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A B S T R A C T

This review explores advanced maintenance techniques aimed at improving solar energy production efficiency.
The study analyzes the rapid growth of solar energy and the challenges posed by environmental factors
such as soiling, harsh climate conditions and hotspots, which reduce photovoltaic (PV) and concentrated
solar power (CSP) system performance. Predictive models for solar energy generation and soiling detection,
including artificial intelligence (AI) and machine learning (ML) algorithms and Internet of Things (IoT), are
discussed as means for optimizing energy production and reducing maintenance costs. It is also emphasized
the role of Unmanned Aerial Vehicles (UAVs) to capture images for fault detection and failure prediction,
enhancing maintenance accuracy and minimizing downtime. The study concludes by analyzing the role of
these techniques to reduce water consumption in cleaning tasks, as well as solutions to increase the operational
lifespan and performance of solar plants such as anti-soiling coatings, robotic cleaning systems and accurate
predictive models.
1. Introduction

Renewable energy refers to energy derived from resources that are
naturally replenished on a human timescale, such as sunlight, wind,
rain, tides, waves, and geothermal heat. These energy sources are con-
sidered sustainable and environmentally friendly alternatives to fossil
fuels, which are finite and contribute significantly to environmental
degradation and climate change. The transition to renewable energy
is critical for reducing greenhouse gas emissions, mitigating global
warming, and achieving energy security [1]. Over the past few decades,
there has been a significant global shift towards increasing the adoption
and production of renewable energy, driven by technological advance-
ments, policy initiatives, and growing environmental awareness [2].
Solar Energy has become the biggest source of renewable energy.

1.1. Solar energy production

Implementing solar energy as a sustainable energy source offers
numerous advantages; it is a clean and renewable energy source that
produces no greenhouse gas emissions or other pollutants during elec-
tricity generation, reducing reliance on non-renewable fossil fuels,
promoting energy independence and security, and leading to signifi-
cant cost savings over time [3]. Once installed, solar panels generate
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electricity at no additional cost, reducing utility bills and providing
long-term financial benefits during panels’ lifespan. The solar industry
creates jobs in manufacturing, installation, maintenance, and research,
and by investing in solar energy, countries can stimulate economic
growth and create employment opportunities in the renewable energy
sector [4]. Solar energy systems can be scaled to meet various energy
needs, from small residential installations to large utility-scale solar
farms, making solar energy a versatile solution for powering homes,
businesses, and communities. Distributed solar energy systems can
enhance grid stability and resilience by reducing strain on centralized
power grids, helping to balance energy supply and demand, especially
during peak usage periods [5]. Solar energy projects can benefit local
communities by providing clean energy, reducing air pollution, and
supporting sustainable development [6].

According to the latest report by the International Renewable En-
ergy Agency (IRENA) in 2024 [7], there has been a continuous increase
in the global production of renewable energy. Over the past decade, this
rise has seen production capacity grow from 1,700,116 MW in 2014 to
3,869,705 MW in 2023, representing an increase of 227.6%.

Specifically, solar energy has shown significant growth over the last
decade. Its production capacity has increased from 180,759 MW in
2014 to 1,418,969 MW in 2023, marking an increase of 785%. Indeed,
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Fig. 1. Solar energy vs all renewable energies.
Fig. 2. Worldwide solar energy production.

solar energy has experienced tremendous growth, making it one of the
renewable energy sources with the highest rate of increase [7]. It has
gone from constituting 10.6% of the total energy capacity in 2014 to a
36.7% in 2023 (Fig. 1).

In terms of solar energy production, there has been a worldwide
record of 1,294,481 GWh. As seen in Fig. 2, when data is analyzed by
country, it is observed that China (34%), USA (14%) and Japan (7%)
are the top three solar energy producers worldwide.

However, there is still a difference between the total capacity of
the grid and the total amount of renewable energy production as seen
in Fig. 3. In these terms, despite representing a 43.2% of the total
electricity capacity, renewable energies only produce 30.3% of the total
electricity consumption in the world in 2023 [8]. This difference is due
to their inherent instability, as they rely on weather conditions to be
fully efficient.

1.1.1. Photovoltaic solar energy
Photovoltaic (PV) solar energy works by converting sunlight into

electricity through the photovoltaic effect. This process involves the use
of solar panels, which are made up of photovoltaic cells that capture
sunlight and convert it into electrical energy. When sunlight hits a
photovoltaic cell, which is the building block of solar panels made of
semiconductor materials, it excites the electrons in the cell, causing
them to move and create an electric current (photovoltaic effect) [9].
They system usually consists of a mounting structure to support and
position the solar panels to maximize sunlight exposure, in inverter to
2 
Fig. 3. Solar energy capacity vs production compared to all renewable energies.

Fig. 4. Worldwide PV energy production.

convert DC to AC electricity for several purposes and a battery storage
for storing excess electricity generated during the day [10].

There was a total production of 1,281,654 GWh in Solar Photo-
voltaic energy. According to the IRENA 2024 report [8], the three
countries who produced more PV energy were China (34%), USA (14%)
and Japan (7%), as seen in Fig. 4.

There are several types of photovoltaic (PV) solar technologies,
including monocrystalline silicon, which consists of solar panels made
from a single crystal structure, offering high efficiency but at a higher
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Fig. 5. Heliostats field for CSP in Plataforma Solar de Almería [17].

cost. Polycrystalline silicon panels, made from multiple silicon crys-
tals, are less efficient but more affordable than monocrystalline op-
tions [11]. Thin-film solar cells are created by depositing thin layers
of photovoltaic material onto a substrate, making them lightweight
and flexible, which suits a variety of applications [11]. Concentrated
photovoltaic (CPV) cells utilize lenses or mirrors to focus sunlight onto
small, high-efficiency cells, though this technology is more complex and
typically requires tracking systems to follow the sun’s movement [12].
Organic photovoltaic cells use organic materials to generate electric-
ity from sunlight and are lightweight, flexible, and hold promise for
low-cost production [13].

1.1.2. Concentrated solar power
Concentrated Solar Power (CSP) technology converts solar radiation

into both heat and electricity. It uses mirrors or lenses to concen-
trate sunlight onto a receiver to generate high temperatures that can
produce steam to drive a turbine for electricity generation [14]. In
Fig. 5 a Heliostats Field for CSP production is shown. By concentrating
solar radiation onto a receiver, CSP systems can achieve efficiencies
of 12%–30%, making them competitive with other renewable energy
sources [15]. One of the key features of CSP is its ability to store
heat energy, allowing for continuous electricity generation even when
sunlight is not available. This energy storage capability sets CSP apart
from other solar technologies and enhances its reliability as a power
generation option [16] (see Fig. 5).

There was a total production of 12828 GWh in CSP in the year
2022. According to the IRENA 2024 report [8], the three countries
who produced more Concentrated Solar Power were Spain (33%), USA
(22%) and UAE (9%), as seen in Fig. 6.

Despite its advantages, CSP also presents challenges that need to
be addressed for widespread adoption [18]. The intermittent nature of
solar irradiation poses a significant hurdle, requiring backup systems or
energy storage solutions for uninterrupted operation [18]. Additionally,
the initial capital costs of building CSP plants can be high, although
advancements in technology are gradually reducing these expenses. The
complexity of designing and operating CSP systems also necessitates
specialized knowledge and maintenance, adding to the challenges of
implementation [16].

In Fig. 7 (note there are two different scales) we can see a notably
difference between the capacity of PV energy and CSP energy. By
2023, PV solar plants represented a capacity of 1,412,083 MW, while
CSP plants only represented 6,876 MW. This means that PV represents
99.5% of the total capacity of solar energy produced worldwide, while
only a 0.5% is contributed by CSP [7].

1.2. Deterioration factors

Solar panels are designed to operate for decades. However, several
external conditions can reduce significantly their efficiency towards a
3 
Fig. 6. Worldwide CSP energy production.

10%/year [19]. Some of these factors are:
Climate conditions can significantly impact the degradation of solar

panels [20], and in desert regions, these effects may be exacerbated due
to extreme environmental factors. Key climate conditions contributing
to solar panel degradation include high temperatures, which can accel-
erate wear and induce thermal stress, affecting both performance and
lifespan. High humidity can lead to corrosion and moisture ingress,
potentially damaging the panels and reducing their efficiency over
time [21]. Ultraviolet (UV) radiation from sunlight can degrade the
materials used in solar panels, impacting their durability [22]. Extreme
weather events like hailstorms (Fig. 8), strong winds, and heavy snow-
fall can physically damage the panels, causing cracks, breakages, or
dislodgement of components. Desert environments also face soiling,
where dust and sand accumulate on the panels [23], reducing the
amount of sunlight reaching the cells and decreasing energy produc-
tion. Ground reflectivity, or albedo [24], in desert areas can influence
the performance of bi facial solar panels, which capture both direct
sunlight and reflected light from the ground [25]. Shading from nearby
structures, trees, or debris can create hotspots on the panels, leading to
uneven heating and potential damage to the cells [26].

Analyzing soiling deeply, it is found a series of factors causing
this phenomena. Desert climates are particularly prone to soiling due
to the presence of dust particles that can travel long distances and
deposit on solar panels [27]. Additionally, industrial activities emitting
pollutants into the atmosphere can lead to deposition on solar panels,
as seen in areas near industries like mining operations. Pollen and dirt
from animal droppings are other sources of soiling that can affect the
performance of photovoltaic systems,[28]. Dust accumulation on solar
panels can have a significant impact on light transmittance and power
generation efficiency [29]. When dust particles settle on the surface of
solar panels, they create a layer that reduces the amount of sunlight
reaching the photovoltaic cells. This reduction in light transmittance
hinders the absorption of solar radiation by the cells, leading to a
decrease in the efficiency of converting sunlight into electricity. In the
case of heliostats in concentrated solar power plants, it reduces the
reflectivity of the mirrors, thereby decreasing the amount of sunlight
that can be efficiently captured and converted into energy [30]. This
reduction in reflectivity leads to a decrease in the overall efficiency
of the solar field, resulting in lower energy output and decreased
productivity of the plant [31] (see Fig. 9).

Dust particles interact with the surfaces of solar collectors through
processes such as generation, deposition, adhesion, and removal, each
influencing maintenance and cleaning costs in distinct ways [33].
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Fig. 7. PV production vs CSP production.
Fig. 8. Solar panels after a hail storm.

Fig. 9. Mirror surface after a strong soiling event [32].

Generation involves the creation and suspension of dust particles in
the atmosphere, influenced by factors like wind speed, particle size,
and composition, marking the initial step in the soiling process. De-
position follows, where airborne dust particles settle on solar collector
surfaces due to gravitational settling, diffusion, and impact phenom-
ena; this deposition rate varies based on wind conditions and surface
characteristics. Once deposited, dust particles adhere to the surfaces
through cohesive forces, with adhesion strength affected by factors like
4 
particle size, surface roughness, and environmental conditions; whether
particles remain on the surface depends on the balance between adhe-
sion and removal forces. This is why cleaning activities are essential
to remove adhered dust particles, with the cleaning frequency and
methods tailored to the level of soiling, surface type and operational
needs to maximize panels’ solar production [34]. In order to maintain
optimal performance, regular cleaning of the heliostats and PV panels
is required, which adds to the maintenance costs of the plant [35]. The
cost of cleaning operations, including labor, equipment, and resources,
can be substantial and needs to be carefully managed to balance the
impact on productivity gains, creating in some cases a Key Performance
Indicators (KPIs) matrix to evaluate the most relevant tasks to achieve
this goal [36].

Another deterioration factor and one of the most common issues
is the hotspot phenomenon. Its occurrence creates a localized high
temperature, reducing the current output of the affected unit and,
consequently, impacting the output of the entire string [37]. This
substantially lowers the system’s power generation efficiency and ac-
celerates the aging of photovoltaic module materials, including the
degradation of encapsulation materials and cracking of silicon wafers,
leading to complete module failure and an unreliable system, increasing
operation and maintenance costs [38].

1.3. Objectives

The primary objective of this scientific review article is to systemat-
ically analyze and evaluate the current maintenance techniques utilized
in solar power plants. It aims to identify and compare the various
methodologies, technologies and algorithms applied in the detection,
diagnosis, and prevention of faults in photovoltaic systems and max-
imize power in CSP plants. By examining state-of-the-art approaches,
including machine learning algorithms, sensor data analysis, and aerial
inspection methods, this review seeks to highlight the effectiveness,
advantages, and limitations of each technique. Additionally, the article
aims to provide insights into economic analysis and viability of these
procedures, as well as future trends and potential advancements in
maintenance techniques to extend their operational lifespan. An anal-
ysis on sustainability will be conducted to study how these techniques
help to save resources and reduce water consumption.

2. Maintenance techniques based on the deterioration factor

We first want to analyze how research on maintenance techniques
is distributed by country to establish a possible relationship between
energy production and research on production improvement. According
to Fig. 10, China, the United States, India, Spain, Germany, and Japan
lead this research, which corresponds to Fig. 2, where it is shown
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Fig. 10. Distribution of researches in maintenance techniques for solar plants per country.
that these countries are also leaders in solar energy production, while
Australia and Japan fall behind in researches.

It is also interesting to show a division of studies between those
countries who have published studies in maintenance techniques for
PV plants vs CSP plants. In Fig. 11, it is shown that China, India and
United States are leading the research in maintenance techniques for
PV plants while Spain is leading the research for CSP plants, as it is the
country with the highest production in CSP energy.

