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Abstract— Feature extraction is a crucial step in electromyogram 

(EMG)-based pattern recognition systems for decoding motor 

intents. However, despite the existence of numerous proposed 

techniques for feature extraction, their decoding performances have 

remained relatively low. Furthermore, these techniques are often 

evaluated without taking into account the drift between the training 

and test datasets. This study proposes a feature extraction scheme 

that operates in an unsupervised manner to address these limitations. 

This approach focuses on reducing drift between the training and 

test sets by utilizing feature adaptation based on non-negative matrix 

factorization (NMF) and Riemann operations. Additionally, we 

minimize drift by aligning the distribution of the test data with that 

of the training set. The results demonstrate that the proposed feature 

extraction technique exhibits significantly higher performance (p < 

0.05) in decoding motor intent for 13 hand and finger movements, 

achieving an average accuracy of 99.91 ± 0.35% for amputee 

participants and 99.99 ± 0.02% for able-bodied participants. We also 

conducted further investigations to assess the effectiveness of the 

proposed feature scheme against varied signal-to-noise ratios 

(SNRs). These investigations revealed that our technique 

outperforms other feature extraction techniques in terms of decoding 

performance, even in the presence of varied SNRs. Overall, the 

findings show that the proposed feature extraction technique can 

effectively enhance the reliability and robustness of EMG control 

systems in both clinical and commercial applications. 

 

Index Terms— Symmetric positive definite (SPD) matrices, 

Electromyogram (EMG)-based prosthesis, Pattern recognition, Non-

negative matrix factorization (NMF), Non-Euclidean manifold. 

I. INTRODUCTION 

 

n recent times, there has been increasing research attention 

towards the application of electromyogram (EMG)-based 

pattern recognition (PR) techniques, specifically for 

facilitating control in prostheses, gaming, and rehabilitation 

systems [1], [2]. PR-based pipelines consist of interconnected 
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phases that collectively aid in the adequate recognition of 

distinct muscle activation patterns associated with various 

EMG signal signatures of limb movement. Studies have shown 

that each phase of the pipeline influences the decoding outcome 

of movement signatures and the stability of the PR control 

scheme. Moreover, it has been demonstrated in previous studies 

that the feature vector construction phase has a greater impact 

than the other phases of the PR-driven scheme [3]. 

Additionally, effective PR-based control schemes ideally 

assume that the myoelectric signal patterns of specific limb 

movements exhibit both distinctiveness and reproducibility 

across multiple trials. These signal patterns are also expected to 

differ from the patterns observed in other movements [4], [5]. 

Therefore, the construction of a feature vector needs to take into 

consideration accurate and robust descriptors that can capture 

possible motor information from the EMG signals for robust 

movement characterization. Notably, such a feature vector 

would not only aid in the proper characterization of movement 

intention in research settings but also in the practical 

deployment of PR-based control schemes in miniaturized 

assistive or rehabilitation robots. 

In the pursuit of a robust PR-based control scheme, existing 

studies have employed diverse feature extraction techniques. 

For instance, He et al. introduced a frequency-dependent 

feature set that was applied to characterize the myoelectric 

signals of various patterns [6], while Khushaba et al. proposed 

a time-dependent spectral moment-driven feature set for 

forearm and hand gesture decoding [7]. Similarly, Hudgins et 

al. proposed four classical time-domain descriptors, which are 

considered benchmark features for EMG-based movement 

signature classification [8]. Likewise, Samuel et al. introduced 

a spatial-temporal feature set, which was used to characterize 
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the movement intentions of amputees and able-bodied subjects 

from EMG recordings [9]. 

Despite the contributions of these methods and many others 

towards enhancing the control of PR-driven prostheses, 

gaming, and rehabilitation systems, their practical adoption in 

commercial and clinical settings is limited. This limitation is 

partly due to the fact that existing feature vector construction 

approaches are rarely high-performing. This can be attributed 

to the discrepancy (drift) between the training and testing sets, 

which might be caused by factors such as the non-stationary 

nature of the EMG signals and variation in signal-to-noise ratios 

(SNR) induced by external factors during the testing phase [39], 

[10]. Specifically, in the benchmark EMG data acquisition 

protocol, prior to the data collection task, the subjects’ limbs are 

cleansed with alcohol pads, particularly the area overlaying the 

arm muscle where the signal sensors are placed [20, 40, and 41]. 

The EMG signals are then collected and used for training and 

testing the classifier. However, in real or clinical applications 

of prosthesis or rehabilitation device, only the data used for 

training the classifier can be prepared in such a well-controlled 

environment. In contrast, during the classifier’s testing phase, 

issues such as the presence of hair between the electrode and 

skin, dust accumulation, and drying of the electrolyte/gel arise 

[42, 43, 44]. These factors increase the impedance or electrical 

resistance between the skin and electrode contact, which also 

contributes to the discrepancy between the training and testing 

data, further degrading the overall performance of the classifier. 

Therefore, in this research, a novel unsupervised descriptor 

extraction scheme is designed to effectively decode motor 

information in both clean datasets and in the presence of varied 

SNR. Specifically, the proposed scheme first leverages non-

negative matrix factorization (NMF) due to its ability to 

represent muscle synergy (activation potential) from EMG 

signals while reducing non-stationarity [15][17]. It has been 

shown that high-dimensional data (such as EEG and EMG) 

exist in a non-Euclidean space. Applying Euclidean operations 

to such data may overlook important information. However, 

using non-Euclidean operations, such as those in Riemannian 

geometry, is more suitable, as they can uncover the underlying 

structure of complex data [50], [51]. Although these manifolds 

have been extensively applied in other domains, such as EEG 

[50] and image processing [52], they have rarely been used in 

mining EMG data, especially for upper limb movement 

decoding. Therefore, the second stage of the proposed scheme 

incorporates symmetric positive definite matrices (SPD) as 

descriptors, since SPD matrices exist in Riemannian space. To 

reduce the drift between the testing and training datasets, all the 

SPDs (from the testing and training datasets) are projected 

towards a Riemann mean (which is derived from the training 

set only). In the third stage, the approach reinforces robust 

adaptation by projecting the features from the previous stage 

toward a shared distribution derived from the training dataset. 

The combination of these operations contributes to the 

improvement of movement decoding performance. 

The performance of the proposed scheme was validated 

using a novel dataset which was collected from both amputee 

and able-bodied subjects as described in the section II-A. 

 

Table 1. The detailed information of the amputees subjects 

Amputee         Gender       Age Length of residual 
arm from the elbow 

  1                         Female                           26                            14.5cm 
  2                         Female                           27                             5.3cm 

  3                         Female                           30                             7.4cm 

  4                         Female                           31                             6.0cm 
  5                         Male                               28                             4.6cm 

  6                         Male                               40                            10.4cm 

  7                         Male                               35                            12.3cm 
  8 

  9 

         Male                               37                             9.7cm 

         Male                               42                             7.7cm 

10                         Male                               47                             8.6cm 
11                         Male                               29                            13.0cm 

12                         Male                               27                            11.3cm 

13                         Male                               25                            11.6cm 
14                         Male                               38                             6.6cm 

15                         Male                               38                             5.1cm 

Fig. 2. EMG signal (in red) and a synchronization signal (in blue) 

HO HC AB 

AD EX SP 

F1 F2 F3 

F4 F5 FP 

Fig 1. Electrode configuration and the gestures involved in data collection. 

Able-bodied subject Gestures Amputee 
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II. MATERIAL AND METHODS 

A. Data Collection 

The electromyogram recordings were collected from a total 

of 35 individuals, including 20 able-bodied participants and 15 

transradial amputees (ages: 30.0 ± 10.5 years) who participated 

in the experiment. Table 1 summarizes information about the 

amputees. Prior to the start of the experiment, the participants 

signed consent agreement forms, and the research protocol was 

reviewed and approved by the Institutional Review Board at the 

Shenzhen Institute of Advanced Technology, Chinese 

Academy of Sciences, with IRB number SIAT-IRB-221115-

H0626. 

