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Abstract— Feature extraction is a crucial step in electromyogram
(EMG)-based pattern recognition systems for decoding motor
intents. However, despite the existence of numerous proposed
techniques for feature extraction, their decoding performances have
remained relatively low. Furthermore, these techniques are often
evaluated without taking into account the drift between the training
and test datasets. This study proposes a feature extraction scheme
that operates in an unsupervised manner to address these limitations.
This approach focuses on reducing drift between the training and
test sets by utilizing feature adaptation based on non-negative matrix
factorization (NMF) and Riemann operations. Additionally, we
minimize drift by aligning the distribution of the test data with that
of the training set. The results demonstrate that the proposed feature
extraction technique exhibits significantly higher performance (p <
0.05) in decoding motor intent for 13 hand and finger movements,
achieving an average accuracy of 99.91 + 0.35% for amputee
participants and 99.99 + 0.02% for able-bodied participants. We also
conducted further investigations to assess the effectiveness of the
proposed feature scheme against varied signal-to-noise ratios
(SNRs). These investigations revealed that our technique
outperforms other feature extraction techniques in terms of decoding
performance, even in the presence of varied SNRs. Overall, the
findings show that the proposed feature extraction technique can
effectively enhance the reliability and robustness of EMG control
systems in both clinical and commercial applications.

Index Terms— Symmetric positive definite (SPD) matrices,
Electromyogram (EMG)-based prosthesis, Pattern recognition, Non-
negative matrix factorization (NMF), Non-Euclidean manifold.

I. INTRODUCTION

I n recent times, there has been increasing research attention
towards the application of electromyogram (EMG)-based
pattern recognition (PR) techniques, specifically for

facilitating control in prostheses, gaming, and rehabilitation

systems [1], [2]. PR-based pipelines consist of interconnected
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phases that collectively aid in the adequate recognition of
distinct muscle activation patterns associated with various
EMG signal signatures of limb movement. Studies have shown
that each phase of the pipeline influences the decoding outcome
of movement signatures and the stability of the PR control
scheme. Moreover, it has been demonstrated in previous studies
that the feature vector construction phase has a greater impact
than the other phases of the PR-driven scheme [3].
Additionally, effective PR-based control schemes ideally
assume that the myoelectric signal patterns of specific limb
movements exhibit both distinctiveness and reproducibility
across multiple trials. These signal patterns are also expected to
differ from the patterns observed in other movements [4], [5].
Therefore, the construction of a feature vector needs to take into
consideration accurate and robust descriptors that can capture
possible motor information from the EMG signals for robust
movement characterization. Notably, such a feature vector
would not only aid in the proper characterization of movement
intention in research settings but also in the practical
deployment of PR-based control schemes in miniaturized
assistive or rehabilitation robots.

In the pursuit of a robust PR-based control scheme, existing
studies have employed diverse feature extraction techniques.
For instance, He et al. introduced a frequency-dependent
feature set that was applied to characterize the myoelectric
signals of various patterns [6], while Khushaba et al. proposed
a time-dependent spectral moment-driven feature set for
forearm and hand gesture decoding [7]. Similarly, Hudgins et
al. proposed four classical time-domain descriptors, which are
considered benchmark features for EMG-based movement
signature classification [8]. Likewise, Samuel et al. introduced
a spatial-temporal feature set, which was used to characterize

Guangdong 518055, China. (Correspondence: Dr. Li Yongchen, e-mail: li.yc@siat.ac.cn,
Dr. Oluwarotimi Williams Samuel, e-mail: o0.samuel@derby.ac.uk and Dr. Guanglin Li,
e-mail: gl.li@siat.ac.cn.

G. Li and Y.C. Li are also with the Guangdong Provincial Key Laboratory of
Multimodality Non-Invasive Brain-Computer Interfaces.

T. T Oyemakinde, and S.T. Aboyeji are also with the Shenzhen Institute of Advanced
Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518055,
China.

O.W. Samuel and M.G. Asogbon, are with School of Computing, University of Derby,
Derby, DE22 3AW, UK. O.W. Samuel is also with INTI International University,
Nilai, 71800, Malaysia.

Pengrui Tai is with Brain Cognition and Brain-Computer Intelligence Integration
Group, Kunming University of Science and Technology, Kunming 650500, China

D. S. Sarwatt is with University of Science and Technology Beijing, China.
R. Khushaba is with Transport for NSW, Alexandria, Nsw, Australia


mailto:li.yc@siat.ac.cn
mailto:o.samuel@derby.ac.uk
mailto:gl.li@siat.ac.cn

Frank el al.

Able-bodied subject

Gestures

Amputee

Fig 1. Electrode configuration and the gestures involved in data collection.

the movement intentions of amputees and able-bodied subjects
from EMG recordings [9].

Despite the contributions of these methods and many others
towards enhancing the control of PR-driven prostheses,
gaming, and rehabilitation systems, their practical adoption in
commercial and clinical settings is limited. This limitation is
partly due to the fact that existing feature vector construction
approaches are rarely high-performing. This can be attributed
to the discrepancy (drift) between the training and testing sets,
which might be caused by factors such as the non-stationary
nature of the EMG signals and variation in signal-to-noise ratios
(SNR) induced by external factors during the testing phase [39],
[10]. Specifically, in the benchmark EMG data acquisition
protocol, prior to the data collection task, the subjects’ limbs are
cleansed with alcohol pads, particularly the area overlaying the
arm muscle where the signal sensors are placed [20, 40, and 41].
The EMG signals are then collected and used for training and
testing the classifier. However, in real or clinical applications
of prosthesis or rehabilitation device, only the data used for
training the classifier can be prepared in such a well-controlled
environment. In contrast, during the classifier’s testing phase,
issues such as the presence of hair between the electrode and
skin, dust accumulation, and drying of the electrolyte/gel arise
[42, 43, 44]. These factors increase the impedance or electrical
resistance between the skin and electrode contact, which also
contributes to the discrepancy between the training and testing

data, further degrading the overall performance of the classifier.