In this section, a deep research has been conducted to show and
analyze the most cutting-edge techniques to maintain solar plants
according to the root cause of the malfunctioning or lower production
of the panels.

2.1. Soiling

As previously mentioned, soiling causes major loses due to a de-
crease in energy production and costly cleaning tasks [33]. Even under
ideal cleaning conditions, soiling lowers current worldwide solar power
production by at least 3%–4%, resulting in revenue losses of at least
3–5 billion e annually. By 2023, these losses could increase to 4%–
7% and exceed 4–7 billion e [39]. In another study, after seven
months without cleaning PV modules, production decreased by around
10% [40]. Therefore, predicting soiling events and its impacts becomes
straightforward to the managers of the solar plant .

A survey has been conducted to analyze the countries who have
the highest number of researches in soiling maintenance techniques,
to investigate whether there is a correlation between the most arid
countries and those that produce the most CSP energy. According to
Fig. 12, Spain, Morocco, India and the United Stated are the countries
with a higher number of researches, which have big arid areas and
many hours of sunlight per day.

Analyzing the researches, several models are proposed to predict
dust deposition on solar collectors [34]: The Brownian Diffusion Model
accounts for the random motion of dust particles in the air due to
Brownian motion, aiding in estimating the deposition of fine particles
on surfaces. The Gravitational Settling Model considers the gravita-
tional force acting on dust particles, causing them to settle on surfaces
over time and predicting the deposition flux based on particle size
and density. The Inertial Impaction Model focuses on the effect of
airflow on dust particles, which leads to their impaction on surfaces and
calculates the deposition rate by taking into account the aerodynamic
properties of the particles. The Diffusion and Impaction Phenomena
Model combines both diffusion and impaction processes to predict
dust particle deposition on solar collectors, accounting for random
particle movement and their collision with surfaces. The last model,
the Threshold Friction Velocity Model determines the minimum wind
speed needed to initiate dust particle movement on surfaces, helping
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to estimate the conditions under which particles can be removed from
collectors.

Wu, S. et al. [29] use the Contact-Characteristics-Based Discrete
Element Method to predict dust accumulation in solar panels. This
enables researchers to simulate the deposition of dust particles on
solar panels accurately. By incorporating factors such as solar panel
inclination angles, wind speed, and direction, the model can provide
realistic predictions of dust distribution on the panel surface. It predicts
that winds higher to 5 m/s would help to reduce the soiling effect in
panels.

Nygard, M. et al. [41] propose the Combined Degradation and
Soiling (CODS) algorithm. It works by decomposing the performance
index time series data from PV systems into components related to
soiling, degradation, and seasonality. The algorithm utilities a novel
performance metric called CP-R (Clear-sky Performance Ratio) soiling,
which provides a robust representation of daily performance by using
the daily median performance index, in order to reduce the impact
of outliers and noise in the data. By applying the CODS algorithm
to the performance time series data, soiling and degradation rates
can be accurately estimated. The CODS algorithm has been shown to
provide more accurate estimates for degradation rates compared to
other methods like the simple year-on-year (YOY) method and the YOY
method corrected for soiling through the stochastic rate and recovery
(SRR) method.

Olivares, D. et al. [42] propose a technique to simulate soiling
evolution in solar panels in indoors environments. Spin-coating allows
for the deposition of homogeneous layers of soil on photovoltaic glass,
providing a controlled environment to study the effects of soiling on
PV devices. It also enables accelerated indoor testing of soiling effects
on PV modules, reducing the time required for research compared to
outdoor exposure studies, being a cost-effective alternative to com-
plex climate chambers, and researchers can replicate real-world soiling
conditions in a controlled laboratory setting. It facilitates the use of
analytical techniques such as X-ray diffraction and scanning electron
microscopy to analyze the physicochemical aspects of soiling and its
impact on PV devices.

Masoom, A. et al. [43] study’s methodology involves a structured
approach to assess the influence of dust on solar energy prediction. Ini-
tial data gathering includes information from surface based on Aeronet
measurements, satellite data from MODIS and CALIPSO, and the MI-
DAS database. The MIDAS dataset aids in determining Aerosol Optical
Depth (AOD) and Dust Optical Depth (DOD) during dust occurrences,
while CALIPSO profiling is utilized to examine the vertical structure of
aerosols. Solar irradiance prediction is carried out through the Weather
Research and Forecasting (WRF) model, configured with input from the
Global Forecast System (GFS). The WRF model integrates dust dynam-
ics through assimilation techniques and incorporates AOD data from
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Fig. 11. Maintenance studies for PV plants vs CSP plants.

Fig. 12. Distribution of researches in maintenance techniques for soiling per country.

Energy Nexus 17 (2025) 100384 

6 



F. Martinez-Gil et al.

t
A
p
r
t
c
r
a
w
t

B
t
d

t
h
p

(
(
a
w

T
t

i

p

T
p
c
t
o
s
f

i
i
b

w

p

t

a
t
t
f
p

Energy Nexus 17 (2025) 100384 
the Copernicus Atmosphere Monitoring Service (CAMS) to improve the
assessment of dust impact on solar irradiance.

Perez, N.S. et al. [27] focused on estimating soiling losses in pho-
ovoltaic plants using artificial intelligence techniques, particularly
NN, to optimize maintenance schedules and enhance the economic
erformance. By analyzing meteorological variables and installation pa-
ameters, the research successfully modeled soiling losses and validated
he models with statistical indicators like nRMSE, and the correlation
oefficient ‘‘r’’. The models showed high accuracy, with normalized
oot mean square error below 7% and a strong correlation coefficient
bove 0.9. These results were achieved when Isc (short circuit current)
as included, enhancing the results compared to when only module

emperature, irradiance of the array panel, relative humidity and solar
altitude was included.

Heimsath, A. et al. [44] introduce a model based on the Lambert–
eer law to quantify the incidence angle dependent attenuation due
o dust on reflector Surface. The reflectance of soiled glass reflectors
iminishes significantly with increasing angles of incidence. Clean

mirrors typically show little variation in specular reflectance with
changing angles of incidence. However, for soiled mirrors, the angle
of incidence has a significant impact on specular reflectance. As the
angle of incidence increases, the reflectance of soiled mirrors decreases.
The study reflects that at an acceptance angle of 15 mrad, the specular
reflectance of a soiled mirror can decrease by 7%, going from 91%
at an 8◦ incidence angle to 84% at a 70◦ incidence angle. The study
highlights that not considering angle-dependent reflectance can lead to
an overestimation of the annual plant performance by up to 2%.

Javed, W. et al. [45] carried out a study analyzing the seasonal
evolution of soiling in PV panels in the dessert environment of Qatar.
PV soiling rates varied significantly across different seasons: cooler
seasons had the highest soiling rates, followed by summer months with
higher PM10 concentrations due to dust storms and lack of rain. High
wind speed and low humidity levels were linked to lower soiling levels.
Approximately 3 mm of rain was found to be necessary to fully clean
the PV modules. Rainfall less than 2 mm resulted in partial cleaning,
while very light rain (≤0.2 mm) exacerbated soiling. The impact of dust
storms during the winter season was found to be more severe than
in summer. Dust storms caused an 8% attenuation of solar radiation
reaching the PV panels and increased the annual average soiling rate
by 23% compared to non-dust storm days.

The results of the study by Picotti, G. et al. [46] on the optimization
of cleaning strategies for heliostat fields in solar tower plants suggest
that the use of a Mixed Integer Linear Programming (MILP) model
allows for the identification of optimal cleaning schedules for different
sectors of the solar field, considering factors such as soiling impact,
cleaning frequency, and cleaning costs. The research shows improve-
ments in Total Cleaning Costs (TCC) ranging from 0.7% to 19.6% across
various scenarios and cost structures, leading to significant savings in
annual costs for the solar power plants.

2.1.1. Anti-soiling strategies to increase solar energy production
Soiling is an inevitable event that will occur at some point due to

he factors explained in Section 1.2. This is why materials and coatings
ave been developed to reduce the accumulation of soiling on the
anels.

Ammari, N. et al. [47] conducted an experiment under hot arid
climate conditions, where three types of PV solar technologies were
used to see how they were impacted by soiling. Cadmium Telluride
CdTe) was the least affected technology, with a daily Soiling Ratio
SR) loss of 23.6%, followed by Multi-crystalline Silicon (m-Si) with
 daily SR loss of 24% and finally Monocrystalline Silicon (mono-Si)
ith a daily SR loss of 28%.

Coatings for solar panels are specialized materials applied to the
surface of photovoltaic cells to enhance their efficiency and durability.

his is of vital importance to prevent dust and other materials to adhere
o panels’ surface [48]. Several researches, addressed from now on,
 p
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have been conducted worldwide to address this issue and improve
coating technology [49].

Papadopoulos, N.D. et al. [50] concluded that the quaternarized sil-
ica hybrids demonstrated strong anti-soiling performance, with the abil-
ty to resist contamination and dust buildup. The Si-QUAT molecules in

the hybrid coatings formed a robust structure with marked anti-soiling
properties, and the coatings exhibited self-cleaning properties due to
their antistatic behavior. The quaternarized silica hybrids showed sim-
ilar anti-soiling performance to commercial coatings for extended peri-
ods. The compact quaternarized silica structures promoted the forma-
tion of a silica matrix surrounded by anchor sites, allowing the quater-
nary ammonium silane molecules to graft on them, further enhancing
their anti-soiling capabilities.

The hydrophilic anti-soiling coating for solar reflectors tested in CSP
lants by Wette, J. et al. [32] demonstrated a significant improvement

in cleanliness, reducing soiling rates and extending cleaning intervals.
he study found a mean cleanliness gain of up to 1.0 percentage
oints, with higher gains of 2.4 percentage points under stronger soiling
onditions. The coating also reduced water usage by up to 11.7%
hrough fewer cleaning cycles, while maintaining its durability and
ptical properties over two years of exposure. This technology offers a
olution for reducing operational costs and conserving water, essential
or arid regions where CSP plants are typically located.

Abdallah, A.A. et al. [25] carried out a study on the performance
of monofacial and bifacial silicon heterojunction modules in a desert,
where that bifacial SHJ modules outperformed monofacial modules,
showing a 15% higher energy yield attributed to the rear-side power
contribution and high albedo utilization. The bifacial modules exhib-
ted lower sensitivity to PV soiling, as a consequence of a lower soiling
mpact in the rear side. This also helped to reduce cleaning tasks in the
ifacial module.

Anderson, C.B. et al. [30] suggest that stowing heliostats in the
horizontal position at night increased daily soiling rates by 114% and
total cleaning costs by 51% compared to vertically stowed heliostats.
Moreover, performing cleaning tasks during day is 7% more expensive
that doing it during night due to the necessity of parking operational
heliostats during this process. The study was performed in Mount Isa.
Australia. A model was also developed to predict a soiling rate of
0.12pp/d for low dust seasons and 0.22pp/d for high dust seasons.

The cleaning robot proposed by Megantoro, P. et al. [51] is equipped
ith sweeper rollers and nylon tassels optimized for effective removal

of dirt and dust from the solar array surface, enhancing the system’s
erformance and efficiency. Moreover, the robot integrates proximity

sensors, IMU sensors, and gyroscope sensors to detect and follow the
sweep path over the entire PV array area.

Pradhan, A. et al. [52] designed a solar dust cleaner for PV modules
hat incorporates several key features to effectively remove dust and

maintain the performance of the panels. The system utilizes a micro-
controller to control the cleaning process, including sensors to detect
dust levels and vibrators to dislodge dust particles uniformly. It includes
a power inverter with a boost device to power an air compressor for
cleaning and cooling purposes. The design ensures that the cleaning
process is automated and efficient, with switches controlled by the
microcontroller to manage operations based on cleaning requirements.
It utilizes membrane vibrators strategically placed on the corners of the
panels. These vibrators are used to shake a transparent plastic sheet
that is placed on the upper layer of the PV panel, where dust gets
deposited. The vibrators operate at the resonant frequency of the shield
to create a standing wave that efficiently dislodges dust particles from
their positions.

The dust cleaning machine designed by Walaman-I, I. et al. [53]
for solar PV panels in Ghana operates by employing a combined wet
nd dry brush-based cleaning approach. The machine translates over
he panels, spraying water onto them before the cleaning brush rotates
o wash and remove the accumulated dust. This process ensures ef-
ective cleaning without water wastage. The machine is strategically
ositioned at a distance from the panels when not in operation to
revent shadowing, optimizing its efficiency.
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Fig. 13. Distribution of researches in UAV maintenance techniques per country.
2.2. Panel faults detection: hotspots, cracks and other defects

As mentioned in Section 1.2, hotspots and cracks are a main issue
for PV panels and a major failure cause. Fast detection help to minimize
long-lasting defects that may cause the malfunction and the removal of
the panel. Thanks to technological advancements, it is now possible
to detect and anticipate this failures thanks to UAVs, AI and IoT. The
combination of these three technologies help to capture images of the
panels faster, analyze them with artificial intelligence and detect and
prevent failures more accurately than with visual inspection. IoT helps
to transfer the data and set alarms when a failure is detected in real
time.

2.2.1. UAV images
Several researchers have been studying in the incorporation of Un-

manned Aerial Vehicles (UAVs) equipped with high-resolution imaging
cameras to operate and maintain solar power plants [54]. According to
Fig. 13, China is leading the researches in UAVs for solar plants along
with Spain.

