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Abstract 20 

Compound-specific isotope analyses (CISA) of fatty acids (FA) constitute a promising tool 21 

for tracing energy flows in food-webs. However, past applications of FA-specific carbon 22 

isotope analyses have been restricted to a relatively coarse food-source separation and mainly 23 

quantified dietary contributions from different habitats. Our aim was to evaluate the potential 24 

of FA-CSIA to provide high-resolution data on within-system energy flows using algae and 25 

zooplankton as model organisms. First, we investigated the power of FA-CSIA to distinguish 26 

among four different algae groups, namely cyanobacteria, chlorophytes, haptophytes and 27 

diatoms. We found substantial within-group variation but also demonstrated that δ13C of 28 

several FA (e.g. 18:3ω3 or 18:4ω3) differed among taxa resulting in group-specific isotopic 29 

fingerprints. Second, we assessed changes in FA isotope ratios with trophic transfer. Isotope 30 

fractionation was highly variable in daphnids and rotifers exposed to different food sources. 31 

Only δ13C of nutritionally valuable poly-unsaturated FA remained relatively constant, 32 

highlighting their potential as dietary tracers. The variability in fractionation was partly driven 33 

by the identity of food sources. Such systematic effects likely reflect the impact of dietary 34 

quality on consumers’ metabolism and suggest that FA isotopes could be useful nutritional 35 

indicators in the field. Overall, our results reveal that the variability of FA isotope ratios 36 

provide a substantial challenge but that FA-CSIA nevertheless have several promising 37 

applications in food-web ecology.  38 
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Introduction  39 

Nutrient and energy flows between prey and consumers characterise food-web structure 40 

and therefore represent a key driver of ecosystem functioning and stability [7, 8]. In many 41 

microbial food-webs (e.g. plankton or soil communities) trophic structures are only 42 

rudimentarily resolved [9] and food sources are frequently aggregated into larger, 43 

taxonomically diverse groups [10]. The resulting blurred picture of these functionally 44 

important food-webs hampers the ability to understand internal dynamics and assess the 45 

vulnerability of microbial communities to global environmental change [9]. 46 

One factor restricting our ability to fully resolve the complexity of food webs is the 47 

shortage of quantitative tracers [14, 15]. Currently, the most commonly used tracing approach 48 

is the measurement of bulk carbon (C) and nitrogen (N) isotope ratios in consumers and their 49 

diets [16, 17]. Analyses of these two elements have proven to be powerful tools, for example, 50 

to assess the contributions of allochthonous and autochtonous food sources [16, 18]. 51 

However, bulk isotope analyses are restricted by a low amount of available markers limiting 52 

the number of food sources that can be considered in diet tracing [13, 15]. A promising 53 

approach to evaluate more complex food-webs is the analysis of isotopic ratios of specific 54 

compounds such as amino acids (AA) or fatty acids (FA). Compared to bulk approaches, 55 

compound-specific isotope analyses (CSIA) provide a larger number of markers increasing in 56 

principle their tracing power [24, 25]. 57 

CSIA of FA provide a number of additional advantages. For example, the existence of 58 

group-specific biomarker FA facilitates their measurement in mixed samples without physical 59 

separation [11, 26, 27]. Furthermore, several poly-unsaturated FA (PUFA) highlighted as 60 

potential biomarkers in CSIA [28, 29], represent essential resources that often limit 61 

consumers’ productivity [30, 31]. Yet, similar to bulk isotope analyses, the successful 62 

application of CSIA is linked to a number of pre-requisites. One requirement is the adequate 63 

differentiation among food sources [32, 33]. The successful separation of possible diets 64 
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thereby depends on the establishment of source-specific tracer signals using either direct 65 

sampling or a reference data-based library approach. Library based approaches (e.g. applied in 66 

genetic tracing tools) require the availability of large reference data bases as well as small 67 

variation in tracers across space and time. In contrast, direct source sampling depends on the 68 

physical isolation of individual food sources which can be challenging in microbial food-69 

webs. A second requirement for the application of FA-CSIA is the need to clearly understand 70 

the modification of tracer molecules with trophic transfer [34, 35]. Many FA [29, 36] and AA 71 

[37] show systematic differences in isotopic values between prey and their consumers. Only if 72 

such isotopic fractionation with trophic transfer is reliably quantified, biomolecules can be 73 

used to trace energy flows in food webs. 74 

In aquatic systems, FA isotope analyses are commonly used to quantify consumers’ 75 

reliance on food sources from different habitats [e.g. from ice and pelagic algae; 38, 39] or 76 

from allochthonous and autochthonous C sources [40, 41]. However, the potential use of FA 77 

isotopes to distinguish among multiple food sources within one ecosystem remains largely 78 

underexplored [26] despite indications that differences in isotopic ratios among algae groups 79 

can be substantial [1]. Moreover, trophic fractionation of FA isotopes has only been explored 80 

in a hand full of studies [28, 29, 36, 42] and little is known about the influence of consumer 81 

identity, or the food environment, on changes in isotopic ratios during trophic transfer. 82 