The dataset was collected using an EMG acquisition device 

(NES-128B01, 64 channels, and a sample rate of 2 kHz, 

designed by the Research Center for Neural Engineering, SIAT, 

CAS, China). A total of 24 individual electrodes were placed 

around the dominant forearm, just below the elbow, with an 

approximate spacing of 10 millimeters between each electrode, 

as illustrated in Figure 1. Throughout the data collection 

process, a computer was positioned infront of the participants 

to instruct the participants to perform specific wrist and finger 

gestures, totaling 13 movement tasks (Fig. 1). These gestures 

were selected due to their significance in upper-limb motor 

tasks [21]. The gestures included Hand Open (HO), Hand Close 

(HC), Abduction (AB), Adduction (AD), Extension (EX), 

Supination (SP), Extending the index finger (F1), Extending the 

middle finger (F2), Extending the little/pinky finger (F3), 

Extending both the index and middle fingers (F4), Extending 

the last three fingers (F5), Fingers Pinch (FP), and No Motion 

(NM). Each gesture was performed 10 times, with each motion 

trial lasting approximately 6 seconds, followed by an 8-second 

rest period between consecutive trials. The data were collected 

at a sampling rate of 2000 hertz. Additionally, a 50 hertz notch 

filter was applied, along with a bandpass filter that had cutoff 

frequencies of 10 to 500 hertz. This filtering process was 

employed to extract the relevant signal components from the 

data. In order to help synchronize the onset phase and rest/idle 

periods for each trial during signal acquisition, a separate signal 

was incorporated to indicate the start and end of the onset phase 

and rest phase, as conceptualized in Fig. 2. This would aid in 

chopping/segmenting the onset (active) part of the signal during 

signal processing. 

B. Electrode Configurations 

During data analysis, 9 trials (out of 10 trials) were used 

for training, while 1 trial was used for testing. Similar 

experiments were repeated 5 times, with different trials 

considered for testing each time (i.e., trials 1, 3, 5, 7, and 9), 

and the results were recorded as averages for all five trials. 

To depict real practical/clinical scenarios where the training 

of the decoding system occurs in a controlled environment, 

while the practical application (testing) of the system is 
Table 2. Specific electrodes to which noise was added in different scenarios for both amputees and able-bodied subjects 

 1st time 2nd time 3rd time 4th time 5th time 

Scenario 1 5 2 16  11 23 

Scenario 2 8 and 17 5 and 22 12 and 19 3 and 21 9 and 14 

Scenario 3 3,7, and  16 1,12, and 20 9, 11, and 18 5, 14, and 23 2,15, and 19 

Scenario 4 4, 10, 17, and 21 5,9,14, and 23 3, 7, 12, and 19 2, 8, 16, and 22 1, 6, 13, and 18 

Scenario 5 5,8, 13, 18, and 24 3,7,9,14, and 21 2,6,10,15, and 20 4,11,12,19, and 23 1,6,16,17, and 22 

Scenario 6 2,4,7,14,19, and 22 3,5,9,11,17, and 20 1,6,12,13,18, and 23 8,10,15,16,21, and 24 4,6,10,14,19, and 23 

Scenario 7 3,5,9,12,17,19, and 21 2,4,6,10,15,20, and 23 1,7,8,11,14,18, and 22 3,5,13,9,16,21, and 24 2,4,6,10,12,17, and 19 

Scenario 8 4,7,8,12,14,16,19, and 23 3,5,6,9,11,18,21, and 24 1,2,10,13,15,17,20,and 22 3,5,7,8,12,16,19, and 24 1,2,9,13,15,18,20, and 22 

Scenario 9 1,4,7,8,10,14,17,21, and 
23 

3,5,6,9,11,12,15,19, and 
24 

1,2,7,9,13,16,18,20, and 
22 

2,5,8,10,11,13,15,19, and 
23 

3,4,6,12,14,16,17,21, and 
24 

Scenario 10 2,4,7,9,11,12,16,18,20, 

and 22 

3,5,6,10,13,14,17,19,21, 

and 23 

1,3,6,8,10,13,15,17,22, 

and 24 

2,4,7,9,11,12,16,18,20, 

and 22 

3,5,6,10,13,14,17,19,21, 

and 23 

Scenario 11 3,4,5,7,9,10,12,16,18,20, 

and 22 

1,3,6,8,11,13,14,17,19,21, 

and 23 

1,6,7,9,12,13,15,16,20,22, 

and 23 

2,3,5,8,10,11,14,18,19,21, 

and 24 

4,5,7,8,10,12,13,16,17,20, 

and 22 

Scenario 12 2,4,6,7,9,11,12,14,16,18,2

0, and 22 

1,3,5,6,8,10,13,14,17,19,2

1, and 23 

1,3,6,8,10,12,13,15,17,19,

22, and 24 

2,4,5,7,9,11,12,14,16,18,2

0, and 22 

3,5,6,8,10,13,14,15,17,19,

21, and 23 

Test 

Scenario 6 

Test 

Train 

Test Test 

Scenario 3 Scenario 2 Scenario 1 

 Clean electrodes  

Electrodes with 

Gaussian noise 

Fig 3. Configuration of clean electrodes and electrodes with noise at different experimental scenarios. 
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subjected to uneven signal drifts due to changes or increases in 

impedance between the electrode and the skin. White Gaussian 

noise (WGN) was added to different electrodes of the test set 

only, following a predefined random sequence indicated in 

Table 2. Meanwhile, all electrodes in the training set were kept 

clean and free of noise, as indicated in Fig. 3. 

Twelve scenarios were considered: in scenario 1, only one 

electrode was subjected to noise, and the experiment was 

repeated 5 times with a different electrode selected each time. 

Scenario 2 involved two electrodes at a time, and similarly, the 

experiment was repeated 5 times while considering different 

electrodes each time. Scenario 3 involved 3 electrodes, with a 

protocol similar to scenarios 1 and 2. Scenario 4 involved four 

electrodes, and scenario 5 involved five electrodes. The 

scenarios continued up to scenario 12, where twelve random 

electrodes were subjected to noise. Table 2 indicates the 

different scenarios. 
 

C. Feature extraction  

In this study, a novel robust descriptor extraction technique 

was proposed for the effective characterization of EMG signals, 

even in the presence of uneven variations in signal-to-noise 

ratios. We denote this scheme/features as the NMF-based Non-

Euclidean Riemannian Descriptor (NNERD). The key steps for 

the extraction of the NNERD are described in the following 

subsections. Fig. 4 summarizes the major steps of the proposed 

feature extraction technique. 

 

(i) Non-negative Matrix factorization (NMF) 

NMF, or Non-negative Matrix Factorization, is an effective 

algorithm for multivariate data analysis. It can decompose any 

matrix with non-negative values into two separate matrices, 

both of which contain only non-negative elements. Inspired by 

its ability to reduce the non-stationary nature of the signal [17], 

we first apply it to the raw signal before segmenting it. The 

operation of NMF can be expressed as follows: 

Consider a matrix  𝑍  (which represents the EMG signal) given 

by: 

                             𝑍 ∈ 𝑹𝑛×𝑚;    if   𝑹 > 0                           (1) 

Here, for the training set, 𝑹 consists of all non-negative 

elements of all nine trials of a specific movement, while for the 

test set, 𝑹 represents non-negative elements of one trial of a 

specific movement,  𝑛 is the number of features, while 𝑚 is the 

size of samples. Precisely, in this study 𝑛 = 24 (equivalent to 

the number of electrodes) and  𝑚  is the size of discrete data 

points. It is worth noting that, before the NMF operation, all the 

negative values of the EMG signal (𝑹) were suppressed to be 

equal to zero. The NMF can linearly decompose a matrix  𝑍 into 

two matrices. A basic matrix 𝑊 ∈ 𝑹𝑛×𝑘 and a coefficient 

matrix  𝐻 ∈ 𝑹𝑘×𝑚 . Specifically, the (𝑚, 𝑛)-th element of    𝒁,

𝑧𝑛𝑚, is calculated as; 

      𝑍𝑛𝑚 ≈ (𝑊 ⋅ 𝐻)𝑛𝑚 = ∑  𝑘
k=1 𝑊𝑛𝑘𝐻𝑘𝑚                   (2) 

Choosing the value of 𝑘 is very necessary for balancing 

both complexity and performance. Thus, in this study, we 

used  𝑘 = 12  as it showed higher performance than others. 