Some of the advantages in the use of UAVs include efficient inspec-
tions, as UAVs can quickly and cost-effectively survey large-scale solar
power plants, covering vast areas in a short time. By utilizing UAVs for
these inspections, labor costs are reduced, resulting in operational and
maintenance savings. UAVs also enable fast data acquisition, captur-
ing high-resolution optical and infrared images that provide detailed
information on the condition of PV modules and potential defects.
Moreover, UAVs enhance safety by eliminating the need for personnel
to access hard-to-reach or hazardous areas of solar plants. The data
collected by UAVs can be used to identify defects, anomalies, and other
issues in PV modules, facilitating proactive maintenance and minimiz-
ing downtime [55]. Advanced analysis of UAV-captured images using
computer vision techniques allows for the detection, segmentation, and
classification of PV module defects, supporting more precise and effi-
cient maintenance strategies. UAVs combined with infrared technology
enable the detection of soiling and shading on panels [56,57].

Zefri, Y. et al. [58] introduce an analysis of overheated regions
within PV arrays using Long-Wave Infrared (LWIR) UAV imagery with a
novel two-layer end-to-end inspection solution that combines georefer-
enced orthomosaics with deep semantic segmentation. This innovative
approach eliminates the need for module extraction and enhances the
efficiency of defect detection and achieves a mean Intersection over
Union (mIoU) of 93.44% and an F1-score of 96.39% on the test set.

By using Red, Green and Blue (RGB) and Infrared Thermogra-
phy (IRT) images with drone photogrammetry, Hernandez Lopez, D.
et al. [59] developed an application called SunMap to fully automate
the process of detecting hotsports in PV plants. It creates 3D model and
geolocalize the failures with an error lower than 15%.
8 
A similar technique is used by Chen, H. et al. [60] to capture
images with UAVs. An adapted generative adversarial network (GAN)
is employed to augment the size of the limited visible aerial images.
This process involves generating new images based on the existing
dataset to increase the diversity and quantity of training data. An auto-
matic algorithm is implemented to remove images with poor quality
among the augmented datasets. A deep learning-based model, such
as a convolutional neural network (CNN), is utilized to classify the
photovoltaic modules based on the visible images. The algorithm can
identify hotspots, glass breakage, shading, snail trails and gridline
corrosion.

Lee, D. and Park, J.H. [61] presented a novel inspection methodol-
ogy for solar energy plants utilizing thermal infrared sensors on UAVs.
By combining optical and thermal infrared sensors, the study produces
accurate spatial information and orthographic images of temperature
distributions of PV panels. Through this approach, it identifies abnor-
mal heat generation in solar panels and cells, distinguishes between
normal and faulty modules based on temperature fluctuations, and uti-
lizes spatial temperature distribution for precise detection of abnormal
phenomena. Other studies like [62] also use infrared technology to
detect failures.

Setiawan, E.A. et al. [63] utilize adaptive thresholding and modified
noise filtering approaches to analyze the captured images and detect
objects, such as hot spots, on the PV modules. These techniques help
in accurately identifying areas of partial shading that could lead to
power loss. By combining thermal and visual data, the system pinpoints
regions of concern on the solar panels, enabling maintenance activities
to be targeted towards resolving these issues promptly. This method has
an accuracy of 94,74% for hot sports detection and 100% for modules
detection.

Oliveira, A.K.V.D. et al. [64] developed an automatic fault detection
algorithm that uses aerial infrared thermography images to identify
faults in large-scale PV power plants. A dataset of infrared images
capturing various faults such as disconnected substrings, short-circuited
strings, and hot spots was created and annotated with ground-truth seg-
mentation to highlight faulty modules, facilitating algorithm training
and validation. Orthomosaicking techniques which combines multiple
images to create a comprehensive and detailed orthophoto of the PV
system was used, providing a broader view of the modules and their
surroundings.

Bemptosa Rosende, J. et al. [65] designed a UAV fleet which oper-
ates by utilizing a distributed communication system, enabling remote
and automated control of drones. Each UAV is equipped with sensors
and cameras — visible, infrared, or multispectral — used for inspecting
solar panels, detecting defects, and performing surveillance task, with
flight paths and tasks controlled from a processing center via a web
interface. Each UAV can inspect about 35 square meters of solar panels
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Table 1
UAV methods for solar plant maintenance.

Method Function Accuracy/Performance

UAVs with high-resolution optical and
infrared cameras

Quick inspection of large solar fields,
detecting faults, soiling, and shading

High efficiency for fast and cost-effective
inspections (no specific metrics)

UAV Long-Wave Infrared (LWIR) with
semantic segmentation

Detects overheated regions in PV arrays
using deep learning segmentation

93.44% mIoU, 96.39% F1-score

SunMap application with UAV RGB and
IRT images

Detects hotspots and geolocates failures in
PV plants

Localization error < 15%

UAV with GAN (Generative Adversarial
Network)

Augments visible image datasets for
training, detects multiple panel issues

Improved dataset diversity and
classification accuracy

UAV with thermal and optical sensors Identifies abnormal heat generation and
spatial temperature anomalies in PV
modules

High accuracy in identifying abnormal
panels

Infrared thermography with UAVs Fault detection in PV systems, covering
larger areas

Effective detection (specific metrics not
always provided)

UAV fleet with distributed
communication

Automated inspection of large solar arrays,
real-time data transfer

Inspects 1 hectare in 5 min, covering
35 square meters/second

UAV with YOLOv5 and CNN for thermal
imaging

Fast detection of clean/dirty panels and
other faults

Reduced inspection time by 99.93%
(e.g., 120 h to 5 min)
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per second, covering one hectare in just 5 min.
Using drones for monitoring solar photovoltaic (PV) power plants

ffers several key advantages, including improved operation and main-
enance, time savings during inspections, enhanced energy productiv-
ty, and greater accuracy in fault detection. This technology also helps
oost returns on investment, increases inspection efficiency, and allows
or wide integration and multitasking capabilities, along with long-term
ata maintenance [66].

In Table 1, a summary of the methods discussed above is presented:
UAV methods underscores the versatility and efficiency of these

echnologies in maintaining solar plants. UAVs equipped with high-
esolution optical and infrared cameras offer rapid and cost-effective
nspection solutions for detecting faults, soiling, and shading in exten-

sive solar fields. Advanced techniques like Long-Wave Infrared (LWIR)
with semantic segmentation achieve high precision in identifying over-
heated regions, while the SunMap application combines RGB and IRT
imagery to geolocate failures with minimal error. Distributed UAV
fleets improve scalability by automating inspections over large areas
(e.g., 1 hectare in 5 min). Each method excels in specific domains, but
hallenges like dependency on advanced algorithms, high equipment
osts, and integration complexities are aspects to take into account

when designing the strategy for the maintenance of a specific solar
plant.

2.2.2. Artificial intelligence
Artificial Intelligence (AI) plays a pivotal role in detecting failures

n solar panel modules, enhancing efficiency and reliability. AI and
achine Learning (ML) [67] algorithms analyze data from sensors and

maging technologies to identify issues such as cracks, hotspots, and
egradation in real-time [68]. This predictive maintenance approach
educes downtime, lowers repair costs, and extends the lifespan of solar
anels, ensuring optimal performance and energy production [69].

According to Fig. 14, China is leading the researches in the use of
AI for solar plants maintenance.

Segovia Ramirez, I. and Garcia Marquez, F.P. [70] present a ground-
reaking approach for fault detection in photovoltaic solar plants using
erial thermographic images and an Internet of Things (IoT) platform.
his includes the development of a novel methodology that combines

two consecutive artificial neural networks (ANNs) for panel and hot
spot detection, resulting in enhanced accuracy and reliability in fault
identification of false regions. The first ANN is dedicated to panel de-
tection, while the output data from this initial network serves as input
ata for the second ANN, which is designed for hot spot detection. The
latform’s integration of advanced machine learning techniques, such
s Faster-RCNN, demonstrates high performance with 100% accuracy
9 
for panel detection and over 93% accuracy for hot spot detection.
Other studies like [71–73] provide a similar approach but also

focused on cleaning methods, reducing time and maintenance costs.
Rocha, D. et al. [54] highlight the use of UAVs equipped with high-

resolution optical and infrared imaging for efficient inspections in solar
power plants. The study focuses on creating a dataset of IR images from
a 10-MW solar power plant and compares the performance of mask R-
CNN and U-Net algorithms for defect segmentation and classification.
The results show that the mask R-CNN algorithm achieved a mean
average precision at intersection over union (IoU) of 0.96 for defective

odule segmentation and 0.88 for segmentation and classification of
ailure types.

In order to detect broken tubes in CSP plants, Perez-Cutino, M.
A. et al. [74] created the first public dataset, RTSet, specifically for
this problem, which includes data from seven real CSP plants. By
addressing the challenge of class imbalance in fault detection, they sig-
nificantly improved the accuracy of identifying broken glass envelopes
in receiver tubes. Notably, their approach using a machine-learning
dual optimization with dense-sparse-dense (DSD) training and random
under-sampling techniques boosted recall by up to 8%, making the
detection process more reliable and efficient.

Bendale, H. et al. [75] propose a system focused on achieving
igh accuracy in detecting faults in solar panels using deep learning
onvolutional Neural Network (CNN). By using a training dataset, the
ystem takes a .csv file as input, generated by the solar panel system
onitor, recording energy generation and storage data in terms of
oltage, Current, Capacity, etc. The machine learning model predicts

fault types based on these recorded values. The system achieved an
accuracy of 97.5% and it outperformed the existing system by detecting
more types of faults (over 7 types) compared to the previous system
hat focused on only 2-3 types of faults.

Kaligambe, A. and Fujita, G. [76] used a VGG16 fine-tuned model,
hich is deep learning architecture that has been pre-trained on a large-

cale dataset (ImageNet) for image recognition tasks and then further
rained or ‘‘fine-tuned’’ on a limited dataset of electroluminescence
EL) images of solar photovoltaic (PV) cells for the purpose of defect
etection. Another important key feature of this study is the use of
lectroluminescence imaging (also used in [77]), as it provides high-

resolution images and it is highly sensitive to defects within solar
cells, such as micro-cracks, broken cells, and interconnect faults. These
efects alter the EL emission pattern, making them easily detectable
nd allowing for precise localization of the issues. This model achieved

a performance of 95.2%.
Ahmed, S.U. et al. [78] proposed a model where drones and YOLOv5

are used for detecting clean and dirty panels in solar power plants due
to its high accuracy and speed of detection. In the context of inspecting
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Fig. 14. Distribution of researches in AI maintenance techniques per country.
solar panels, the YOLOv5 algorithm is known for its expeditious detec-
tion capabilities, processing images with a speed of 2 ms per image on
NVIDIA Tesla V100. This rapid processing speed is essential for real-
time performance, especially when dealing with images captured from
drones at different heights and angles. The system significantly reduces
the inspection timeline from 120 h to just five minutes. This automation
ensures timely maintenance for the efficient and safe operation of solar
arrays, saving 99.93% of the inspection time through vision and robust
automation techniques.

Tyagi, S. et al. [79] compared predicted and actual power output
values using several machine learning models like linear regression,
Bayesian regression, and non-linear regression, successfully identifying
faulty PV modules based on significant differences in performance.
While linear regression models were effective in detecting severe fail-
ures, non-linear regression models outperformed in explaining variance
in power yield, pinpointing modules requiring maintenance.

Fan, F. et al. [80] conducted a study on hotspot detection. By
developing a five-layer CNN model and employing image enhancement
techniques like cropping and restoration, the research substantially
improves the classification accuracy of both CNN and naive Bayes clas-
sifier models. The comparison between the two classifiers demonstrates
the superior performance of CNN in accurately identifying and classi-
fying hot spots within photovoltaic modules, achieving a classification
accuracy of 96.58%.

Masita, K. et al. [81] propose a comprehensive approach to enhance
the accuracy of anomaly detection in Solar PV Plants using drone-
captured thermal images. By introducing the Res-CNN3 framework,
which incorporates concatenated CNNs and residual networks, the
authors aim to improve the efficiency and accuracy of detecting PV
module defects. Implementing logistic regression as the loss function
and utilizing the Selective Search algorithm further contribute to iden-
tifying and localizing anomalies with high confidence scores. Through
experiments on a consolidated dataset, the authors demonstrate the
superior performance of the Res-CNN3 framework compared to existing
methods. The strategy of scale transformation and augmentation ad-
dresses the challenge of detecting complex anomalies like burn marks
and encapsulant delamination, achieving a mean average precision of
76.4% across all PV module defects.

The model developed by Fonseca Alves, R.H. et al. [82] utilize a
CNN architecture, which includes convolutional layers, pooling layers,
and fully connected layers. The convolutional layers are responsible for
extracting features from the input images, while the pooling layers help
reduce the spatial dimensions of the features. The fully connected layers
then process these features for classification. Based on the extracted fea-
tures, the model classifies the input images into specific fault categories
such as soiling, cracking, vegetation, diode failure, and others. This
classification allows for the identification of the type of fault present
10 
in the PV module, achieving a detection accuracy of 92% for healthy
PV modules and 93% for damaged modules.

