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Abstract— Prediabetes, characterized by elevated blood glucose 

(BG) levels without reaching the threshold for diabetes, 

necessitates early detection to avert complications. Unfortunately, 

traditional BG monitoring methods involve painful finger 

pricking. Hence, exploring noninvasive alternatives for BG 

estimation and continuous monitoring is imperative. This paper 

investigates electroencephalogram (EEG) frequency parameters, 

an underexplored aspect of prediabetes diagnosis. Our 

investigation involved 25 participants (17 healthy and 8 

prediabetes) subjected to an oral glucose tolerance test. 

Continuous EEG signals were collected from three positions: 

frontal (F), occipital (O), and parietal (P). The analysis employed 

boxplots to elucidate signal patterns in three phases at 40-minute 

equal time segments; start phase, middle phase, and end phase. 

The outcomes revealed compelling results: the left hemisphere's 

occipital (O) recorded an impressive 90.3% and the right 

hemisphere's parietal (P) exhibited a notable 90.5% change at the 

end phase analysis. These findings underscore the significance of 

EEG signal analysis for BG estimation, especially in O and P 

positions, where parameters like alpha and beta mean power 

showcase promise (P-value<0.05). Combining these EEG 

frequency parameters in a wearable device holds potential for 

healthcare and clinical solutions, facilitating noninvasive BG 

status estimation and prediabetes diagnosis.  

 
Index Terms— EEG Signal, Blood Glucose, OGTT, Physiological 

Signal, Prediabetes, Frontal, Occipital, Parental 

 

I.  INTRODUCTION 

HE global prevalence of diabetes mellitus (DM) is on the 

rise, posing significant health challenges worldwide. 

Projections suggest that by 2040, the number of 

individuals affected by DM could reach 642 million [1-2]. In 

the United States, 30.3 million people already have diabetes, 

with an additional 97.6 million adults in the precariously 

intermediate stage known as prediabetes [2]. Prediabetes is 

characterized by elevated blood glucose (BG) levels that have 

not yet reached the diabetes threshold but still pose serious 
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health risks. According to the American Diabetes Association 

(ADA) guideline, prediabetes is diagnosed if BG exceeds 

7.8mmol/dL (140mg/dL) after a two-hour oral glucose 

tolerance test [2]. Prolonged prediabetes can progress to 

diabetes, potentially causing irreversible damage to vital 

organs, the cardiovascular and nervous systems, the retina, and 

in severe cases, leading to mortality [3]. 

Regrettably, there is currently no cure for diabetes. 

However, early diagnosis and diligent monitoring of BG levels 

can significantly mitigate the health complications associated 

with this condition. Traditional methods for BG detection and 

monitoring involve the painful and inconvenient practice of 

pricking a finger to obtain a small blood sample. This approach, 

while effective, is far from ideal and can deter individuals from 

regular monitoring due to the pain and discomfort. The pursuit 

of an alternative, noninvasive method for continuous BG 

monitoring has led to the exploration of various techniques, 

including microwave sensors [4-5], Raman spectroscopy [6], 

refraction of visible laser light [7], contact lenses for tear film 

glucose concentration monitoring [8], and bioimpedance [9]. 

Although these methodologies exhibit potential for BG 

monitoring, they frequently pose challenges that necessitate 

further investigation to enhance their adaptability for wearable 

device integration. As ongoing research endeavors aim to 

address these challenges, an alternative and promising avenue 

for continuous BG monitoring is through the utilization of 

physiological signals, specifically electroencephalogram 

(EEG) signals. This passive source of data presents an 

alternative for advancing the field of continuous BG 

monitoring. 