Consumers frequently alter FA through the elongation or desaturation of FA chains to satisfy 83 

physiological requirements [43] and such modifications likely represent important drivers of 84 

trophic fractionation [21, 44]. The degree to which FA are modified in consumers depends on 85 

food quantity and quality [45, 46] as well as consumers’ capability to synthesize certain FA 86 

[47], turning these factors into potential determinants of isotopic fractionation. 87 

Our aim in this study was to evaluate the potential of FA carbon isotope applications to 88 

trace energy and nutrient flows in plankton communities. Firstly, we assessed FA isotope 89 

ratios in polar and total lipids of 29 freshwater and marine algae strains to evaluate the 90 



 

 

Sensitivity: Internal 

potential of using systematic differences across four major algal groups (chlorophytes, 91 

cyanobacteria, diatoms and haptophytes) as tool for source separation. Further, we evaluated 92 

isotopic fractionation with trophic transfer. In controlled feeding experiments, we reared the 93 

cladoceran Daphnia magna and the rotifer Brachionus plicatilis either on the chlorophyte 94 

Chlamydomonas reinhardtii or the cryptophyte Rhodomonas salina which differ in their FA 95 

profiles and thus food qualities. Together, these experiments allowed us to evaluate the 96 

strength and weaknesses of FA isotope-based approaches to trace nutrient and energy flows in 97 

aquatic food-webs.  98 

Methods 99 

Assessment of algae group differences 100 

In total, 29 phytoplankton strains from four major taxonomic groups were cultured in 101 

strain-specific culture media under replete conditions. Strains included both freshwater and 102 

marine species (see Table 1 and Table S1) and comprised 12 chlorophytes, nine 103 

cyanobacteria, five diatoms and three haptophytes. All strains were grown in 2L batch mono-104 

cultures at 18-20C˚ and a 13:11hrs day-night cycle. Light intensity ranged between 160-210 105 

μmol m−2 s−1 due to slight alternation of culturing set-ups (no systematic variation across 106 

groups). All strains were acclimatised for three weeks to facilitate adaptation to local culture 107 

conditions. Duplicate cultures for each strain were set up. Samples for bulk isotope analysis 108 

and FA-CSIA were taken during exponential growth. Spirulina major and Achnantes sp. 109 

formed macromolecular agglomerations and were concentrated on 20 µm sieves, washed with 110 

deionised water, freeze-dried and stored at -80°C for further analysis. All other strains were 111 

filtered onto pre-combusted GF/F filters (Whatman, 0.47 μm nominal pore-size, 4 h at 450°C) 112 

and stored at -80°C.  113 

Trophic fractionation experiments  114 



 

 

Sensitivity: Internal 

FA isotope ratios of two zooplankton species and their diets (two mono-algal diets in two 115 

experiments per consumer; Table 1) were measured in controlled feeding experiments to 116 

evaluate isotopic fractionation with trophic transfer. We selected the rotifer B. plicatilis and 117 

the cladoceran D. magna as representative example consumers from two important functional 118 

zooplankton groups. These consumers were reared on one low and one high FA quality diet. 119 

The chlorophyte C. reihardtii, which lacks highly unsaturated FA with >4 unsaturated C-120 

bonds [48], and the cryptomonad R. salina with high concentrations of eicosapentaenoic acid 121 

(EPA) and docosahexaenoic acid (DHA) [49] were used as high and low FA quality diet, 122 

respectively. Both algae were cultured in chemostats (1L volume, 0.3 daily dilution rates) on a 123 

nutrient replete medium to ensure a consistent food quality of zooplankton diets throughout 124 

the experiments. Experiments were conducted at a salinity of 6 ppt. Both the algae and 125 

zooplankton were acclimatised for >3 months to salinity conditions and zooplankton was 126 

transferred to experimental food treatments four days prior to the start of experiments. 127 

Experiments were set up in triplicate for a duration of 12 days to ensure that zooplankton 128 

biomass fully incorporated the new food source during incubations (a conservative estimate of 129 

population growth rate of 0.20 day-1 [50] leads to the replacement of >95% of body mass 130 

during the experimental period). Food and water were changed every second day to prevent 131 

changes in food quality between feeding events. Food was provided in excess (>3 mg C L-1) 132 

and experimental vessels (6L for rotifers and 8L for daphnids; large vessels were required to 133 

satisfy high biomass needs for biochemical analyses) were gently aerated to maintain oxygen 134 

conditions and circulate food particles. Samples from food algae were collected on pre-135 

combusted GF/F filters. Rotifer and daphnid cultures contained a mix of juvenile and adults. 136 

For daphnid samples, 40 adult individuals per sample were hand-picked and stored in 137 

Eppendorf tubes. Rotifer cultures were first settled in 2L sedimentation chambers to sediment 138 

detritus and feces. The top 1.8L were then sieved through 60 μm nets to remove food algae 139 

and collected on pre-combusted GF/F filters. All samples were stored at -80°C.  140 
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Zooplankton growth and production measurements 141 

