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Abstract— Digital healthcare is essential to facilitate consumers
to access and disseminate their medical data easily for enhanced
medical care services. However, the significant concern with
digitalization across healthcare systems necessitates for a prompt,
productive, and secure storage facility along with a vigorous
communication strategy, to stimulate sensitive digital healthcare
data sharing and proactive estimation of malicious entities. In this
context, this paper introduces a comprehensive quantum-based
framework to overwhelm the potential security and privacy
issues for secure healthcare data management. It equips quantum
encryption for the secured storage and dispersal of healthcare
data over the shared cloud platform by employing quan-
tum encryption. Also, the framework furnishes a quantum
feed-forward neural network unit to examine the intention behind
the data request before granting access, for proactive estimation
of potential data breach. In this way, the proposed framework
delivers overall healthcare data management by coupling the
advanced and more competent quantum approach with machine
learning to safeguard the data storage, access, and prediction of
malicious entities in an automated manner. Thus, the proposed
IQ-HDM leads to more cooperative and effective healthcare
delivery and empowers individuals with adequate custody of
their health data. The experimental evaluation and comparison of
the proposed IQ-HDM framework with state-of-the-art methods
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outline a considerable improvement up to 67.6%, in tackling
cyber threats related to healthcare data security.

Note to Practitioners—This paper aims to address the issue
of digital healthcare data access, which requires both ease and
security. Existing research either focuses solely on safe access
or on high security, which often comes with high computational
challenges. In this paper, we present a comprehensive approach
that takes into account various challenges such as secure data
storage, efficient data communication, and the prediction of
malicious entities. We have developed a mathematical system
to portray the overall management of healthcare data. All
techniques proposed in this paper have been implemented using
quantum computing and have been tested on four healthcare
datasets. Initial experimental results suggest that the proposed
approach is feasible. Our techniques can be applied to discover
malicious entities and understand the behavior of real-life users
in healthcare processes.

Index Terms— Automated healthcare data security, malicious
entity prediction, quantum encryption, quantum feed forward
neural network.

I. INTRODUCTION

DIGITAL transformation of healthcare services allows
access to healthcare facilities, across the globe even from

far distant, remote, and strategic locations. Cloud computation
serves as a base element to roll out this worldwide digital
facility by offering outstanding services like storage, com-
putation, investigations, analysis, etc. at a very nominal cost
and with remarkable availability. This has attracted healthcare
institutions to migrate their data accumulated from diverse
medical IoT devices and sensors, over the cloud platform [1],
[2], [3]. Cloud service platforms act as the backbone of digital
health systems by enabling the digital retrieval of patient data
and the extraction of valuable clinical information. As a result,
various additional uses have become available, including qual-
ity management, healthcare administration, and trans-national
research [4], [5]. The adoption of digital infrastructure by
healthcare organizations can offer numerous advantages for
consumers like doctors, patients, and healthcare services.
However, apprehensions regarding the privacy and security
of end consumer data is a major challenge across various
healthcare institutions [6], [7]. These institutions are required
to grant data access among multiple stakeholders, such as
researchers, academia, doctors, patients, regulatory bodies,
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etc., for different usages [8], [9], [10], [11]. Sharing of this cru-
cial and sensitive data in digital infrastructure is essential for
medical growth, but it is highly susceptible to data breaches,
security, and privacy issues. According to a survey, healthcare
data breaches have consistently trended upward and doubled
in the last three years [12]. Moreover, according to the Global
Threat Report 2023, for more than 2500 adversaries there is a
112% increase in the cyber threat-related eCrimes, compared
to 2021 [13]. Furthermore, a study highlights the privacy
security concerns related to Electronic Health Records (EHRs)
[14]. Any mal-intentional exposure of crucial medical data
to some unauthorized party may induce direct financial loss,
reputation damage, operational downtime, legal actions and
massive harm to overall growth of the organization’s [15], [16].
Thus, data breach outcomes are wide-ranging and extremely
impactful. In this way, fortified data storage, reliable communi-
cation, edge security, and privacy appear as crucial challenges
in shared cloud environments that must be handled properly.
Proactive, healthcare data breach estimation emerges as a
prominent way out of this problem. Several approaches [17],
[18], [19], [20], [21] have been defined in this regard but
these approaches detect data breaches after their occurrence.
However, in a real environment, proactive computation of
possible data breaches is the key to safeguarding healthcare
confidential data security and privacy.

In this context, a novel Intelligent Quantum Cyber-Security
Framework for Healthcare Data Management (IQ-HDM)
framework is proposed to accomplish the comprehensive
healthcare data management by equipping secure storage and
communication to estimate the crucial healthcare data access
intention for being ‘malicious’ or ‘non-malicious’ and identi-
fication of malicious entity, in case of data breach. To the best
of author’s knowledge, this is the first framework that con-
currently addresses the aforementioned multiple data security
issues by furnishing a Quantum one-time padding encryption
(QOTPE) unit for secure data storage and Quantum feed-
forward neural network (QFNN) based quantum-protected
healthcare data communication (QPHDC) request analysis
unit for proactive estimation of a mal-intentional entity.
Thus, the proposed IQ-HDM framework establishes a com-
prehensive quantum-oriented security-embedded automated
healthcare data management.