The proposed deep learning approach by Han, S.H. et al. [83] utilize
a UAV equipped with a thermal camera and GPS to detect faults in
solar panels. The UAV captures thermal images in real-time, covering
a wide area where the deep learning model operates intelligently to
identify faults within the solar panels. Additionally, the GPS mounted
on the drone helps determine the location of the damaged panel. It uses
the improved version of YOLOv3-tiny, which incorporates additional
convolution layers to extract complex scenes like those encountered in
solar panel fault detection. The transmission of fault information to a
remote server using Long-Term Evolution (LTE) plays a vital role in the
visualization and monitoring of solar panel faults in real-time.

Kuzlu, M. et al. [84] use XAI (Explainable Artificial Intelligence)
tools to enhance the transparency, interpretability, and efficiency of AI
models in the context of solar PV forecasting. By applying XAI tools
such as LIME, SHAP, and ELI5 to interpret the random forest AI model,
this research provides an insight into the impact of different input
features on solar PV power generation predictions, such as weather
conditions, temporal variability or data quality. It helps to understand
why IA takes some decisions, as it usually works as a black box without
understanding which parameters are more decisive for its predictions.

A summary of the most relevant AI algorithms is presented in
Table 2, providing a quick insight on their purpose and efficiency:

The algorithms analyzed each excel in their specific domains but
also present unique limitations. Faster-RCNN offers exceptional preci-
sion but requires significant computational resources, while YOLOv5
prioritizes speed, drastically reducing inspection time, yet depends
heavily on large datasets. Mask R-CNN is highly accurate for de-
fect segmentation but computationally intensive. VGG16 specializes in
electroluminescence analysis but demands advanced setups. Res-CNN3
targets thermal anomalies with moderate accuracy.

2.2.3. IoT networks
The use of IoT contributes significantly to improving maintenance

management for photovoltaic solar power plants [85]. IoT allows for
the connection of sensors and devices, enabling real-time monitoring
of various parameters such as energy production, system performance,
and environmental conditions in solar power plants [86]. The use of Big
Data is closely linked to IoT, as this technology enables the analysis
of huge amount of information in real time thanks to AI algorithms,
improving the overall performance of the system [87].

In terms of IoT research within the maintenance techniques scope
in solar plants, India is leading this field, as seen in Fig. 15.

Ledmaoui, Y. et al. [3] used IoT and evaluated six machine learning
algorithms for forecasting energy production, including Support Vector
Regression (SVR), Random Forest (RF), Decision Tree (DT), Generalized
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Table 2
AI Algorithms for predictive maintenance and fault detection.

Algorithm Purpose Accuracy/Performance

YOLOv5 [78] Fault detection 99.93% accuracy, moderate
cost/complexity, high-speed detection

Mask R-CNN [54] Defect segmentation 96% IoU, high cost/complexity, precise
segmentation

VGG16 fine-tuned model [76] Defect detection in
electroluminescence images

95.2% performance, high cost/complexity,
moderate ease of implementation

Res-CNN3 [81] Anomaly detection in
thermal images

76.4% mean average precision, high
cost/complexity, requires advanced
techniques

Faster-RCNN [70] Fault detection in solar
panels

100% panel detection, 93% hot spot
detection, high cost/complexity, highly
precise
Fig. 15. Distribution of researches in IoT maintenance techniques per country.
Additive Model (GAM), and Extreme Gradient Boosting (XGBOOST), in
addition to ANN. Among these models, ANN provided the best results.

Ramirez, I.S. et al. [88] focus on utilizing thermal images obtained
from unmanned aerial vehicles (UAVs) to analyze the superficial state
of PV panels. By employing advanced machine learning algorithms,
particularly convolutional neural networks, the platform aims to en-
hance the accuracy and efficiency of fault detection processes. For this
purpose, it designed an IoT platform that uses CakePHP, HTML, CSS,
and JavaScript to create a user-friendly interface for managing the
system. Users can easily upload thermal images, create datasets, and
access different training functionalities.

Priya, S. et al. [89] developed of an IoT-based monitoring system
that enhances the performance and reliability of solar photovoltaic (PV)
installations, especially those in remote areas. The system integrates
sensors with a central controller to monitor key parameters such as
voltage, current, and temperature, allowing for real-time monitoring,
problem identification, and preventative maintenance. This IoT solu-
tion ensures continuous updates of system data, significantly improving
efficiency while minimizing human intervention.

The study presented by Del Rio, A.M. et al. [90] focus on improving
maintenance management for photovoltaic solar power plants by inte-
grating Internet of Things (IoT) and Machine Learning (ML) techniques.
A real case study using SCADA data from a solar plant in Spain
demonstrates the successful application of classification algorithms,
specifically Shapelets and K-nearest neighbors, to detect patterns indi-
cating a decrease in the Performance Ratio (PR) over time. While both
algorithms proved effective in pattern recognition (average accuracy
of 0.9882 for K-nearest neighbors and 0.9674 for Shapelets in pattern
recognition), K-nearest neighbors emerged as the preferred choice for
implementation on the IoT platform due to its reduced execution time
and superior performance in detecting irregularities in time series data.
11 
Mellit, A. and Kalogirou, S. [91] focused on designing smart mon-
itoring systems that combine AI-based fault detection and IoT-based
remote sensing capabilities. By implementing these technologies into
simple hardware, such as low-cost chips, the study aims to make fault
detection and diagnosis more accessible and cost-effective, especially
for PV plants located in remote areas.

3. Forecasting solar energy production in facilities

Once the main causes of failure and lower production in solar plants
have been addressed, these tools and methods can be used to forecast
the solar energy a solar plant is expected to produce according to the
existing circumstances on the day or over a time period. Accurate fore-
casts are essential for optimizing the integration of solar energy into the
power grid, enhancing the reliability and efficiency of energy supply,
and supporting grid stability. These predictions rely on a combination
of meteorological data, historical solar output, the current state of the
solar panels and advanced modeling techniques [92].

Vyas, S. et al. [93] developed a comprehensive forecasting model
based on a Vector Auto Regression (VAR) approach, integrating the
total power generation, maintenance activities (such as grid failures,
inverter failures, and module cleaning), weather conditions (such as
temperature, solar radiation, humidity, wind speed and pressure or
UV radiation) and aging factors (PV cell shedding, cleaning issues,
elevated air temperature, high system voltages, broken interconnects,
hot spots, corrosion, encapsulant issues, discoloration, and delamina-
tion). These are considered as time series data to improve the accuracy
of solar power generation predictions. The study’s findings indicated
that the forecasting model could track peaks in total power generation
effectively by utilizing daily unscheduled and scheduled maintenance
activities and weather conditions.
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On the other hand, Fan,T. et al. [94] use a Spatial-Temporal Genetic-
based Attention Networks (STGANet) model to forecast short-term
energy production in a solar plant. The STM is designed to predict
missing solar irradiance data by incorporating a graph convolutional
neural network to learn the spatial and temporal dependencies be-
tween historical meteorological data. It utilizes dilated convolution
s the nonlinear part to simplify the network structure and improve

efficiency. The Genetic-based Attention Module combines the predicted
olar irradiance and historical power generation data to forecast the

power generation of PV plants. It employs an attention mechanism to
efficiently explore potential relationships in the input features. It uses
enetic-based operations and LSTM to find globally optimal solutions.

Lin, P. et al. [20] propose a hybrid improved Kmeans–GRA–Elman
model to enhance short-term power prediction for PV power plants
by integrating advanced techniques. Firstly, it utilizes an optimized
K-means clustering method to group historical power datasets, identi-
fying patterns for more accurate predictions. Secondly, Grey Relational
Analysis (GRA) is employed to determine similarity days and opti-
mize forecasting accuracy. Thirdly, the Elman neural network captures
complex relationships between meteorological factors and power data.
By considering diverse meteorological factors, the model accounts for
weather influences on PV power generation.

4. Sustainability and water saving

Because of their typical desert, hot, and dry setting, CSP plants (and
PV plants to a lesser extent) are also confronting the additional problem
of being water-efficient. In actuality, a CSP plant may use up to 2500
m3/GWh of water [95]. Seeking solutions is necessary to deal with the
limitation of declining water supplies in the affected areas. About the
various water-use items (steam generation and solar field cleaning, up
to 5% each, and power block cooling 90% of the overall water use).

Over or under reparation of technical equipment in solar plants
s a constant challenge to increase the economic revenue. Therefore,
ccurate predictive models based on weather conditions and historical
ata are of vital importance to reduce maintenance operations and
leaning tasks [96]. Some studies have proved that these models can
ecreased the maintenance costs by more then 15% [97].

To address the growing competition for water resources in regions
where CSP plants operate, regional water demand scenarios have been
developed based on socioeconomic analyses [98]. Using a partici-
patory multi-criteria approach, water-saving measures are evaluated
by Terrapon-Pfaff, J et al. [98] to balance the needs of communi-
ies, agriculture, industry, and power plants. This approach identifies
pecific strategies to avoid critical development pathways that might
ompromise water availability.

A study conducted by H. Truong Ba, M.E. et al. [21] suggests the
importance of a favorable weather conditions and regular rain to keep
the solar panels clean, reduce costs and save water. In order to increase
ccuracy De, S. et al. [99] use a noise filter (1-sigma Hampel filter)
o remove outliers from weather forecast. As this is unpredictable and
ot always possible, it is of vital importance to have efficient water
istribution looped networks [100] to reduce the water consumption

used in cleaning the solar panels and to promote sustainability.
The WASCOP project [101] highlights innovative strategies to re-

uce water consumption in CSP plants, which is critical due to their
location in arid and desert regions. In cooling systems, WASCOP devel-
ps hybrid wet–dry systems that optimize the balance between energy
fficiency and water use. This includes thermal storage to delay heat
issipation, enhanced dry cooling systems with water sprays to increase
ir enthalpy, and advanced techniques for the intelligent management
f hybrid systems. For cleaning, the project integrates physical barriers
o minimize dust accumulation, antisoiling coatings applied to mirrors

and absorber glasses to reduce particle adhesion, soiling level sensors
to monitor dirt accumulation, and cleaning devices such as ultrasonic
cleaners that use thin water layers and exploit cavitation properties.
12 
Other studies have focused on reducing the operating temperature in
PV panels to increase sustainability in solar plants [102].

A revolutionary plasma-based technology is being developed by
Bennett, A. et al. [103] to clean CSP mirrors without the use of water.
This system employs a plasma array attached to the end of a robotic
arm, which generates a plasma jet capable of vaporizing dust and
sand adhered to mirror surfaces. This process not only removes dirt
but also modifies the surface energy of the mirrors, making them
superhydrophilic. This property enables the mirrors to self-clean when
exposed to high levels of humidity or precipitation, eliminating the
need for additional water.

Zaoui, F. et al. [104] combined cleaning methods, such as brushing
(CBB) and water-based cleaning (CBW) to offer sustainable solutions
to mitigate soiling effects. CBW improves the electrical performance
of modules by up to 3.09%, while CBB significantly reduces water
consumption by relying more on mechanical methods. Non-traditional
techniques like dew, melting snow, and natural gravity are proposed as
complementary methods.

Antisoiling coatings have proven to be an effective tool for miti-
gating soiling in regions with high solar irradiance and dust storms.

hese innovative coatings not only reduce cleaning frequency but also
protect the surfaces of mirrors and solar modules from permanent
damage [105]. Recent research shows significant advances in devel-
oping more durable and effective materials that maintain high levels
of reflectance and transmittance even under adverse conditions. These
technologies are essential for maintaining solar system efficiency while
reducing water usage in maintenance operations.

One example are self-cleaning aluminum nitride coatings [106].
Manufactured using magnetron sputtering, these coatings can restore
the initial reflectance of mirrors after dust accumulation. Their self-
leaning property significantly reduces the amount of water required
or cleaning compared to conventional glass mirrors.

Another study propose a hydrophilic antisoiling coatings applied to
CSP mirrors under real-world conditions over two years [107]. The
results showed an improvement in cleanliness of up to 7% in high-
soiling conditions and a reduction in cleaning cycles by 11%. The
coatings maintained higher cleanliness levels compared to conventional

irrors, both before and after cleaning, demonstrating their capacity
o reduce dirt accumulation and water requirements while showing
inimal degradation.

5. Discussion and future lines

The reviewed article thoroughly examines advanced maintenance
techniques to optimize the performance of solar energy plants, incorpo-
rating cutting-edge technologies like artificial intelligence, Internet of
Things and Unmanned Aerial Vehicles. However, there are still some
limitations, challenges and future work to address towards a more
ustainable and efficient system to enhance solar facilities performance,
hich will be discussed below.

5.1. Limitations of solar energy

Despite its enormous potential, solar energy faces several inherent
limitations. The intermittency of power generation, which depends
on the availability of sunlight, varies with weather conditions and
time of day, requiring energy storage solutions or back-up systems
that increase costs. Dust, sand and other particles significantly reduces
energy production, and although cleaning solutions are available, they
often involve additional costs and increased resource use. In addi-
tion, the high upfront costs of photovoltaic (PV) and concentrating
solar power (CSP) plants represent a considerable barrier due to the
necessary investments in infrastructure and technology. Land use also
poses challenges, as large-scale solar installations require large areas,
competing with other land uses and leading to possible ecological
disturbances. Finally, environmental factors, such as high temperatures,
ultraviolet radiation and extreme weather events like hail storms, can
degrade solar panel materials, reducing their efficiency and lifetime.
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5.2. Challenges in solar plants maintenance

The maintenance of solar plants faces several major challenges.
ouling due to the accumulation of dust and pollutants on solar panels
educes their efficiency and requires frequent cleaning, which can be
esource-intensive, especially in water-scarce regions. Hot spots and
racks represent localized problems that cause energy losses and long-
erm damage to panels. Although advanced detection methods such as
nfrared imaging and artificial intelligence algorithms exist, their imple-
entation requires significant investment. Moreover, the lack of stan-
ardization in maintenance techniques and technologies leads to incon-
istencies in efficiency and effectiveness between different plants. Wa-
er scarcity, particularly in arid locations, challenges traditional water-
ntensive cleaning methods. The complexity of advanced technologies
uch as artificial intelligence, the Internet of Things and unmanned
erial vehicles, while offering significant benefits, requires specialized
nowledge and training, which increases operational complexity.