One aim was to relate trophic fractionation of FA δ13C to food quality in feeding 142 

experiments. Under constant food quantity, growth and egg production of zooplankton are 143 

indicators of food quality [51]. We therefore measured consumers’ growth and reproduction 144 

for all zooplankton-food combinations. Prior to these experiments, zooplankton species were 145 

maintained for two weeks under experimental food conditions to minimize maternal effects. 146 

Neonate daphnids (n = 10) from a second brood batch were placed in individual 40 mL 147 

containers. Individual rotifer neonates (n = 8) were placed in 1.5 mL Eppendorf tubes. Rotifer 148 

and daphnid experiments were maintained for six and 12 days, respectively. Every day, 149 

specimens were transferred to new experimental containers with excess food. For rotifers, 150 

neonates and the number of parthenogenetic eggs were recorded and experiments were kept 151 

on a shaking table. For daphnid experiments, neonate production and biomass gain were 152 

measured. Biomass gain was established by comparing the mass of neonates (3 x 6 neonates 153 

were pooled at the start of the experiment) with the mass of individual daphnids at the end of 154 

the experiment (all samples were dried for 24 hrs at 60°C). Neonates were counted daily and 155 

experiments were gently aerated to keep microalgae in suspension. 156 

FA extraction and isotopic analyses 157 

Bulk as well as FA-specific 13C values were measured in phytoplankton and consumer 158 

samples. For phytoplankton strains used for algae group separation, two samples per strain were 159 

analysed. For zooplankton, four replicates per food algae and three replicates per zooplankton 160 

species were analysed for each treatment. FA were extracted, purified and separated into lipid 161 

fractions following the protocol of Grosse, van Breugel and Boschker [52]. The separation of 162 

FA resulted in three fractions, one sub-sample in chloroform (containing neutral FA), one sub-163 

sample in propanone (dominated by glycolipids) and one in methanol (containing polar 164 

phospholipids). Additionally, we split the samples before separation resulting in one sub-165 
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sample containing all lipid groups. Because of high analytical costs, we measured only the 166 

subsample containing all lipids and the methanol sub-sample containing phospholipids, which 167 

are further referred to as total and polar lipid samples, respectively. After esterification, FA 168 

were measured as fatty acid methyl esters (FAME) with a Thermo GC Ultra gas chromatograph 169 

equipped with a polar column (70% Cyanopropyl Polysilphenylene-siloxane; TR-FAME®, 170 

10m, 0.1 µm ID, 0.2 µm film, Thermo Fisher Scientific, Germany). The isotopic composition 171 

of individual FA was determined using GC-C-IRMS [53]. In short, an isotope ratio mass 172 

spectrometer (Delta Plus Advantage, Thermo Fisher Scientific, Germany) was connected via a 173 

combustion interface (Combustion III, Thermo Finnigan, Germany) to a gas chromatograph 174 

(GC-TRACE Ultra; Thermo Fisher Scientific). Sample injection was performed on a polar 175 

column (90% biscyanopropyl, 10% phenylcyanopropyl polysiloxane; RTX-2330, 30 m, 0.2 µm 176 

film, Restek, Germany). Reference gas calibration was implemented by combustion of a known 177 

isotopic composition of nonadecanoic acid methyl ester (-35.53‰). FA peak identification was 178 

conducted by comparison with known FAME reference standards. Three sets of peaks co-eluted 179 

across all samples: (i) 16:1ω7 and 16:1ω9, (ii) 18:1ω7 and 18:1ω9 and (iii) 20:3ω3, 20:4ω6 180 

and 22:0. Because of the biochemically heterogeneous co-elution of (iii), we did not include 181 

this peak in the fractionation study. While (i) and (iii) co-eluted in all samples and joint isotope 182 

values for the respective sets of peaks are presented, (ii) could be separated in some samples. 183 

Consequently, we report for 18:1ω7 and 18:1ω9 results of separated peaks based on a sub-set 184 

of samples as well as a joint value based on all samples. The effect of methylation during the 185 

analytical procedure was accounted for by correcting FA δ13C by the measured methanol δ13C 186 

of -38.8‰ following Bec et al. [29]. FA concentrations are presented as % of total FA for 187 

samples from our controlled feeding experiments. Differences in FA concentrations between 188 

algae groups are reported elsewhere [54, 55] and are not presented in detail. Bulk stable isotopes 189 

were analysed at the University of California stable isotope facility (no pre-treatments) using a 190 
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PDZ Europa ANCA-GSL elemental analyser interfaced to a PDZ Europa 20-20 isotope ratio 191 

mass spectrometer (Sercon Ltd., Cheshire, UK). 192 

Data analysis 193 

Stable isotope data are expressed in the delta notation (δ13C) relative to Vienna Pee Dee 194 