Table 1. The detailed information of the amputees subjects
Amputee Gender Age Length of residual
arm from the elbow
1 Female 26 14.5cm
2 Female 27 5.3cm
3 Female 30 7.4cm
4 Female 31 6.0cm
5 Male 28 4.6cm
6 Male 40 10.4cm
7 Male 35 12.3cm
8 Male 37 9.7cm
9 Male 42 7.7cm
10 Male 47 8.6cm
11 Male 29 13.0cm
12 Male 27 11.3cm
13 Male 25 11.6cm
14 Male 38 6.6cm
15 Male 38 5.1cm

Therefore, in this research, a novel unsupervised descriptor
extraction scheme is designed to effectively decode motor
information in both clean datasets and in the presence of varied
SNR. Specifically, the proposed scheme first leverages non-
negative matrix factorization (NMF) due to its ability to
represent muscle synergy (activation potential) from EMG
signals while reducing non-stationarity [15][17]. It has been
shown that high-dimensional data (such as EEG and EMG)
exist in a non-Euclidean space. Applying Euclidean operations
to such data may overlook important information. However,
using non-Euclidean operations, such as those in Riemannian
geometry, is more suitable, as they can uncover the underlying
structure of complex data [50], [51]. Although these manifolds
have been extensively applied in other domains, such as EEG
[50] and image processing [52], they have rarely been used in
mining EMG data, especially for upper limb movement
decoding. Therefore, the second stage of the proposed scheme
incorporates symmetric positive definite matrices (SPD) as
descriptors, since SPD matrices exist in Riemannian space. To
reduce the drift between the testing and training datasets, all the
SPDs (from the testing and training datasets) are projected
towards a Riemann mean (which is derived from the training
set only). In the third stage, the approach reinforces robust
adaptation by projecting the features from the previous stage
toward a shared distribution derived from the training dataset.
The combination of these operations contributes to the
improvement of movement decoding performance.

The performance of the proposed scheme was validated
using a novel dataset which was collected from both amputee
and able-bodied subjects as described in the section I1-A.

Fig. 2. EMG signal (in red) and a synchronization signal (in blue)
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Fig 3. Configuration of clean electrodes and electrodes with noise at different experimental scenarios.

Il. MATERIAL AND METHODS

A. Data Collection

The electromyogram recordings were collected from a total
of 35 individuals, including 20 able-bodied participants and 15
transradial amputees (ages: 30.0 + 10.5 years) who participated
in the experiment. Table 1 summarizes information about the
amputees. Prior to the start of the experiment, the participants
signed consent agreement forms, and the research protocol was
reviewed and approved by the Institutional Review Board at the
Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, with IRB number SIAT-IRB-221115-
H0626.

The dataset was collected using an EMG acquisition device
(NES-128B01, 64 channels, and a sample rate of 2 kHz,
designed by the Research Center for Neural Engineering, SIAT,
CAS, China). A total of 24 individual electrodes were placed
around the dominant forearm, just below the elbow, with an
approximate spacing of 10 millimeters between each electrode,
as illustrated in Figure 1. Throughout the data collection
process, a computer was positioned infront of the participants
to instruct the participants to perform specific wrist and finger
gestures, totaling 13 movement tasks (Fig. 1). These gestures
were selected due to their significance in upper-limb motor
tasks [21]. The gestures included Hand Open (HO), Hand Close
(HC), Abduction (AB), Adduction (AD), Extension (EX),

Supination (SP), Extending the index finger (F1), Extending the
middle finger (F2), Extending the little/pinky finger (F3),
Extending both the index and middle fingers (F4), Extending
the last three fingers (F5), Fingers Pinch (FP), and No Motion
(NM). Each gesture was performed 10 times, with each motion
trial lasting approximately 6 seconds, followed by an 8-second
rest period between consecutive trials. The data were collected
at a sampling rate of 2000 hertz. Additionally, a 50 hertz notch
filter was applied, along with a bandpass filter that had cutoff
frequencies of 10 to 500 hertz. This filtering process was
employed to extract the relevant signal components from the
data. In order to help synchronize the onset phase and rest/idle
periods for each trial during signal acquisition, a separate signal
was incorporated to indicate the start and end of the onset phase
and rest phase, as conceptualized in Fig. 2. This would aid in
chopping/segmenting the onset (active) part of the signal during
signal processing.

B. Electrode Configurations

During data analysis, 9 trials (out of 10 trials) were used
for training, while 1 trial was used for testing. Similar
experiments were repeated 5 times, with different trials
considered for testing each time (i.e., trials 1, 3, 5, 7, and 9),
and the results were recorded as averages for all five trials.