A. Related Work

The considerable works presented for preserving health-
care data security via privacy-preserving, encryption, and
prediction approaches, a few acting in reactive and others
in a proactive manner. Lim et al. [22] presented a more
practical, scaleable, and easy-of-deploy solution to address the
problem of privacy-preserving dataset integration using the
concept of a prototype called PrivateLink without requiring
key sharing among participants. Gupta and Kush [23] proposed
a forecasting-based data leakage prevention (DLP) model to
restrict data access permission to users by using a simple
piece-wise linear function for model learning. This approach
forecast possible guilty users based on past data access records
of users. Rosa et al. [4] presented a small-form and battery-less

implantable device with acquisition channels for bio-potential,
arterial pulse oximetry, and temperature recordings with in-situ
encryption of data. Though implantable devices are the future
of the remote medical field but they suffer from data theft and
spoofing. Data disclosure poses serious threats to data security.
This concept lags in strict data security norms. Gupta et al. [18]
proposed a novel model to support multiple participants to
securely share their data for distinct purposes. The model
defines the access policy and communication protocol among
the involved multiple untrusted parties by utilizing encryption,
machine learning, and probabilistic approaches. Xu et al. [19]
presented a model to process the complex healthcare security
event in real-time by analyzing the security performance, using
an improved convolutional neural network (CNN) having a
four-branch inception block to increase the width of the CNN
while reducing the parameters.

Gupta et al. [24] proposed a novel quantum machine
learning based malicious user prediction (QM-MUP) and
privacy-preserving model. The proposed model preserves data
privacy via the Laplace mechanism-based noise addition and
uses Quantum Pauli gate-based Neural Network predictor
to exploit the computational and behavioral properties of
qubits. Sun et al. [25] proposed privacy-preserving bilat-
eral fine-grained access control (PBAC-FG) which employs
fine-grained access control and matchmaking encryption tech-
nologies to ensure participants can specify their respective
fine-grained access control over the encrypted healthcare data.
Thus allowing only authorized counterparts to access the
healthcare data. Song et al. [26] proposed a cryptographic
approach, controllable out-sourced attribute-based proxy re-
encryption (COAB-PRE) enabling bilateral and distributed
access control whereby data producers and data consumers
can both specify policies the other party must satisfy without
a centralized access control server along with supporting
verifiability to find out a wrong result produced by the edge
nodes and locate the misbehaved one. Chang et al. [27] pro-
posed a universal quantum circuit (UQC) based scheme named
DQFHE to deal with the volatility problem of the servers using
a quantum environment. Gupta et al. [10] proposed a novel
malicious user detection model by using the gradient boosting.
Also, Gupta et al. [2] proposed a data security model to
predict the malicious user in advance. It utilized the federated
machine learning which incorporated data safety by making
the learning at local user site without actually sharing data.
Table I showcases the studied literature in a consolidated form.

The approaches discussed above assure data security, either
using encryption to provide secure data access, prediction of
malicious entities, or detection of guilty agents. Thus, existing
work has presented data safety solutions for addressing a
particular data security issue. Moreover, all these issues like
secure data storage, data communication, and malicious entity
prediction should be handled together, as these are diverse
constituents of comprehensive data security. However, none of
the existing work is sufficient to tackle the above-mentioned
issues, concurrently considering these issues are different com-
ponents of security. Unlike existing work, a comprehensive
framework with a more potent, computational, and enhanced
performance is proposed which addresses the limitation of
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TABLE I
ENCAPSULATED VIEW OF RELATED STUDIES AND PROPOSED WORK

the existing work to deliver data security. The proposed
framework mitigates the malicious data request proactively to
shield data from further breaches by utilizing the capability of
QOTPE unit and QPHDC unit. Quantum-oriented data security
approach is considered more robust, secure, and efficient
because quantum deals with an infinite number of potential
states along with zero and one state whereas classical considers
either zero or one as the possible outcome states. Various
quantum gate permits a rotational outcome in a 360◦ view
that analyzes the input data deeply with numerous possible
qubit states to generate possible outcomes from it and thus
predicts the data breach more adequately.

B. Key Contributions

In light of the aforementioned approaches, the fivefold key
contributions of this paper are discussed below.

1) A novel quantum driven IQ-HDM framework using
the computational efficiency of quantum encryption and
quantum feed-forward neural network approaches is
designed to furnish end-to-end management of health-
care data ensuring secure data storage, efficient data
communication, and prediction of malicious entities.

2) The QOTPE unit is designed that is responsible for
encryption of data in the form of quantum states result-
ing in maximally mixed states, providing a perfect and
unconditional security to the transmitted data.

3) A QPHDC unit incorporating pauliX, Hadamard quan-
tum gates, and qubits is developed that eventually add
more potency to data communication by allowing the
secure sharing of data among various stakeholders.