Belemnite, the international standard for C. Trophic discrimination was calculated as the 195 

difference in δ (‰) of bulk or δ13C FA values between consumer and diet (e.g. δ13Cconsumer - 196 

δ13Cdiet) and denoted as Δ(‰). In analyses of phytoplankton, we aimed to identify FA that can 197 

be widely used for group differentiation and hence we only included FA in our analyses if 198 

they were found in >15% of algae strains in a group. For zooplankton experiments, only FA 199 

that occurred in two out of three replicates were included. Further, we standardized FA prior 200 

to statistical analyses, a technique frequently applied to explore the potential of CSIA of AA 201 

for carbon tracing [25, 56]. Standardisation was implemented by subtracting the δ13C ratios of 202 

16:0 measured in a sample from the δ13C values of that specific FA. 16:0 is a common FA and 203 

was present in all 142 samples measured and as such suitable for standardisation. 204 

Standardisation was required because algae species were cultured on different media, which 205 

can lead to differences in absolute isotopic ratios of dissolved inorganic C and algae C [57]. 206 

Such media-dependent differences would obscure systematic differences in FA δ13C driven by 207 

different FA synthesis pathways among algae groups and therefore had to be removed through 208 

standardisation (see discussion and Box 1 for a further details). As an alternative to 16:0 209 

standardisation, we also evaluated a standardisation by the average FA δ13C of all measured 210 

FA isotope values. Results were largely similar and displayed in Fig. S2. 211 

Statistical comparisons among algae groups were based on ANOVA followed by Tukey post-212 

hoc tests. Homogeneity of variance between groups was assessed prior to analyses and if 213 

required logarithmic or square root transformation were applied. If homoscedasticity could 214 

not be achieved, Kruskal-Wallis followed by pairwise Mann-Whitney-U-Test were 215 

performed. Results of zooplankton trophic fractionation experiments were assessed with 216 
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Student’s t-tests after transformations to reach normality and homoscedasticity when 217 

necessary. In order to assess the impact of diet on isotopic fractionation in consumers we 218 

accounted for consumer and FA identity by applying a nested ANOVA with consumer and 219 

FA identity as nested (random) factors. All statistical tests were implemented using the 220 

software R 3.5.2 [58].  221 

Results 222 

Separation of algae groups by their FA isotope values 223 

Mean differences in stable isotope values of bulk C and 16:0, the most abundant FA across 224 

all samples, revealed that 16:0 was generally depleted by 8-18‰ compared to bulk δ13C (Fig. 225 

1). Despite substantial variation within algae groups, the difference between 16:0 and bulk 226 

isotopic values in chlorophytes was significantly smaller than in haptophytes (Tukey post-hoc 227 

test; p = 0.02) and in cyanobacteria (p = 0.03) in total lipid samples (Fig. 1A). Further, the 228 

average differences in isotopic values between 16:0 and all other FA differed among groups 229 

(Fig. 1B) with cyanobacteria FA showing a significantly higher similarity with δ13C values of 230 

16:0 than diatom (Tukey post-hoc test; p < 0.01) and chlorophyte FA (p < 0.01). FA δ13C of 231 

polar lipids generally reflected the patterns found in total lipids (Fig. S1). 232 

Standardised δ13C of individual FA displayed a w-shaped pattern when listed based on 233 

their C-chain length and degree of unsaturation (Fig. 2A-B, Fig. S2). Generally, 14:0, 14:1 234 

and 16:0 were relatively enriched in 13C while desaturation led to 13C depletion. Elongation 235 

and the enzymatic step producing 18:1 FA resulted in higher δ13C values, but desaturation 236 

again lowered isotopic ratios. Elongation to 20-C PUFA led to isotopic enrichment and 237 

intermediate δ13C values and consequently, desaturation and elongation seemed to shape FA 238 

δ13C profiles across groups. 239 
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A number of FA showed differences in isotopic ratios between certain algae groups (Fig. 240 

2). For example, diatoms showed significantly lower δ13C values for 18:2ω6 in the total lipids 241 

(Tukey post-hoc test; p < 0.001) and haptophytes significantly higher δ13C values for 18:4ω3 242 

in polar lipids (pairwise-Wilcoxon tests; p < 0.04) than all other algae groups (Fig. 2B). 243 

However, many PUFA were not consistently present across all groups and therefore, we 244 

concentrated our comparison on saturated, mono-unsaturated and di-unsaturated FA occurring 245 

in most samples. A screening of potential tracers revealed that differences between δ13C of 246 

16:0 and 18:2ω6 as well as the difference between 18:1ω7/9 and 18:2ω6 resulted in 247 

reasonable well separation of the four algae groups (Fig. 2C). Nonetheless, variation within 248 

groups was still evident. 249 

Food identity impacts on consumers’ growth, FA composition and isotope ratios   250 

The two algae species, C. reinhardtii and R. salina, used as food in controlled feeding 251 

experiments differed substantially in their FA composition (Fig. 3A). C. reinhardtii was 252 

characterised by higher relative concentrations of saturated FA (e.g. 16:0) and mono-253 

unsaturated FA (e.g. 18:1ω7 and 18:1ω9) but contained no long-chained (>18 C atoms) 254 

