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Abstract—We present a novel methodology of embedded sys-
tems design based on Sleptsov net (SN) formalism. We use an
SN as a graphical language of concurrent programming and
as a modeling language for plant specification and integrated
model composition. Among the advantages, we mention the
applicability of formal verification techniques for reliable embed-
ded system design, vivid graphical language, and compatibility
of the toolchain with different classes of hardware. Composed
toolchains are supplied with our ad-hoc tools for embedded
systems design on both microcontrollers and FPGAs. We develop
a software SN machine for microcontrollers and a generator of
Verilog programs for FPGAs. Compared to known SN machine
implementations on desktop computers and GPUs, we developed
indexed sparse matrix data structure to optimize both memory
usage and performance. Benchmarks on real-life Sleptsov net
programs show the robustness of the approach with considerably
higher performance on FPGA.

Index Terms—Sleptsov net, embedded system, design, verifica-
tion, microcontroller, FPGA.

I. INTRODUCTION

A Sleptsov net (SN) [1] represents a generalization of a
Petri net [2], widely applied for decades to model concur-
rent systems in manifold application domains [3]. However,
applying SNs to embedded system design presents unique
challenges, particularly in optimizing resource usage on plat-
forms with constrained memory and processing power, such
as microcontrollers and FPGAs. This paper aims to address
these challenges, developing SN-based methods that balance
computational efficiency with system reliability. We managed
to prove the Turing-completeness of an SN [4], [5]; the
corresponding universal net [6] has been constructed as a
prototype for an SN processor.
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There were many attempts to use a Petri net as a con-
current programming language, especially for programmable
controllers [7], though because of incremental character of
computations, Petri nets are slow, especially in arithmetic
operations. Due to the rather attractive vivid graphical rep-
resentation, numerous efforts were made to load a Petri net
graph with constructs of some programming language [8], as
the most successful system of such kind, we mention CPN
Tools [9].

While general SN computing addresses challenges in high-
performance computing (HPC) and artificial intelligence (Al)
[10]-[13], embedded system design requires a distinct ap-
proach due to its constrained hardware resources and real-time
processing requirements. This paper adapts SN principles to
these specific needs, that makes SN-based approach feasible
and efficient for low-power, resource-limited embedded plat-
forms. Applying formal methods, we prove correctness of a
system, that results in reliable ESs, especially required for life-
critical applications.

This paper introduces a novel SN-based methodology for
embedded system (ES) design, which leverages the unique
advantages of SNs, such as graphical representation for con-
current programming and compatibility with various hardware
platforms. By incorporating formal verification techniques,
this approach ensures system reliability, making it particularly
suitable for life-critical applications. Unlike previous work
heavily reliant on [14], this study develops dedicated SN
implementations for both FPGAs and microcontrollers, em-
phasizing memory efficiency and computational performance.

In Section II, we introduce general principles of SN based
ES design, including concurrent graphical programming, mod-
eling plant, integrated debugging, and verification. In Sections
IIT and IV, we develop specific tool-chains for ES design
on MC and FPGA, respectively. Finally, in Section V, we
implement benchmarks of our tool-chains on MC and FPGA
to acknowledge robustness of our approach.



II. SN BASED DESIGN OF ES

In this section, we outline the SN-based embedded system
(ES) design methodology. Starting from defining the funda-
mental SN structure, we describe its application to embedded
control and plant models. Subsequent sections expand on
implementing this framework for specific hardware platforms,
detailing the tool-chains and resource usage optimization nec-
essary for microcontrollers and FPGAs.

For various kinds of target hardware, for instance: micro-
controllers (MCs) or FPGAs, we use a unified graphical lan-
guage of SNs for ES design following basic principles of SN
computing [1]. An SN is well applicable for specifying both
ES control and plant since in majority of applications, without
loss of generality, we either consider a discrete system or we
can use some kind of sampling. We apply a wide spectrum of
formal analysis techniques [3], [15] to models of ES control
and plant, and then, to integrated models. In particular, we
find whether a system is unbounded or contains deadlocks and
apply techniques for enforcing liveness and boundedness [16]
required for an ideal ES. Finally, a specification of a reliable
ES is obtained. Then we use additional tools, described in
Sections III and IV, to generate executable code to upload
into a target device.