4) The proposed framework strengthens data communica-
tion by proactively mitigating the hazardous data request
intentions and recognizing the malicious entity to pre-
vent further breaches.

5) A series of experiments are conducted utilizing
the widely adopted four benchmark datasets that
demonstrate the efficacy of the proposed end-to-end
quantum-oriented approach for improving the security
of electronic healthcare data management. The accom-
plished results are compared with the state-of-the-art
works through diverse performance metrics.

TABLE II
NOMENCLATURE

C. Paper Outline

This article is structured as follows. Section I discusses
introduction and related work with key contributions of the
presented research work. Section II furnishes a detailed elab-
oration of the proposed IQ-HDM framework involving two
units QOTPE and OPHDC, to ensure comprehensive data
management as explained in Section II-B and Section II-C,
respectively. The design and complexity of IQ-HDM are
conferred in Section III. The performance evaluation followed
by discussion remarks about the proposed work is presented
in Section IV. The conclusive remarks and the future scope of
the proposed work are outlined in Section V. Table II shows
the list of symbols with explanatory terms used throughout
this article.

II. IQ-HDM

This section describes the framework entities and their
designated roles, and summarizes the workflow of IQ-HDM.
The comprehensive architecture of the proposed framework is
depicted in Fig. 1.

A. System Model

The system model comprises of four entities healthcare
agencies (Ha), cloud service supplier (CSS), data users (DU),
and third parties (Tp) which are defined as follows.

1) Healthcare Agencies (Ha): An entity generating health-
care data using various Sensors and IoT devices. Ha

treats CSS as trusted but is curious-to-know therefore it
encrypts the data before transferring it for storage and
sharing purposes. Moreover, Ha

i itself might not leak
its data, but may leak the other Ha

j ’s data, therefore is
considered an untrusted entity.

2) Cloud Service Supplier (CSS): An entity that collects all
the encrypted data from Ha

i to offer storage, computation
for further sharing among DU. CSS supports secure
data communication and malicious entity estimation by
deploying a QFNN based quantum-protected healthcare
data communication unit (QPHDC).

3) Data User (DU): An entity raising a request to CSS for
grant of healthcare data objects (Dh) access required for
different utility purposes and obtains quantum encrypted
Dh along with the key. DUi is considered a highly
untrusted entity.

4) Third Party (Tp): An unauthorized and untrusted entity
that belongs indirectly to the system. Tp can access
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Fig. 1. Architecture of the proposed intelligent quantum oriented healthcare data management framework.

the relevant information from an malicious entity or by
accessing Dh illegally from some authorized entity.

Considerable healthcare agencies Ha are accumulating cru-
cial medical data from different sources such as sensor devices,
IoT devices, and diagnosis reports, etc. as displayed in Fig. 1.
Ha , share healthcare data objects DH

i with multiple data users
DUi utilizing data to deliver better medical services. Data
sharing encounters the threat of safety, privacy, and breaches.
The proposed framework considers entities Ha , DU, and Tp

are untrusted and CSS is semi-trusted but curious-to-know
entity. Specific challenges are described as follows.

• Lack of secure data storage at cloud premises due to the
possibility of being misused by curious-to-know CSS.

• Assessment of intention for data request before Dh
i is

granted because DUi might be mal-intentional.
• Proactive estimation of malicious user might responsible

for unauthorized transmission of sensitive Dh
i to particular

Tp.
To ensure data security during transmission and to keep data
hidden from curious-to-know cloud service supplier (CSS),
data owner Ha encrypts their respective data into some directly
unreadable format by utilizing the QOTPE approach. Also,

QFNN oriented QPHDC unit is employed for proactive esti-
mation of potential breach and malicious entity by performing
extensive analysis of each user for each data access request.
The purpose of IQ-HDM is to anticipate an advanced, suitable
quantum-driven solution for the overall management of crucial
healthcare data which delivers secure storage, mitigates com-
munication issues, and predicts malicious entity in case of data
leakage by utilizing extremely powerful quantum approaches
imparting high privacy, robust security and, mitigating the
threats, to intensify the overall performance of the system.

B. Quantum Encryption for Outsourced Data

To make data secure before allowing its transmission to a
shared cloud platform data is encrypted into some unreadable
content by deploying the quantum one-time padding encryp-
tion (QOTPE) approach. The encrypted data is then stored at
a cloud data storage server (DSS) thus enabling highly secure
data storage. It comprises following consecutive steps:

1) Encoding: In order to perform any quantum
computations, the classical data needs to be converted
to the quantum states, which is achieved through
basis encoding in the proposed model. The classical
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data is converted to the equivalent binary strings
as(DH

1 )2 =, (DH
2 )2 = b0b1bx−1bx , · · · , (DH

n )2 = n0n1nx−1nx ,
where a, b, · · · , n subscripts denote the individual binary
digits for each data instance. Thereafter, each classical
bit of data instance DH

i is encoded as quantum state
|ψa

0 ⟩|ψa
1 ⟩ · · · |ψa

x−1⟩|ψ
a
x ⟩, |ψb

0 ⟩|ψb
1 ⟩ · · · |ψb

x−1⟩|ψ
b
x ⟩, · · · , |ψn

0 ⟩

|ψn
1 ⟩ · · · |ψn

x−1⟩|ψ
n
x ⟩ by initializing corresponding quantum

registers Q Ri , ∀i = 1, 2, · · · , n, defined in Eq. (1), along
with application of Controlled-Not gate on required qubits,
given in Eq. (2).