PUFA. In contrast, R. salina contained substantial quantities of the nutritionally valuable EPA 255 

and DHA.   256 

Dietary differences were transmitted to FA profiles of daphnids and rotifers (Fig. 3B-C, 257 

Fig. S3). While rotifers had more compound-rich FA profiles than daphnids, both showed 258 

higher 16:0 (T-test; p < 0.01) and lower EPA concentrations (p < 0.001) when feeding on C. 259 

reinhardtii. Also 18:4ω3 and DHA were significantly lower in rotifers (T-test; p < 0.01) and 260 

entirely absent in D. magna with C. reinhardtii as food source. The contribution of the polar 261 

lipid fraction to total lipids increased significantly in rotifers when feeding on C. reinhardtii 262 

(T-test; p = 0.02), but an opposite pattern emerged in D. magna with higher relative polar 263 

contributions in the R. salina treatment (Fig. S4).  264 
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The FA differences in food algae translated to a slightly higher food quality of R. salina 265 

compared to C. reinhardtii diets (Fig. S5). Both food types supported high reproduction rates 266 

in rotifers and daphnids. Though, cumulative egg production per female after 6 days in 267 

rotifers (T-test; p = 0.04) as well as the number of neonates of daphnids in the first brood (T-268 

test; p = 0.02) were significantly higher after feeding on R. salina. Biomass increases of 269 

daphnids during the experiment did not significantly differ between food treatments (t-test; p 270 

= 0.79; Fig. S5B). 271 

Fractionation between the δ13C of FA in algae and zooplankton was highly variable and 272 

there were no clear differences between treatments and consumer species across all FA (Fig. 273 

4A). When average FA fractionation was considered, only the treatments of B. plicatilis and 274 

D. magna feeding on C. reinhardtii differed significantly in trophic fractionation (Tukey post-275 

hoc test; p = 0.01). Isotopic fractionation of individual FA commonly ranged between -2 and 276 

5‰ and many FA (e.g. 16:1ω13, 18:1ω7/ω9 and 18:3ω3) showed both positive and negative 277 

fractionation across treatments. However, 18:4ω3, EPA and DHA displayed little isotopic 278 

fractionation whenever present in both prey and consumer species (Fig. 4B-C). 279 

Finally, we assessed patterns in standardised δ13C values of individual FA in zooplankton. 280 

These analyses were complementary to assessments of isotopic fractionation because they 281 

were not limited to FA present in both food and consumers and thereby allowed more detailed 282 

analyses of δ13C in e.g. 14:0, EPA and DHA. Saturated and mono-unsaturated FA in the total 283 

lipid fraction of consumers displayed a consistent pattern in their δ13C values in response to 284 

different food sources (Fig. 5A). δ13C values of these FA were significantly higher in the R. 285 

salina treatment compared to the C. reinhardtii treatment when FA and consumer identity 286 

were taken into account (nested ANOVA with consumer and FA identity as random factors; p 287 

< 0.001). Moreover, isotope values of EPA (Fig. 5B) and 14:0 (Fig. S6) showed distinct 288 

differences between food treatments and consumers (nested ANOVA performed for each FA 289 
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separately; 14:0 showed differences between food treatments as well as between consumers, p 290 

< 0.01; EPA showed differences between food treatments with a p < 0.01 and marginally non-291 

significant differences between consumers with a p = 0.10). Hence, the isotopic fingerprints 292 

of consumers were significantly influenced by the food type they consumed. 293 

Discussion 294 

Stable isotope analyses of specific dietary compounds represent a promising tool to reveal 295 

carbon and nutrient flows in food-webs [11, 25, 29, 59, 60]. Our assessment of FA δ13C 296 

values and their potential to trace trophic transfer revealed significant algae group-specific 297 

differences in FA isotopes, which may be used to establish unique signals for different food 298 

resources. However, isotopic fractionation of FA in consumers was highly variable, 299 

complicating the use of FA isotopes for dietary tracing. Only long-chain PUFA and 18:4ω3 300 

showed consistently low fractionation between trophic levels in accordance with earlier 301 

zooplankton studies [28, 29] but in contrast to assessments in fish [36]. Consequently, a better 302 

understanding of the factors driving the variability of isotopic fractionation is essential to 303 

capitalise fully on FA δ13C as trophic markers. Our findings of clear food-dependent 304 

differences in FA δ13C of consumers represents a first step towards this goal and additionally 305 

suggest that FA fractionation in consumers may indicate food quality and consumers’ 306 

physiological responses to their diets. 307 

Algae source separation 308 

We found clear differences in FA δ13C values of key food sources at the base of aquatic 309 

food-webs. Differentiation among food items is a crucial first step in tracing energy flows 310 

across trophic levels. Generally, this can be achieved by sampling dietary sources directly or 311 