As compared to state-of-the-art works on reliable ES design,
static and dynamic techniques of software verification [26]
are applied with respect to microcontrollers for pragmatic,
programming language centered approaches. We would like to
mention the approach benefits for small and non-life-critical
applications, where programs are composed via adjusting
prototypes with consequent application of software verification
tools. Thorough verification inevitably leads to formal model
application in an explicit or implicit form that is complicated
with the necessity for parsing code with the purposes of build-
ing a formal model. In majority of cases the code itself does
not contain complete information for successful verification.
To mend this deficiency, additional language of annotations is
introduced, often in semi-formal syntactic form of special kind
of comments or compiler directives. Having a model, hidden
inside a verification system, does not allow us to take, to the
full extend, advantage of it.

We consider SN based reliable ES design as one close, in
its concept, to model-driven development (MDD) paradigm
[27]. Though, MDD is heterogeneous and rather sophisticated,
using up to dozen different types of diagrams, and resulting in
automatic code generation. We use a uniform place-transition
net family of models with well-developed formal methods
for their verification and finally just enhance the specification
with SN extension. Instead of producing code for a certain
MC, we implement, on a certain MC, an SN virtual machine
optimizing its performance and memory consumption. Thus
we avoid both code generation and code parsing that gives us
more opportunities to focus on the correctness proof of ESs to
ensure their reliability. Benchmarks in Section V testify that
our approach provides rather good performance and memory
consumption to prove its robustness.

A. SN Definition

Following notation of [4], we introduce an SN as N =
(P, T, A, up), where P (places) and T (transitions) are two
parts of nodes, mapping A specifies (multiple) arcs connecting
them, and nonnegative numbers p represent places’ marking.
The transition firing multiplicity, based on the arc firing
multiplicity, are evaluated as follows, respectively

C(t) = minA(p,t)!:O(C(pa t))a C(pv t) = M(p)/A(p7 t)' (1)

Any transition ¢t € T" with ¢(t) > 0 fires at a step, changing
the place marking in the following way

w(p) = p(p) —c(t) - A(p,t) +c(t) - A(t,p), p€ P.  (2)

In the sequel, composing SN machines, we implement the
above formula in the corresponding software for MC and
FPGA in an optimal way based on ad-hoc data structures.
Both time and space complexities of the resulting code are
taken into consideration and thoroughly evaluated formally
and with benchmarks.

Besides regular arcs, we use inhibitor arcs, which enable
firing at zero marking, and priority arcs between transitions
[1] for brevity of graphical representation of sophisticated
algorithms. An inhibitor arc is directed from a place with a
transition only and contains a little hole circle on its end; the
transition is fireable only in case the place marking equals to
zero. A priority arc directed from transition ¢ to transition &
means that priority of ¢ is higher than priority of ¢'; thus #’
never fires if transituon ¢ is fireable.

B. Vending Machine Design

For prototyping ESs, we are using a vending machine and
a lift control applications. Let us consider a simple vending
machine which schematic image is shown in Fig. 1. It accepts
coins of 1 type and sells chocolate bars of 2 types: milk for
2 coins and dark for 3 coins. Pressing the coin return button
returns 1 coin. The machine does not keep more than 3 coins.

sell
chocolate
button

Fig. 1: Vending machine schematic image.

