =
1

n!

dn

dzn

{
1

F (z)

}
, (C2)

the standard theory of analytic functions gives that

Dn(z) =
1

2πi

∫
C

dζ

(ζ − z)n+1F (ζ)
, (C3)

where C is a small circle around z (fixed) in the complex plane, and D0,D1, D2, etc., occur in

the (Taylor) expansion

1

F (ζ)
=
∞∑
n=0

Dn(z)(ζ − z)n. (C4)

For F (z) = f(z) = f(z;x) = A(x)z2 +B(x)z +C(x) quadratic in z, then (denoting the partial

derivative ∂/∂z by ′, and suppressing the dependency of f on x as in the main inductive proof)

expanding f(ζ) about z we have

f(ζ) = f(z) + f ′(z)(ζ − z) +
f ′′(z)

2!
(ζ − z)2

= f(z) + f ′(z)(ζ − z) + A(x)(ζ − z)2, (C5)

upon which (C4) reads

1 = f(ζ)
∞∑
n=0

Dn(z)(ζ − z)n

= A(x)
∞∑
n=0

Dn(z)(ζ − z)n+2 + f ′(z)
∞∑
n=0

Dn(z)(ζ − z)n+1 + f(z)
∞∑
n=0

Dn(z)(ζ − z)n, (C6)

in turn yielding the recurrence

0 = A(x)Dn(z) + f ′(z)Dn+1(z) + f(z)Dn+2(z), n ≥ 0, (C7)

subject to starting values D0(z) = 1/f(z), D1(z) = −f ′(z)/f 2(z). Now, setting

u(z) = u(z;x) =
A(x)f(z)

f ′2(z)
, v(z) =

f ′(z)

f(z)
, (C8)
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it follows from (C1) that Qn(z)/f(z) (that is to say, Qn(u(z), v(z))/f(z)) also satisfies (C7),

and since (checking the first two initial values are correct)

Q0(z)

f(z)
=
P0(u(z))

f(z)
=

1

f(z)
= D0(z),

Q1(z)

f(z)
=
−v(z)P1(u(z))

f(z)
=
−f ′(z)/f(z)

f(z)
= D1(z), (C9)

then we have established that

Dn(z) =
Qn(u(z), v(z))

f(z)
, n ≥ 0. (C10)

Thus, with u(z), v(z) as chosen in (C8), and quadratic f(z) = A(x)z2 + B(x)z + C(x), then

dn

dzn
{1/f(z)} = n!Dn(z) = n!Qn(u(z), v(z))/f(z) = n![−v(z)]nPn(u(z))/f(z), and Theorem 6.1

is proven.

Note, as a minor point of interest, that u(z;x) = A(x)f(z)/f ′2(z) appears as −Q(z;x) in the

inductive proof of Theorem 6.1 (see (6.10) of Section 6.2.1), and also as Q̂(z;x) in the later proof

of Lemma 6.6 (Section 6.2.2); we will also see u(z), v(z) (C8) deployed as variables τ(z), ρ(z)

in Proof II below.

Proof II. This proof is from first principles. The Taylor expansion for a function t(z), say,

about a general point z is (for small h)

t(z + h) = t(z) + ht′(z) +
h2

2!
t′′(z) +

h3

3!
t′′′(z) + · · ·

=
∞∑
i=0

hi

i!

di

dzi
{t(z)}, (C11)

which in the case when t(z) = f(z) = f(z;x) = A(x)z2 +B(x)z + C(x) reduces to

f(z + h) = f(z) + hf ′(z) +
h2

2
f ′′(z), (C12)

so that as a power series

1

f(z + h)
=

{
f(z) + hf ′(z) +

h2

2
f ′′(z)

}−1

=
1

f(z)

{
1 + h

f ′(z)

f(z)
+
h2

2

f ′′(z)

f(z)

}−1

=
1

f(z)

{
1 + h

f ′(z)

f(z)

[
1 + h

f ′(z)

f(z)

f(z)f ′′(z)

2f ′2(z)

]}−1

=
1

f(z)

∞∑
i=0

(−1)i
{
h
f ′(z)

f(z)

[
1 + h

f ′(z)

f(z)

f(z)f ′′(z)

2f ′2(z)

]}i
. (C13)
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Now by (C11) it follows that