It is widely acknowledged that glucose serves as the 

primary source of energy for the human brain, as supported by 

extensive research [10-11]. Emerging evidence suggests that 

changes in BG levels can impact brain activity, making EEG 

signals a potentially valuable resource for continuous 

noninvasive BG estimation [12]. EEG signals record the 

electrical activity of the brain's cortex from its surface, making 
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them a prime candidate for investigation in the context of BG-

related changes. Various quantitative studies have delved into 

the impact of glucose on different brain regions. One such 

investigation, conducted by An et al. in 2015[13], aimed to 

explore the effects of glucose on brain activity. In this study, 24 

healthy fasting volunteers engaged in an eight-hour resting-

state EEG analysis. The experiment involved two attention 

exercises, one during a fasting state and another after the 

ingestion of a glucose solution. The findings revealed an 

improvement in participants' performance on the attention test 

following glucose intake. Furthermore, there was a significant 

increase in low alpha (8-10Hz) and theta (4-8Hz) power 

observed in the parieto-occipital and frontal regions of the 

brain. 

In an experimenter-blind crossover study conducted by 

Walker et al., 2021 [14], the impact of glucose metabolism on 

adult brain excitability and network activity was investigated. 

Participants received either a 75g glucose solution or an 

equivalent volume of water on two separate visits. Analysis of 

the EEG frequency spectrum showed significant modulations in 

alpha frequency peak and aperiodic signal components, 

indicating increased excitation. Interestingly, peak alpha power 

exhibited a negative correlation with changes in BG levels, 

highlighting the influence of BG on neurological functions 

related to alertness and attention. Additionally, Wang and 

Dykman (2004) [15] elucidated the connection between BG and 

cognitive functioning and memory through a double-blinded 

study. Participants received either a carbohydrate supplement 

or placebo in alternating weeks. EEG data recorded from 

frontal, parietal, and occipital regions showed enhanced power 

in theta, alpha, and beta wave frequencies during the 

carbohydrate supplement phase, not observed in the placebo 

group. However, while these studies provide valuable insights 

into the relationship between BG and brain activity, their 

findings are not specific to prediabetes and may not directly 

apply to prediabetes diagnosis. 

Previous studies have investigated the relationship between 

EEG signals and glycemic changes, primarily in type 1 or type 

2 diabetes management. Hyllienmark et al. (2005) [16] studied 

35 type 1 diabetes patients and 45 healthy subjects, observing 

increased slow activities in delta and theta bands, and reduced 

alpha peak frequency in the frontal region of diabetic patients. 

Additionally, Rubega et al. (2020) [17] demonstrated the utility 

of EEG signals in detecting hypoglycemia in type 1 diabetes 

patients, achieving a 90% accuracy rate in predicting 

euglycemia and hypoglycemia using neural network analysis. 

However, these studies have not explored the use of EEG 

signals in prediabetes diagnosis, which could aid in early 

detection and implementation of preventive measures to 

mitigate diabetes onset.   

Early diagnosis of prediabetes is crucial for effective 

intervention in preventing progression to type 2 diabetes. 

Treatment modalities for prediabetes include weight loss, 

pharmacotherapies, and sustaining beta-cell function [18-19]. 

The ADA recommends four diagnostic methods for diabetes, 

which are equally applicable for pre-diabetes screening: Fasting 

Plasma Glucose Test (FPG), Oral Glucose Tolerance Test 

(OGTT), A1C (Glycated hemoglobin) levels, and Random 

Plasma Glucose test, particularly for patients exhibiting 

symptoms of hyperglycemia or hyperglycemic crisis. These 

methods are integral for the timely and accurate identification 

of individuals at risk [20-21]. This paper aims to fill this 

knowledge gap by investigating changes in EEG signals at 

specific locations in the rain—parental, frontal, and occipital 

positions—across different frequencies during an OGTT in 

healthy and prediabetes participants. The objective is to identify 

EEG frequency parameters at different stages of the OGTT 

experiment that correlate with BG variations and ascertain the 

hemisphere of the brain that is primarily affected by glucose. It 

is worth mentioning that this is an extension of our previous 

research in identifying features in EEG signals for prediabetes 

diagnosis [22]. 