To depict real practical/clinical scenarios where the training
of the decoding system occurs in a controlled environment,
while the practical application (testing) of the system is

Table 2. Specific electrodes to which noise was added in different scenarios for both amputees and able-bodied subjects

1%t time 2nd time 3dtime 41 time 5t time

Scenario 1 5 2 16 11 23

Scenario 2 8 and 17 5and 22 12 and 19 3and 21 9and 14

Scenario 3 3,7,and 16 1,12, and 20 9,11, and 18 5, 14, and 23 2,15, and 19

Scenario 4 4,10,17,and 21 5,9,14, and 23 3,7,12,and 19 2,8, 16, and 22 1,6,13,and 18

Scenario 5 5,8, 13,18, and 24 3,7,9,14, and 21 2,6,10,15, and 20 4,11,12,19, and 23 1,6,16,17, and 22

Scenario 6 2,4,7,14,19, and 22 3,5,9,11,17, and 20 1,6,12,13,18, and 23 8,10,15,16,21, and 24 4,6,10,14,19, and 23

Scenario 7 3,5,9,12,17,19, and 21 2,4,6,10,15,20, and 23 1,7,8,11,14,18, and 22 3,5,13,9,16,21, and 24 2,4,6,10,12,17, and 19

Scenario 8 4,7,8,12,14,16,19, and 23 3,5,6,9,11,18,21, and 24 1,2,10,13,15,17,20,and 22 | 3,5,7,8,12,16,19, and 24 1,2,9,13,15,18,20, and 22

Scenario 9 1,4,7,8,10,14,17,21, and 3,5,6,9,11,12,15,19, and 1,2,7,9,13,16,18,20, and 2,5,8,10,11,13,15,19, and 3,4,6,12,14,16,17,21, and
23 24 22 23 24

Scenario 10 2,4,7,9,11,12,16,18,20, 3,5,6,10,13,14,17,19,21, 1,3,6,8,10,13,15,17,22, 2,4,7,9,11,12,16,18,20, 3,5,6,10,13,14,17,19,21,
and 22 and 23 and 24 and 22 and 23

Scenario 11 3,4,5,7,9,10,12,16,18,20, 1,3,6,8,11,13,14,17,19,21, | 1,6,7,9,12,13,15,16,20,22, | 2,3,5,8,10,11,14,18,19,21, | 4,5,7,8,10,12,13,16,17,20,
and 22 and 23 and 23 and 24 and 22

Scenario 12 2,4,6,79,11,12,14,16,18,2 | 1,3,5,6,8,10,13,14,17,19,2 | 1,3,6,8,10,12,13,15,17,19, | 2,4,5,7,9,11,12,14,16,18,2 | 3,5,6,8,10,13,14,15,17,19,
0, and 22 1,and 23 22,and 24 0, and 22 21, and 23
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subjected to uneven signal drifts due to changes or increases in
impedance between the electrode and the skin. White Gaussian
noise (WGN) was added to different electrodes of the test set
only, following a predefined random sequence indicated in
Table 2. Meanwhile, all electrodes in the training set were kept
clean and free of noise, as indicated in Fig. 3.

Twelve scenarios were considered: in scenario 1, only one
electrode was subjected to noise, and the experiment was
repeated 5 times with a different electrode selected each time.
Scenario 2 involved two electrodes at a time, and similarly, the
experiment was repeated 5 times while considering different
electrodes each time. Scenario 3 involved 3 electrodes, with a
protocol similar to scenarios 1 and 2. Scenario 4 involved four
electrodes, and scenario 5 involved five electrodes. The
scenarios continued up to scenario 12, where twelve random
electrodes were subjected to noise. Table 2 indicates the
different scenarios.

C. Feature extraction

In this study, a novel robust descriptor extraction technique
was proposed for the effective characterization of EMG signals,
even in the presence of uneven variations in signal-to-noise
ratios. We denote this scheme/features as the NMF-based Non-
Euclidean Riemannian Descriptor (NNERD). The key steps for
the extraction of the NNERD are described in the following
subsections. Fig. 4 summarizes the major steps of the proposed

feature extraction technique.
EMG Train Data EMG Test Data
NMF NMF

v v
Sliding window Sliding window
operation operation
v v
Construct SPD Construct SPD
matrices Riemann matrices
v Mean v
Feature Adaptation Feature Adaptation
— Mean & STD T T
Distribution Distribution
Adaption Adaptation

v The trained
Classification % Prediction
v

Motion
Intents

Fig 4. The Flow chart for the proposed technique

(i) Non-negative Matrix factorization (NMF)

NMF, or Non-negative Matrix Factorization, is an effective
algorithm for multivariate data analysis. It can decompose any
matrix with non-negative values into two separate matrices,
both of which contain only non-negative elements. Inspired by
its ability to reduce the non-stationary nature of the signal [17],
we first apply it to the raw signal before segmenting it. The
operation of NMF can be expressed as follows:

Consider a matrix Z (which represents the EMG signal) given
by:
ZeER™™; if R>0 (1)
Here, for the training set, R consists of all non-negative
elements of all nine trials of a specific movement, while for the
test set, R represents non-negative elements of one trial of a
specific movement, n is the number of features, while m is the
size of samples. Precisely, in this study n = 24 (equivalent to
the number of electrodes) and m is the size of discrete data
points. It is worth noting that, before the NMF operation, all the
negative values of the EMG signal (R) were suppressed to be
equal to zero. The NMF can linearly decompose a matrix Z into
two matrices. A basic matrix W € R™* and a coefficient
matrix H € R**™. Specifically, the (m,n)-th element of Z,
Znm, 1S calculated as;
Zym = W -H)pym = Zﬁ:l WoiHiem )
Choosing the value of k is very necessary for balancing
both complexity and performance. Thus, in this study, we
used k = 12 as it showed higher performance than others.

It should be noted that after the NMF operation, the signals
were segmented into overlapping chunks following the sliding
window operation [16]. Specifically, they were segmented into
overlapping windows of size 150 ms, with an overlap of 50 ms.
Thus, let each signal chunk (segment) be represented as; X €
X™4 here n represents the number of channels in the data,
and q the number of samples in one segment/chunk.