5.3. Future lines

The future of solar plant maintenance must focus on several key
directions. Research into innovative materials, such as durable, self-
cleaning and anti-soiling coatings, must continue to reduce mainte-
nance needs. Predictive models based on artificial intelligence (AI)
and machine learning (ML) must be refined to improve accuracy in
energy prediction and fault detection. It is essential to develop scalable
and cost-effective solutions that facilitate more widespread adoption of
these technologies. The integration of unified systems, combining AI,
IoT and UAVs, will optimize maintenance and monitoring processes.
Sustainability should be prioritized, promoting innovations that min-
imize water use and energy consumption during maintenance tasks.
Some studies propose the collection of the water used in cleaning tasks,
by means of gravity filters and in-field deposits.

6. Conclusions

This article highlights significant advancements in solar plant main-
enance technologies, emphasizing predictive models, innovative clean-
ng solutions, and operational optimization techniques. The analysis

begins by highlighting the rapid growth of renewable energy, partic-
ularly solar power, which has expanded significantly over the past
decade. Despite this progress, solar energy generation is still hindered
by environmental challenges like soiling and climate conditions, which
affect photovoltaic systems and concentrated solar power plants.

Climate conditions like high temperatures, UV radiation, and ex-
treme weather events, significantly affect the lifespan and performance
of solar panels. Soiling (accumulation of dust, sand, and other mate-
rials) can reduce energy output, making cleaning essential but costly.
Therefore, a series of technological advances have been proposed to
address this issue and enhance energy production.

Specifically, algorithms like artificial neural networks (ANN) and
onvolutional neural networks (CNN) have demonstrated outstanding
esults in fault detection, achieving up to 100% accuracy in panel

detection and 93% in hotspot identification. YOLOv5, a state-of-the-
art object detection algorithm, has significantly improve inspection
efficiency, reducing time by 99.93%. Meanwhile, Mask R-CNN and
U-Net have shown exceptional precision in defect segmentation and
classification.

For cleaning innovations, plasma-based cleaning technology has
emerged as a water-free solution, modifying mirror surface proper-
ties for self-cleaning under humid conditions. Antisoiling coatings and
obotic cleaning systems have further optimized cleaning processes
y reducing water usage and extending cleaning intervals, crucial for
lants located in arid regions. Hybrid wet–dry cooling systems and
nhanced water management techniques have effectively minimized

esource consumption while maintaining operational efficiency.

13 
Despite these remarkable advancements, there are still some chal-
lenges to address, including the complexity of integrating advanced
echnologies, high implementation costs, and the lack of standard-
zation across maintenance practices. Nonetheless, these technologies
how immense promise in improving solar energy production, enhanc-
ng asset durability and promoting sustainability.

CRediT authorship contribution statement

Fernando Martinez-Gil: Writing – review & editing, Writing –
riginal draft, Resources, Methodology, Investigation, Data curation,
onceptualization. Christopher Sansom: Validation, Supervision,
esources, Methodology, Conceptualization. Aránzazu Fernández-
arcía: Writing – review & editing, Validation, Supervision, Data
uration, Conceptualization. Alfredo Alcayde-García: Validation,
upervision, Resources, Investigation, Conceptualization. Francisco
anzano-Agugliaro: Writing – review & editing, Writing – original

raft, Validation, Resources, Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This article was carried out with the support of an FPU grant
rom the Ministry of Education of the Government of Spain, aimed at
octoral students pursuing a PhD.

Thanks to the University of Derby and the Zero Carbon Theme Team
and the Erasmus+ programme 2023/2024 by ceiA3.

This work is part of the I+D+i Project INTECSOL, PID2021-126664
OB-I00, funded by MICIU/AEI/ 10.13039/501100011033 and by the
uropean Regional Development Fund.

This work is funded by PPIT-UAL, Junta de Andalucía-FEDER 2021-
2027. Programme: 54.A. and TIC-221 University of Almeria Research
Team.

Data availability

No data was used for the research described in the article.

References

[1] United Nations, What is renewable energy, URL https://www.un.org/en/
climatechange/what-is-renewable-energy.

[2] International Energy Agency (IEA), Renewable Tracking, URL https://www.iea.
org/energy-system/renewables.

[3] Y. Ledmaoui, A. El Maghraoui, M. El Aroussi, R. Saadane, A. Chebak, A. Chehri,
Forecasting solar energy production: A comparative study of machine learning
algorithms, Energy Rep. 10 (2023) 1004–1012, http://dx.doi.org/10.1016/j.
egyr.2023.07.042.

[4] Ali O.M. Maka, Jamal M. Alabid, Solar energy technology and its roles in
sustainable development, Clean Energy 6 (3) (2022) 476–483, http://dx.doi.
org/10.1093/ce/zkac023.

[5] Samuel C. Johnson, Joshua D. Rhodes, Michael E. Webber, Understanding
the impact of non-synchronous wind and solar generation on grid stability
and identifying mitigation pathways, Appl. Energy 262 (2020) 114492, http:
//dx.doi.org/10.1016/j.apenergy.2020.114492.

[6] Ozgur Kaya, Anna M. Klepacka, Wojciech J. Florkowski, Achieving renewable
energy, climate, and air quality policy goals: Rural residential investment in
solar panel, J. Environ. Manag. 248 (2019) 109309, http://dx.doi.org/10.1016/
j.jenvman.2019.109309.

[7] International Renewable Energy Agency, Renewable capacity statistics
in 2024, 2024, https://www.irena.org/Publications/2024/Mar/Renewable-
capacity-statistics-2024.

[8] International Renewable Energy Agency, Renewable energy statistics in
2024, 2024, https://www.irena.org/Publications/2024/Jul/Renewable-energy-
statistics-2024.

https://www.un.org/en/climatechange/what-is-renewable-energy
https://www.un.org/en/climatechange/what-is-renewable-energy
https://www.un.org/en/climatechange/what-is-renewable-energy
https://www.iea.org/energy-system/renewables
https://www.iea.org/energy-system/renewables
https://www.iea.org/energy-system/renewables
http://dx.doi.org/10.1016/j.egyr.2023.07.042
http://dx.doi.org/10.1016/j.egyr.2023.07.042
http://dx.doi.org/10.1016/j.egyr.2023.07.042
http://dx.doi.org/10.1093/ce/zkac023
http://dx.doi.org/10.1093/ce/zkac023
http://dx.doi.org/10.1093/ce/zkac023
http://dx.doi.org/10.1016/j.apenergy.2020.114492
http://dx.doi.org/10.1016/j.apenergy.2020.114492
http://dx.doi.org/10.1016/j.apenergy.2020.114492
http://dx.doi.org/10.1016/j.jenvman.2019.109309
http://dx.doi.org/10.1016/j.jenvman.2019.109309
http://dx.doi.org/10.1016/j.jenvman.2019.109309
https://www.irena.org/Publications/2024/Mar/Renewable-capacity-statistics-2024
https://www.irena.org/Publications/2024/Mar/Renewable-capacity-statistics-2024
https://www.irena.org/Publications/2024/Mar/Renewable-capacity-statistics-2024
https://www.irena.org/Publications/2024/Jul/Renewable-energy-statistics-2024
https://www.irena.org/Publications/2024/Jul/Renewable-energy-statistics-2024
https://www.irena.org/Publications/2024/Jul/Renewable-energy-statistics-2024


F. Martinez-Gil et al. Energy Nexus 17 (2025) 100384 
[9] Robert Foster, Majid Ghassemi, Alma Cota, Solar energy: Renewable
energy and the environment, 2009, pp. 1–337, URL https://www.scopus.
com/inward/record.uri?eid=2-s2.0-85057069870&partnerID=40&md5=
8b4d58513275aac006619d128f318751.

[10] Priscila Gonçalves Vasconcelos Sampaio, Mario Orestes Aguirre González,
Photovoltaic solar energy: Conceptual framework, Renew. Sustain. Energy Rev.
74 (2017) 590–601, http://dx.doi.org/10.1016/j.rser.2017.02.081.

[11] Osama Ayadi, Reem Shadid, Abdullah Bani-Abdullah, Mohammad Alrbai, Mo-
hammad Abu-Mualla, NoorAldeen Balah, Experimental comparison between
monocrystalline, polycrystalline, and thin-film solar systems under sunny
climatic conditions, Energy Rep. 8 (2022) 218–230, http://dx.doi.org/10.
1016/j.egyr.2022.06.121, Technologies and Materials for Renewable Energy,
Environment and Sustainability.

[12] Walter Nsengiyumva, Shi Guo Chen, Lihua Hu, Xueyong Chen, Recent advance-
ments and challenges in solar tracking systems (STS): A review, Renew. Sustain.
Energy Rev. 81 (2018) 250–279, http://dx.doi.org/10.1016/j.rser.2017.06.085.

[13] Guichuan Zhang, Francis R Lin, Feng Qi, Thomas Heumüller, Andreas Distler,
Hans-Joachim Egelhaaf, Ning Li, Philip C Y Chow, Christoph J Brabec, Alex K-Y
Jen, Hin-Lap Yip, Renewed prospects for organic photovoltaics, Chem. Rev. 122
(18) (2022).

[14] Keith Lovegrove, Wes Stein, Concentrating solar power technology: Principles,
developments and applications, 2012, pp. 1–674, http://dx.doi.org/10.1533/
9780857096173,

[15] Abdul Hai Alami, A.G. Olabi, Ayman Mdallal, Ahmed Rezk, Ali Radwan, Shek
Mohammod Atiqure Rahman, Sheikh Khaleduzzaman Shah, Mohammad Ali Ab-
delkareem, Concentrating solar power (CSP) technologies: Status and analysis,
Int. J. Thermofluids 18 (2023) 100340, http://dx.doi.org/10.1016/j.ijft.2023.
100340.

[16] H. Price, M. Mehos, D. Kearney, R. Cable, B. Kelly, G. Kolb, F. Morse,
Concentrating solar power best practices, 2020, pp. 725–757, http://dx.doi.
org/10.1016/B978-0-12-819970-1.00020-7.

[17] Plataforma Solar de Almería (PSA), Heliostats field in PSA, URL https://www.
psa.es/es/index.php.

[18] X. Xu, K. Vignarooban, B. Xu, K. Hsu, A.M. Kannan, Prospects and problems
of concentrating solar power technologies for power generation in the desert
regions, Renew. Sustain. Energy Rev. 53 (2016) 1106–1131, http://dx.doi.org/
10.1016/j.rser.2015.09.015.

[19] C.A.F. Fernandes, J.P.N. Torres, M. Morgado, J.A.P. Morgado, Aging of solar
PV plants and mitigation of their consequences, 2016, pp. 1240–1247, http:
//dx.doi.org/10.1109/EPEPEMC.2016.7752174.

[20] P. Lin, Z. Peng, Y. Lai, S. Cheng, Z. Chen, L. Wu, Short-term power prediction
for photovoltaic power plants using a hybrid improved kmeans-GRA-elman
model based on multivariate meteorological factors and historical power
datasets, Energy Convers. Manage. 177 (2018) 704–717, http://dx.doi.org/10.
1016/j.enconman.2018.10.015.

[21] H. Truong Ba, M.E. Cholette, R. Wang, P. Borghesani, L. Ma, T.A. Steinberg,
Optimal condition-based cleaning of solar power collectors, Sol. Energy 157
(2017) 762–777, http://dx.doi.org/10.1016/j.solener.2017.08.076.

[22] Lei Yang, Zechen Hu, Qiyuan He, Zunke Liu, Yuheng Zeng, Lifei Yang, Xuegong
Yu, Deren Yang, Insights into mechanism of UV-induced degradation in silicon
heterojunction solar cells, Sol. Energy Mater. Sol. Cells 275 (2024) 113022,
http://dx.doi.org/10.1016/j.solmat.2024.113022.

[23] M.K. Mazumder, M.N. Horenstein, C. Heiling, J.W. Stark, A. Sayyah, J.
Yellowhair, A. Raychowdhury, Environmental degradation of the optical surface
of PV modules and solar mirrors by soiling and high RH and mitigation
methods for minimizing energy yield losses, 2015, http://dx.doi.org/10.1109/
PVSC.2015.7355973,

[24] K. Ganesan, D. Prince Winston, S. Sugumar, S. Jegan, Performance analysis
of n-type PERT bifacial solar PV module under diverse albedo conditions, Sol.
Energy 252 (2023) 81–90, http://dx.doi.org/10.1016/j.solener.2023.01.020.

[25] A.A. Abdallah, M. Kivambe, B. Aï ssa, B.W. Figgis, Performance of monofacial
and bifacial silicon heterojunction modules under desert conditions and the
impact of PV soiling, Sustain. ( Switzerland) 15 (10) (2023) http://dx.doi.org/
10.3390/su15108436.