Q R = {|ψ1⟩, |ψ2⟩, . . . , |ψn⟩} (1)
U (|ψi ⟩) = CNOT(|1⟩, |ψi ⟩) · |1⟩⟨1|

+ Id(|0⟩, |ψi ⟩) · |0⟩⟨0| · |ψi ⟩ (2)

where, U (|ψi ⟩) denotes the application of unitary gate to the
i th input data state |ψi ⟩. CNOT(|1⟩, |ψi ⟩) representing the
application of CNOT gate to the target qubit |ψi ⟩ along with
the control qubit |1⟩. Id(|0⟩, |ψ⟩) is the identity gate applied to
the target qubit |ψi ⟩ and the control qubit |0⟩. Furthermore, the
projectors being applied over the states |1⟩ and |0⟩ are |1⟩⟨1|

and |0⟩⟨0|, respectively. The resultant quantum states (|ψi ⟩) are
capable of performing multiple computations simultaneously
due to underlying quantum mechanical properties such as
entanglement and superposition. A state vector with m number
of qubits used for the precision and d number of samples,
is represented as m + [log(d)] and x = (x1, ..., xd) ∈ Rd

denoted as quantum superposition of bit strings, in which
each instance is a binary string formed using N bits for the
basis encoding. Furthermore, for xi = (b1, ..., b j , ..., bN ) for
j = 1, ..., N with b j ∈ {0, 1}, basis encoding is stated in
Eq. (3).

|x⟩ =
1

√
d

d∑
i=1

|xi ⟩ (3)

Following the encoding of classical data, in order to achieve
a secure communication, the equivalent quantum states need
to be encrypted before being transmitted to the cloud, which
is accomplished by utilizing quantum one time padding as
described in forthcoming subsection.

2) Encryption: The quantum-mechanical principles
underlying in the quantum states establish the
information-theoretical security of the quantum information.
The quantum analogy of classical one time pad is quantum
one time pad that is one of the most examined quantum
encryption algorithms. The security of quantum information
is established on the principles of quantum mechanics, which
is information-theoretically-secure. QOTPE is amongst the
most investigated techniques in quantum encryption [28].
For each quantum state |ψ⟩, two randomly generated keys
α, β ∈ {0, 1}

n are used for padding of original information.
For secret-key quantum encryption, it is assumed that secret
keys are known to both receiver and sender. This bit-wise
quantum one time pad protocol can be represented as Xα

= ⊗
n
i=1σ

α(i)
x and Zβ = ⊗

n
i=1σ

β(i)
z , where σ is the operation

performed over the given qubit. Corresponding to Xα , σx

is applied to the bits at positions in the n-bit string α and
analogously for Zβ , which leads to a maximally mixed state

Fig. 2. Circuit for Quantum one time padding with 3 qubits.

that is completely unidentifiable for the attacker. The resultant
encrypted state in generalized form can be rewritten as stated
in Eq. (4).

Encψ = ⊗
n
i=1 Xαi Zβi |φi ⟩

= Xα1 Zβ1 ⊗ Xα2 Zβ2 ⊗ . . .⊗ Xαn Zβn

|φ1⟩|φ2⟩ . . . |φn⟩ (4)

The circuit generated for quantum one time padding is pro-
vided in Fig. 2 which is tested using six qubits. It depicts the
QOTPE circuit equivalent to Eq. (4) but the encryption keys
are not presented in the circuit as the circuit is generated on
the quantum computer; where encryption keys are being used
in back-end. The maximally mixed states are retrieved after
encryption and subsequently delivered to the cloud securely.
Eq. (5) demonstrates the perfect security achieved by QOTPE,
which is as follows:

ρ̃ =

M∑
k=1

pkUkρU †
k

=
1

22n

∑
α,β∈{0,1}n

XαZβρ(XαZβ)† =
I2n

2n
(5)

where ρ denoting the data quantum state and the maximally
mixed state for n qubits is represented by I2n

2n .
Security Proof : The most general scheme to form an

encryption framework for any n-qubit system is to have a set
of M operations {Uk}, k = 1, 2, . . . ,M , where each element
Uk is a 2n

× 2n unitary matrix. Any random number being
used as key k with probability pk and each quantum state
is encrypted through the corresponding unitary operation Uk .
Subsequently, decryption is achieved through application of
U †

k to obtain the actual state. Considering ρ as the input
state and ρ̃ is the equivalent encrypted state. In order to have
the protocol to be informationally secure, every output state
ρ̃ must be a maximally mixed state, corresponding to each
input state ρ. Therefore, to prove the perfect security of the
quantum one time pad protocol, we consider pk = 1/22n and
Uk = XαZβ , where α, β ∈ {0, 1}

n . The inner product of two
matrices M1 and M2 is defined as T r(M1,M†

2 ). Furthermore,
considering a set of 2n

×2n matrices as an inner product space,
it is trivially verifiable that the set of 22n unitary matrices
{XαZβ} results in an orthonormal basis. If any input message
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ρ is expanded in the XαZβ basis, is retrieved as in Eq. (6).