We compose the ES control program in the form of SN
represented in Fig. 2. We use a toolset Tina [17] for graphical
design an verification of ESs. Places, depicted as circles, and
transitions, depicted as squares, are connected via arcs. Places
specify conditions and variables, while transitions specify
events or actions. To the left, input places, which are mapped



into sensors, are situated. To the right, output places, which
are mapped into actuators, are situated. Textual labels specify
details of the contact places (input and output) mapping onto
pins of certain hardware.

r_coin

outpiit_piy/fnap: r_coin=16

m_choc

foutput_pin_map: m_choc=17

d_choo

output_pin_map: d_choc=18

Fig. 2: SN of vending machine control.

The longest simple loop qotoqitigatateqo corresponds to
a regular routine of selling the dark chocolate bar: accept 3
coins, accept sell chocolate button, output dark chocolate bar,
and return to the initial state. Index of the place in this loop
corresponds to the number of received coins.

Using incoming arcs of a transition, we synchronize events
and processes. For instance, on insertion of a coin, a token
appears within the input place coin that cause transition ¢ to
fire and reset the input place coin and move the state token
from place qp into place ¢;. In case the chocolate button is
pressed in this state, a token appears within the input place
choc, which is just reset by transition ¢;3 without the state
change. When the next coin is inserted, the state token is
moved to place g» by transition ;. In this state, pressing the
chocolate button leads to firing transition ¢ causing the state
token to return into place gy and produce a token within the
output place m_choc that, because of mapping onto the device
pin, starts actual placing of the corresponding chocolate bar
into the chocolate bar pocket.

During the design process, we can simulate the net behavior
using graphical stepper simulator of Tina, adding tokens to
the input places and observing the output place state. For
hierarchical design of models, we use compiler-linker of SNs
described in [14].

C. Supplying ES with Plant Model

We can use SN to design a model of plant as well, either of
a specific or general form. Because the general plant model for
vending machine is rather cumbersome, we show in Fig. 3 a
specific model that describes a fun of milk chocolate behavior.

PO fan of milk chok

Fig. 3: ES with plant model of a milk chocolate fun.

The subnet to the left imitates insertion, one by one, of two
coins and then pressing the sell chocolate button. The subnet
to the right, is represented by hanging transitions which imitate
removing the pockets’ content. A loop poteOpsp21psta2 spec-
ifies a simplified human being behavior; in particular firing
transitions ¢90 and ?51 inserts a token into place coin while
firing transition too inserts a token into place choc that is
recognized as pressing the chocolate button. Inhibitor arcs,
connected with the corresponding transitions, check that a
token has been processed and consequently removed from an
input place, before inserting a new token.

D. ES Verification

The spectrum of formal verification techniques starts with
state space construction and analysis, state space of integrated
model shown in Fig. 3 is represented in Fig. 4. A node of state-
space corresponds to an SN marking. Markings are inscribed
by the nodes as sets of places having nonzero marking. Usually
the place symbol is preceded by its marking, traditionally,
markings values equal to unit are omitted. Thus, marking
specification {coin,pg,q1} means that places coin, pg, and
q1 contain a token each while other places do not contain
tokens. Arcs connecting states are inscribed with the symbol
of transition which fires casing the marking change.

{p0, q0}
O 17
0
/

{coin, m_choc, p5, q0}

{m_choc, p0, q0}

{choc, m_choc, p0, g2}

| PO, 62}
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©,

{p5, q1}

{coin, p6, q1}

{p8, q2}

Fig. 4: State space of integrated model shown in Fig. 3.



Also, Tina provides linear algebra methods of analysis with
linear invariants of places and transitions. Basic techniques for
finding deadlocks and liveness enforcing [15], [16], as well as
other methods of formal analysis [3], are applicable and can
be implemented as Tina plug-ins.

III. ES DESIGN ON MICROCONTROLLERS

For MC, we employ a preliminary developed SN machine
called sna.ino. This SN machine uses such parameters as a
given SN declarations and pin map in the form of C language
.h files produced by our plug-in SN2oMC for Tina. The general
toolchain scheme is shown in Fig. 5. Using Arduino IDE [18]
as a central tool allows us to employ a wide range of MCs
supported by the Arduino open hardware concept; for practical
implementations we were using MC Raspberry Pi Pico [19].
Developed tools and example SN programs are uploaded on
GitHub [28] for public use.