       It should be noted that after the NMF operation, the signals 

were segmented into overlapping chunks following the sliding 

window operation [16]. Specifically, they were segmented into 

overlapping windows of size 150 ms, with an overlap of 50 ms. 

Thus, let each signal chunk (segment) be represented as; 𝑋 ∈
 𝑋𝑛×𝑞  here  𝑛 represents the number of channels in the data, 

and 𝑞 the number of samples in one segment/chunk. 

 

(ii)  Construction of the Sample Covariance Matrices (SCM) 

      Given the EMG signal   𝑋 ∈  𝑋𝑛×𝑞
, we can estimate the 

sample covariance matrix (SCM) represented as  𝑆 ∈  𝑅𝑛 × 𝑛
 

by deploying Equation 3. To estimate the SCM, we utilized a 

regularized estimator known as oracle approximating 

Shrinkage (OAS) as it showed comparatively higher 

performance than other estimators such as Ledoit Wolf, and 

Schaefer Strimmer [11], [12].           

                𝑆   =        
𝑋𝑋𝑇

𝑡𝑟𝑎𝑐𝑒(𝑋𝑋𝑇)
                           (3) 

As concluded by Yger et al. [13], the SCM belongs to the 

symmetric positive definite (SPD) space, indicating that its 

eigenvalues are strictly positive. Thus, we used the constructed 

SCM as SPD and denoted it as 𝑆(𝑛) with size 𝑛 × 𝑛 (24 × 24). 

 

Riemannian Manifold (RM): According to the literature 

[26], the RM is defined as a smooth manifold where the tangent 

space at any point is the Euclidean space of infinite dimension. 

The classification of symmetric positive definite matrices 

(SPD) as RM has facilitated the use of Riemannian operations 

on SCM [14], [23]. The novel descriptor adaptation technique 

proposed is built upon the following key definitions. 
 

Geodesic path (𝛅𝛄): It is the shortest path between two 

SPD matrices (such as 𝑆1 and   𝑆𝑟) on the RM.  It describes how 

one can traverse (project) from 𝑆1  towards  𝑆𝑟  and vice versa 

[24]. According to Moakher et al. [25], the geodesic path 

NMF  NMF 

Construct SPD 

matrices 
Construct SPD 

matrices 

Feature Adaptation 

Distribution 

Adaption 

Distribution 

Adaptation 

Classification 

Sliding window 

operation 

Sliding window 

operation 

Prediction 

Motion 

Intents 

Feature Adaptation 

The trained 

Classifier 

Riemann 

Mean 

Mean & STD 

EMG Train Data  EMG Test Data  

Fig 4. The Flow chart for the proposed technique 
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between two matrices (SPDs) can be estimated using Equation 

5. 

γ(𝑆1, 𝑆𝑟 , 𝑡) =   𝑆1

1

2 (𝑆1

−
1

2𝑆𝑟𝑆1

−
1

2)

𝑡

𝑆1

1

2      𝑡 ∊ (0,1)           (4)   

Here, 𝑡  is a hyper-parameter which defines the direction of 

traverse, either more towards 𝑆1 or  𝑆𝑟 , and it needs to be tuned. 

It is worth noting that in our preliminary analysis, we found 𝑡 = 

0.5 exhibits high and consistent decoding performance 

compared to other possible 𝑡 values. 
 

Tangent space ( 𝑺 ): Is the space demarcated by the whole 

set of tangent vectors Pi. In this manifold, the metric embodies 

a Euclidean flat structure that allows the application of 

conventional mathematical (arithmetic) operations such as 

mean, variance, etc.  

Assuming S ∈  S(n) being a point that belongs to the 

manifold of the SPDs (which is embedded in a RM), it is 

feasible for each point Si ∈  S(n)  to associate a vector (a 

tangential vector) Pi ∈  P(n)  which belongs to the tangent 

space, such that Pi =  γ(0). Here,  γ(𝑡) is a geodesic between 𝑆 

and   Si. The Riemann logarithmic (𝐿𝑜𝑔) map operator denoted 

as 𝐿𝑜𝑔𝑠: S(𝑛) → P(𝑛) facilitates the mapping of point    Si  to 

its corresponding tangent vector Pi   conversely the Riemannian 

exponential  (𝐸𝑥𝑝)  map operator 𝐸𝑥𝑝𝑠: (Pn) = Sn  allows a 

bijective mapping from the tangent manifold (space) to the 

original space of SPDs  𝑆(𝑛). Utilizing the AIRM [22], the 

Riemannian logarithm ( 𝐿𝑜𝑔)  and exponential (𝐸𝑥𝑝)   map 

operations can be expressed as; 

𝐸𝑥𝑝𝑠(Pi) =  𝑆
1

2𝐸𝑥𝑝(𝑆−
1

2𝑃𝑖𝑆
−

1

2)𝑆
1

2                                 (5) 
 

𝐿𝑜𝑔𝑆(Si) =  𝑆
1

2𝐿𝑜𝑔(𝑆−
1

2𝑆𝑖𝑆−
1

2)𝑆
1

2                                 (6) 
 

NB: The projection of symmetric positive definite matrices 

from the RM to the corresponding tangent space, and the 

reverse operation from the tangent space back to the manifold, 

can be achieved using the expressions given in Equations 5 and 

6, respectively. 

 
 

(iii)  Feature Adaptation (FA) 

In reducing/removing the discrepancy between the training 

and testing set, all high-dimensional signals were subjected to 

the NMF operation, and then every segment (of size 24 × 150) 

in both training and testing dataset was converted to SPD 

(belonging to RM space) using Equation 3. Then, using the 

reference point Sr (in this study, we used a Riemann mean of 

the training set only as a reference), every SPD was projected 

towards a Riemann mean (𝑆𝑟) as expressed in Equation 4. The 

output of this stage is represented as 𝑆𝑡𝑟𝑎𝑖𝑛  and  𝑆𝑡𝑒𝑠𝑡  for 

training and testing datasets, respectively. 

Therefore, the Riemann mean ( 𝑆𝑟)  is estimated using 

equations 5 and 6 as outlined in Algorithm 1.  

 
 

 

  

 

 

 

 

 

 

 

 

 
  

It should be noted that only the SPDs from the training set 

were used to find the Riemann Mean (𝑆𝑟). The reason for using 

the Riemann mean instead of the arithmetic mean is that the 

Riemann mean of SPD matrices is guaranteed to be SPD, 

whereas the arithmetic mean of SPD matrices may not 

necessarily yield an SPD matrix. 
 

(iv)  Distribution adaptation (DA) 

To further reduce the drift between the testing and training 

datasets, in this final step we projected all descriptors to the 

common distribution (specifically to the training set’s 

distribution) by using the common standard deviation 𝐷  and 

mean 𝑈 derived from the training set only, as expressed in 

Equation 7. The input to this stage consists of the outputs from 

the previous stage, 𝑆𝑡𝑒𝑠𝑡  for the testing set and  𝑆𝑡𝑟𝑎𝑖𝑛  for the 

training set. 
 