by inferring dietary signals from a reference library, a principle applied in genetic dietary 312 

tracing approaches [32, 61, 62] and in fatty acid source-tracking [63, 64]. Library approaches 313 

are linked to a number of advantages (e.g. low costs and wide applicability), but require 314 
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consistent source signals across ecosystems. Despite the group-specific FA-isotope 315 

fingerprints we discovered in this study, FA-CSIA alone are likely not powerful enough to 316 

support library-based source separation. A major obstacle for the use of literature values (e.g. 317 

these generated in this study) to infer in-situ food sources is the high variability of isotopic 318 

values within algae groups (Fig. 2). A library approach would rely on mean literature values 319 

and our analysis shows that within-group taxonomic identity can lead to large deviations from 320 

group means. Such deviations from literature group means are likely to be further increased 321 

by changes in growth environments in the target system [65-67]. Consequently, in the context 322 

of library approaches, group-differences in FA δ13C seem mostly suitable to complement 323 

other methods such as FA source-tracking [63, 64] or AA isotope based library approaches 324 

[68]. 325 

Nevertheless, FA isotope based approaches relying on direct source sampling have a large 326 

potential to assess trophic interactions [11, 69, 70]. This is reflected by large differences in 327 

standardised FA δ13C we found among specific algae species (e.g. 18:2ω6 δ13C values of -8.1 328 

for Chaetocerus pluvialis and 6.8 for Dunaliella salina or 20:5ω3 δ13C values of -7.1 for 329 

Emiliania huxleyi and 0.7 for Tetraselmis suecica). This potential of FA-CISA can be 330 

capitalised upon by either relying on group-specific biomarkers (such as 16:1ω7 and 16:4ω1 331 

for diatoms [12, 26]; Box 1, Option A) or by applying a multi-tracer approach (see Box 1, 332 

Option B). Both methods are linked to specific advantages and disadvantages, and method 333 

choice will depend on the aim and community characteristics of target systems. 334 

In contrast to the use of group-specific biomarkers, a multi-tracer approach requires the 335 

physical separation of different food sources. Physical separation of different algae groups can 336 

be accomplished based on sedimentation, floatation and size fractionation techniques [1, 2].  337 

Manual separation techniques are, however, work-intensive and restricted to certain groups 338 

(e.g. autotrophic flagellates are very difficult to separate). Technical advances such as flow 339 
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cytometers with a sorting function could be used to substantially simplify and expand 340 

separation processes. Automated separation of different algae groups based on their size and 341 

pigment content [71] could facilitate the generation of group or possibly even species-specific 342 

diet signals, which would help to utilise the full potential of FA δ13C differences among taxa 343 

recorded in our study.    344 

Trophic fractionation of FA isotopes 345 

A low or predictable trophic fractionation is an important characteristic of reliable trophic 346 

markers [29, 36]. In principle, fractionation is rooted in the influence of molecular mass on 347 

the biochemical reactivity of molecules. Higher δ13C values are thereby assumed to increase 348 

reactivity [36, 72]. However, FA metabolism is determined by a number of different 349 

processes, which can either lead to a 13C enrichment or depletion with trophic transfer (Fig. 6; 350 

see also Fig. S6 for compilation of literature values). Our controlled feeding experiments 351 

showed that differences in FA isotope ratios between consumers and their prey were low and 352 

relatively constant for 18:4ω3, EPA and DHA. This consistently low fractionation, which 353 

accords with earlier studies on daphnids [28, 29; see also Fig. S7], indicates that these 354 

compounds show low fractionation during their uptake (high absorption efficiencies) and 355 

before their incorporation in consumer tissue (e.g. little use for respiration; Fig. 6). Other FA, 356 

however, displayed more variation in isotopic fractionation in consumers. Similar variation in 357 

isotopic fractionation of many FA has been reported in earlier studies [29, 36, 42] providing a 358 

substantial challenge for the use of these FA in dietary tracing approaches [44]. The 359 

uncertainty resulting from variable fractionation might be compensated by large isotopic 360 

differences in target systems. Ultimately, we need to improve our understanding of the factors 361 

driving δ13C changes with trophic transfer to increase the reliability of our predictions.  362 

While food-source dependent trophic fractionation is a disadvantage for tracing energy 363 

flows [34], patterns in fractionation of FA isotopes may provide valuable information on 364 
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consumers’ diet quality [44]. We found that standardised FA isotope ratios in consumers 365 

showed clear differences as response to changes in food sources (Fig. 5). Such systematic 366 

differences may be either explained by (i) the isotopic depletion of 14:0 and monounsaturated 367 

FA in green-algae-consuming zooplankton or (ii) an enrichment of 16:0, which was used to 368 

standardise these FA. Such an enrichment in 16:0 could for example emerge from a relative 369 

surplus of 16:0 in respective food treatments and reduced absorption rates (Fig. 6). Moreover, 370 