There are previous investigations that have considered 

EEG signals for noninvasive BG monitoring. Research on 

diabetes patients reveals the association of low-frequency bands 

in the EEG signal with glycemic changes such as hypoglycemia 

[23], detecting nocturnal hypoglycemia using 

electroencephalography signals with an optimization-based 

neural network [24-25]. The number of EEG frequencies 

considered in these studies was limited to alpha and theta, and 

the location was not investigated. Also, another investigation 

explored the possible difference in the EEG pattern between 

normal and hypoglycemia patients [26]. However, EEG 

frequency features and parameters have been scarcely 

investigated for application in prediabetes. The brain signals 

from the right and left hemispheres, according to the 10-20 

system, provide the required structural location for capturing 

EEG signals [27]. Therefore, these positions should be studied 

to provide the appropriate location and frequency signal 

parameters to achieve the possibility of noninvasive BG status 

monitoring. This knowledge can also be integrated into a ‘smart 

helmet’ device that can measure EEG signals suitable for 

healthcare intervention and patient monitoring [28-29]. 

The subsequent sections of this paper are structured as 

follows: Section 2 provides a detailed description of the 

research methodology, while Section 3 presents the findings 

and engages in a comprehensive discussion. Discussion and 

conclusion are presented in Sections 4 and 5, respectively. 

II. METHOD 

In this section, we discuss the OGTT experiment conducted 

to acquire BG readings and EEG signals. Figure 1 illustrates the 

block diagram of the experimental procedure. 

A. EEG Frequency 

The EEG signals encompass five distinct frequency bands, 

each with their unique characteristics and operational 

frequencies. These bands include alpha (8-13Hz), beta (14-

30Hz), delta (0.5-3Hz), theta (4-8Hz), and gamma (>30Hz). A 

representative section of these frequency signals, captured 

during the experiment utilizing BIOPAC AcqKnowledge 

software, is visualized in Figure 2. 
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B. Experiment 

To explore the impact of varying BG levels on different 

brain regions, we conducted an OGTT involving twenty-five 

participants. Of the participants, nineteen were male, and six 

were female, all of whom were thoroughly briefed on the 

experimental procedures and provided informed consent. An 

illustration of a participant during the experiment is depicted in 

Figure 3. The participants' demographic characteristics include 

an average age of 24 ± 1.5 years, a body weight of 69.8 ± 9.2 

kg, a height of 1.71 ± 0.11 meters, and normal body 

temperature. The selection process for participants was guided 

by the need to capture a diverse representation of individuals 

across several age groups that will include those with and 

without prediabetes. Participants with prediabetes were 

identified based on established diagnostic criteria, and they are 

prominent between the ages of 18 and 44 years, which are 

usually undiagnosed [1]. 

To ensure that the collected EEG signals are strongly 

related to glucose level variation, before the study, participants 

received detailed instructions outlining specific activities to 

avoid before and during the experimental sessions. This 

included refraining from consuming caffeinated beverages, 

taking any form of meals, engaging in intense physical exercise, 

or participating in mentally demanding tasks. The experimental 

sessions took place in a quiet room with minimal distractions to 

reduce the likelihood of extraneous variables affecting the EEG 

signals. Following the experimental sessions, participants were 

debriefed to inquire about any activities or factors that may have 

influenced their mental or physical state during the data 

collection. 

Each participant underwent the experiment over two 

consecutive days. On the first day, they consumed a 75g 

anhydrous glucose solution (glucose experiment), while on the 

second day, they refrained from glucose intake, serving as the 

control. The experiment commenced in the morning before 9:00 

a.m. and spanned two and a half hours. Thirty minutes into the 

experiment, participants ingested the 75g anhydrous glucose 

solution for the first day. Throughout the investigation, 

continuous EEG signals were recorded. At 25-minute intervals, 

BG values were measured through finger pricking, and BG 

levels were determined using a strip device known as the 

ACCU CHEK meter. 

EEG signals were continuously captured using a Biopac 

device system (model number: MP150) in conjunction with 

AcqKnowledge software. This device facilitated the continuous 

acquisition of physiological signals. The BIOPAC (MP150) is 

a versatile and expandable data acquisition system that 

functions as an on-screen chart recorder, oscilloscope, and X/Y 

plotter. It enables users to record, view, save, and print data, 

making it an invaluable tool in life science laboratories for 

recording data from various sources such as human bodies, 

animals, or tissue preparations. The MP150 data acquisition and 

analysis systems, coupled with the AcqKnowledge software, 

provide a flexible platform for life science research. These 

systems are compatible with any Ethernet-ready computer. 