            𝑍𝑡𝑒𝑠𝑡 =
𝑆𝑡𝑒𝑠𝑡 

  
− 𝑈

𝐷
   𝑎𝑛𝑑   𝑍𝑡𝑟𝑎𝑖𝑛   =     

𝑆𝑡𝑟𝑎𝑖𝑛 
  

− 𝑈

𝐷
          (7)           

where,                 𝑈 =  
1

𝑣
∑ ( 𝑆𝑡𝑟𝑎𝑖𝑛 

  
)𝑣

𝑖=1                              (8) 

and  

                             𝐷 =  √
(∑  (𝑆𝑡𝑟𝑎𝑖𝑛−𝑈)𝑣

𝑖=1 )2

𝑣
                       (9) 

From equations 7, 8, and 9,  𝑆𝑡𝑟𝑎𝑖𝑛 represents the feature 

matrices of the training dataset, while 𝑣 is the number of all 

features in 𝑆𝑡𝑟𝑎𝑖𝑛. Therefore, in the subsequent sections, we will 

be referring 𝑍𝑡𝑟𝑎𝑖𝑛 and 𝑍𝑡𝑒𝑠𝑡  as the NMF-based Non-Euclidean 

Riemannian Descriptor (NNERD). 𝑍𝑡𝑟𝑎𝑖𝑛  and 𝑍𝑡𝑒𝑠𝑡   contain 

feature matrices of size  𝑛 × 𝑛 (24 × 24) . Before applying 

these features to the classification network (such as SVM), we 

flattened them to get each feature of size  1 × 576. 

It is worth noting that the proposed scheme works in an 

unsupervised manner, as the optimization parameters (i.e., 

arithmetic mean, standard deviation, and Riemann mean) are 

derived from the training set only without any prior knowledge 

of the test set. Fig. 4 summarizes all operations. 

 

D. Comparison to other State-of-the-art techniques 

In order to compare the performance of the proposed 

feature, we considered a variety of multi-feature sets that have 

been used in previous research:  

Algorithm 1 Riemann Mean of  𝑚  SPD matrices (𝑆𝑟) 
 

Input: m SPDs {𝑆1, 𝑆2, 𝑆3 … … 𝑆𝑚 ) and tolerance > 0 

Output: The estimated Riemann mean (𝑆𝑟 ) 

Initialize: 𝑆𝑟
(𝑡)

 =  
1

𝑚
∑  (𝑆𝑖), 𝑡 = 1 𝑚

𝑖=1                           

While 

𝑆̅ =
1

𝑚
∑ 𝐿𝑜𝑔

𝑆𝑟
(𝑡)

 
 (𝑆𝑖)

𝑚

𝑖=1

 

 

 𝑆𝑟
(𝑡+1)

 =  𝐸𝑥𝑝
𝑆𝑟

(𝑡)
 
 (𝑆 ̅)  

𝑡 = 𝑡 + 1 
 

Until                       ‖𝑆𝑟
(𝑡+1)

‖𝐹  <  ∊ 

Return                    𝑆𝑟
(𝑡+1)
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1. Invariant features in Time domain (invTDD):  This 

approach combines five reliable time-dependent features 

that were introduced by Asogbon et al. to enhance decoding 

performance, even when there are variations in the muscle 

contraction forces [31]. 

2. Waveform Length (WL): This represents the total length of 

the signal waveforms within the given time window [29]. 

3. Time domain features (TD4): Is a set of commonly used 

time-dependent features which include wavelength, zero-

crossings, slope sign change, and mean absolute value [4]. 

4. Time-Dependent Power Spectrum Descriptors (TDPSD): Is 

a descriptor composed of six features that estimate the 

power spectrum characteristics of the electromyogram 

signal directly from the time-domain [1].  

5. Mean Absolute Value (MAV): This feature is estimated by 

taking the mean of the absolute values of the signal samples 

within the given time window [32]. 

6. Variance (VAR): is estimated by the variance of the EMG 

signal within the analyzed window. Specifically, it estimates 

the power of the electromyogram signal [33, 36] 

The reason for using these techniques in comparison with the 

proposed approach is that they have been applied in previous 

works and have shown comparatively excellent decoding 

performance [17], [30], [34], [35]. To ensure a fair comparison, 

the same window size and stride were used during the 

extraction of the proposed technique and the comparative 

features (invTDD, WL, TDPSD, MAV, TD4, and VAR). 

 

 

 

E.  Basic Experimental Setups  

      To examine the decoding performance of the NNERD and 

compare it against other feature extraction techniques, three 

classifiers were used to decipher the inherent motion tasks: 

Support Vector Machine (SVM), Nearest Mean Classifier 

(NMC), and k-Nearest Neighbor (kNN) classifier [7, 27, 28]. 

kNN and SVM are commonly used in decoding EMG-based 

motor intents, while we have introduced the application of 

NMC for the first time in decoding motion intents in EMG 

signals due to its capability in handling high-dimensional 

features, the simplicity of the process, and the fact that it does 

not require parameter tuning [37, 38]. The analysis was 

conducted using two important metrics: accuracy and F1-score. 

We considered these metrics because they have been widely 

adopted in EMG-based motion classification works. Moreover, 

the F1-score encompasses recall and precision in its 

computation. The numerical definitions of these metrics are 

described in Equations 10 and 11. 
 

    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦      =                       
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                     (10) 

 

    𝐹1 − 𝑠𝑐𝑜𝑟𝑒    =    
2×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
   =       

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
   (11) 

 

Furthermore, a Friedman's test (non-parametric test) was 

performed, followed by a Dunn's post-hoc analysis, to assess 

the statistical significance of the proposed NNERD method. 

 

             III. RESULTS ANALYSIS AND DISCUSSION 
  In this section, we describe a collection of investigations 

conducted to evaluate the efficacy of the NNERD and other-state-

the-art descriptors. 

 

 

Table 3:    Classification F1-score of different features (NNERD, TDPSD, TD4, invTDD, MAV, VAR, and WL) applied on classifiers SVM, KNN, 

and NMC when there is no Gaussian noise added to both training and test set. The top results represent amputees’ decoding performance while the 
bottom results represent the able-bodied decoding performance. 

                                                                                               Amputees 

 NNERD TDPSD TD4 invTDD MAV VAR WL 

SVM 
 

KNN 
 

NMC 

99.91±0.35 
 

99.79±0.47 
 

99.30±1.02 

75.84±11.52 
 

66.20±14.18 
 

53.66±14.61 

75.59±12.90 
 

68.11±14.61 
 

47.10±14.02 

75.16±11.50 
 

58.64±14.04 
 

43.72±12.05 

75.08±12.14 
 

67.04±14.76 
 

44.83±12.50 

65.34±13.98 
 

58.64±14.39 
 

40.57±11.52 

74.63±14.13 
 

69.71±13.56 
 

41.12±12.38 

                                                                                        Able-bodied subjects 

SVM 
 

KNN 
 

NMC 

99.99±0.02 
 

99.91±0.18 
 

99.52±0.68 

86.31±3.46 
 

80.63±4.61 
 

63.86±8.02 

86.87±3.85 
 

82.56±4.75 
 

56.86±9.58 

85.12±4.07 
 

70.16±8.13 
 

51.40±9.55 

85.29±4.37 
 

80.21±6.04 
 

53.38±6.85 

74.30±16.1 
 

72.26±7.07 
 

45.37±8.77 

85.79±4.53 
 

82.56±6.23 
 

51.16±10.16 

 NNERD   TDPSD  TD4  invTDD  VAR  MAV  WL 

Fig 5.   Classification accuracies of different features (NNERD, TDPSD, TD4, invTDD, MAV, VAR, and WL) applied on classifiers SVM, kNN 
and NMC when there is No Gaussian noise is added in both training and test set. (a) Indicates the decoding performance of amputees. (b) 

Indicates the performance for the able-bodied subjects. 
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A. Evaluation of the proposed method (NNERD) on 

decoding motion intents without considering the effects 

of varied SNRs 

 

     In this section, we analyze the decoding performance of the 

proposed feature scheme in the absence of noise in both the 

training and testing sets. We have considered this analysis 

because it is commonly employed in previous EMG-based 

decoding studies that do not consider the effects of noise [2, 31, 

3]. It should be noted that during data analysis, 9 trials (out of 

10 trials) were utilized for training, while one trial was used for 

testing. Similar experiments were repeated 5 times, with 

different trials being considered for testing at each time (i.e., 

trials 1, 3, 5, 7, and 9) and the results were recorded as the 

average of all five folds.  The average classification accuracies 

for both amputee and able-bodied participants are shown in Fig. 