[26] Chidurala Saiprakash, Alivarani Mohapatra, Byamakesh Nayak, Sriparna Roy
Ghatak, Analysis of partial shading effect on energy output of different solar
PV array configurations, Mater. Today: Proc. 39 (2021) 1905–1909, http://
dx.doi.org/10.1016/j.matpr.2020.08.307, 3rd International Conference on Solar
Energy Photovoltaics.

[27] N.S. Pérez, J. Alonso-Montesinos, F.J. Batlles, Estimation of soiling losses from
an experimental photovoltaic plant using artificial intelligence techniques, Appl.
Sci. (Switzerland) 11 (4) (2021) 1–18, http://dx.doi.org/10.3390/app11041516.

[28] Gowtham Vedulla, Anbazhagan Geetha, Ramalingam Senthil, Review of strate-
gies to mitigate dust deposition on solar photovoltaic systems, Energies 16 (1)
(2023) http://dx.doi.org/10.3390/en16010109.

[29] S.-L. Wu, H.-C. Chen, K.-J. Peng, Quantification of dust accumulation on solar
panels using the contact-characteristics-based discrete element method, Energies
16 (6) (2023) http://dx.doi.org/10.3390/en16062580.
14 
[30] C.B. Anderson, G. Picotti, M.E. Cholette, B. Leslie, T.A. Steinberg, G. Manzolini,
Heliostat-field soiling predictions and cleaning resource optimization for solar
tower plants, Appl. Energy 352 (2023) http://dx.doi.org/10.1016/j.apenergy.
2023.121963.

[31] Aránzazu Fernández-García, Adel Juaidi, Florian Sutter, Lucía Martínez-Arcos,
Francisco Manzano-Agugliaro, Solar reflector materials degradation due to the
sand deposited on the backside protective paints, Energies 11 (4) (2018)
http://dx.doi.org/10.3390/en11040808.

[32] Johannes Wette, Aránzazu Fernández-García, Florian Sutter, Francisco Buendía-
Martínez, David Argüelles-Arízcun, Itziar Azpitarte, Gema Pérez, Water saving
in CSP plants by a novel hydrophilic anti-soiling coating for solar reflectors,
Coatings 9 (2019) 739, http://dx.doi.org/10.3390/coatings9110739.

[33] S. Rai, R. Khanna, B. Bora, S. Singh, S. Jain, C. Banerjee, Performance
assessment of AtmosphericSoiling dust on SPV technology for composite cli-
mate, 2020, pp. 143–146, http://dx.doi.org/10.1109/WIECON-ECE52138.2020.
9398004.

[34] G. Picotti, P. Borghesani, M.E. Cholette, G. Manzolini, Soiling of solar collectors
– modelling approaches for airborne dust and its interactions with surfaces,
Renew. Sustain. Energy Rev. 81 (2018) 2343–2357, http://dx.doi.org/10.1016/
j.rser.2017.06.043.

[35] J. Alonso-Montesinos, F.R. Martínez, J. Polo, N. Martín-Chivelet, F.J. Batlles,
Economic effect of dust particles on photovoltaic plant production, Energies 13
(23) (2020) http://dx.doi.org/10.3390/en13236376.

[36] G. Rediske, L. Michels, J.C.M. Siluk, P.D. Rigo, C.B. Rosa, A.C. Lima, A
proposed set of indicators for evaluating the performance of the operation and
maintenance of photovoltaic plants, Appl. Energy 354 (2024) http://dx.doi.org/
10.1016/j.apenergy.2023.122158.

[37] Chi Xiaoni, Dong Wei, Yunxiao He, Minxiang Shen, A fault diagnosis method
of hot spots for photovoltaic clusters based on model parameters, Energy Sci.
Eng. 12 (2024) http://dx.doi.org/10.1002/ese3.1829.

[38] Kamran Ali Khan Niazi, Wajahat Akhtar, Hassan A. Khan, Yongheng Yang,
Shahrukh Athar, Hotspot diagnosis for solar photovoltaic modules using a naive
Bayes classifier, Sol. Energy 190 (2019) 34–43, http://dx.doi.org/10.1016/j.
solener.2019.07.063.

[39] Techno-economic assessment of soiling losses and mitigation strategies for solar
power generation, Joule 3 (10) (2019) 2303–2321, http://dx.doi.org/10.1016/
j.joule.2019.08.019.

[40] Adel Juaidi, Hatem Haj Muhammad, Ramez Abdallah, Rula Abdalhaq, Aiman
Albatayneh, Faris Kawa, Experimental validation of dust impact on-grid
connected PV system performance in palestine: An energy nexus perspec-
tive, Energy Nexus 6 (2022) 100082, http://dx.doi.org/10.1016/j.nexus.2022.
100082.

[41] M.M. Nygård, A.F. Skomedal, M.S. Wiig, E.S. Marstein, Combined degradation
and soiling with validation against independent soiling station measurements,
IEEE J. Photovoltaics 13 (2) (2023) 296–304, http://dx.doi.org/10.1109/
JPHOTOV.2023.3239752.

[42] D. Olivares, P. Ferrada, A. Marzo, K. Pinto, D. Espinoza, J. Rabanal-Arabach, C.
Portillo, E. Fuentealba, J. Llanos, Study of the effects of soiling on PV devices
using the spin-coating technique in accelerated indoor exposures, Sol. Energy
231 (2022) 317–327, http://dx.doi.org/10.1016/j.solener.2021.11.036.

[43] A. Masoom, P. Kosmopoulos, A. Bansal, A. Gkikas, E. Proestakis, S. Kazadzis,
V. Amiridis, Forecasting dust impact on solar energy using remote sensing and
modeling techniques, Sol. Energy 228 (2021) 317–332, http://dx.doi.org/10.
1016/j.solener.2021.09.033.

[44] A. Heimsath, C. Sutardhio, P. Schöttl, P. Nitz, Soiling of solar mirrors- impact
of incidence angles on CSP plant performance, 2303, 2020, http://dx.doi.org/
10.1063/5.0029067,

[45] W. Javed, B. Guo, B. Figgis, L. Martin Pomares, B. Aïssa, Multi-year field
assessment of seasonal variability of photovoltaic soiling and environmental
factors in a desert environment, Sol. Energy 211 (2020) 1392–1402, http:
//dx.doi.org/10.1016/j.solener.2020.10.076.

[46] G. Picotti, L. Moretti, M.E. Cholette, M. Binotti, R. Simonetti, E. Martelli, T.A.
Steinberg, G. Manzolini, Optimization of cleaning strategies for heliostat fields
in solar tower plants, Sol. Energy 204 (2020) 501–514, http://dx.doi.org/10.
1016/j.solener.2020.04.032.

[47] N. Ammari, M. Mehdi, A. Alami Merrouni, A. Benazzouz, E. Chaabelasri, In-
situ soiling evaluation and cleaning schedules optimization for several PV
technologies under desert climate, Renew. Energy 224 (2024) http://dx.doi.
org/10.1016/j.renene.2024.120167.

[48] Francisco Manzano-Agugliaro, Aránzazu Fernández-García, Surfaces and inter-
faces for renewable energy, Coatings 9 (2019) 838, http://dx.doi.org/10.3390/
coatings9120838.

[49] Nuria Novas, Alfredo Alcayde, Dalia El Khaled, Francisco Manzano-Agugliaro,
Coatings in photovoltaic solar energy worldwide research, Coatings 9 (12)
(2019) http://dx.doi.org/10.3390/coatings9120797.

[50] N.D. Papadopoulos, P. Vourna, K. Milidonis, A. Eliades, P. Falaras, Fostering
wider application of anti-soiling strategies in existing solar power plants: A
comparative study of novel quaternarized silica hybrids with commercial self-
cleaning coatings, Mater. Chem. Phys. 315 (2024) http://dx.doi.org/10.1016/
j.matchemphys.2024.129046.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057069870&partnerID=40&md5=8b4d58513275aac006619d128f318751
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057069870&partnerID=40&md5=8b4d58513275aac006619d128f318751
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057069870&partnerID=40&md5=8b4d58513275aac006619d128f318751
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057069870&partnerID=40&md5=8b4d58513275aac006619d128f318751
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057069870&partnerID=40&md5=8b4d58513275aac006619d128f318751
http://dx.doi.org/10.1016/j.rser.2017.02.081
http://dx.doi.org/10.1016/j.egyr.2022.06.121
http://dx.doi.org/10.1016/j.egyr.2022.06.121
http://dx.doi.org/10.1016/j.egyr.2022.06.121
http://dx.doi.org/10.1016/j.rser.2017.06.085
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb13
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb13
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb13
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb13
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb13
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb13
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb13
http://dx.doi.org/10.1533/9780857096173
http://dx.doi.org/10.1533/9780857096173
http://dx.doi.org/10.1533/9780857096173
http://dx.doi.org/10.1016/j.ijft.2023.100340
http://dx.doi.org/10.1016/j.ijft.2023.100340
http://dx.doi.org/10.1016/j.ijft.2023.100340
http://dx.doi.org/10.1016/B978-0-12-819970-1.00020-7
http://dx.doi.org/10.1016/B978-0-12-819970-1.00020-7
http://dx.doi.org/10.1016/B978-0-12-819970-1.00020-7
https://www.psa.es/es/index.php
https://www.psa.es/es/index.php
https://www.psa.es/es/index.php
http://dx.doi.org/10.1016/j.rser.2015.09.015
http://dx.doi.org/10.1016/j.rser.2015.09.015
http://dx.doi.org/10.1016/j.rser.2015.09.015
http://dx.doi.org/10.1109/EPEPEMC.2016.7752174
http://dx.doi.org/10.1109/EPEPEMC.2016.7752174
http://dx.doi.org/10.1109/EPEPEMC.2016.7752174
http://dx.doi.org/10.1016/j.enconman.2018.10.015
http://dx.doi.org/10.1016/j.enconman.2018.10.015
http://dx.doi.org/10.1016/j.enconman.2018.10.015
http://dx.doi.org/10.1016/j.solener.2017.08.076
http://dx.doi.org/10.1016/j.solmat.2024.113022
http://dx.doi.org/10.1109/PVSC.2015.7355973
http://dx.doi.org/10.1109/PVSC.2015.7355973
http://dx.doi.org/10.1109/PVSC.2015.7355973
http://dx.doi.org/10.1016/j.solener.2023.01.020
http://dx.doi.org/10.3390/su15108436
http://dx.doi.org/10.3390/su15108436
http://dx.doi.org/10.3390/su15108436
http://dx.doi.org/10.1016/j.matpr.2020.08.307
http://dx.doi.org/10.1016/j.matpr.2020.08.307
http://dx.doi.org/10.1016/j.matpr.2020.08.307
http://dx.doi.org/10.3390/app11041516
http://dx.doi.org/10.3390/en16010109
http://dx.doi.org/10.3390/en16062580
http://dx.doi.org/10.1016/j.apenergy.2023.121963
http://dx.doi.org/10.1016/j.apenergy.2023.121963
http://dx.doi.org/10.1016/j.apenergy.2023.121963
http://dx.doi.org/10.3390/en11040808
http://dx.doi.org/10.3390/coatings9110739
http://dx.doi.org/10.1109/WIECON-ECE52138.2020.9398004
http://dx.doi.org/10.1109/WIECON-ECE52138.2020.9398004
http://dx.doi.org/10.1109/WIECON-ECE52138.2020.9398004
http://dx.doi.org/10.1016/j.rser.2017.06.043
http://dx.doi.org/10.1016/j.rser.2017.06.043
http://dx.doi.org/10.1016/j.rser.2017.06.043
http://dx.doi.org/10.3390/en13236376
http://dx.doi.org/10.1016/j.apenergy.2023.122158
http://dx.doi.org/10.1016/j.apenergy.2023.122158
http://dx.doi.org/10.1016/j.apenergy.2023.122158
http://dx.doi.org/10.1002/ese3.1829
http://dx.doi.org/10.1016/j.solener.2019.07.063
http://dx.doi.org/10.1016/j.solener.2019.07.063
http://dx.doi.org/10.1016/j.solener.2019.07.063
http://dx.doi.org/10.1016/j.joule.2019.08.019
http://dx.doi.org/10.1016/j.joule.2019.08.019
http://dx.doi.org/10.1016/j.joule.2019.08.019
http://dx.doi.org/10.1016/j.nexus.2022.100082
http://dx.doi.org/10.1016/j.nexus.2022.100082
http://dx.doi.org/10.1016/j.nexus.2022.100082
http://dx.doi.org/10.1109/JPHOTOV.2023.3239752
http://dx.doi.org/10.1109/JPHOTOV.2023.3239752
http://dx.doi.org/10.1109/JPHOTOV.2023.3239752
http://dx.doi.org/10.1016/j.solener.2021.11.036
http://dx.doi.org/10.1016/j.solener.2021.09.033
http://dx.doi.org/10.1016/j.solener.2021.09.033
http://dx.doi.org/10.1016/j.solener.2021.09.033
http://dx.doi.org/10.1063/5.0029067
http://dx.doi.org/10.1063/5.0029067
http://dx.doi.org/10.1063/5.0029067
http://dx.doi.org/10.1016/j.solener.2020.10.076
http://dx.doi.org/10.1016/j.solener.2020.10.076
http://dx.doi.org/10.1016/j.solener.2020.10.076
http://dx.doi.org/10.1016/j.solener.2020.04.032
http://dx.doi.org/10.1016/j.solener.2020.04.032
http://dx.doi.org/10.1016/j.solener.2020.04.032
http://dx.doi.org/10.1016/j.renene.2024.120167
http://dx.doi.org/10.1016/j.renene.2024.120167
http://dx.doi.org/10.1016/j.renene.2024.120167
http://dx.doi.org/10.3390/coatings9120838
http://dx.doi.org/10.3390/coatings9120838
http://dx.doi.org/10.3390/coatings9120838
http://dx.doi.org/10.3390/coatings9120797
http://dx.doi.org/10.1016/j.matchemphys.2024.129046
http://dx.doi.org/10.1016/j.matchemphys.2024.129046
http://dx.doi.org/10.1016/j.matchemphys.2024.129046


F. Martinez-Gil et al. Energy Nexus 17 (2025) 100384 
[51] P. Megantoro, A. Abror, M.A. Syahbani, A.W. Anugrah, S.D. Perkasa, H. Setiadi,
L.J. Awalin, P. Vigneshwaran, Autonomous and smart cleaning mobile robot
system to improve the maintenance efficiency of solar photovoltaic array, Bull.
Electr. Eng. Informatics 12 (6) (2023) 3288–3297, http://dx.doi.org/10.11591/
eei.v12i6.5950.