1

f(z + h)
=
∞∑
i=0

di

dzi

{
1

f(z)

}
hi

i!
, (C14)

whence, by comparison with (C13) we have directly that, for n ≥ 0,

dn

dzn

{
1

f(z)

}
=

1

f(z)
[hn/n!]{Ω(h; z)}, (C15)

where

Ω(h; z) =
∞∑
i=0

(−1)i
{
h
f ′(z)

f(z)

[
1 + h

f ′(z)

f(z)

f(z)f ′′(z)

2f ′2(z)

]}i
. (C16)

To pick out the desired coefficient of hn/n! in Ω(h; z) we simply write ρ(z) = f ′(z)/f(z),

τ(z) = f(z)f ′′(z)/2f ′2(z), giving first

Ω(h; z) =
∞∑
i=0

(−1)ihiρi(z)[1 + hρ(z)τ(z)]i

=
∞∑
i=0

(−1)ihiρi(z)
i∑

j=0

(
i

j

)
[hρ(z)τ(z)]j

=
∞∑
i=0

(−1)ihiρi(z)
∞∑
j=0

(
i

j

)
[hρ(z)τ(z)]j

=
∞∑

i,j=0

(−1)iρi+j(z)τ j(z)

(
i

j

)
hi+j

=
∞∑
s=0

{∑
i+j=s

(−1)iτ j(z)

(
i

j

)}
(ρ(z)h)s. (C17)

Thus, for n ≥ 0,

[hn/n!]{Ω(h; z)} = n!ρn(z)
∑
i+j=n

(−1)iτ j(z)

(
i

j

)

= n!ρn(z)

b 1
2
nc∑

j=0

(−1)n−jτ j(z)

(
n− j
j

)

= [−ρ(z)]nn!

b 1
2
nc∑

j=0

(
n− j
j

)
[−τ(z)]j

= [−ρ(z)]nn!Pn(τ(z)) (by definition (4.1))

= [−f ′(z)/f(z)]nn!Pn(f(z)f ′′(z)/2f ′2(z))

= [−f ′(z)/f(z)]nn!Pn(A(x)f(z)/f ′2(z)); (C18)

combined with (C15), Theorem 6.1 is established.
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Appendix D

We establish Lemma 6.12 with a matrix-based argument. With reference to the matrix M(x)

(6.16) and associated functions αn(x), βn(x) defined in (6.17), let functions Fα(x, y) and Fβ(x, y)

be the respective o.g.fs for these polynomials αn(x) and βn(x), i.e.,

Fα(x, y) =
∞∑
n=0

αn(x)yn,

Fβ(x, y) =
∞∑
n=0

βn(x)yn, (D1)

and define a vector function

F(x, y) =

(
Fα(x, y)

Fβ(x, y)

)
. (D2)

Then, and employing (6.17),

F(x, y) =

(∑∞
n=0 αn(x)yn∑∞
n=0 βn(x)yn

)

=
∞∑
n=0

(
αn(x)

βn(x)

)
yn

=
∞∑
n=0

Mn(x)

(
1

0

)
yn

= S(x, y)

(
1

0

)
, (D3)

say, where, writing I2 for the 2× 2 identity matrix,

S(x, y) =
∞∑
n=0

[M(x)y]n

= [I2 −M(x)y]−1

=
1

A(x)C(x)y2 +B(x)y + 1

(
1 A(x)y

−C(x)y 1 +B(x)y

)
. (D4)

Substituting S(x, y) into (D3) gives

F(x, y) =
1

A(x)C(x)y2 +B(x)y + 1

(
1

−C(x)y

)
, (D5)

with components

Fα(x, y) =
1

A(x)C(x)y2 +B(x)y + 1
, (D6)

which is Lemma 6.12, and

Fβ(x, y) = − C(x)y

A(x)C(x)y2 +B(x)y + 1
(D7)
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(which latter is also available by writing Fβ(x, y) =
∑∞

n=0 βn(x)yn = β0(x) +
∑∞

n=1 βn(x)yn =∑∞
n=1 βn(x)yn (since β0(x) = 0) = y

∑∞
n=0 βn+1(x) yn = −C(x)y

∑∞
n=0 αn(x)yn (by (6.19))

= −C(x)yFα(x, y)).
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