5. 

 By closely examining the results in Fig. 5, we can observe 

that the NNERD has significantly (with p<0.05) performed 

better than all other features in both amputees (Fig. 5 (a)) and 

able-bodied subjects (Fig. 5 (b)).  For instance, in Fig. 5 (a) on 

SVM classifier, the NNERD has outperformed other features, 

followed by TD4, TDPSD, MAV, invTDD, WL, and VAR with 

accuracies of 99.91±0.35%, 76.43±11.96%, 76.40±11.12%, 

76.02±11.25%, 75.82±10.94%, 75.43±13.46%, and 

66.78±13.04%, respectively. Similarly, when considering the 

results for able-bodied subjects in Fig 5 (b) on the SVM 

classifier, the NNERD has attained an accuracy of 

99.99±0.02%, while TD4, TDPSD, WL, MAV, invTDD, and 

VAR attained 87.05±3.60%, 86.45±3.32%, 85.95±4.39%, 

85.38±4.22%, 85.32±3.87%, and 74.84±15.48%, respectively.  

To conduct a more in-depth investigation of the features’ 

performance, we analyzed the F1-score metrics, which are 

reported in Table 3. Based on the decoding results shown in 

Table 3, the NNERD approach demonstrated significantly 

(p<0.05)  superior performance compared to other features 

(TDPSD, TD4, invTDD, MAV, VAR, and WL) in both 

amputee and able-bodied subjects. These results (in F1-score) 

relate to the decoding results in accuracy and further justify the 

superiority of the proposed technique (NNERD).  

 

B.  Evaluation of the proposed method (NERD) on decoding 

motion intents in the presence of varied SNR. 

To depict the effects of uneven variation of SNR, which 

represents the effects of uneven changes of impedance between 

the electrode surface and the skin, Gaussian noise was added 

randomly to the electrodes as demonstrated in Section II-B. In 

this study, we considered three levels of noise (SNR) that have 

been recommended by Zhao et al. [39]. These levels are 0dB: 

which represents the highest level of noise when the signal level 

is equal to the noise level. 10dB: which represents a moderate 

level of noise, and 20dB, indicating the lowest noise. However, 

only the results for 0dB and 20dB were presented due to the 

consistent results displayed by 0dB and 10dB. The results for 

0dB and 20dB are displayed in Fig. 6 and Fig. 7, respectively.  

When looking into the results in Fig. 6 (0dB SNR) for both 

amputees and able-bodied participants, it can be seen that the 

increase in the number of electrodes with noise affects the 

decoding performance of all features in all classifiers. 

Specifically for SVM and kNN classifiers, as the number of 

electrodes subjected to noise increases, the features NNERD, 

TDPSD, and TD4 show a decrease in accuracy while the 

invTDD, MAV, VAR, and WL portray unpredictable/inconsis- 

tent performances.  Although the proposed feature NNERD 

shows a small decrease in performance with the increase in 

electrodes with noise, its decoding performance is still very 

high compared to other features. For instance, the classification 

accuracies on SVM (Fig 6 (a)), when only one electrode is 

subjected to noise for amputees when different features are 

applied to SVM classifier are 99.87±0.39%, 75.14±10.91%, 

76.33±11.97%, 76.03±10.98%, 76.27±11.33%, 67.43±13.54%, 

and 75.45±13.72% for NNERD, TDPSD, TD4, invTDD, MAV, 

VAR, and WL, respectively. When twelve electrodes are 

subjected to noise (which is the worst-case scenario) the 

average accuracies are 93.36±6.27%, 65.91±11.51%, 

75.10±9.51%, 75.53±10.83%, 77.45±10.28%, 69.07±13.57%, 

and 75.59±10.70% for  NNERD, TDPSD, TD4, invTDD, 

MAV, VAR, and WL, respectively. A similar trend is observed 

in able-bodied configuration.   

Regarding the NMC classifier, the performance trend is 

similar to that of SVM and kNN for the NNERD and TDPSD 

features, where the classification performance decreases (with 

a small margin for the proposed feature) with the increase in the 

number of electrodes with noise. However, features like TD4, 

invTDD, MAV, VAR, and WL show an opposite trend, starting 

with low accuracies and increasing with the number of 

electrodes with noise. Although their performances increase, 

they are still extremely low compared to the proposed NNERD. 

For instance, the performance (in accuracy) of the NNERD, 

TDPSD, TD4, invTDD, MAV, VAR, and WL features  (for 

amputees Fig. 6 (c)) when one electrode is subjected to noise 

are 98.92±1.06%, 55.13±13.46%, 50.14±13.39%, 

46.19±11.86%, 47.40±12.13%, 42.78±10.58%, and 

44.38±12.13% accuracy, while the performance in the 

corresponding features when twelve electrodes are subjected to 

noise are, 92.32±5.43%, 49.24±12.21%, 54.65±13.66%, 

49.29±11.98%, 51.29±12.21%, 46.65±10.59%, and 

49.48±12.60%, accuracy, respectively. The reason behind the 

higher decoding performances of NNERD compared to all 

other features might be due to the high dimensionality of the 

NNERD features, which works well for the NMC classifier.   

It is worth noting that, although the varied SNR affects the 

features’ decoding performance (at 0dB SNR), the proposed 

feature extraction scheme NNERD, has performed significantly 

(with p<0.05) better than other features in both amputees and 

able-bodied participants. This indicates the stability of the 

proposed feature to maintain higher performance even in the 

presence of noise.  
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Able-bodied subjects 

Amputees 

a) SVM at 0dB b) KNN at 0dB c) NMC at 0dB 

Fig 6.   Classification accuracies of different features (NNERD, TDPSD, TD4, invTDD, MAV, VAR, and WL) applied on classifiers SVM, kNN and 

NMC when different number of electrodes of the test set are subjected to 0dB Gaussian noise. Note: The y-axis of all plots represent classification 

accuracies while the x-axis represent the quantity of electrodes with noise.  
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0dB, SVM classifier on amputees
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0dB, SVM classifier on able-bodied subjects
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0dB, kNN classifier on able-bodied subjects
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0dB, kNN classifier on amputees
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0dB, NMC classifier on able-bodied subjects
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0dB, NMC classifier on amputees

a) SVM at 0dB b) kNN at 0dB c) NMC at 0dB 

a) SVM at 20dB b) kNN at 20dB c) NMC at 20dB 

Fig 7.   Classification accuracies of different features (NNERD, TDPSD, TD4, invTDD, MAV, VAR, and WL) applied on classifiers SVM, KNN and 

NMC when different number of electrodes of the test set are subjected to 20dB Gaussian noise. Note: The y-axis of all plots represent classification 

accuracies while the x-axis represent the quantity of electrodes with noise 
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20dB, SVM classifier on amputees
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20dB, SVM classifier on able-bodied subjects
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20dB, KNN classifier on amputee

None 1 2 3 4 5 6 7 8 9 10 11 12
40

50

60

70

80

90

100

C
la

s
s
if

ic
a
ti

o
n

 a
c
c
u

ra
c
y
 (

%
)

20dB, kNN classifier on able-bodied subjects

None 1 2 3 4 5 6 7 8 9 10 11 12
40

50

60

70

80

90

100

C
la

s
s
if

ic
a
ti

o
n

 a
c
c
u

ra
c
y
 (

%
)

20dB, NMC classifier on amputees
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20dB, NMC classifier on able-bodied subjects
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Fig 8. The decoding of individual motion intents in amputees. 