[52] A. Pradhan, B. Panda, L. Nanda, C. Jena, Analysis of dust on the parameters of
PV module and design of an effective solar dust cleaner, Int. J. Power Electron.
Drive Syst. 13 (2) (2022) 900–907, http://dx.doi.org/10.11591/ijpeds.v13.i2.
pp900-907.

[53] I. Walaman-I, S. Isaacs, H. Beem, Design of a dust cleaning machine to reduce
dust soiling on solar pv panels in ghana, 2022, pp. 481–484, http://dx.doi.org/
10.1109/GHTC55712.2022.9911012,

[54] D. Rocha, J. Alves, V. Lopes, J.P. Teixeira, P.A. Fernandes, M. Costa, M.
Morais, P.M.P. Salomé, Multidefect detection tool for large-scale PV plants:
Segmentation and classification, IEEE J. Photovoltaics 13 (2) (2023) 291–295,
http://dx.doi.org/10.1109/JPHOTOV.2023.3236188.

[55] I. Segovia Ramírez, J.R. Parra Chaparro, F.P. García Márquez, Unmanned aerial
vehicle integrated real time kinematic in infrared inspection of photovoltaic
panels, Measurement: J. Int. Meas. Confed. 188 (2022) http://dx.doi.org/10.
1016/j.measurement.2021.110536.

[56] L. Cardinale-Villalobos, C. Meza, L.D. Murillo-Soto, Experimental comparison
of visual inspection and infrared thermography for the detection of soling and
partial shading in photovoltaic arrays, Commun. Comput. Inf. Sci. 1359 (2021)
302–321, http://dx.doi.org/10.1007/978-3-030-69136-3_21.

[57] J.A. Tsanakas, L. Ha, C. Buerhop, Faults and infrared thermographic diagnosis in
operating c-si photovoltaic modules: A review of research and future challenges,
Renew. Sustain. Energy Rev. 62 (2016) 695–709, http://dx.doi.org/10.1016/j.
rser.2016.04.079.

[58] Y. Zefri, I. Sebari, H. Hajji, G. Aniba, M. Aghaei, A layer-2 solution for
inspecting large-scale photovoltaic arrays through aerial LWIR multiview
photogrammetry and deep learning: A hybrid data-centric and model-centric
approach, Expert Syst. Appl. 223 (2023) http://dx.doi.org/10.1016/j.eswa.
2023.119950.

[59] D. Hernández-López, E.R.D. Oña, M.A. Moreno, D. González-Aguilera,
SunMap: Towards unattended maintenance of photovoltaic plants using
drone photogrammetry, Drones 7 (2) (2023) http://dx.doi.org/10.3390/
drones7020129.

[60] H. Chen, C. Lei, X. Wu, Q. Song, An automatic defects detection system for PV
plants with data augmentation, 2021, pp. 980–984, http://dx.doi.org/10.1109/
POWERCON53785.2021.9697898,

[61] D.H. Lee, J.H. Park, Developing inspection methodology of solar energy plants
by thermal infrared sensor on board unmanned aerial vehicles, Energies 12 (15)
(2019) http://dx.doi.org/10.3390/en12152928.

[62] P. Addabbo, A. Angrisano, M.L. Bernardi, G. Gagliarde, A. Mennella, M. Nisi, S.
Ullo, A UAV infrared measurement approach for defect detection in photovoltaic
plants, 2017, pp. 345–350, http://dx.doi.org/10.1109/MetroAeroSpace.2017.
7999594,

[63] E.A. Setiawan, M. Fathurrahman, R.F. Pamungkas, S. Ma’Arif, Fast partial
shading detection on PV modules for precise power loss ratio estimation using
digital image processing, J. Electr. Comput. Eng. 2024 (2024) http://dx.doi.
org/10.1155/2024/9385602.

[64] A.K.V.D. Oliveira, M.K. Bracht, M. Aghaei, R. Rüther, Automatic fault de-
tection of utility-scale photovoltaic solar generators applying aerial infrared
thermography and orthomosaicking, Sol. Energy 252 (2023) 272–283, http:
//dx.doi.org/10.1016/j.solener.2023.01.058.

[65] S.B. Rosende, J. Sánchez-Soriano, C.Q.G. Muñoz, J.F. Andrés, Remote man-
agement architecture of uav fleets for maintenance, surveillance, and security
tasks in solar power plants, Energies 13 (21) (2020) http://dx.doi.org/10.3390/
en13215712.

[66] N.M. Kumar, K. Sudhakar, M. Samykano, V. Jayaseelan, On the technologies
empowering drones for intelligent monitoring of solar photovoltaic power
plants, 133, 2018, pp. 585–593, http://dx.doi.org/10.1016/j.procs.2018.07.087,

[67] H.P.-C. Hwang, C.C.-Y. Ku, J.C.-C. Chan, Detection of malfunctioning photo-
voltaic modules based on machine learning algorithms, IEEE Access 9 (2021)
37210–37219, http://dx.doi.org/10.1109/ACCESS.2021.3063461.

[68] A.V. Pronichev, E.M. Shishkov, Assessing and predicting degradation of solar
panels using machine learning approach, 2023, http://dx.doi.org/10.1109/
RPA59835.2023.10319847,

[69] T. Ahmad, D. Zhang, C. Huang, H. Zhang, N. Dai, Y. Song, H. Chen,
Artificial intelligence in sustainable energy industry: Status quo, challenges and
opportunities, J. Clean. Prod. 289 (2021) http://dx.doi.org/10.1016/j.jclepro.
2021.125834.

[70] I. Segovia Ramírez, F.P. García Márquez, Machine learning for fault detection
and diagnosis of large photovoltaic plants through internet of things platform,
SN Comput. Sci. 5 (1) (2024) http://dx.doi.org/10.1007/s42979-023-02348-1.

[71] M. Mokhtar, M.F. Shaaban, A new ANN-based cleaning approach for
photovoltaic solar panels, 2022, pp. 260–263, http://dx.doi.org/10.1109/
ICEEE55327.2022.9772579.

[72] M. De Benedetti, F. Leonardi, F. Messina, C. Santoro, A. Vasilakos, Anomaly
detection and predictive maintenance for photovoltaic systems, Neurocomputing
310 (2018) 59–68, http://dx.doi.org/10.1016/j.neucom.2018.05.017.
15 
[73] F.A. Olivencia Polo, J. Ferrero Bermejo, J.F. Gómez Fernández, A. Cre-
spo Márquez, Failure mode prediction and energy forecasting of PV plants to
assist dynamic maintenance tasks by ANN based models, Renew. Energy 81
(2015) 227–238, http://dx.doi.org/10.1016/j.renene.2015.03.023.

[74] M.A. Pérez-Cutiño, J. Valverde, J.M. Díaz-Báñez, Detecting broken receiver
tubes in CSP plants using intelligent sampling and dual loss, Appl. Intell. 53
(24) (2023) 29902–29917, http://dx.doi.org/10.1007/s10489-023-05093-3.

[75] H. Bendale, H. Aswar, H. Bamb, P. Desai, C.N. Aher, Deep learning for solar
panel maintenance: Detecting faults and improving performance, 2023, http:
//dx.doi.org/10.1109/ICCCNT56998.2023.10307465.

[76] A. Kaligambe, G. Fujita, A deep learning-based framework for automatic detec-
tion of defective solar photovoltaic cells in electroluminescence images using
transfer learning, 2023, pp. 81–85, http://dx.doi.org/10.1109/ICHVEPS58902.
2023.10257399,

[77] L. Hernández-Callejo, S. Gallardo-Saavedra, J.I. Morales-Aragonés, V. Alonso-
Gómez, A.R. Plaza, D.F. Martínez, Methodology for inspection of defects in
photovoltaic plants by drone and electroluminescence, Commun. Comput. Inf.
Sci. 1555 CCIS (2022) 3–14, http://dx.doi.org/10.1007/978-3-030-96753-6_1.

[78] S.U. Ahmed, M. Affan, M.I. Raza, M. Harris Hashmi, Inspecting mega solar
plants through computer vision and drone technologies, 2022, pp. 18–23,
http://dx.doi.org/10.1109/FIT57066.2022.00014,

[79] S. Tyagi, B. Dhingra, A. Tomar, Condition monitoring samp; fault detection
in photovoltaic modules using machine learning, 2022, http://dx.doi.org/10.
1109/STPES54845.2022.10006619,

[80] F. Fan, Z. Na, C. Zhang, H. Li, C. Tong, Hot spot detection of photovoltaic
module infrared near-field image based on convolutional neural network, 2310,
(1) 2022, http://dx.doi.org/10.1088/1742-6596/2310/1/012076,

[81] K. Masita, A. Hasan, T. Shongwe, 75Mw AC pv module field anomaly detection
using drone-based ir orthogonal images with res-CNN3 detector, IEEE Access
10 (2022) 83711–83722, http://dx.doi.org/10.1109/ACCESS.2022.3194547.

[82] R.H. Fonseca Alves, G.A.D. Deus Júnior, E.G. Marra, R.P. Lemos, Automatic
fault classification in photovoltaic modules using convolutional neural networks,
Renew. Energy 179 (2021) 502–516, http://dx.doi.org/10.1016/j.renene.2021.
07.070.

[83] S.H. Han, T. Rahim, S.Y. Shin, Detection of faults in solar panels using deep
learning, 2021, http://dx.doi.org/10.1109/ICEIC51217.2021.9369744.

[84] M. Kuzlu, U. Cali, V. Sharma, O. Guler, Gaining insight into solar photovoltaic
power generation forecasting utilizing explainable artificial intelligence tools,
IEEE Access 8 (2020) 187814–187823, http://dx.doi.org/10.1109/ACCESS.
2020.3031477.

[85] J. Kusznier, W. Wojtkowski, IoT solutions for maintenance and evaluation
of photovoltaic systems, Energies 14 (24) (2021) http://dx.doi.org/10.3390/
en14248567.

[86] S. Adhya, D. Saha, A. Das, J. Jana, H. Saha, An IoT based smart solar
photovoltaic remote monitoring and control unit, 2016, pp. 432–436, http:
//dx.doi.org/10.1109/CIEC.2016.7513793,

[87] F. Harrou, A. Dairi, B. Taghezouit, Y. Sun, An unsupervised monitoring
procedure for detecting anomalies in photovoltaic systems using a one-class
support vector machine, Sol. Energy 179 (2019) 48–58, http://dx.doi.org/10.
1016/j.solener.2018.12.045.

[88] I.S. Ramirez, A. Munoz Del Rio, F.P. Garcia Marquez, IoT platform com-
bined with machine learning techniques for fault detection and diagnosis of
large photovoltaic plants, 2022, http://dx.doi.org/10.1109/ICAN56228.2022.
10007163.

[89] S. Priya, R. Sagayaraj, S. Sujith, S. Malathi, An efficient monitoring scheme for
standalone solar PV system using IoT, 2023, pp. 391–395, http://dx.doi.org/
10.1109/ICCES57224.2023.10192806,

[90] A.M. Del Rio, I.S. Ramirez, F.P.G. Marquez, Photovoltaic solar power plant
maintenance management based on IoT and machine learning, 2021, pp.
423–428, http://dx.doi.org/10.1109/3ICT53449.2021.9581504.

[91] A. Mellit, S. Kalogirou, Artificial intelligence and internet of things to improve
efficacy of diagnosis and remote sensing of solar photovoltaic systems: Chal-
lenges, recommendations and future directions, Renew. Sustain. Energy Rev.
143 (2021) http://dx.doi.org/10.1016/j.rser.2021.110889.

[92] S. Gupta, P. Ramasamy, P.M. Murugamani, S. Kuppusamy, S. Devadoss, B.
Suresh, V. Kumar, Long-term power prediction of photovoltaic panels based
on meteorological parameters and support vector machine, Indones. J. Electr.
Eng. Comput. Sci. 33 (2) (2024) 687–695, http://dx.doi.org/10.11591/ijeecs.
v33.i2.pp687-695.