SN
@ declarations =>

m Arduino IDE

Draw, edit, SN machine Verify,
verify (C language) ':> Compile, and Load
into microcontroller

SN program, model of

MC
plant or integrated ES (M)

mMcC

: Pin map :

Fig. 5: ES design for MCs, general toolchain.

Our SN machine for MCs represents further development of
SN VMs described in [14], in particular, we use a variant of SN
VM for GPU, replacing certain multidimensional grid struc-
tures by the corresponding (nested) loops. To address the mem-
ory constraints of microcontrollers and FPGAs, we introduce
a specialized data structure, we called Indexed Column-Wise
Sparse Matrix (ICWSM), which minimizes memory usage by
storing only non-zero elements, significantly optimizing both
storage and access time compared to conventional matrix rep-
resentations [14]. This structure is particularly advantageous
for SN applications, where sparsity is common, allowing our
SN machine to achieve up to 3-100 times speed-up.

To study snippets of basic algorithms and data structures,
we will use a rather simple SN for addition of two nonnegative
integer numbers shown in Fig. 6.

po p2

Fig. 6: An example of SN that computes a sum of two
nonnegative numbers.

In the bottom of the figure, an inverse control flow is rep-
resented to start computations and recognize their completion.

The complete state space for SN does not depend on the
marking size and contains five states, including initial and
final, graphically represented in [14]. Each of three transitions
fires once in case of nonzero marking of data places x and y;
transition t3 finalizes the computation, removing a token from
the final place f. An inverse control flow means that actually we
advance zero marking similar to moving ~holes” in electronics.
We prefer the reverse control flow because zero check with
an inhibitor arc does not restrict the firing multiplicity of a
transition.

A code snippet of sn-add.h file for conventional matrices
follows:

#define m 5

#define n 3

int b[m] [nJ={{1IOI_l}I{Olll_l}!{ololo}l
{_11_11_1}/{01011}};

int d[m] [n]={{0,0,0},{0,0,0},{1,1,0},
{0,0,1},{0,0,0}};

int mu[m]={5,7,0,0,1};

Matrices b and d represent mapping A specifying the
incoming and outgoing arcs of transitions, respectively; array
mu represents the current marking p; constants m and n equal
to the number of places and transitions, respectively.

Enumerating each of matrices b and d, first by columns,
then by rows, within nested loops, we produce ICWSM, which
code snippet of sn-add-icwsm.h file follows:

#define kb 8

#define kd 3

int ibt[n+1]={0,2,4,8};

int b_icwsm[kb] [2]={{0,1},{3,-1},{1,1},
{31_1}7{01_1}1{11_1}1{31_1}1{471}};

int idt[n+1]={0,1,2,3};

int d_icwsm[kd] [2]1={{2,1},{2,1},{3,1}};

Let us consider b_icwsm, which contains all nonzero el-
ements of matrix b preceded by the index of its row. An
additional array ibt contains indexes of b_icwsm from where
places of the corresponding transition start. We explain the
ICWSM data structure with Fig. 7. Using sequential pairs of
ibt elements, we arrange loops on input places of a transition.
Thus, to calculate the fireability condition of transitions y, we
use the following code snippet:

#define FMA (mui,w)
(((w)==-1)2(((mui)==
for (3=0; j<n; j++) {
v [§]1=MAX_INT;
for (k=ibt [j];k<ibt [j+1];k++) {
p=b_icwsml[k] [0];
w=b_icwsm[k] [1];
y[Jjl=min(y[]J],FCA (mu[p
}

) ?MAX_INT:0) : (mui) % (w))