The classification results were obtained as average across all 

subjects when SVM classifier is applied to decode NNERD, 

TDPSD, TD4, invTDD, MAV, VAR, and WL features. The 

0dB Gaussian noise was added to twelve randomly selected 

electrodes of the test set.  The hand gestures involved include  

Abduction (AB), Adduction (AD), Extension (EX), Hand 

open (HO), fingers pinch (FP),  Extending the index finger 

(F1), extending the middle finger (F2), extending the 

little/pinky finger (F3), extending both the index and middle 

fingers (F4), extending the ring, middle, and index fingers 

(F5), Hand close (HC),  No motion (NM), and Supination 

(SP). 
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Fig 9. The decoding of individual motion intents in able-

bodied subjects. The classification results were obtained as 

average across all subjects when SVM classifier is applied to 

decode NNERD, TDPSD, TD4, invTDD, MAV, VAR, and 

WL features. The 0dB Gaussian noise is added to twelve 

randomly selected electrodes of the test set.  The hand 

gestures involved include  Abduction (AB), Adduction (AD), 

Extension (EX), Hand open (HO), fingers pinch (FP),  

Extending the index finger (F1), extending the middle finger 

(F2), extending the little/pinky finger (F3), extending both the 

index and middle fingers (F4), extending the ring, middle, 

and index fingers (F5), Hand close (HC),  No motion (NM), 

and Supination (SP). 
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When closely analyzing the classification outcomes in Fig. 7 

(for 20dB SNR), the proposed feature extraction scheme 

(NNERD) has performed significantly better than other features 

(with p<0.05). For instance, for the amputee's results, when one 

electrode was subjected to noise and SVM classifier was used, 

the decoding performances for the features (NNERD, TDPSD, 

TD4, invTDD, MAV, VAR, and WL) are 99.91±0.35%, 

76.35±11.19%, 76.50±11.92%, 75.84±10.92%, 76.03±11.28%, 

66.79±13.04%, 75.43±13.54% accuracy, while when twelve 

electrodes are subjected to noise, the decoding performances 

are 99.52±0.86%, 75.69±11.32%, 76.47±11.69%, 

75.67±11.13%, 76.19±11.21%, 67.28±13.26%, and 

75.95±12.50% accuracy, respectively.  

 

C. Analyzing the Performance of the features for individual 

motion decoding  

In this section, we present the decoding performance of the 

NNERD and other features in decoding specific motion intent. 

Due to the consistently high performance of the NNERD in all 

classifiers and SNR levels, we considered the analysis using 

only SVM as a representative of other classifiers and 0dB (the 

worst level of noise) for representing SNR levels. The 

confusion matrices are indicated in Figs. 8 and 9 for amputees 

and able-bodied subjects, respectively.   

 From Fig. 8 for amputees, it can be seen that the NNERD has 

attained higher decoding performance in all thirteen classes of 

movements with the minimum class having an accuracy of 

87.0%, while the minimum performing class for other features 

are 52.0%, 60.0%, 69.0%, 68.0%, 52.0%, and 66.0% for 

TDPSD, TD4, invTDD, MAV, VAR, and WL, respectively. A 

similar pattern is observed in Fig. 9 for able-bodied subjects, 

where the proposed feature scheme has attained higher 

decoding performance in all individual classes, compared to the 

other features considered in this study.  

 

Generally, NNERD has performed better (with a high 

margin) than other features. Its performance is similar in both 

amputees and able-bodied individuals, contrary to other 

features whose performances in able-bodied subjects are higher 

than in amputees. This indicates the potential and robustness of 

the proposed feature (NNERD). 

Although the results are similar across all classifiers, a closer 

look at the decoding performance of the NMC classifier shows 

that NNERD has attained extremely high and stable 

performance compared to other features. Other features have 

extremely low results in the NMC classifier compared to other 

classifiers. The reason behind this might be that the dimension 

of the proposed feature is high and suitable for the NMC 

classifier, which was specifically designed to handle high-

dimensional features [45], [37].  

Additionally, when examining the variance of all features 

across all classifiers and SNR scenarios, the proposed feature 

NNERD has the lowest variance, justifying its consistent results 

across all subjects. 

 Apart from the feature and distribution adaptation 

(demonstrated in Section II-C) which reduces the discrepancy 

between the testing and training datasets, the outstanding 

performance of the proposed feature NNERD can also be 

attributed to the ability of SPDs to preserve not only temporal 

information from the EMG signals but also the correlation 

between channels (spatial information) [46][47][48].  

 

                           IV. ABLATION STUDY 

This section analyzes the contribution of different stages of 

the proposed techniques to movement decoding performance. 

The ablation study was conducted on 15 amputees only. The 

results are presented as averages from these subjects. 

Additionally, in this section, we have included an analysis of 

the linear discriminant classifier (LDA) due to its 

comparatively good performance in hand gesture recognition. 
  

A. Evaluation of the impact of key stages of the proposed 

technique on the decoding performance 
 

The feature adaptation scheme (NNERD) proposed in this 

study consists of three key operations/stages (Fig. 4). The first 

stage is the NMF operation, the second stage involves the 

construction of SPD and feature adaptation, and the third stage 

comprises the Distribution Adaptation operation/phase (DAP).  

To evaluate the contribution of each stage, we performed the 

ablation as follows.  

First, we eliminated the NMF operation and the DAP in the 

pipeline. As such, the raw EMG of every segment (window) 

was converted to SPD matrices and passed through the feature 

adaptation operation. We termed this first approach FAP.  

Secondly, we included the Distribution Adaption phase 

together with FAP and observed the contribution of DAP on 

FAP. We denote this approach as DAP.  

Lastly, to improve the performance, the NMF operation was 

incorporated as a preprocessing technique comprising the 

whole proposed feature (NNERD).  The results for each stage 

are displayed in Table 4 for the classifiers SVM, kNN, NMC, 

and LDA. 

 Looking closely at the results in Table 4, it can be observed 

that there is a substantial increase in decoding performance 

when applying the distribution adaptation (DAP) from the 

feature adaptation (FAP). An additional increase is observed 

when NMF is applied to complete the whole process of 

NNERD. For instance, when considering the SVM, we can 

observe the increase from 91.99±7.50%, 94.25±7.78%, to 

99.91±0.35% when applying FAP, DAP and NMF (to 

constitute NNERD), respectively.  

 Similar increments are observed in other classifiers.  

Therefore, every stage has a significant contribution.   

 

B. Evaluation of the Impact of NMF on the Decoding 

Performance of Other State-of-the-Art Techniques 
 

 This section evaluates the impact of applying NMF during 

the preprocessing stage on the performance of other state-of-

the-art techniques. Table 5 presents the decoding accuracy 

results for these methods while considering two scenarios, with 

the application of NMF and without the application of NMF.  

Table 4. The ablation study on the three stages of the proposed method 

 (in accuracy %) 

 FAP DAP NNERD 

SVM 
kNN 

NMC 

LDA 

91.99±7.50 
87.17±8.76 

71.66±16.76 

90.41±8.79 

94.25±7.78 
90.21±9.95 

88.23±11.20 

94.19±8.57 

99.91±0.35 
99.79±0.46 

99.32±0.96 

98.34±5.24 



Frank el al. 

 

 By carefully analyzing the results in Table 5, it can be seen 

that the application of NMF improves the performance of the 

features. However, the margin of improvement is not 

significant (the majority are between 0.09% to 2.00%), while 

some features show a decrement in certain classifiers.   

Due to the inconsistent non-significant increase when 

applying NMF on other state-of-the-art features, we did not 

include NMF as part of the extraction of other state-of-the-art 

features in the previous sections.            

It is worth noting that we acknowledge the use of LDA in 

decoding the movement, as applied by previous works.  