EPA showed lower δ13C values in consumers when absent in their diets. Whether such 371 

patterns in FA isotope values in consumers can be systematically linked to surplus or 372 

limitation of specific dietary FA is still unclear and needs to be evaluated in future studies. 373 

Nevertheless, the consistent FA δ13C patterns in consumers fed with different food sources 374 

could provide valuable information on dietary quality and corresponding responses of 375 

consumers in their physiology.  376 

Finally, we want to address potential benefits of joint analyses of FA δ13C in polar and 377 

neutral lipids. While we found some differences in δ13C of FA between total (neutral + polar) 378 

and polar lipids, recorded patterns were largely similar among lipid groups. Nevertheless, 379 

neutral and polar lipids can show substantial differences in turn-over times, especially when 380 

food is available in excess and consumers rapidly build up reserves as neutral FA [73]. Hence, 381 

dietary shifts to new and abundant food sources can lead to faster isotopic changes in neutral 382 

than in polar lipids. This implies that after such diet shifts, the analysis of isotope ratios in 383 

total instead of neutral FA may lead to misinterpretations of consumers feeding behaviour. 384 

However, the slower turn-over of polar lipids [74] also creates the chance to use polar lipid 385 

fractions as dietary archives providing exciting opportunities to reconstruct past feeding 386 

histories of consumers. Differences between FA δ13C ratios in polar and neutral lipids have 387 

previously been used to infer changes in feeding behaviour of fish [73], similar to applications 388 

that used variable isotope turnover rates of amino acids to establish migration patterns [75]. 389 

Our experiments demonstrated that FA δ13C in different lipid fractions are largely similar 390 
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when zooplankton is feeding on one resource. Consequently, differences between isotope 391 

ratios of polar and neutral FA can indeed indicate changes in feeding behaviour, opening up 392 

new opportunities using polar lipid fractions as dietary archives in plankton food-web studies.  393 

Outlook 394 

FA-CSIA represent a valuable methodological approach that is increasingly applied in 395 

studies focusing on e.g. food-webs in aquatic systems [76, 77], terrestrial consumers [78] or 396 

the reconstruction of past human nutrition [79]. Nevertheless, there are clear caveats linked to 397 

the use of this method, such as variable trophic fractionation and high within source variation 398 

highlighted in our study. Essential premises for FA δ13C based applications are that 399 

differences among dietary sources are large enough to offset these caveats and that 400 

researchers respect the same guidelines that have been established for bulk isotope analyses 401 

[13, 15]. When such principles are considered, advantages such as the group-specificity of 402 

marker FA or the use of polar FA as dietary archives provides exciting tools to trace nutrient 403 

and energy flows within complex food-webs.   404 
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Table 1: Overview of different monocultures and zooplankton experiments established to test 635 

the potential of compound-specific isotope analyses of FA to improve energy tracing 636 

approaches in aquatic food webs. Two strains of Emilia huxleyi were cultured, one calcifying 637 

and one non-calcifying. Also for Synchocystis two strains were cultured, one isolated from the 638 

Baltic Sea and one from Lake Nakuru (Kenya). Zooplankton experiments included two 639 

experiments with each consumer, one with Chlamydomonas reinhardtii and one with 640 

Rhodomonas salina as diet.  641 
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Zooplankton experiments 

Zooplankton consumer Algae food treatment 

  Brachionus plicatilis   Chlamydomonas reinhardtii         

                             Rhodomonas salina             

  Daphnia magna                           Chlamydomonas reinhardtii         

                           Rhodomonas salina             

  642 
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 643 

Fig. 1: Boxplots of the differences in δ13C values between C16:0 and bulk C (A), and between 644 

C16:0 and other FA (B) in total lipids of four major algae groups. Bulk C constitutes an 645 

integrated isotope value of all C-compounds of an alga. In total, 29 species (59 samples) were 646 

analysed. Lowercase letters denote significant differences across algae groups as those with 647 

the same letters are not statistically different from each other.  648 
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 649 

Fig. 2: FA δ13C fingerprints of four major algae groups. Displayed are the standardised δ13C 650 

values of individual FA in total (A) and polar (B) lipids of all FA that were present in at least 651 

15% of all samples from a specific algae group. 16:1ω7 and 16:1ω9 co-eluted in all and 652 

18:1ω7 and 18:1ω9 co-eluted in some samples and are hence displayed together. Individual 653 

values of the latter FA are restricted to samples where peaks could be separated. (C) 654 

Differences between δ13C of 16:0 and 18:2ω6 as well as between, 18:1ω7/9 and 18:2ω6 of 655 

total lipids were used to differentiate between algae groups. One outlier (Dunaliella 656 

tertiolecta, a green algae) falls outside the plotted range and is not displayed (values: x=8.7, 657 

y=3.5). Error bars represent standard errors of the mean.  658 
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 659 

Fig. 3: Relative FA concentrations in diet and consumers of controlled feeding experiments. 660 

Presented are relative contribution to total lipids in two different food algae (A) fed to 661 