Trw))i

}

Within macros FMA (Firing Multiplicity of an Arc), we take
into consideration both regular and inhibitor arcs. An inhibitor
arc produces an abstract infinite firing multiplicity in case the
place marking mui equals zero, represented within C code by
the maximal integer value MAX_INT. The regular arc firing



multiplicity (mui)%(w) complies with (1), minimal values are
taken within the loop.

b
| J 0 1 2
o 1 0 1
1 0 1 1
2 0 0 0
3 1 -1 1
4 0 0 1
ibt
i 0 1 2 3
| 0y % 4 3 |
b_icwsm
0 1 2 3 4 5 6
i [ o [ s [ 1 [ s [ o | 1 [ s | a |
Lo [ 2 T 4 [ 2 [ [ [ o | [ 2]

Fig. 7: Explanation of ICWSM data structure.

For the firing transition choice, a simulated nondeterminis-
tic choice procedure is applied after filtering lower priority
fireable transitions based on the transitive closure of the
priority relation between transitions. After the firing transition
tf choice, with multiplicity zc, we fire it, according to (2),
using the following code snippet:

for (k=ibt[j];k<ibt [j+1];k++) {
p=b_icwsm[k] [0];
w=b_icwsm[k] [1];
mul[pl-=tcxw;

}

for (k=idt[j]; k<
p=d_icwsm[k] [
w=d_icwsm[k] [
mul[p]lt+=tcxw;

}

idt [§+1];k++) {
0]
1]

’
’

Thus, instead of processing m elements of the corresponding
matrix column to find the fireability multiplicity of a transition
with a conventional matrix, we process the nonzero elements
only using our ICWSM. For sparse matrices characteristic for
Petri/Sleptsov net applications, we have 2-10% of nonzero
elements that yield 3-100 times speed-up besides the reduced
matrix size. To reduce the memory usage, we can consider
the maximal arc multiplicity that in majority of applications
is modest and allocate 1 byte of memory with type char. In
case of wider range, we can allocate 2 bytes of memory with
short int. We can adjust memory usage separately for indexes
and values, splitting each of arrays b_icwsm and d_icwsm into
2 corresponding arrays of different types.

Based on the described in this section technique and tool-
chain, a prototype of vending machine, considered in Sec-
tion II-B, was implemented on MC and shown in Fig. 8. Green
button represents the coin sensor, yellow button sells chocolate
bars, and red button returns coins. Green LED represents coin
return while yellow and blue LEDs represent milk and dark
chocolate bars, respectively.

The prototype has been tested on correct and incorrect
sequences of input events represented by a certain sequence
of pressing buttons, debouncing facilities provided for conve-

Fig. 8: Prototyping vending machine on MC Raspberry Pi
Pico.

nience of work. Its behavior is rather stable and completely
corresponds to the specifications.

IV. ES DESIGN ON FPGASs

For SN implementation on FPGA, we use a completely
different approach, compared to MC, which toolchain is rep-
resented in Fig. 9. Taken from .4 file, declaration of an SN is
compiled into Verilog [20] code. Thus, no general SN machine
is applied; each SN is implemented individually in hardware
according to its Verilog specification. Besides, the pin map
declaration file is compiled into FPGS file of constraints. Thus
two corresponding files .v and .cts are produced by our ad-
hoc software SNtoFPGA and provided as input for Gowin
FPGA Designer [21]. Here we use this specific tool because
of prototyping with Tang Nano 9k and Tang Mega 138k Pro
FPGAs [22]. However, for other types of FPGA, hardware
specification in Verilog is applicable as well. Developed tools
and example SN programs are uploaded on GitHub [29] for

public use.
D
& Generator Gowi
Tina, nd [:> declarations |V of O‘gm
~ e, . FPGA
Draw, edit, SN machine Desi koile
verify in Syriiesies = i
ize,
SN program, Verilog =) :)/Iace and load
model of Generates route into
) plant or _ Verilog code circuit, FPGA
integrated ES || Fnma Rl oy load into FPGA
specification

Fig. 9: ES design for FPGAs, general toolchain.