With variable sample rates of up to 400 kHz (aggregate), 

multiple data can be recorded efficiently through different 

channels. The AcqKnowledge software is an interactive and 

intuitive program that allows data to be instantly viewed, 

measured, transformed, replayed, and analyzed. It provides a 

user-friendly interface with simple pull-down menus and 

dialogs, eliminating the need to learn a programming language 

or new protocol. Whether performing complex data acquisition, 

stimulation, triggering, or analysis tasks, the BIOPAC (MP150) 

system and AcqKnowledge software offer a seamless and 

efficient solution for research [30]. 

 
Fig. 3. An example of a male participant during the experiment, taking 

glucose solution while EEG signals are recorded continuously. 

 

 
Fig. 1. A systematic description of the method for acquiring EEG signal 

and blood glucose during the two-hour oral glucose tolerance test. 

 

 
Fig. 2. An example of EEG frequency band obtained from the occipital 

electrode position during the experiment from BIOPAC and 

AcqKnowledge software.  
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Participants wore an EEG cap, equipped with dry 

electrodes positioned according to the international 10-20 

system. The electrodes in the cap were strategically located at 

F3, F4, O1, O2, P3, and P4. Here, F, O, and P represent the 

frontal, occipital, and parietal lobes (or locations) of the brain, 

respectively, signifying different brain regions. The selection of 

these six locations aligns with prior studies examining EEG 

power and glucose fluctuations in young adults with type 1 

diabetes [21,25] and the connection between glucose 

metabolism, brain activities, and cognitive function [13-15]. 

Notably, odd, and even numbers assigned to the locations, such 

as O, P, and T indicate electrodes positioned on the left and right 

hemispheres, respectively.  

C. Analysis 

EEG frequency bands were extracted from EEG signals 

obtained during the experiments at the six designated locations 

using AcqKnowledge software. The software's filtering process 

effectively eliminated noise and artifacts, enhancing the 

suitability of the data for subsequent analysis. 

For the comparative changes analysis in both experiments, 

the following parameters were derived from each frequency 

band at 5-second epoch intervals: mean power, median 

frequency, mean frequency, spectral edge, and peak frequency. 

The selection of a 5-second epoch interval aligns with its 

utilization in analyzing EEG signals in the context of type 1 

diabetes [21] and serves to approximate the frequency values 

recorded within an average minimum duration. The two-hour 

duration of the OGTT procedure was divided into three equal 

segments of 40 minutes, representing the start, middle, and end 

phases of the experiment. The start phase indicates a period 

before and just when the ingested glucose solution is observed 

in the measured BG, and the middle phase represents the period 

when maximum glucose concentration is observed in the 

measured BG, while the end phase depicts the period of decline 

in the measured BG due automatic BG regulation by the body.  

A boxplot analysis was performed to visualize the 

alterations in EEG frequency across each brain location in these 

segments for all participants. The boxplot representation 

includes key statistical values such as the maximum value, third 

quartile (75th percentile), median, lower quartile (25th 

percentile), and minimum value, providing a comprehensive 

overview of the data distribution. These statistical values are 

used to describe the changes between the different categories of 

participants. Furthermore, an assessment of changes in the 

interquartile range within the boxplot (denoted as P) was 

conducted to ascertain variations in the parameters. 

 

∆𝑃𝑔 = 𝑃𝑔75 − 𝑃𝑔25                                  (1) 

∆𝑃𝑐 = 𝑃𝑐75 − 𝑃𝑐25                                   (2) 

Where 𝑃𝑔75 and 𝑃𝑔25 are the value of the 75th percentile and 

25th percentile, respectively, for the glucose experiment. While 

𝑃𝑐75 and 𝑃𝑐25 are the corresponding 75th percentile and 25th 

percentile, respectively for the control experiment. Therefore, 

∆𝑃𝑔 and ∆𝑃𝑐 represents the size of the interquartile range for 

glucose and control experiments, respectively. Furthermore, the 

parameter from EEG frequency bands that show consistent 

change is further investigated to determine which hemisphere 

is most sensitive to BG.  