(ii) Construction of the Sample Covariance Matrices (SCM)

Given the EMG signal X € X" we can estimate the

sample covariance matrix (SCM) represented as S € R™*"

by deploying Equation 3. To estimate the SCM, we utilized a
regularized estimator known as oracle approximating
Shrinkage (OAS) as it showed comparatively higher
performance than other estimators such as Ledoit Wolf, and
Schaefer Strimmer [11], [12].
xxT
§ = trace(xxT) ©)

As concluded by Yger et al. [13], the SCM belongs to the
symmetric positive definite (SPD) space, indicating that its
eigenvalues are strictly positive. Thus, we used the constructed
SCM as SPD and denoted it as S(n) with size n X n (24 x 24).

Riemannian Manifold (RM): According to the literature
[26], the RM is defined as a smooth manifold where the tangent
space at any point is the Euclidean space of infinite dimension.
The classification of symmetric positive definite matrices
(SPD) as RM has facilitated the use of Riemannian operations
on SCM [14], [23]. The novel descriptor adaptation technique
proposed is built upon the following key definitions.

Geodesic path (8,): It is the shortest path between two
SPD matrices (such as S; and S,.) onthe RM. It describes how

one can traverse (project) from S; towards S, and vice versa
[24]. According to Moakher et al. [25], the geodesic path
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between two matrices (SPDs) can be estimated using Equation
5.

1 1

1 t 1
v(S5,, S t) = 512 (.51 ZSTSI 2) 512 t e (0,1) 4)

Here, t is a hyper-parameter which defines the direction of
traverse, either more towards S; or S,., and it needs to be tuned.
It is worth noting that in our preliminary analysis, we found t =
0.5 exhibits high and consistent decoding performance
compared to other possible t values.

Tangent space (8 ): Is the space demarcated by the whole
set of tangent vectors P;. In this manifold, the metric embodies
a Euclidean flat structure that allows the application of
conventional mathematical (arithmetic) operations such as
mean, variance, etc.

Assuming S € S(n) being a point that belongs to the
manifold of the SPDs (which is embedded in a RM), it is
feasible for each point S; € S(n) to associate a vector (a
tangential vector) P, € P(n) which belongs to the tangent
space, such that P, = y(0). Here, y(t) is a geodesic between S
and S;. The Riemann logarithmic (Log) map operator denoted
as Log,: S(n) —» P(n) facilitates the mapping of point S; to
its corresponding tangent vector P, conversely the Riemannian
exponential (Exp) map operator Exp,: (P,) =S, allows a
bijective mapping from the tangent manifold (space) to the
original space of SPDs S(n). Utilizing the AIRM [22], the
Riemannian logarithm (Log) and exponential (Exp) map
operations can be expressed as;

1 1 1 1
Expy(R) = S2Exp(S2P,S72)S? &)

1 1 1 1
Logs(S;) = SzLog(S 25,5 2)S2 (6)

NB: The projection of symmetric positive definite matrices
from the RM to the corresponding tangent space, and the
reverse operation from the tangent space back to the manifold,
can be achieved using the expressions given in Equations 5 and
6, respectively.

(iii) Feature Adaptation (FA)

In reducing/removing the discrepancy between the training
and testing set, all high-dimensional signals were subjected to
the NMF operation, and then every segment (of size 24 x 150)
in both training and testing dataset was converted to SPD
(belonging to RM space) using Equation 3. Then, using the
reference point S, (in this study, we used a Riemann mean of
the training set only as a reference), every SPD was projected
towards a Riemann mean (S,) as expressed in Equation 4. The
output of this stage is represented as S;.qin and S;.s for
training and testing datasets, respectively.

Therefore, the Riemann mean (S,) is estimated using
equations 5 and 6 as outlined in Algorithm 1.

Algorithm 1 Riemann Mean of m SPD matrices (S,)

Input: m SPDs {S;, S5, S5 ... ... S ) and tolerance >0

Output: The estimated Riemann mean (S, )

Initialize: ${” = ~ ¥, (St =1

While
1 m
S= EZ LOgsﬁt) S)
i=1
s = Expso &)
t=t+1
Until SEV||F < e
Return s

It should be noted that only the SPDs from the training set
were used to find the Riemann Mean (S,.). The reason for using
the Riemann mean instead of the arithmetic mean is that the
Riemann mean of SPD matrices is guaranteed to be SPD,
whereas the arithmetic mean of SPD matrices may not
necessarily yield an SPD matrix.

(iv) Distribution adaptation (DA)

To further reduce the drift between the testing and training
datasets, in this final step we projected all descriptors to the
common distribution (specifically to the training set’s
distribution) by using the common standard deviation D and
mean U derived from the training set only, as expressed in
Equation 7. The input to this stage consists of the outputs from
the previous stage, S;.: for the testing set and S;,4;, for the
training set.

_ Stest —U

— Strain —U
Ztest - and Ztrain - (7)

D
1
U= ; ?:1(Strain ) (8)

v - 2
b |oh Cran~0) ©

From equations 7, 8, and 9, S represents the feature
matrices of the training dataset, while v is the number of all
features in S;,..i. Therefore, in the subsequent sections, we will
be referring Z,qin and Z;.s; asthe NMF-based Non-Euclidean
Riemannian Descriptor (NNERD). Z, i, and Z...; contain
feature matrices of size n xn (24 x 24). Before applying
these features to the classification network (such as SVM), we
flattened them to get each feature of size 1 x 576.