For SN shown in Fig. 6, we obtain the following snippet of
Verilog code, using FMA macros similar to one specified for
MC, for computing transitions’ firing multiplicities:

reg [5:0] p [0:5];

reg [5:0] yv [0:3];

always @ (posedge sys_clk) begin
y[0] = MAX_MU;
y[0] = min(y[0], ‘FMA(p[0],1));
y[0] = min(y[0], ‘FMA(p[2],-1));
y[1l] = MAX_MU;
y[1] = min(y[1], ‘FMA(p[3],1));
y[1] = min(y[1], ‘FMA(p[2],-1));
y[2] = MAX_MU;
v[2] = min(y[2], ‘FMA(p[O],-1));
y[2] = min(y[2], ‘FMA(p[2],-1));
y[2] = min(y[2], ‘FMA(p[3],-1));



y[2] = min(y[2], ‘FMA(p[4],1));

end

Here we use a predefined constant MAX_MU with the
required number of bits to represent an infinite firing multiplic-
ity. To compose the Verilog code, we developed a generator
SNtoFPGA in C language, implemented as Tina plug-in, which
code snippet to generate the above Verilog code follows:

[0:%d];\n",bits, m);
[0:%d];\n",bits,n);
begin\n");

printf ("reg [%d:0] p
printf ("reg [%d:0] vy
printf ("always @ (posedge sys_clk)
for (3=0; j<nj j++) {
printf ("y[%d] = MAX MU;\n", Jj);
for (i=0;i<n;i++) {
if(b[1i]1[3]!'=0)
printf ("y[%d] = min(y[%d],FMA (p[%d],
d));\n", 3, 9,1,0[i] [3])

4

oe

}

}
printf ("end\n");

In a similar way, we generate a Verilog snippet to fire a
chosen transition ¢f, decrementing the incidental place mark-
ings according to matrix b and incrementing them according
to matrix d, which follows:

case (tf)
0: begin
mu[0] = mu[0] - tc=*1;
mul[l] = mul[l] + tc+*l;
end
1: begin
mu[3] = mu[3] - tc=*1;
mu[l] = mu[l] + tcx*l;
end
2: begin
mul[4] = mul[d4] - tcx*l;
mul[2] = mul[2] + tcx*1l;
end
endcase
led = "mu[l][5:0];

Note that here and within other snippets, for generality
of the narrative, we print division and multiplication by unit
for arcs of unit multiplicity; within an optimized code, we
omit these “no-data-change” operations. A C code snippet that
generates the above Verilog code follows:

printf ("case (tf)\n");
for (3=0; j<n; j++) {
printf ("%d: begin\n", j);
for (i=0;i<n; i++) {
if(b[i]1[31>0)
printf ("mu[%d] = mu[%d] -
tex%d; \n",1i,1,b[11[31);
if(d[i][31>0)
printf ("mu[%d] = mul[%d] +
tcexsd; \n",1,1,d[i][3]);
}
printf ("end\n");
}
printf ("endcase\n");
printf ("led = "mu[%d] [$d:0];\n", res_p,bits_mu);

Thus, on the SN graphical representation in Tina, we
generate a Verilog program that, when compiled and routed by
Gowin FPGA Designer, implements a given SN in hardware,
i.e., SN runs on FPGA directly without using an intermediate
software, such as a generalized SN machine for MCs. Besides,
on the additional annotations of SN input and output places,
we produce the constraints file that specifies the contact places
mapping into FPGA pins. Since varying instrumental software
for various types of FPGA supports Verilog, the approach is
applicable to other types of FPGA, for instance Xilinx and
Altera.

V. BENCHMARKS

After prototyping vending machines and lifts, we are look-
ing for opportunities to apply SN based ES design to real-
life systems such as robotic arms and integrated shops of
automated manufacture, as well as vehicle control systems.