However, due to the comparatively similar performance of 

LDA, KNN, and SVM, we decided to limit our analysis to only 

three classifiers (SVM, KNN, and NMC). 

 

C.   Computational Time 

 This section investigates the computational time for different 

techniques. Two phases are considered.  The first phase is the 

time taken for preprocessing, feature extraction, and training 

the classifier. It involves the training dataset only and is denoted 

as Train-Time. The second phase is the time taken for 

preprocessing, feature extraction, and testing (prediction), 

which involves the testing dataset only. This time is denoted as 

Test-Time. Table 6 indicates the two phases. Additionally, we 

have included the analysis of the proposed feature but excluded 

the NMF operation from it, and we denote this as Non-

Euclidean Riemannian Feature (NERF).  
      

     Table 6.  Computational time (seconds) for training and test phases 
 

Time 
 

NERF 
 

NNERD 
 

TDPSD 
 

TD4 
 

invTDD 
 

MAV 
 

VAR 
 

WL 

Train 33.83 53.12 4.23 40.32 17.67 2.36 3.50 2.59 

Test 2.70 21.46 2.45 11.00 5.45 1.56 1.86 1.65 

 

From the results in Table 6, the proposed feature NNERD has 

the highest computational time. The reason behind this may be 

due to the addition of the NMF operation. As we can observe, 

if the NMF is excluded from the proposed feature (to constitute 

a NERF), its testing computational time becomes 

comparatively lower than other features such as TD4 and 

invTDD.  
 

V.      CONCLUSION 

This study introduces a feature extraction approach to 

improve the effectiveness of the EMG-based motion intent 

classification system. The proposed approach utilizes non-

negative matrix factorization (NMF) and symmetric positive 

definite (SPD) matrices, which exist in a non-Euclidean space, 

enabling the extraction of features for motion intents from 

electromyogram signals. To reduce the drift/discrepancy 

between the testing and training datasets, NMF is first applied 

to the EMG signal, followed by feature adaptation that relies on 

the Riemann mean of the training set. To further reduce the 

discrepancy, the final stage projects all the features of the 

training and testing sets towards a common distribution whose 

parameters are derived from the training set only. 

The proposed feature scheme has been validated using a 

dataset that was collected from both amputees and able-bodied 

subjects, and it has demonstrated outstanding performance 

compared to other features when there is no noise (in 

amputees), with maximum accuracies of 99.91±0.35% for 

SVM, 99.79±0.46% for kNN, and 99.32±0.96% for the NMC 

classifier. In able-bodied subjects, the results are 99.99±0.02% 

for SVM, 99.91±0.18% for kNN, and 99.51±0.69% for the 

NMC classifier. When subjected to noise, the proposed feature 

(NNERD) still showed higher decoding results than other 

features, with the lowest performance of 93.87±4.30% accuracy 

(for able-bodied subjects) and 92.32±5.43% accuracy (for 

amputees) at a severe noise level (SNR of 0dB). This 

performance is still higher than all other features at their highest 

performing state (20dB of SNR). These results justify the 

effectiveness of the NNERD, which could enhance motor intent 

decoding performance in the EMG-based system. 

While the NNERD technique has demonstrated promising 

classification performance, it was tested on offline 

experimental setups. Therefore, our future research will focus 

on validating the effectiveness of the proposed method in real-

time clinical/practical settings. 

 

                                       REFERENCES 
[1] A.H. Al-Timemy et al., "Improving the performance against force variation of EMG 

controlled multifunctional upper-limb prostheses for transradial amputees." IEEE 

Transactions on Neural Systems and Rehabilitation Engineering 24.6 (2015): 650-661.  

[2] E. Scheme and K, Englehart, "Electromyogram pattern recognition for control of 

powered upper-limb prostheses: state of the art and challenges for clinical use." Journal of 

Rehabilitation Research & Development 48.6 (2011). 

[3] O. W. Samuel et al., "Pattern recognition of electromyography signals based on novel 

time domain features for amputees' limb motion classification." Computers & Electrical 

Engineering 67 (2018): 646-655. 

[4] X. Li et al., "A motion-classification strategy based on sEMG-EEG signal combination 

for upper-limb amputees." Journal of neuroengineering and rehabilitation 14.1 (2017): 1-

13. 

[5] M.G. Asogbon et al., "Towards resolving the co-existing impacts of multiple dynamic 

factors on the performance of EMG-pattern recognition based prostheses." Computer 

methods and programs in biomedicine 184 (2020): 105278. 

[6] J. He et al., "Invariant surface EMG feature against varying contraction level for 

myoelectric control based on muscle coordination."  IEEE journal of biomedical and health 

informatics 19.3 (2014): 874-882.  

[7] R. N. Khushaba et al., "Combined influence of forearm orientation and muscular 

contraction on EMG pattern recognition." Expert Systems with Applications 61 (2016): 

154-161.  

[8] K. Englehart and B. Hudgins, "A robust, real-time control scheme for multifunction 

myoelectric control." IEEE transactions on biomedical engineering 50.7 (2003): 848-854.  

           Table 5. The decoding accuracy (%) for other state-of-the-art methods. (a) Without NMF applied (b) With NMF applied 

(a) Without_NMF 

 TDPSD TD4 invTDD MAV VAR WL 

SVM 

KNN 

NMC 
LDA 

76.40±11.12 

67.01±13.87 

55.30±13.71 
80.05±9.97 

76.43±11.96 

68.88±14.10 

49.44±13.32 
80.73±9.49 

75.82±10.94 

59.44±13.77 

45.95±11.82 
81.82±9.26 

76.02±11.25 

68.32±13.93 

46.89±12.16 
78.36±10.15 

66.78±13.04 

60.29±13.92 

42.37±10.69 
67.19±12.87 

75.43±13.46 

70.29±13.29 

43.87±12.01 
78.28±11.05 

 

                                                                                       (b) With_NMF 

 TDPSD TD4 invTDD MAV VAR WL 

SVM 

KNN 

NMC 
LDA 

77.13±2.66 

64.99±6.67 

57.17±15.38 
80.28±1.91 

76.75±3.49 

72.01±4.86 

53.39±17.65 
81.07±2.52 

73.84±3.35 

61.22±9.68 

48.05±17.89 
82.34±1.75 

78.01±3.77 

69.19±5.00 

47.10±18.67 
75.27±2.97 

67.63±6.04 

62.82±7.36 

42.46±15.46 
70.06±6.25 

77.35±2.93 

68.83±5.42 

47.33±18.47 
79.19±2.23 



Frank el al. 

 

[9] O. W. Samuel et al., "Spatio-temporal based descriptor for limb movement-intent 

characterization in EMG-pattern recognition system." 2019 41st Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 

2019. 

[10] P. Trujillo et al., "Quantitative EEG for predicting upper limb motor recovery in 

chronic stroke robot-assisted rehabilitation." IEEE transactions on neural systems and 

rehabilitation engineering 25.7 (2017): 1058-1067. 

[11] S. Kumar, Y. Florian and L. Fabien, "Towards adaptive classification using 

Riemannian geometry approaches in brain-computer interfaces." In 2019 7th International 

Winter Conference on Brain-Computer Interface (BCI), pp. 1-6. IEEE, 2019. 

 [12] H. Ramoser, J. Muller-Gerking and G. Pfurtscheller, "Optimal spatial filtering of 

single trial EEG during imagined hand movement." IEEE transactions on rehabilitation 

engineering 8, no. 4 (2000): 441-446. 

[13] Y. Florian, L. Fabien and S. Masashi, "Averaging covariance matrices for EEG signal 

classification based on the CSP: an empirical study." In 2015 23rd European Signal 

Processing Conference (EUSIPCO), pp. 2721-2725. IEEE, 2015 

[14] Z. Huang et al., "Log-euclidean metric learning on symmetric positive definite 

manifold with application to image set classification." In International conference on 

machine learning, pp. 720-729. PMLR, 2015. 