ρ =

∑
α,β

Aα,βXαZβ, (6)

where, Aα,β is equivalent to T r(ρZβXα)/2n . Thereby, the
perfect security for underlying protocol is given by satisfying
maximally mixed state through Eq. (7).

M∑
k=1

pkUkρU †
k =

1
22n

∑
ζ,η

X ζ ZηρZηX ζ

=
1

22n

∑
α,β

Aα,β
∑
ζ,η

X ζ ZηXαZβ ZηX ζ

=
1

22n

∑
α,β

Aα,β
∑
ζ,η

(−1)αη⊕ζβXαZβ

=

∑
α,β

Aα,βηα,0ηβ,0 XαZβ

= A0,0 I =
T r(ρ)

2n
=

1
2n

I (7)

C. Quantum Prediction for Malicious Entities

Let us assume m data users: {DU1,DU2, . . . ,DUm} ∈ DU
raises the request {R1,R2, . . . ,Rm} to achieve access for
sensitive data Dh

i . Each [Ri : ⟨Dh
i ,DU⋆

i ⟩] comprising details
for required Dh

i and requesting user’s current details such as
type of data, amount of data, request channel etc. are provided
to CSS for further analysis to determine the intention of user
behind the data access request Ri . CSS employs quantum feed
forward neural-network (QFNN) based module to proactively
determine possible malicious user by extensive analysis of live
details DU⋆

i supplied with request from (knowledge database-
users’ live details repository (kd-ULDR) and historical details
DU⋆⋆

i such as leakage record, leakage channel etc. accessible
from knowledge database-users’ historical details repository
(kd-UHDR). DUh

i are considered to be {known, unknown, mal-
intentional}.

1) User Behaviour Analysis: The user intention for being
malicious or non-malicious, is evaluated prior to data access
grant. Eqs. (8 and 9) assesses the breach susceptibility (ρ) of
the DUi , established on basis of N ∗ user eligibility parameters
ξ such as users’ authenticity (AU); authorized data (AD); risk
factor as computed in Eqs. (10-17).

ξ = ξAU i + ξADi + ξRF i + ξ N ∗

(8)

ρDUi =

{
Non-malicious (1), If(ξ < 1)
Malicious (0), Otherwise

(9)

Users’ authenticity (AU): User is validated using Eq. (10)
through login credential (LC). Eq. (11) determine whether the
user DUi is ‘existing’ or ‘new’.

AU i =

{
Authentic, If(LC ∪ RA = match)
Un-authentic, Otherwise

(10)

ξAUi =

{
Existing (0), If(|ℑi | > 0)
New (1), Otherwise

(11)

Authorised data (AD): Every user is allowed to raise request
ℜi as computed in Eq. (12) and Eq. (13), for predefined set
of data (ADi ) only, for example a patient can only access
personal data, not the entire healthcare data. Here, z1, z2, . . . ,
zm∗ specifies the number of datasets from different medical
categories: w1, w2, . . . , wm∗ , respectively.

ADi = (w1 ×

z1∑
k=1

Dk) ∪ (w2 ×

z2∑
k=1

Dk)∪

· · · ∪ (wm∗ ×

zm∗∑
k=1

Dk) (12)

ξADi =

{
Legal (1), If(ℜi × (wi × Di ) ⊆ ADi )

Illegal (0), Otherwise
(13)

Risk factor (RF): Suppose the associated user DUi has
demanded data {Dh

1 , Dh
2 , . . . , Dh

n } during time-interval {ta∗ ,
tb∗} and the status (φ) for any past leakage is stated in Eq. (14).
The total number of DBmal during this period is estimated
using Eq. (15). The breach factor (5) by ui is computed using
Eq. (16), where DBgrand is total number of data access over
period {ta∗ , tb∗}. The data breaches frequency is computed in

Eq. (17) where
H∑

k=1
Dzk ̸∈ ADi and ti jk represents number of

times ui has endeavored to access unauthorized data (Dzk)
over j th time-period. The term H and M stands for total
number of unauthorized data requested by ui during time
duration M where, M ∈ {ta∗ , tb∗}.

φi =

{
True (1), If(Breach = yes)
False (0), Otherwise

(14)

DBmal
i =

z∑
i=1

(Di × φi × t) ∀t ∈ {ta∗ , tb∗} (15)∫ tb∗

ta∗

5i dt =

∫ tb∗

ta∗

DBmal
i

DBgrand
i

dt (16)

FDBmal
i = |

H∑
k=1

M∑
j=1

Dzk × ti jk × ui | (17)

Eq. (18) computes the risk factor (RF) associated with a ℜi

and Eq. (19) determines whether the data demand should allow
utilizing cloud services for data access or not.