∆𝑃2 = ∆𝑃2𝑔 − ∆𝑃2𝑐                                          (3) 

∆𝑃1 = ∆𝑃1𝑔 − ∆𝑃1𝑐                                           (4) 

𝑃ℎ = ∆𝑃2 − ∆𝑃1                                                (5) 

Where ∆𝑃1 and ∆𝑃2 are the sizes of the interquartile range for 

the left and right hemispheres respectively and where 𝑃ℎ refer 

to the direction of change which can either be 1, 0 or -1 when 

∆𝑃2 > ∆𝑃1 , ∆𝑃2 = ∆𝑃1 or ∆𝑃2 < ∆𝑃1 respectively. Table I 

shows the pattern description for the different conditions of 

EEG frequency due to changes in BG and the value of 𝑃ℎ. The 

change ratio is described as:  

𝑆2 =
∑(𝑃ℎ=1)

∑(𝑃ℎ)
× 100%                                     (6) 

 

𝑆1 =
∑(𝑃ℎ=−1)

∑(𝑃ℎ)
× 100%                                  (7) 

Where 𝑆1 and 𝑆2 are the percentage change of the left and the 

right hemispheres, respectively. The percentage change 

describes the region of the brain where changes are observed 

during the change in the measured BG. The higher the value of 

𝑆1, the lower the value of 𝑆2, Similarly, the higher the value of 

𝑆2, the lower the value of 𝑆1. 

III. RESULT 

At the end of the OGTT experiment, eight participants were 

diagnosed with prediabetes because their BG ≥ 7.8mmol/L, 

while seventeen participants were identified as healthy because 

their BG < 7.8mmol/L. Table II presents an overview of the BG 

values recorded from all participants throughout the glucose 

experiments in the three phases. Specifically, the table provides 

mean values accompanied by their respective standard 

deviations for both the healthy and prediabetes participants. In 

both participants, the start and end phases recorded the lowest 

BG values compared to the middle phase where the peak BG 

values were recorded. The lowest BG values are observed in the 

start phase before the ingestion of glucose. Generally, within 

the prediabetes group, the values of BG in each phase are higher 

than the healthy participants. Both the healthy and prediabetes 

groups have approximately the same mean BG value with no 

statistically significant difference (P-value>0.05). 

Figure 4 displays boxplots illustrating alpha mean power for 

parietal, frontal, and occipital electrodes. While the frontal 

electrode exhibits no discernible change across the three phases, 

noticeable alterations are observed in the patterns of the parietal 

and occipital electrodes. Figures 5-7 compare EEG parameters 

between the middle and end phases, focusing on those with 

≥50% changes and P-value<0.05. The start phase was excluded 

due to parameter changes <50% and P-value >0.05. Three 

TABLE I 

DESCRIPTION OF EEG FREQUENCY CONDITIONS 
Influence of 

Glucose 

Hemisphere 

Difference 

Change 

pattern 

∆𝑃𝑔 > ∆𝑃𝑐 ∆𝑃2 > ∆𝑃1 Increase 

∆𝑃𝑔 < ∆𝑃𝑐 ∆𝑃2 < ∆𝑃1 Decrease 

∆𝑃𝑔 = ∆𝑃𝑐 ∆𝑃2 = ∆𝑃1 Equality 
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parameters exhibit significant differences between healthy and 

prediabetes groups in the middle and end phases within the F 

electrodes (Fig. 5). Notably, there is a >50% decrease pattern in 

alpha mean frequency (AMNF), gamma mean frequency 

(GMNF), and gamma peak frequency (GPF). Moreover, in the 

end phase, the percentage decrease pattern for AMNF, GMNF, 

and GPF intensifies, while the increase and equality percentage 

changes diminish. 