It is worth noting that the proposed scheme works in an
unsupervised manner, as the optimization parameters (i.e.,
arithmetic mean, standard deviation, and Riemann mean) are
derived from the training set only without any prior knowledge
of the test set. Fig. 4 summarizes all operations.

where,
and

D. Comparison to other State-of-the-art techniques
In order to compare the performance of the proposed
feature, we considered a variety of multi-feature sets that have
been used in previous research:
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Fig 5. Classification accuracies of different features (NNERD, TDPSD, TD4, invTDD, MAV, VAR, and WL) applied on classifiers SVM, kNN
and NMC when there is No Gaussian noise is added in both training and test set. (a) Indicates the decoding performance of amputees. (b)
Indicates the performance for the able-bodied subijects.

1. Invariant features in Time domain (invTDD): This
approach combines five reliable time-dependent features
that were introduced by Asogbon et al. to enhance decoding
performance, even when there are variations in the muscle
contraction forces [31].

2. Waveform Length (WL): This represents the total length of
the signal waveforms within the given time window [29].

3. Time domain features (TD4): Is a set of commonly used
time-dependent features which include wavelength, zero-
crossings, slope sign change, and mean absolute value [4].

4. Time-Dependent Power Spectrum Descriptors (TDPSD): Is
a descriptor composed of six features that estimate the
power spectrum characteristics of the electromyogram
signal directly from the time-domain [1].

5. Mean Absolute Value (MAV): This feature is estimated by
taking the mean of the absolute values of the signal samples
within the given time window [32].

6. Variance (VAR): is estimated by the variance of the EMG
signal within the analyzed window. Specifically, it estimates
the power of the electromyogram signal [33, 36]

The reason for using these techniques in comparison with the

proposed approach is that they have been applied in previous

works and have shown comparatively excellent decoding
performance [17], [30], [34], [35]. To ensure a fair comparison,
the same window size and stride were used during the

extraction of the proposed technique and the comparative
features (invTDD, WL, TDPSD, MAV, TD4, and VAR).

Table 3:

E. Basic Experimental Setups

To examine the decoding performance of the NNERD and
compare it against other feature extraction techniques, three
classifiers were used to decipher the inherent motion tasks:
Support Vector Machine (SVM), Nearest Mean Classifier
(NMC), and k-Nearest Neighbor (KNN) classifier [7, 27, 28].
kNN and SVM are commonly used in decoding EMG-based
motor intents, while we have introduced the application of
NMC for the first time in decoding motion intents in EMG
signals due to its capability in handling high-dimensional
features, the simplicity of the process, and the fact that it does
not require parameter tuning [37, 38]. The analysis was
conducted using two important metrics: accuracy and F1-score.
We considered these metrics because they have been widely
adopted in EMG-based motion classification works. Moreover,
the Fl1-score encompasses recall and precision in its
computation. The numerical definitions of these metrics are
described in Equations 10 and 11.

TP+TN

Accur = —_——
ccuracy TP+FP+TN+FN

(10)

F1— score — ZXRecalleTe‘ci'siun — 2TP (11)
Recall+Precision 2TP+FP+FN
Furthermore, a Friedman's test (hon-parametric test) was
performed, followed by a Dunn's post-hoc analysis, to assess
the statistical significance of the proposed NNERD method.

I11. RESULTS ANALYSIS AND DISCUSSION
In this section, we describe a collection of investigations

conducted to evaluate the efficacy of the NNERD and other-state-
the-art descriptors.

Classification F1-score of different features (NNERD, TDPSD, TD4, invTDD, MAV, VAR, and WL) applied on classifiers SVM, KNN,

and NMC when there is no Gaussian noise added to both training and test set. The top results represent amputees’ decoding performance while the
bottom results represent the able-bodied decoding performance.

Amputees
NNERD TDPSD TD4 invTDD MAV VAR WL
SVM 99.91+0.35 75.84+11.52 75.59+12.90 75.16+11.50 75.08+12.14 65.34+13.98 74.63+14.13
KNN 99.79+0.47 66.20+14.18 68.11+14.61 58.64+14.04 67.04+14.76 58.64+14.39 69.71+13.56
NMC 99.30+1.02 53.66+14.61 47.10+14.02 43.72+12.05 44.83+12.50 40.57+11.52 41.12+12.38
Able-bodied subjects
SVM 99.99+0.02 86.31+3.46 86.87+3.85 85.12+4.07 85.29+4.37 74.30£16.1 85.79+4.53
KNN 99.91+0.18 80.63+4.61 82.56+4.75 70.16+8.13 80.21+6.04 72.26+7.07 82.56+6.23
NMC 99.52+0.68 63.86+8.02 56.86+9.58 51.40+9.55 53.38+6.85 45.37+8.77 51.16+10.16
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A. Evaluation of the proposed method (NNERD) on
decoding motion intents without considering the effects
of varied SNRs

In this section, we analyze the decoding performance of the
proposed feature scheme in the absence of noise in both the
training and testing sets. We have considered this analysis
because it is commonly employed in previous EMG-based
decoding studies that do not consider the effects of noise [2, 31,
3]. It should be noted that during data analysis, 9 trials (out of
10 trials) were utilized for training, while one trial was used for
testing. Similar experiments were repeated 5 times, with
different trials being considered for testing at each time (i.e.,
trials 1, 3, 5, 7, and 9) and the results were recorded as the
average of all five folds. The average classification accuracies
for both amputee and able-bodied participants are shown in Fig.
5.