[15] J. Li, R. Wang and L. Pan, "An enhanced EMG-driven musculoskeletal model based 

on non-negative matrix factorization." Biomedical Signal Processing and Control 79 

(2023): 104178. 

[16] F. Kulwa et al., "A Multidataset Characterization of Window-Based Hyperparameters 

for Deep CNN-Driven sEMG Pattern Recognition." IEEE Transactions on Human-

Machine Systems (2023). 

[17] G. Huang et al., "Low-density surface electromyographic patterns under electrode 

shift: Characterization and NMF-based classification." Biomedical Signal Processing and 

Control 59 (2020): 101890. 

[18] M. S. Singh, R. Pasumarthy and V. Talasila. "Time series analysis of surface EMG 

signal-linear, non linear and chaotic approaches." In 2019 Fifth Indian Control Conference 

(ICC), pp. 442-447. IEEE, 2019. 

[20] X. Li et al., "Towards reducing the impacts of unwanted movements on identification 

of motion intentions." Journal of Electromyography and Kinesiology 28 (2016): 90-98. 

[21] A. Ameri et al., "A deep transfer learning approach to reducing the effect of electrode 

shift in EMG pattern recognition-based control." IEEE Transactions on Neural Systems 

and Rehabilitation Engineering 28, no. 2 (2019): 370-379. 

[22] A. Barachant et al., "Riemannian geometry applied to BCI classification." 

International conference on latent variable analysis and signal separation. Berlin, 

Heidelberg: Springer Berlin Heidelberg, 2010 

[23] H. Cha, and C. Im, "Improvement of robustness against electrode shift for facial 

electromyogram-based facial expression recognition using domain adaptation in VR-based 

metaverse applications." Virtual Reality (2023): 1-12. 

[24] P. Zanini et al., "Transfer learning: A Riemannian geometry framework with 

applications to brain–computer interfaces." IEEE Transactions on Biomedical Engineering 

65, no. 5 (2017): 1107-1116. 

[25] M. Moakher, "A differential geometric approach to the geometric mean of symmetric 

positive-definite matrices." SIAM journal on matrix analysis and applications 26, no. 3 

(2005): 735-747. 

[26] R. Wang et al., "Covariance discriminative learning: A natural and efficient approach 

to image set classification." In 2012 IEEE conference on computer vision and pattern 

recognition, pp. 2496-2503. IEEE, 2012. 

[27] R. Tibshirani et al., "Diagnosis of multiple cancer types by shrunken centroids of gene 

expression." Proceedings of the National Academy of Sciences 99, no. 10 (2002): 6567-

6572. 

[28] O. W. Samuel et al., "Multiresolution Dual-Polynomial Decomposition Approach for 

Optimized Characterization of Motor Intent in Myoelectric Control Systems." IEEE 

Transactions on Biomedical Engineering 70, no. 5 (2022): 1516-1527. 

[29] B. Hudgins, P. Parker, and R. N. Scott. "A new strategy for multifunction myoelectric 

control." IEEE transactions on biomedical engineering 40, no. 1 (1993): 82-94.  

[30] R. Khushaba et al., "Towards limb position invariant myoelectric pattern recognition 

using time-dependent spectral features." Neural networks 55 (2014): 42-58. 

[31] M. G. Asogbon et al., "Towards resolving the co-existing impacts of multiple dynamic 

factors on the performance of EMG-pattern recognition based prostheses." Computer 

methods and programs in biomedicine 184 (2020): 105278. 

[32] M. Zardoshti-Kermani et al., "EMG feature evaluation for movement control of upper 

extremity prostheses." IEEE Transactions on Rehabilitation Engineering 3, no. 4 (1995): 

324-333. 

[33] M. G. Asogbon et al., "Appropriate feature set and window parameters selection for 

efficient motion intent characterizatin towards intelligently smart EMG-PR system." 

Symmetry 12, no. 10 (2020): 1710. 

[34] R. Khushaba et al., "Combined influence of forearm orientation and muscular 

contraction on EMG pattern recognition." Expert Systems with Applications 61 (2016): 

154-161. 

[35] C. Ma et al., "A novel and efficient feature extraction method for deeplearning based 

continuous estimation." IEEE Robotics and Automation Letters 6, no. 4 (2021): 7341-

7348. 

[36] A. Phinyomark et al., "Feature extraction of the first difference of EMG time series 

for EMG pattern recognition." Computer methods and programs in biomedicine 117, no. 2 

(2014): 247-256. 

[37] V. Praveen, K. Kousalya and K. R. Prasanna Kumar, "A nearest centroid classifier 

based clustering algorithm for solving vehicle routing problem." In 2016 2nd International 

Conference on Advances in Electrical, Electronics, Information, Communication and Bio-

Informatics (AEEICB), pp. 414-419. IEEE, 2016. 

[38] S. Tan, Y. Wang, and G. Wu. "Adapting centroid classifier for document 

categorization." Expert Systems with Applications 38, no. 8 (2011): 10264-10273. 

[39] Z. Zhao, W. Guo, Y. Xu, and X. Sheng. "A biosignal quality assessment framework 

for high-density sEMG decomposition." Biomedical Signal Processing and Control 90 

(2024): 105800. 

[40] N. Zhang et al., "A novel antibacterial membrane electrode based on bacterial 

cellulose/polyaniline/AgNO 3 composite for bio-potential signal monitoring." IEEE 

Journal of Translational Engineering in Health and Medicine 6 (2018): 1-10. 

[41] Y. Jiang et al., "Effective biopotential signal acquisition: comparison of different 

shielded drive technologies." Applied Sciences 8, no. 2 (2018): 276. 

[42] Y. Fu et al., "Dry electrodes for human bioelectrical signal monitoring." Sensors 20, 

no. 13 (2020): 3651. 

[43] G. J. Jin., M. J. Uddin, and J. S. Shim. "Biomimetic cilia‐patterned rubber electrode 

using ultra conductive polydimethylsiloxane." Advanced Functional Materials 28, no. 50 

(2018): 1804351. 

[44] L. Yang et al., "Insight into the contact impedance between the electrode and the skin 

surface for electrophysical recordings." ACS omega 7, no. 16 (2022): 13906-13912. 

[45] S. Ren and Q. Mai. "The robust nearest shrunken centroids classifier for high-

dimensional heavy-tailed data." Electronic Journal of Statistics 16, no. 1 (2022): 3343-

3384. 

[46] Y. Gao et al., "EEG emotion recognition based on enhanced SPD matrix and manifold 

dimensionality reduction." Computers in biology and medicine 146 (2022): 105606. 

[47] T. Zhang et al., "Deep manifold-to-manifold transforming network for skeleton-based 

action recognition." IEEE Transactions on Multimedia 22, no. 11 (2020): 2926-2937. 

[48] S. Cheng et al., "Action recognition based on spatio-temporal log-Euclidean 

covariance matrix." International Journal of Signal Processing, Image Processing and 

Pattern Recognition 9, no. 2 (2016): 95-106. 

[49] F. Kulwa et al., "A robust feature adaptation approach against variation of muscle 

contraction forces for myoelectric pattern recognition-based gesture characterization." 

Biomedical Signal Processing and Control 95 (2024): 106446.0.5 

[50] C. Simar et al., "Hyperscanning EEG and classification based on Riemannian 

geometry for festive and violent mental state discrimination." Frontiers in Neuroscience 14 

(2020): 588357. 

[51] Z, Al-Mashhadani et al., "The Efficacy and Utility of Lower-Dimensional Riemannian 

Geometry for EEG-Based Emotion Classification." Applied Sciences 13, no. 14 (2023): 

8274. 

[52] H. J. Kim et al., "Riemannian nonlinear mixed effects models: Analyzing longitudinal 

deformations in neuroimaging." In Proceedings of the IEEE conference on computer vision 

and pattern recognition, pp. 2540-2549. 2017. 

 

 
 

 

 