Comparing the middle and end phases, noticeable differences 

were observed between healthy and prediabetes experiments in 

the O and P electrodes (Fig. 6 and Fig. 7). The P electrode 

exhibited a consistent increase in alpha mean power (AMNP), 

beta mean power (BMNP), theta mean power (TMNP), delta 

mean power (DMNP), and gamma mean power (GMNP). 

Additionally, there was a difference in alpha median frequency 

(AMDF) in the O electrode. However, the P electrode gamma 

spectral edge (GSE) and gamma peak frequency (GPF) showed 

an equality pattern >50% in the middle phase. Percentage 

changes in the O electrode were found in AMNP, alpha median 

frequency (AMDF), BMNP, DMNP, and GMNP, while 

changes in the P electrode were identified in AMNP, BMNP, 

DMNP, TMNP, and GMNP. Generally, there was a decreased 

percentage change pattern in the O electrode and an increased 

percentage pattern with the P electrode.  

The results in Tables III, IV, and V outline the proportion of 

changes between the left and right hemispheres across different 

phases of the experiment. During the start phase, differences 

between hemispheres are minimal, with no percentages 

exceeding 50%. The maximum percentage change is 10.3% in 

the right hemisphere of the F electrode, while the minimum is 

7.0% in the right hemisphere of the P electrode. Similarly, in 

the middle phase, changes do not exceed 50%, with a maximum 

change of 30% observed in the O electrode's right hemisphere 

and a minimum of 10.3% in the right hemisphere of the F 

electrode. However, significant changes are evident in the end 

phase, with a percentage change of 90.5% in the right 

hemisphere of the P electrode and 90.3% in the left hemisphere 

of the O electrode.  

Table 6 shows a comprehensive comparison regarding the 

merits and limitations of some technologies for non-invasive 

BG measurement. In our study, the accuracy of prediabetes 

identification was based on post-OGTT BG values as defined 

in [20-21]. It is pertinent to note that our model, as presented in 

this paper, abstained from the classification or identification of 

individuals as normal or prediabetic using EEG signals, 

eliminating the possibility of errors in this context. However, 

potential sources of variability emerged in the measurement of 

EEG signals, warranting attention. Individual variability, 

inherent in the diverse nature of EEG signals among 

individuals, and external interference, stemming from 

environmental factors or external noise during data collection, 

were identified as key contributors to potential inaccuracies. 

Additionally, challenges in preprocessing EEG data, leading to 

signal processing artifacts, and the inherent heterogeneity in 

prediabetes presentation further underscored the need for 

meticulous consideration of these factors in the pursuit of 

accurate physiological signal-based prediabetes diagnostics. 

IV. DISCUSSION 

Exploring EEG signals in prediabetes offers insights into 

correlating EEG features with metabolic dysregulation. 

Prediabetes, marked by elevated BG, affects various 

physiological and neurological functions. We examine EEG 

patterns in the parietal (P), occipital (O), and frontal (F) brain 

regions and their relation to BG changes. Studies indicate that 

BG fluctuations can alter EEG amplitude and frequency, 

shedding light on neural mechanisms driving cognitive 

fluctuations in prediabetes. 

Utilizing EEG as a diagnostic tool in prediabetes may aid in 

early detection and risk assessment. Identifying specific EEG 

patterns associated with prediabetes could potentially serve as 

a noninvasive biomarker for early diagnosis. This early 

identification might allow for timely interventions to prevent 

the progression of diabetes occurrence.  

The parietal region of the brain plays a crucial role in sensory 

processing, spatial awareness, and various cognitive functions. 

In our analysis, with a threshold of 50%, both the right and left 

hemispheres of the P region of the brain do not show a major 

change that indicates that the P region is suitable for prediabetes 

diagnosis. Although there were three parameters (AMNF, 

GMNF, GPF) from the regions that show changes in the end 

phase of the analysis. 