By closely examining the results in Fig. 5, we can observe
that the NNERD has significantly (with p<0.05) performed
better than all other features in both amputees (Fig. 5 (a)) and
able-bodied subjects (Fig. 5 (b)). For instance, in Fig. 5 (a) on
SVM classifier, the NNERD has outperformed other features,
followed by TD4, TDPSD, MAV, invTDD, WL, and VAR with
accuracies of 99.91+0.35%, 76.43+11.96%, 76.40+11.12%,
76.02+11.25%,  75.82+10.94%,  75.43+13.46%, and
66.78+13.04%, respectively. Similarly, when considering the
results for able-bodied subjects in Fig 5 (b) on the SVM
classifier, the NNERD has attained an accuracy of
99.99+0.02%, while TD4, TDPSD, WL, MAYV, invTDD, and
VAR attained 87.05+3.60%, 86.45+3.32%, 85.95+4.39%,
85.38+4.22%, 85.32+3.87%, and 74.84+15.48%, respectively.

To conduct a more in-depth investigation of the features’
performance, we analyzed the Fl-score metrics, which are
reported in Table 3. Based on the decoding results shown in
Table 3, the NNERD approach demonstrated significantly
(p<0.05) superior performance compared to other features
(TDPSD, TD4, invTDD, MAV, VAR, and WL) in both
amputee and able-bodied subjects. These results (in F1-score)
relate to the decoding results in accuracy and further justify the
superiority of the proposed technique (NNERD).

B. Evaluation of the proposed method (NERD) on decoding

motion intents in the presence of varied SNR.

To depict the effects of uneven variation of SNR, which
represents the effects of uneven changes of impedance between
the electrode surface and the skin, Gaussian noise was added
randomly to the electrodes as demonstrated in Section I1-B. In
this study, we considered three levels of noise (SNR) that have
been recommended by Zhao et al. [39]. These levels are 0dB:
which represents the highest level of noise when the signal level
is equal to the noise level. 10dB: which represents a moderate
level of noise, and 20dB, indicating the lowest noise. However,
only the results for 0dB and 20dB were presented due to the
consistent results displayed by 0dB and 10dB. The results for
0dB and 20dB are displayed in Fig. 6 and Fig. 7, respectively.

When looking into the results in Fig. 6 (0dB SNR) for both

amputees and able-bodied participants, it can be seen that the
increase in the number of electrodes with noise affects the
decoding performance of all features in all classifiers.
Specifically for SVM and kNN classifiers, as the number of
electrodes subjected to noise increases, the features NNERD,
TDPSD, and TD4 show a decrease in accuracy while the
invTDD, MAV, VAR, and WL portray unpredictable/inconsis-

tent performances. Although the proposed feature NNERD
shows a small decrease in performance with the increase in
electrodes with noise, its decoding performance is still very
high compared to other features. For instance, the classification
accuracies on SVM (Fig 6 (a)), when only one electrode is
subjected to noise for amputees when different features are
applied to SVM classifier are 99.87+0.39%, 75.14+10.91%,
76.33+11.97%, 76.03+£10.98%, 76.27+11.33%, 67.43+13.54%,
and 75.45+13.72% for NNERD, TDPSD, TD4, invTDD, MAV,
VAR, and WL, respectively. When twelve electrodes are
subjected to noise (which is the worst-case scenario) the
average accuracies are 93.3616.27%, 65.91+11.51%,
75.10£9.51%, 75.53£10.83%, 77.45+10.28%, 69.07£13.57%,
and 75.59+10.70% for NNERD, TDPSD, TD4, invTDD,
MAYV, VAR, and WL, respectively. A similar trend is observed
in able-bodied configuration.

Regarding the NMC classifier, the performance trend is
similar to that of SVM and kNN for the NNERD and TDPSD
features, where the classification performance decreases (with
a small margin for the proposed feature) with the increase in the
number of electrodes with noise. However, features like TD4,
invTDD, MAV, VAR, and WL show an opposite trend, starting
with low accuracies and increasing with the number of
electrodes with noise. Although their performances increase,
they are still extremely low compared to the proposed NNERD.
For instance, the performance (in accuracy) of the NNERD,
TDPSD, TD4, invTDD, MAV, VAR, and WL features (for
amputees Fig. 6 (c)) when one electrode is subjected to noise
are 98.92+1.06%, 55.13+13.46%, 50.14+13.39%,
46.19+11.86%,  47.40+12.13%,  42.78+10.58%, and
44.38+£12.13% accuracy, while the performance in the
corresponding features when twelve electrodes are subjected to
noise are, 92.32+5.43%, 49.24+12.21%, 54.65+13.66%,
49.29+11.98%,  51.29+12.21%,  46.65+10.59%, and
49.48+12.60%, accuracy, respectively. The reason behind the
higher decoding performances of NNERD compared to all
other features might be due to the high dimensionality of the
NNERD features, which works well for the NMC classifier.

It is worth noting that, although the varied SNR affects the
features’ decoding performance (at 0dB SNR), the proposed
feature extraction scheme NNERD, has performed significantly
(with p<0.05) better than other features in both amputees and
able-bodied participants. This indicates the stability of the
proposed feature to maintain higher performance even in the
presence of noise.
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Fig 8. The decoding of individual motion intents in amputees.
The classification results were obtained as average across all
subjects when SVM classifier is applied to decode NNERD,
TDPSD, TD4, invTDD, MAV, VAR, and WL features. The
0dB Gaussian noise was added to twelve randomly selected
electrodes of the test set. The hand gestures involved include
Abduction (AB), Adduction (AD), Extension (EX), Hand
open (HO), fingers pinch (FP), Extending the index finger
(F1), extending the middle finger (F2), extending the
little/pinky finger (F3), extending both the index and middle
fingers (F4), extending the ring, middle, and index fingers
(F5), Hand close (HC), No motion (NM), and Supination
(SP).
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Fig 9. The decoding of individual motion intents in able-
bodied subjects. The classification results were obtained as
average across all subjects when SVM classifier is applied to
decode NNERD, TDPSD, TD4, invTDD, MAV, VAR, and
WL features. The 0dB Gaussian noise is added to twelve
randomly selected electrodes of the test set. The hand
gestures involved include Abduction (AB), Adduction (AD),
Extension (EX), Hand open (HO), fingers pinch (FP),
Extending the index finger (F1), extending the middle finger
(F2), extending the little/pinky finger (F3), extending both the
index and middle fingers (F4), extending the ring, middle,
and index fingers (F5), Hand close (HC), No motion (NM),
and Supination (SP).