RF i = 5i × FDBmal
i (18)

ξRF i =

{
insensitve (0), If(T hr risk > RF i )

sensitve (1), Otherwise
(19)

2) Malicious Entity Prediction: Before the requested data
is granted to DUi , a proactive analysis of the intention behind
the request is performed to safeguard the communication. Only
after being recognized as a legitimate user, requested data is
granted to the authorized user and users’ allocated data repos-
itory (kd-UADR) is updated, accordingly. As shown in Fig. 3 a
quantum feed-forward neural network machine learning-based
algorithm is employed to accomplish proactive estimation
of the malicious user. The key idea of the QFNN-based
QPHDC unit is to optimize the user’s request parameters
according to the cost function as illustrated in Eq. (21).
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Fig. 3. QFNN based QPHDC to predict malicious entity for secure data communication.

Fig. 4. Quantum circuit for qubit embedding.

Moreover, cost function assumes to be given training data
and output states to compute the cost function as stated in
Eqs. (20 and 21), respectively.

trainingData[x][1] = |φout
x ⟩

output States[x] = |ρout
x (s)⟩ (20)

C(s) =
1
N

N∑
x=1

|φout
x ⟩ρout

x (s)φout
x (21)

QFNN architecture creates adjoint layer channel that can be
described as a 4-tuple trainable quantum neural network like
(QFNN architecture, unitaries, training Data, network unitary)
as represented in Eq. (22). Fig. 4 is displaying the quantum
circuit for qubit embedding in QFNN prediction unit.

F l
s(X

l) = trl

((
⊮l−1 ⊗ 0 . . . 0l0 . . . 0

)
U l(s)†

(
⊮l−1 ⊗ X l)U l(s)

)

= trl

((
⊮l−1 ⊗ 0 . . . 0l0 . . . 0

)
U l

1(s)
† . . .U l

ml
(s)†

(
⊮l−1 ⊗ X l)U l

ml
(s) . . .U l

1(s)
)

(22)

for input state = X l .
Feed-forward neural network assumed to be given QFNN

architecture, unitaries, and training data as usual, to carry out
the malicious user estimation task as described in efficient
learning for deep quantum neural networks in the following
steps:

• For each element
[
φin

x , φ
out
x

]
in training data do:

• Calculate the network input ρin
x = φin

x φ
in
x

• For every layer l in QFNN architecture do:
• Apply the layer channel E l

s to the output of the previous
layer l − 1

• Store the result ρl
x (s)

The probability of cost Function returns the average as
computed in Eq. (23).

Prł(m̃(8) ̸= y|m(8) = y) ≈ σ

√
R

1−yb
2 − p̂y√

2(1 − p̂y) p̂y

 (23)

III. OPERATIONAL DESIGN AND COMPLEXITY

Algorithm 1 imparts the operational summary of IQ-HDM,
by utilizing the computational efficiency of quantum com-
puting to provide shielded data storage and determines data
breaches proactively for secure healthcare communications in
the distributed cloud environment.

Time complexity: Steps (1)-(2) performs basic operations
such as input the required datasets and initializes a data
request, user details, and related attributes, consuming O(1)
complexity, while steps (3)-(6) involves the encoding, encryp-
tion of crucial data before storage on shared data cloud
platform, contributing complexity O(QE). The periodical
training of QFNN predictor where the complexity depends
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Algorithm 1 IQ-HDM: Operational Summary

1 Input: Knowledge databases including User Historical
Data Repository (kd-UHDR) and User Allocated
Data Repository (kd-UADR);

2 Initialize: Data request, user details and related
attributes ;

3 Perform Quantum Encryption, to shield the data in
storage ;

4 for each data object {DHa
1 , DHa

2 , . . . , DHa
p } do

5 QE using QOTPE as computed in Eq. (4) ;

6 Periodical, training of QPHDC for secure
communication ;

7 for every data user {DU1,DU2, . . . ,DUm} do
8 for each data request ({R1,R2, . . . ,Rm} {1, 2, . . . ,

m} from respective data user (DU) do
9 Examine the probable purpose of data request

by QFNN- qubit measurement as computed in
Eq. (21);

10 if malicious then
11 Request Ri leads to ’Data Breach’;
12 else
13 Grant data access;

on the quantum gates and circuits rendering O(Q̃). Steps (8)-
(14) iterate for m users, wherein steps (9)-(15) replicate for
m data request. Step 10 examines the probable purpose of
data request by deploying QFNN-based QPHDC, to find the
users’ intentions for being malicious or non-malicious show
complexity O(N ∗). Steps (11)-(15) grant or deny healthcare
data access depending upon the anticipated intention of the
data request inducing O(1) complexity. Hence, the absolute
complexity comes out to be O(n × QE × Q̃ × N ∗) ⇒

O(nQE Q̃N ∗).