[93] S. Vyas, S. Bhuwania, S. Mishra, H. Patel, B. Tripathi, The impacts of
maintenance weather and aging on solar power generation forecasting and
prediction, 2023, http://dx.doi.org/10.1109/GlobConHT56829.2023.10087613.

[94] T. Fan, T. Sun, H. Liu, X. Xie, Z. Na, Spatial-temporal genetic-based attention
networks for short-term photovoltaic power forecasting, IEEE Access 9 (2021)
138762–138774, http://dx.doi.org/10.1109/ACCESS.2021.3108453.

[95] Delphine Bourdon, Fabian Wolfertstetter, Aránzazu Fernández-García, Christo-
pher Sansom, Itziar Azpitarte, Sahar Bouaddi, Gema Perez, Augusto Maccari,
Peter van Nijnatten, Eric Surquin, Fabrizio Perrotta, Saving water on concen-
trated solar power plants: The holistic approach of the WASCOP project, AIP
Conf. Proc. 2303 (1) (2020) 210002, http://dx.doi.org/10.1063/5.0029639.

http://dx.doi.org/10.11591/eei.v12i6.5950
http://dx.doi.org/10.11591/eei.v12i6.5950
http://dx.doi.org/10.11591/eei.v12i6.5950
http://dx.doi.org/10.11591/ijpeds.v13.i2.pp900-907
http://dx.doi.org/10.11591/ijpeds.v13.i2.pp900-907
http://dx.doi.org/10.11591/ijpeds.v13.i2.pp900-907
http://dx.doi.org/10.1109/GHTC55712.2022.9911012
http://dx.doi.org/10.1109/GHTC55712.2022.9911012
http://dx.doi.org/10.1109/GHTC55712.2022.9911012
http://dx.doi.org/10.1109/JPHOTOV.2023.3236188
http://dx.doi.org/10.1016/j.measurement.2021.110536
http://dx.doi.org/10.1016/j.measurement.2021.110536
http://dx.doi.org/10.1016/j.measurement.2021.110536
http://dx.doi.org/10.1007/978-3-030-69136-3_21
http://dx.doi.org/10.1016/j.rser.2016.04.079
http://dx.doi.org/10.1016/j.rser.2016.04.079
http://dx.doi.org/10.1016/j.rser.2016.04.079
http://dx.doi.org/10.1016/j.eswa.2023.119950
http://dx.doi.org/10.1016/j.eswa.2023.119950
http://dx.doi.org/10.1016/j.eswa.2023.119950
http://dx.doi.org/10.3390/drones7020129
http://dx.doi.org/10.3390/drones7020129
http://dx.doi.org/10.3390/drones7020129
http://dx.doi.org/10.1109/POWERCON53785.2021.9697898
http://dx.doi.org/10.1109/POWERCON53785.2021.9697898
http://dx.doi.org/10.1109/POWERCON53785.2021.9697898
http://dx.doi.org/10.3390/en12152928
http://dx.doi.org/10.1109/MetroAeroSpace.2017.7999594
http://dx.doi.org/10.1109/MetroAeroSpace.2017.7999594
http://dx.doi.org/10.1109/MetroAeroSpace.2017.7999594
http://dx.doi.org/10.1155/2024/9385602
http://dx.doi.org/10.1155/2024/9385602
http://dx.doi.org/10.1155/2024/9385602
http://dx.doi.org/10.1016/j.solener.2023.01.058
http://dx.doi.org/10.1016/j.solener.2023.01.058
http://dx.doi.org/10.1016/j.solener.2023.01.058
http://dx.doi.org/10.3390/en13215712
http://dx.doi.org/10.3390/en13215712
http://dx.doi.org/10.3390/en13215712
http://dx.doi.org/10.1016/j.procs.2018.07.087
http://dx.doi.org/10.1109/ACCESS.2021.3063461
http://dx.doi.org/10.1109/RPA59835.2023.10319847
http://dx.doi.org/10.1109/RPA59835.2023.10319847
http://dx.doi.org/10.1109/RPA59835.2023.10319847
http://dx.doi.org/10.1016/j.jclepro.2021.125834
http://dx.doi.org/10.1016/j.jclepro.2021.125834
http://dx.doi.org/10.1016/j.jclepro.2021.125834
http://dx.doi.org/10.1007/s42979-023-02348-1
http://dx.doi.org/10.1109/ICEEE55327.2022.9772579
http://dx.doi.org/10.1109/ICEEE55327.2022.9772579
http://dx.doi.org/10.1109/ICEEE55327.2022.9772579
http://dx.doi.org/10.1016/j.neucom.2018.05.017
http://dx.doi.org/10.1016/j.renene.2015.03.023
http://dx.doi.org/10.1007/s10489-023-05093-3
http://dx.doi.org/10.1109/ICCCNT56998.2023.10307465
http://dx.doi.org/10.1109/ICCCNT56998.2023.10307465
http://dx.doi.org/10.1109/ICCCNT56998.2023.10307465
http://dx.doi.org/10.1109/ICHVEPS58902.2023.10257399
http://dx.doi.org/10.1109/ICHVEPS58902.2023.10257399
http://dx.doi.org/10.1109/ICHVEPS58902.2023.10257399
http://dx.doi.org/10.1007/978-3-030-96753-6_1
http://dx.doi.org/10.1109/FIT57066.2022.00014
http://dx.doi.org/10.1109/STPES54845.2022.10006619
http://dx.doi.org/10.1109/STPES54845.2022.10006619
http://dx.doi.org/10.1109/STPES54845.2022.10006619
http://dx.doi.org/10.1088/1742-6596/2310/1/012076
http://dx.doi.org/10.1109/ACCESS.2022.3194547
http://dx.doi.org/10.1016/j.renene.2021.07.070
http://dx.doi.org/10.1016/j.renene.2021.07.070
http://dx.doi.org/10.1016/j.renene.2021.07.070
http://dx.doi.org/10.1109/ICEIC51217.2021.9369744
http://dx.doi.org/10.1109/ACCESS.2020.3031477
http://dx.doi.org/10.1109/ACCESS.2020.3031477
http://dx.doi.org/10.1109/ACCESS.2020.3031477
http://dx.doi.org/10.3390/en14248567
http://dx.doi.org/10.3390/en14248567
http://dx.doi.org/10.3390/en14248567
http://dx.doi.org/10.1109/CIEC.2016.7513793
http://dx.doi.org/10.1109/CIEC.2016.7513793
http://dx.doi.org/10.1109/CIEC.2016.7513793
http://dx.doi.org/10.1016/j.solener.2018.12.045
http://dx.doi.org/10.1016/j.solener.2018.12.045
http://dx.doi.org/10.1016/j.solener.2018.12.045
http://dx.doi.org/10.1109/ICAN56228.2022.10007163
http://dx.doi.org/10.1109/ICAN56228.2022.10007163
http://dx.doi.org/10.1109/ICAN56228.2022.10007163
http://dx.doi.org/10.1109/ICCES57224.2023.10192806
http://dx.doi.org/10.1109/ICCES57224.2023.10192806
http://dx.doi.org/10.1109/ICCES57224.2023.10192806
http://dx.doi.org/10.1109/3ICT53449.2021.9581504
http://dx.doi.org/10.1016/j.rser.2021.110889
http://dx.doi.org/10.11591/ijeecs.v33.i2.pp687-695
http://dx.doi.org/10.11591/ijeecs.v33.i2.pp687-695
http://dx.doi.org/10.11591/ijeecs.v33.i2.pp687-695
http://dx.doi.org/10.1109/GlobConHT56829.2023.10087613
http://dx.doi.org/10.1109/ACCESS.2021.3108453
http://dx.doi.org/10.1063/5.0029639


F. Martinez-Gil et al. Energy Nexus 17 (2025) 100384 
[96] Ramez Abdallah, Adel Juaidi, Salameh Abdel-Fattah, Mahmoud Qadi, Mon-
taser Shadid, Aiman Albatayneh, Hüseyin Çamur, Amos García-Cruz, Francisco
Manzano-Agugliaro, The effects of soiling and frequency of optimal cleaning
of PV panels in Palestine, Energies 15 (12) (2022) http://dx.doi.org/10.3390/
en15124232.

[97] W. Chen, M. Li, T. Pei, C. Sun, H. Lei, Reliability-based model for incomplete
preventive replacement maintenance of photovoltaic power systems, Energy
Engineering: J. Assoc. Energy Eng. 121 (1) (2024) 125–144, http://dx.doi.org/
10.32604/ee.2023.042812.

[98] Julia Terrapon-Pfaff, Sibel Raquel Ersoy, Thomas Fink, Sarra Amroune,
El Mostafa Jamea, Hsaine Zgou, Peter Viebahn, Localizing the water-energy
nexus: The relationship between solar thermal power plants and future devel-
opments in local water demand, Sustainability 13 (1) (2021) http://dx.doi.org/
10.3390/su13010108.

[99] S. De, N. Shiradkar, A. Kottantharayil, Improved cleaning event detection
methodology including partial cleaning by wind applied to different PV-
SCADA datasets for soiling loss estimation, IEEE J. Photovoltaics 14 (2) (2024)
344–353, http://dx.doi.org/10.1109/JPHOTOV.2024.3359412.

[100] C. Gil, R. Baños, J. Ortega, A.L. Márquez, A. Fernández, M.G. Montoya, Ant
colony optimization for water distribution network design: A comparative
study, in: Joan Cabestany, Ignacio Rojas, Gonzalo Joya (Eds.), Advances in
Computational Intelligence, Springer Berlin Heidelberg, Berlin, Heidelberg,
2011, pp. 300–307.

[101] Christopher Sansom, Kumar Patchigolla, WASCOP (Water Saving for Solar
Concentrated Power): Water Management Guide, Technical Report, Cranfield
University, 2020, doi: ffhal-02482491f.
16 
[102] Mohammed Shoaib Sheik, Pallabi Kakati, Devendra Dandotiya, Udaya Ravi M,
Ramesh C S, A comprehensive review on various cooling techniques to decrease
an operating temperature of solar photovoltaic panels, Energy Nexus 8 (2022)
100161, http://dx.doi.org/10.1016/j.nexus.2022.100161.

[103] Adam Bennett, Christopher Sansom, Peter King, Katherine Gobey, Herbert
Merkle, Cleaning concentrating solar power mirrors without water, AIP Conf.
Proc. 2303 (1) (2020) 210001, http://dx.doi.org/10.1063/5.0028557.

[104] Fares Zaoui, Riad Khenfer, Abdelhak Lekbir, Saad Mekhilef, Zahir Rouabah,
Mitigation of soiling and assessment of PV module performance under IEC
60891 by based-brush and based-water cleaning methods using, Appl. Sol.
Energy 60 (226–241) (2024) http://dx.doi.org/10.3103/S0003701X23601758.

[105] Dounia Dahlioui, Johannes Wette, Aránzazu Fernández-García, Hicham
Bouzekri, Itziar Azpitarte, Performance assessment of the anti-soiling coating
on solar mirrors soiling in the arid climate of Ouarzazate-Morocco, Sol. Energy
241 (2022) 13–23, http://dx.doi.org/10.1016/j.solener.2022.05.063.

[106] Anna Castaldo, Emilia Gambale, Giuseppe Vitiello, Giuseppe Cara, Self-cleaning
solar mirror coatings: From the laboratory scale to prototype field tests, Appl.
Sci. 14 (15) (2024) http://dx.doi.org/10.3390/app14156669.

[107] Johannes Wette, Aránzazu Fernández-García, Florian Sutter, Francisco Buendía-
Martínez, David Argüelles-Arízcun, Itziar Azpitarte, Gema Pérez, Water saving
in CSP plants by a novel hydrophilic anti-soiling coating for solar reflectors,
Coatings 9 (11) (2019).

http://dx.doi.org/10.3390/en15124232
http://dx.doi.org/10.3390/en15124232
http://dx.doi.org/10.3390/en15124232
http://dx.doi.org/10.32604/ee.2023.042812
http://dx.doi.org/10.32604/ee.2023.042812
http://dx.doi.org/10.32604/ee.2023.042812
http://dx.doi.org/10.3390/su13010108
http://dx.doi.org/10.3390/su13010108
http://dx.doi.org/10.3390/su13010108
http://dx.doi.org/10.1109/JPHOTOV.2024.3359412
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb100
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb100
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb100
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb100
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb100
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb100
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb100
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb100
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb100
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb101
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb101
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb101
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb101
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb101
http://dx.doi.org/10.1016/j.nexus.2022.100161
http://dx.doi.org/10.1063/5.0028557
http://dx.doi.org/10.3103/S0003701X23601758
http://dx.doi.org/10.1016/j.solener.2022.05.063
http://dx.doi.org/10.3390/app14156669
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb107
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb107
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb107
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb107
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb107
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb107
http://refhub.elsevier.com/S2772-4271(25)00025-7/sb107

	Maintenance techniques to increase solar energy production: A review
	Introduction
	Solar Energy Production
	Photovoltaic Solar Energy
	Concentrated Solar Power

	Deterioration Factors
	Objectives

	Maintenance techniques based on the deterioration factor
	Soiling
	Anti-soiling strategies to increase solar energy production

	Panel Faults Detection: hotspots, cracks and other defects
	UAV images
	Artificial Intelligence
	IoT Networks


	Forecasting Solar Energy Production in facilities
	Sustainability and Water Saving
	Discussion and Future Lines
	Limitations of solar energy
	Challenges in solar plants maintenance
	Future lines

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