Predicted Class

0.6

0.4



Frank el al.

When closely analyzing the classification outcomes in Fig. 7
(for 20dB SNR), the proposed feature extraction scheme
(NNERD) has performed significantly better than other features
(with p<0.05). For instance, for the amputee's results, when one
electrode was subjected to noise and SVM classifier was used,
the decoding performances for the features (NNERD, TDPSD,
TD4, invTDD, MAV, VAR, and WL) are 99.91+0.35%,
76.35+11.19%, 76.50+11.92%, 75.84+10.92%, 76.03+11.28%,
66.79+13.04%, 75.43+13.54% accuracy, while when twelve
electrodes are subjected to noise, the decoding performances
are 99.52+0.86%, 75.69+11.32%, 76.47+11.69%,
75.67+11.13%,  76.19+11.21%,  67.28+13.26%, and
75.95+12.50% accuracy, respectively.

C. Analyzing the Performance of the features for individual

motion decoding

In this section, we present the decoding performance of the
NNERD and other features in decoding specific motion intent.
Due to the consistently high performance of the NNERD in all
classifiers and SNR levels, we considered the analysis using
only SVM as a representative of other classifiers and 0dB (the
worst level of noise) for representing SNR levels. The
confusion matrices are indicated in Figs. 8 and 9 for amputees
and able-bodied subjects, respectively.

From Fig. 8 for amputees, it can be seen that the NNERD has
attained higher decoding performance in all thirteen classes of
movements with the minimum class having an accuracy of
87.0%, while the minimum performing class for other features
are 52.0%, 60.0%, 69.0%, 68.0%, 52.0%, and 66.0% for
TDPSD, TD4, invTDD, MAV, VAR, and WL, respectively. A
similar pattern is observed in Fig. 9 for able-bodied subjects,
where the proposed feature scheme has attained higher
decoding performance in all individual classes, compared to the
other features considered in this study.

Generally, NNERD has performed better (with a high
margin) than other features. Its performance is similar in both
amputees and able-bodied individuals, contrary to other
features whose performances in able-bodied subjects are higher
than in amputees. This indicates the potential and robustness of
the proposed feature (NNERD).

Although the results are similar across all classifiers, a closer
look at the decoding performance of the NMC classifier shows
that NNERD has attained extremely high and stable
performance compared to other features. Other features have
extremely low results in the NMC classifier compared to other
classifiers. The reason behind this might be that the dimension
of the proposed feature is high and suitable for the NMC
classifier, which was specifically designed to handle high-
dimensional features [45], [37].

Additionally, when examining the variance of all features
across all classifiers and SNR scenarios, the proposed feature
NNERD has the lowest variance, justifying its consistent results
across all subjects.

Apart from the feature and distribution adaptation
(demonstrated in Section 11-C) which reduces the discrepancy
between the testing and training datasets, the outstanding
performance of the proposed feature NNERD can also be
attributed to the ability of SPDs to preserve not only temporal
information from the EMG signals but also the correlation

between channels (spatial information) [46][47][48].

IV. ABLATION STUDY

This section analyzes the contribution of different stages of
the proposed techniques to movement decoding performance.
The ablation study was conducted on 15 amputees only. The
results are presented as averages from these subjects.
Additionally, in this section, we have included an analysis of
the linear discriminant classifier (LDA) due to its
comparatively good performance in hand gesture recognition.

A. Evaluation of the impact of key stages of the proposed
technique on the decoding performance

The feature adaptation scheme (NNERD) proposed in this
study consists of three key operations/stages (Fig. 4). The first
stage is the NMF operation, the second stage involves the
construction of SPD and feature adaptation, and the third stage
comprises the Distribution Adaptation operation/phase (DAP).
To evaluate the contribution of each stage, we performed the
ablation as follows.

First, we eliminated the NMF operation and the DAP in the
pipeline. As such, the raw EMG of every segment (window)
was converted to SPD matrices and passed through the feature
adaptation operation. We termed this first approach FAP.

Secondly, we included the Distribution Adaption phase
together with FAP and observed the contribution of DAP on
FAP. We denote this approach as DAP.

Lastly, to improve the performance, the NMF operation was
incorporated as a preprocessing technique comprising the
whole proposed feature (NNERD). The results for each stage
are displayed in Table 4 for the classifiers SVM, kNN, NMC,
and LDA.

Table 4. The ablation study on the three stages of the proposed method
(in accuracy %)

FAP DAP NNERD
SVM 91.99+7.50 94.25+7.78 99.91+0.35
kNN 87.17+8.76 90.21+9.95 99.79+0.46
NMC 71.66+16.76 88.23+11.20 99.32+0.96
LDA 90.41+8.79 94.19+8.57 98.34+5.24

Looking closely at the results in Table 4, it can be observed
that there is a substantial increase in decoding performance
when applying the distribution adaptation (DAP) from the
feature adaptation (FAP). An additional increase is observed
when NMF is applied to complete the whole process of
NNERD. For instance, when considering the SVM, we can
observe the increase from 91.99+7.50%, 94.25+7.78%, to
99.91+0.35% when applying FAP, DAP and NMF (to
constitute NNERD), respectively.