IV. PERFORMANCE EVALUATION

A. Experimental Setup and Implementation

The experimental work is carried out on a server machine
encompassing two Intel® Xeon® Silver 4114 CPU with a
40 core processor and having 2.20 GHz clock speed. The
simulation machine run on Ubuntu 16.04, an 64-bit LTS
operating system comprising 128 GB of main memory RAM.
Enactment of proposed work is carried out using Python
3.9. Moreover, IQ-HDM is simulated using the IBM Qiskit
platform (version 0.43.0). The simulation is conducted on IBM
QASM simulator and IBM quantum systems including IBM
Nairobi (No. of qubits used-7), IBM Perth (No. of qubits
used-5), selected on the basis of availability of the system
along with most suitable parameters such as number of qubits
supported by the system, quantum volume and number of
jobs being queued. Also, QFNN to carry out prediction work
employs Adam optimizer on two qubits and four qubits
by utilizing Hadamard and CNOT quantum gates. However,
due to execution constraints of available quantum computer
instances and classical simulator, small chunks of dataset are

TABLE III
EXPERIMENTAL SETUP PARAMETERS FOR THE QUANTUM COMPUTERS

USED AND THEIR VALUES

used to run the experiments. Performance of framework under
consideration, is examined through a dataset comprising of
10k agents live details alongwith ancient details. Major live
details parameters are type of profession, number of requests
from agent, type of requests from agent, and data limit for
which data was accessed whereas the major ancient details
parameters are ancient data of agents, leaked or never leaked
data, how many times leaked the data, how frequently asking
for data, and data retention. These agents all together are
classified into three strictly different brackets which are non-
malevolent, malevolent, and unknown. Moreover, framework
assumes all the entities as non trusted to carry out execution
task. The important primitives related to execution over quan-
tum computer are listed in Table III.

B. Datasets and Simulation Parameters

IQ-HDM is evaluated using different benchmark datasets
available in public real workload datasets. For quantum
encryption purposes, the following datasets are employed:
1) Covid-19 surveillance [29], 2) TCGA [30], and 3) Dia-
betes [31]. COVID-19 surveillance data categorizes the health
details into three categories based on seven different health
parameters. TCGA data is comprised of 839 instances with
twenty-three features related to Gliomas, the most common
primary tumors of the brain. This dataset considers, the
most frequently mutated 20 genes and 3 clinical features
from TCGA-LGG and TCGA-GBM brain glioma projects
to determine whether a patient is LGG or GBM. Diabetes
provides information gathered by monitoring sixteen health
parameters such as Age, Gender, Polyuria, Polydipsia, Sudden
weight loss, Weakness, Polyphagia, Genital thrush, Visual
blurring, Itching, Irritability, Delayed healing, Partial paresis,
Muscle stiffness, Alopecia, Obesity, for a set of 520 patients,
to identify whether the patient diabetes is positive or negative.
In this context, for malicious entity prediction by QFNN,
an extended version of CMU CERT synthetic insider threat
dataset r4.2 [32] is employed.

C. Computational Analysis

1) QOTPE Result: Statistical measurements of probabili-
ties is an important metric to analyze the performance of
a quantum-based algorithm, which forms a basis to access
the randomness achieved in security keys along with encryp-
tion measurements. Fig. 5 represents the probability of each
security key that depends on number of times the QRNG is
executed on quantum computer and classical computer, that
turns out to be almost equivalent for each key. This equivalent
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Fig. 5. Probability statistics for Key generation randomness on classical computer and classical computer.

Fig. 6. Probability statistics of measurements for encrypted states on quantum
computer and classical computer.

comparability in their probability establishes the immunity of
the encrypted data to outside attacks, while highly random
keys will be more difficult to be estimated. The security keys
are generated through the IBM qasm simulator and the IBM
Perth quantum computer along with IBM nairobi, according
to number of qubits supported.

Furthermore, Fig. 6 demonstrates the measurement perfor-
mances for encryption over classical and quantum computer
as well, where classical computer exhibits the precise mea-
surements for the expected encrypted state. The quantum
computer measures the expected encrypted state as maximum
probable state accompanying few erroneous states (ν0-ν5) also.
These error states exhibited by quantum computer is due to
their fragility to external noise, decoherence and other factors
impacting the qubit states.

Fig. 7 provides an analytical insight to quantum encryption
cost with varying number of data instances, tested on three
different datasets Covid-19 surveillance [29], TCGA [30], and
Diabetes [31]. All three datasets incur a non-uniform compu-
tation cost while the Covid-19 surveillance dataset comes up
with least encryption overhead and Diabetes dataset with the
maximum encryption overhead.

2) Prediction Result: A coherent insight to quantum neural
network driven prediction frameworks’ loss parameter; over
different number of epochs, in two different scenarios with
two and four qubits, for dataset size 2k and 10k, respectively
is depicted in Fig. 8. It is visible from figure that, framework is
performing better with increase number of data instance as it

Fig. 7. Encryption cost with number of instances of DATA for diverse
datasets.

can learn, significantly from a more informed data. Moreover,
prediction unit performance is appearing better by reducing
the loss value, with increased number of qubits due to deep
computation with increase number of qubits.