 

[A] 

 

[B] 

 

[C] 

 
 Fig 4. An example of a boxplot for alpha mean frequency at the start, middle, and end phase from [A] P2 electrode [B] F2 electrode [C] O2 electrode 

TABLE II 

DESCRIPTION OF BLOOD GLUCOSE AMONG THE 

PARTICIPANTS 

Prediabetes(mmol/dL) Healthy(mmol/dL) 

Start 
phase  

Middle 
phase   

End 
phase 

Start 
phase  

Middle 
phase   

End 
phase 

5.4±0.6  13.8±1.3 8.4±0.9 4.9±0.5 10.4±0.7 5.8±0.6 
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The occipital brain region, vital for visual processing, was 

explored for potential links with prediabetes, offering insights 

into how metabolic dysregulation might affect it and its 

diagnostic implications. A significant 90% change in the left 

hemisphere during the end phase suggests its relevance for 

prediabetes diagnosis. However, a 30% change in the right 

hemisphere during the middle phase may not be sufficient for 

diagnosis. Additionally, the parietal region, implicated in 

sensory and cognitive functions, was investigated for its 

association with prediabetes, highlighting the potential impacts 

of metabolic changes on neural processing. Notably, the right 

hemisphere of the P electrode shows an 80% change compared 

to the left hemisphere's 10% during the end phase, indicating its 

diagnostic potential for diabetes. 

In general, the middle phase exhibits greater differences 

between glucose and control experiments compared to the start 

and end phases, while the end phase shows more differences 

between healthy and prediabetes states compared to the start 

and middle phases. Parameters like AMNP, BMNP, DMNP, 

TMNP, and GMNP in the P and O electrodes are important 

considerations for prediabetes diagnosis. 

Noninvasive blood sugar monitoring methods, including 

those using infrared light, have gained significant interest and 

research focus [31]. They show promising accuracy compared 

to standard laboratory systems. However, infrared-based 

methods have distinct advantages and limitations. While they 

allow direct glucose measurement through spectroscopic 

analysis without invasive procedures, like finger pricking, they 

face challenges related to tissue penetration depth and skin 

variability. In contrast, EEG signals provide insights into neural 

activity but require advanced processing. Both methods aim for 

noninvasive glucose monitoring, but each has unique strengths 

and considerations that merit exploration for comprehensive 

prediabetes diagnosis. Table VII presents a comparison of 

infrared light and EEG-based methods. 

One limitation of EEG-based BG monitoring is the indirect 

relationship between EEG signals and glucose levels, which 

may introduce variability and complexity in data interpretation. 

[A] 

 

[B] 

 
Fig 5. Percentage change in frontal electrode parameters at the [A] middle phase [B]end phase 

 

[A] 

 

[B] 

 
Fig. 6 Percentage change in occipital electrode parameters at the [A] middle phase [B]end phase  

 

 

  
[A] 

 

[B] 

 
Fig. 7 Percentage change in parental electrode parameters at the [A] 

middle phase [B]end phase 
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Additionally, EEG signals can be influenced by various 

physiological and environmental factors, potentially 

confounding the analysis and interpretation of results. 

Furthermore, the need for specialized equipment and expertise 

for EEG signal acquisition and processing may pose practical 

challenges in clinical settings. We will explore potential 

strategies to address and mitigate these limitations in our future 

research to further enhance the robustness and applicability of 

EEG-based BG monitoring methods. 

V. CONCLUSION 

In this study, we conducted an Oral Glucose Tolerance Test 

(OGTT) experiment to explore changes in EEG frequency 

parameters. Twenty-five participants wore EEG caps with 

electrodes. We analyzed EEG signals from the frontal, 

occipital, and parietal regions of both hemispheres during three 

periods (start, middle, and end). 

To build upon our promising findings, future research will 

involve a larger participant pool to validate our conclusions. We 

plan to expand our investigation by analyzing EEG frequencies 

across different phases (start, middle, and end) in both healthy 

and prediabetes groups to predict prediabetes status. Although 

previous studies have examined ECG data for this purpose [32-

34], our research aims to compare ECG and EEG models. 

To enhance our analysis, we aim to employ cutting-edge 

machine learning and deep learning techniques for prediabetes 

prediction [35-36]. Our goal is to develop an adaptive deep-

learning model for noninvasive prediabetes diagnosis via 

wearable devices. This research represents a significant 

advancement in harnessing wearable technology for healthcare 

and early prediabetes detection. 
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