We consider obtaining comprehensive benchmarks as a nec-
essary stage of proving the approach’s robustness to motivate
its application at the enterprise level. For preliminary testing,
we apply SNs for basic arithmetic operations [1]: addition,
multiplication, and division. Then, we use a series of SN
benchmarks for parametric nets shown in Table I, developed
and applied for performance evaluation [14] of laptop and
desktop SN processors for CPU and SN machines for GPU.
Detailed specifications of benchmark nets for a given size
parameter are shown in Table II. We compare laptop (desktop)
performance with MC and MC with FPGA.

TABLE I: SNs for benchmarks

Net abbreviation | Net description
de Exact computer of double exponent after Lipton
pol Polynomial computed on nonegative integers
mm Multiplication of nonnegative integer matrices

TABLE II: Parameters of benchmark SNs

Net Places | Transitions Arcs

Regular | Inhibitor | Priority
de2 46 34 180 0 8
de3 68 53 281 0 12
ded 90 72 382 0 16
pol2 117 124 477 178 27
pol3 215 231 891 330 54
pol4 340 368 1422 524 90
pol5 492 535 2070 760 135
pol6 671 732 2835 1038 189
poll0 | 1657 1820 7065 2570 495
poll5 | 3497 3855 14985 5430 1080
pol20 | 6012 6640 25830 9340 1890
pol25 | 9202 10175 39600 14300 2925
mm?2 294 310 1203 445 72
mm6 8966 9542 36723 13789 1944
mm8 | 21570 22978 88323 33217 4608

Net de represents a busy beaver [23] construct for

Petri/Sleptsov nets. It was composed after the seminal net of
Lipton [24], a strong computer of double exponent function
22", supplied with 4n priority arcs to make it an exact



computer of double exponent. Net pol computes a polynomial
of degree n. Net mm represents a square matrix multiplier,
the matrix size equals to n. Both models are composed using
the multiplication and addition nets. Note that for the size
parameter, specified in Table II after the net name, each net
is generated using a dedicated program in C language [14].
Compared to de, the two last models represent rather memory
consuming tasks which run fast. We consider polynomials
and matrix multiplication also because of the fact that linear
control approach [25] to ES design is easily expressed using
these constructs.

Let us specify the hardware employed in benchmarks. We
use an x64 laptop Intel(R) Core(TM) i5-8265U CPU @
1.60GHz 1.80 GHz, 8G. We use MC Raspberry Pi Pico [19]
with RP2040 SoC, 2MB Flash, Dual ARM Cortex-M0+ @
133MHz, 264kB on-chip SRAM. We use FPGA Tang Mega
138K [22] with 50MHz FPGA chip GW5AST-LV138PG484A,
138,240 LUTs, 300 DSP units, 1080 S-SRAM, 6120 B-
SRAM. Some preliminary benchmarks were made for Tang
Nano 9k which runs twice slower because of about two time
fewer frequency (27MHz). Though, Tang Nano 9k capabilities
stop sufficing de5 because of its limitation on the number of
LUTs.

Benchmarks for MC are shown in Table III, where imple-
mentations using a conventional matrix and indexed sparse
data structures are compared. Dash means run is impossible
because of memory overflow. We conclude that the indexed
sparse matrix data structure optimizes both memory consump-
tion and performance. For instance, with mm3, we obtain
memory overflow using conventional matrices, while, with
ICWSM, we consume only 4% of MC memory. We obtained
similar benchmarks for the laptop as well. On average, the
laptop runs about 200 times faster compared to MC, showing
approximately the same speed-up when using sparse matri-
ces, under the laptop C program compiled without the code
optimization.

TABLE III: Benchmarks on MC.