Brachionus plicatilis (B) and Daphnia magna (C). Only FA with relative concentrations of 662 

>1% are displayed. 16:1ω7 and 16:1ω9 as well as 20:3ω3, 20:4ω6 and 22:0 co-eluted and 663 

joint quantifications for these FA are provided. Error bars represent standard deviations.  664 
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 665 

666 

Fig. 4: Trophic fractionation in FA δ13C measured in controlled feeding experiments. (A) The 667 

boxplots of isotopic fractionation values (difference between isotopic values of FA in 668 

consumer and diet) in total lipids of Daphnia magma and Brachionus plicatilis in the two 669 

dietary treatments. Only FA which were present in prey and consumers were included. Letters 670 

denote significant differences between treatments as in Fig. 1. Fractionation for individual FA 671 

(points represent means, error bars standard errors of the mean) in total and polar lipid 672 

fractions are displayed in (B) and (C), respectively. 16:1ω7 and 16:1ω9, 18:1ω7 and 18:1ω9 673 

co-eluted and integrated isotopic values for these FA are provided. FA with relative 674 

concentrations <1% are not displayed.   675 
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 676 

Fig. 5: Patterns in isotopic values of individual FA in consumers fed with either a 677 

Chlamydomonas reinhardtii (green symbols) or Rhodomonas salina (red symbols). Presented 678 

are isotopic values of saturated and mono-unsaturated FA in total lipids (A), which display 679 

systematic differences between diets (i.e. isotopic enrichment when feeding on R. salina 680 

compared to C. reinhardtii). EPA in highly unsaturated long-chain FA of the polar lipid 681 

fraction (B) showed the same pattern and additionally revealed a relative enrichment of 682 

rotifers compared to daphnids. All values were standardized by δ13C of 16:0. 16:1ω7 and 683 

16:1ω9, 18:1ω7 and 18:1ω9 co-eluted and joint isotopic values for these FA are provided.  684 
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 685 

      Fig. 6: Fractionation of FA isotopes with trophic transfer is the combined result of a 686 

number of processes such as absorption, respiration and bioconversion in consumers. Arrows 687 

indicate changes in FA 13C values under high and low process activity, assuming a higher 688 

activity of 13C rich molecules [36, 72]. Based on this assumption, absorption results in 13C 689 

enrichment, while the use of a FA for respiration decreases δ13C values and the consequences 690 

of bioconversion are case specific. The efficiency (absorption) and the relative quantitative 691 

importance of metabolic processes (i.e. biomass fraction respired/ bioconverted) determine 692 

the magnitude of isotopic fractionation.   693 
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 694 

Box 1: Fatty acids (FA) δ13C in diet tracing: Direct source sampling approaches  

Different algae taxa that co-occur in a system can show systematic differences in their bulk δ13C 

values [light blue area in figure below; 1, 2], caused by e.g. differences in carbon concentration 

mechanisms [3, 4] and C availability [5, 6]. In our study, differences among bulk δ13C of algae were 

caused by different growth media and hence we standardised δ13C FA values to cancel out these 

media effects. In general, isotopic values of bulk C is transmitted to δ13C of total FA (second blue 

layer, Fig. below), which represent weighted means of individual FA δ13C values. Differences in e.g. 

energy storage mechanisms (storage of depleted 13C lipids vs. relatively enriched starch) among 

algae groups can determine bulk – total FA δ13C relationships (e.g. Fig. 1).  

There are two main applications of FA δ13C for tracing trophic interactions when signals of food 

sources are established through direct sampling. Option A is the inference of group-specific isotope 

values based on a specific FA (see [11, 12] or below for an example of 18:5ω3 as tracer for 

haptophytes). This has the advantage that plankton communities can be sampled as a whole and no 

physical source isolation is necessary. However, tracing approaches are limited to a low number of 

food sources because only C isotopes are available as tracer [13]. Option B represents a multi-tracer 

approach. Instead of group-specific marker FA, common FA are used. If these FA δ13C differ among 

food sources, e.g. because of group-specific FA synthesis pathways, multiple food sources can be 

identified based on their unique FA δ13C fingerprints (i.e. group-specific Δδ13C among different FA). 

Such characteristic Δδ13C among algae groups can easily be explored through standardisation as has 

been done for AA [19, 20] or FA in our study. Major requirements for this approach are (i) the need 

to isolate and analyse different food sources in order to attain group-specific FA isotope values and 

(ii) a low or predictable isotopic fractionation between consumers and their prey.  

 
Fig. Box 1: Bulk isotope ratios are transmitted to total FA δ13C values and δ13C of individual FA, which are also 

shaped by enzymatic processes such as elongation and unsaturation [21-23]. δ13C of individual FA can then be 

used to infer bulk δ13C or to create a multi-dimensional  isotopic space that allows to differentiate among 

multiple food sources. Separation of multiple sources using different Δδ13C (red and blue) and bulk δ13C in a 

multi-dimensional isotopic niche space is visualised on the bottom right.    

 