Similar increments are observed in other classifiers.
Therefore, every stage has a significant contribution.

B. Evaluation of the Impact of NMF on the Decoding
Performance of Other State-of-the-Art Techniques

This section evaluates the impact of applying NMF during
the preprocessing stage on the performance of other state-of-
the-art techniques. Table 5 presents the decoding accuracy
results for these methods while considering two scenarios, with
the application of NMF and without the application of NMF.
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Table 5. The decoding accuracy (%) for other state-of-the-art methods. (a) Without NMF applied (b) With NMF applied

(a) Without NMF

TDPSD TD4 invTDD MAV VAR WL
SVM 76.40+11.12 76.43+11.96 75.82+10.94 76.02+11.25 66.78+13.04 75.43+13.46
KNN 67.01+13.87 68.8814.10 50.44+13.77 68.32+13.93 60.20+13.92 70.29+13.29
NMC 56.30+13.71 49.44+13.32 45.95+11.82 46.89+12.16 42.37+10.69 43.87+12.01
LDA 80.05+9.97 80.73+9.49 81.82+9.26 78.36+10.15 67.19+12.87 78.28+11.05

(b) With NMF

TDPSD TD4 invTDD MAV VAR WL
SVM 77.13+2.66 76.75:3.49 7384335 78.01x3.77 67.63+6.04 77.35+2.93
KNN 64.996.67 72.01+4.86 61.22+9.68 69.195.00 62.827.36 68.835.42
NMC 57.17+15.38 53.39+17.65 48.05+17.89 47.10+18.67 42.46+15.46 47.33+18.47
LDA 80.28+1.91 81.0742.52 82.34+1.75 75.27+2.97 70.06+6.25 79.19+2.23

By carefully analyzing the results in Table 5, it can be seen
that the application of NMF improves the performance of the
features. However, the margin of improvement is not
significant (the majority are between 0.09% to 2.00%), while
some features show a decrement in certain classifiers.

Due to the inconsistent non-significant increase when
applying NMF on other state-of-the-art features, we did not
include NMF as part of the extraction of other state-of-the-art
features in the previous sections.

It is worth noting that we acknowledge the use of LDA in
decoding the movement, as applied by previous works.
However, due to the comparatively similar performance of
LDA, KNN, and SVM, we decided to limit our analysis to only
three classifiers (SVM, KNN, and NMC).

C. Computational Time

This section investigates the computational time for different
techniques. Two phases are considered. The first phase is the
time taken for preprocessing, feature extraction, and training
the classifier. It involves the training dataset only and is denoted
as Train-Time. The second phase is the time taken for
preprocessing, feature extraction, and testing (prediction),
which involves the testing dataset only. This time is denoted as
Test-Time. Table 6 indicates the two phases. Additionally, we
have included the analysis of the proposed feature but excluded
the NMF operation from it, and we denote this as Non-
Euclidean Riemannian Feature (NERF).

Table 6. Computational time (seconds) for training and test phases

Time ’ NERF ’ NNERD ’ TDPSD ’ TD4 | invTDD | MAV | VAR | WL

Train 33.83 53.12 4.23 4032 17.67 2.36 3.50 2.59
Test 2.70 21.46 2.45 11.00 5.45 1.56 1.86 1.65

From the results in Table 6, the proposed feature NNERD has
the highest computational time. The reason behind this may be
due to the addition of the NMF operation. As we can observe,
if the NMF is excluded from the proposed feature (to constitute
a NERF), its testing computational time becomes
comparatively lower than other features such as TD4 and
invTDD.

V. CONCLUSION
This study introduces a feature extraction approach to
improve the effectiveness of the EMG-based motion intent
classification system. The proposed approach utilizes non-
negative matrix factorization (NMF) and symmetric positive
definite (SPD) matrices, which exist in a non-Euclidean space,
enabling the extraction of features for motion intents from

electromyogram signals. To reduce the drift/discrepancy
between the testing and training datasets, NMF is first applied
to the EMG signal, followed by feature adaptation that relies on
the Riemann mean of the training set. To further reduce the
discrepancy, the final stage projects all the features of the
training and testing sets towards a common distribution whose
parameters are derived from the training set only.

The proposed feature scheme has been validated using a
dataset that was collected from both amputees and able-bodied
subjects, and it has demonstrated outstanding performance
compared to other features when there is no noise (in
amputees), with maximum accuracies of 99.91+0.35% for
SVM, 99.7940.46% for KNN, and 99.32+0.96% for the NMC
classifier. In able-bodied subjects, the results are 99.99+0.02%
for SVM, 99.91+0.18% for kNN, and 99.51+0.69% for the
NMC classifier. When subjected to noise, the proposed feature
(NNERD) still showed higher decoding results than other
features, with the lowest performance of 93.87+4.30% accuracy
(for able-bodied subjects) and 92.32+5.43% accuracy (for
amputees) at a severe noise level (SNR of 0dB). This
performance is still higher than all other features at their highest
performing state (20dB of SNR). These results justify the
effectiveness of the NNERD, which could enhance motor intent
decoding performance in the EMG-based system.

While the NNERD technique has demonstrated promising
classification performance, it was tested on offline
experimental setups. Therefore, our future research will focus
on validating the effectiveness of the proposed method in real-
time clinical/practical settings.
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