Net Conventional matrix Indexed sparse
Time, s | Memory usage | Time, s | Memory usage
de2 0.1647 2% 0.03738 2%
de3 8.03744 3% 1.12876 2%
ded 3556.78 5% 444.374 2%
pol2 | 1.53078 6% 0.04204 2%
pol3 10.2341 17% 0.15720 3%
pol4 | 43.6115 39% 0.42297 3%
pol5 134.080 80% 1.06515 3%
pol6 - - 2.74920 4%
poll0 - - 21.0305 6%
poll5 - - 95.5430 10%
pol20 - - 284.561 16%
pol25 - - 671.616 23%
mm2 | 31.4402 29% 0.36683 3%
mm3 - - 8.81818 4%
mmo6 - - 677.976 22%
mm8 - - 3863.73 49%

Benchmarks for FPGA are represented in Table IV. For
FPGA, the most critical parameter is space complexity, ex-

pressed in the resulting circuit consumption of register mem-
ory and LUTs. Though, when a task suits FPGA space
limitations, its performance is about 10* times better than
that of the MC. Thus, SN based ES design can suit the
requirements of extremely fast plants, such as a hypersonic
flying object, collider, thermonuclear fusion reaction, etc. One
time cycle of device corresponds to time required to make
one SN step. For S0MHz FPGA clock, we make SN step in
about 20 ns for rather big nets. We show the number of cycles
multiplied by 2, 3, and 4 for bigger nets, which require the
clock division by the corresponding constants.

TABLE IV: Benchmarks on FPGA.

Net Memory Cycles Time

de3 6% 6019 1.2038 - 10~ T
ded 7% 1737685 0.0347537 s
de5 27% 130670194729x2 87.1135 min
pol3 12% 259x2 1.036-10"° s
pol4 19% 416x3 2.496-1075 s
pol5 25% 606x4 4.848-107° s
mm2 11% 333x2 1.332-107° s
mm3 59% 574x4 4.592-107 % s

In Fig. 10, speed-up because of using our ad-hoc indexed
sparse data structure ICWSM is shown for SN machine written
in C language, when it runs on MC Raspberry Pi Pico.
Speed-up from 4 to 120 times is provided. Note that MC
measurements are more precise compared a laptop because
it is nearly bare hardware with Arduino small runtime code
and libraries. For big nets, the speed-up increases because of
longer time for nonzero elements search with conventional
matrix. Reduction of required memory varies from 3 to 50
times, growing up for bigger data.

Fig. 10: Speed-up of computations (Time) and reduction of
memory utilization (Mem) because of using indexed sparse
matrix on MC (measured in times).

In Fig. 11, the speed-up of FPGA compared to MC is shown.
For small, computationally busy tasks, such as de, about 5
thousand times speed-up is observed. For big models, which
compute rather fast, we obtain speed-up of about 30 thousand
times.
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Fig. 11: Speed-up of computation because of using FPGA
instead of MC.

Thus, FPGA is preferable when fast control is required.
Though, we can upload considerably bigger models into
Raspberry Pi Pico, whose cost is 15 times less than that of
Tang Mega Pro.

VI. CONCLUSIONS

Thus, we presented Sleptsov net-based design of reliable
Embedded Systems for both microcontrollers and FPGAs.
Basic toolchains have been specified, including well known
software as Tina modelling system for Petri and Sleptsov nets,
Arduino IDE, and Gowin FPGA Designer. Additional tools
have been developed, which include: converters of Sleptsov net
file format, SN machine for microcontrollers, and generator
of Verilog code for FPGA. Integration of other well-known
software for microcontrollers and FPGAs, which supports
programming in C/C++ and Verilog, is provided.

Among Sleptsov net based design advantages, we men-
tion the vivid graphical representation of concurrent systems,
the possibility of modeling discrete plants and the verifying
integrated models, grounded by wide spectrum of formal
techniques for Petri and Sleptsov net analysis, which include
deadlock search and liveness enforcing. Thus, correctness of
control or of entire control system, including plant, can be
proven. Collateral research studies methods for generating a
priori correct control specified by Petri/Sleptsov nets.
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