D. Comparison

IQ-HDM is compared with existing state-of-the-art works
like Machine Learning and Probabilistic Analysis Based
Model (MLPAM) [18], Intelligent Security Performance Pre-
diction for IoT-Enabled Healthcare Networks Using an
Improved CNN (IoT-HSM) [19], Quantum Machine Learning
driven Malicious User Prediction Model (QM-MUP) [24],
Malicious Agent Identification-based Data Security Model for
cloud environments (MAIDS) [10], and Federated learning
driven Malicious User Prediction Model for secure data
distribution in cloud environments (FedMUP) [2]. Brief details
regarding these state-of-the-art works are already discussed in
Section I-A.

Fig. 9 depict the comparison of the proposed framework’s
performance parameters; accuracy and data breach coverage
with other state-of-the-art works by considering different
data access request scenarios for {0.5k, 1.0k, 1.5k, Overall}
requests, respectively. The accuracy of the proposed approach
is having an edge over all the compared approaches for dif-
ferent request scenarios. High values of ⋒ show the improved
performance in range between 3.13% to 16.13%. Hence, this is
evident that the IQ-HDM is outperforming considered existing
approaches and its performance is remarkably elevated due to
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Fig. 8. Prediction loss values with Epochs = 100. (a) 2k (b) 10k.

Fig. 9. Comparative analysis of accuracy with state-of-the-art approaches.

TABLE IV
FEATURE ANALYSIS: PROPOSED VS EXISTING MODELS

secure storage, communication, and prediction strategies in the
proposed framework.

Table IV entails an absolute deviation among proposed
IQ-HDM and existing models MLPAM, IoT-HSM, QM-MUP,
MAIDS, and FedMUP by correlating different security fea-
tures. It exhibits that IQ-HDM is the only framework to
assume all entities not fully trusted. This means any of
the entity can have mal-intentions and responsible for the
data breaches. Also, it facilitates potent security and privacy
features such as data storage, data communication and mali-
cious prediction altogether delivers comprehensively secure
communication and visionary breach prediction. The proposed
quantum driven healthcare data management framework out-
performs the state-of-the-art data security methods, and it
is suitable to enhance the performance of breach prediction
in a distributed environment. The reason for this enhanced
performance of predicted values is the learning of useful
information by using quantum values from input data samples.

After comprehensive evaluation of proposed work the
enhancements in terms of quantum network security observed
are that the proposed framework provisions an unconditional
security through QOTPE and OPHDC by utilizing the quantum
mechanical principles making it highly immune to classical
and quantum computer attacks as well, unlike classical secu-
rity mechanisms relying on computational hardness problems.
Moreover, the sensitive data after being encrypted through
QOTPE turns out to be maximally mixed states, that are com-
pletely unidentifiable by any adversary. Any measurements or
alterations made by adversary can be detected trivially. Conse-
quently, IQ-HDM stands ahead in all respects for supporting
secure healthcare data access and cloud communication for
overall data management.

E. Discussion

The results of this study showcase the effectiveness of the
proposed approach. Extant literature reflects that none of the
existing approaches alone is sufficient to impart healthcare
data management. Accordingly, the study proposed a com-
prehensive framework to ensure all-round data management
by utilizing the one of finest tools, quantum computing.
The rationality to be motivated for the deployment of a
quantum-oriented data security approach lies in the fact that
quantum approaches are far superior to classical computing as
quantum gate permits an infinite number of qubit states and
rotational outcome in a 360◦ view for deep analysis to predict
the data breach, efficiently. The quantum one-time padding
encrypts the data before storage on the cloud and then the
quantum malicious entity prediction unit analyses the user
intention before allocating data. Hence, the study first fortified
the crucial data and then checked for user intention. The sig-
nificant impact of the study is in the successful implementation
to deliver comprehensive healthcare data management.

V. CONCLUSION AND FUTURE WORK

Quantum oriented comprehensive data management frame-
work is proposed to provide secure data storage, implementing
data privacy and security policy with expanded digitaliza-
tion of healthcare data. The IQ-HDM framework utilizes the
QOTPE unit to enhance the quality of data-sharing needs
and the QPHDC unit to strengthen data communication for
proactive estimation of the malicious entity. In this way,
the framework furnishes a more nuanced and contextually
relevant approach in the context of healthcare data security.
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Also, extensive experimental work has been conducted to
demonstrate the effectiveness of the proposed methodology in
real-world scenarios, contributing insights into the application
of these criteria in the healthcare domain. This ensures that
the proposed work goes beyond mere theoretical alignment
with established practices, offering a substantively practical
contribution to the field.

In the future, the IQ-HDM framework can be extended
to develop an advanced, robust, and effective mechanism to
enhance its capability of detecting the malicious entity, in case
crucial data got disclosed intentionally or non-intentionally.
Additionally, quantum-based transfer learning can be utilized
to improve the proposed framework by making it capable of
countering unknown types of cyber attacks.
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