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ABSTRACT  

Keywords: 3Dimentional, Smart Grid, Renewable Energy Systems 

The global requirement for sustainable energy provision will become increasingly important 

over the next fifty years as the environmental effects of fossil fuel use become apparent.  

Therefore, the issues surrounding integration of renewable energy supplies need to be 

considered carefully. The focus of this work was the development of an innovative computer 

aided design of a 3 Dimensional renewable energy platform for Togo’s smart grid power 

system infrastructure. It demonstrates its validation for industrial, commercial and domestic 

applications.  

The Wind, Hydro, and PV system forming our 3 Dimensional renewable energy power 

generation systems introduces a new path for hybrid systems which extends the system 

capacities to include, a stable and constant clean energy supply, a reduced harmonic distortion, 

and an improved power system efficiency. Issues requiring consideration in high percentage 

renewable energy systems therefore includes the reliability of the supply when intermittent 

sources of electricity are being used, and the subsequent necessity for storage and back-up 

generation 

The adoption of Genetic algorithms in this case was much suited in minimizing the THD as the 

adoption of the CHB-MLI was ideal for connecting renewable energy sources with an AC grid. 

Cascaded inverters have also been proposed for use as the main traction drive in electric 

vehicles, where several batteries or ultra-capacitors are well suited to serve as separate DC 

sources.  

The simulation done in various nonlinear load conditions showed the proportionality of an 

integral control based compensating cascaded passive filter thereby balancing the system even 

in nonlinear load conditions. The measured total harmonic distortion of the source currents was 

found to be 2.36% thereby in compliance with IEEE 5191992 and IEC 61000-

3 standards for harmonics 

This work has succeeded in developing a more complete tool for analysing the feasibility of 

integrated renewable energy systems.  This will allow informed decisions to be made about the 
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technical feasibility of supply mix and control strategies, plant type, sizing and storage sizing, 

for any given area and range of supply options.  

The developed 3D renewable energy platform was examined and evaluated using CAD 

software analysis and a laboratory base mini test. The initial results showed improvements 

compared to other hybrid systems and their existing control systems.  

There was a notable improvement in the dynamic load demand and response, stability of the 

system with a reduced harmonic distortion. The derivatives of this research therefore proposes 

an innovative solution and a path for Togo and its intention of switching to renewable energy 

especially for its smart grid power system infrastructure. It demonstrates its validation for 

industrial, commercial and domestic applications 
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NOMENCLATURE 

AC                                         Alternating Current 

AFD                                        Agence Francaise de Developpement- France Development Agency  

AfDB                                    African Development Bank 

ANN                                     Artificial Neural Network 

APF                                      Active Power Filter 
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DC                                         Direct Current 
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ESW                                      Economic Sector Work  

EU                                         European Union  
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FC-MLI                                 Flying Capacitor Multilevel Inverter 

GA                                         Genetic Algorithm 

GDP                                       Gross Domestic Product  

GOT                                       Government of Togo  

GTO                                       Gate Turn-Off Thyristors 
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HDI                                         Human Development Index  
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HV                                          High Voltage 

HVDC                                    High Voltage Direct Current 

IDA                                         International Development Association 

IEA                                         International Energy Agency 

IEEE                                       Institute of Electrical and Electronics Engineers 

IEEE-519                                IEEE Recommended Practice and Requirements for Harmonic Control in Electrical Power Systems 

IFC                                          International Finance Corporation 
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IPP                                           Independent Power Producer  

ISN                                          Interim Strategy Note  

LPG                                         Liquefied Petroleum Gas  

LV                                           Low voltage 

ML-VSI                                   Multilevel Voltage Source Inverter 

MME                                       Ministère des Mines et de l’Energie 

 MV                                         Medium Voltage 

NPC-MLI                                Neutral-Point Clamped Multilevel Inverter 

NR                                           Newton Raphson 

OPIC                                       Overseas Private Investment Corporation  

PPF                                          Passive Power Filter 

PPP                                          Public Private Partnership 

PSO                                         Particle Swarm Optimisation 

PV                                           Photo Voltaic 

PV                                           Photovoltaic 

PWM                                      Pulse Width Modulation 

PWM-CSI                              Pulse width modulation – Current Source Inverter 
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SBEE                                     Société Béninoise d’Energie Electrique 

SHE                                       Selective Harmonic Elimination 

SIE                                         Energy Information System (Système d’Information Energétique) 

SPWM                                   Sinusoidal Pulse Width Modulation 

STATCOM                            Static Synchronous Compensator 

TEP                                        Ton Equivalent Pétrole 

WAEMU                                West African Economic and Monetary Union 

WAPP                                     West Africa Power Pool 

Engineering Nomenclatures 

 = absolute velocity, m/s 

CD = drag coefficient, related to the mean velocity, dimensionless 

CL = lift coefficient, dimensionless 

Cpsmin = minimum suction pressure coefficient, dimensionless 

Cp = pressure coefficient, dimensionless 

Cb = camber coefficient, dimensionless 

cr = radial velocity component, m/s 

cm = meridian velocity, m/s 

D = runner diameter, m 

E = specific energy, J/kg 

H = head, m 

l = chord of profile, m 

l/s = solidity of profile, dimensionless 

n = rotational speed, rpm 

nq = specific speed, dimensionless 

P = power, W 
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p = static pressure on the blade profile, Pa 

Ph = hydraulic power, W 

Pu = shift power, W 

po = reference pressure, Pa 

Q = flow rate, m3/s 

R = radius, m 

s = distance between the airfoil cascade, m 

T = torque, Nm 

 = rotation velocity, m/s 

 = relative velocity, m/s 

¥ = mean relative velocity, m/s 

E =Young’s modulus of elasticity, [N/m2]  

g =Acceleration due to gravity, [m/s2]   

Hf  =Head losses due to friction effects in the conduit,[m]   

id =Current flowing in the d‐axis armature coil, [pu]   

iq =Current flowing in the q axis armature coil, [pu]  

y =Turbine wicket gate position, []   

z =Elevation of the pipe centreline, [m]       

α =Slope of the pipe axis, [°]   

𝜕  =Power angle with respect to an infinite busbar   

ε =Internal pipe roughness, [m]   

λ =Eigen value  

Greek Symbols 

D po = loss stagnation pressure, Pa 

D cu = difference between the tangential velocity components, m/s 
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a = angle of attack in relation to ¥, degree 

b = stagger angle, degree 

b3-4 = inlet flow angle, degree 

b µ = mean angle of flow velocity, degree 

D b = cascade deflection angle, degree 

D Wu = difference between the tangential velocity components, m/s 

d u = cascade deflection coefficient, dimensionless 

z v = loss coefficient, dimensionless 

h = efficiency, dimensionless 

j = flow number, dimensionless 

l = hydraulic power number, dimensionless 

n = velocity coefficient, dimensionless 

r = fluid density, kg/m3 

s = cascade solidity, dimensionless 

t = torque number, dimensionless 

J = specific diameter, dimensionless 

w = angular velocity, rad/s 

y = pressure coefficient number, dimensionless 

Subscripts 

e = relative to the external region of the turbine 

i = relative to the internal region of the turbine 

m = relative to the meridian direction 

u = relative to the tangential direction 

¥ = relative to the mean direction of the flow 
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CHAPTER 1  

CHAPTER 1 INTRODUCTION  
 

1.1.  GENERAL INTRODUCTION  

 

The republic of (Togo) is one of the smallest and low-income West African states (USDS, 

2015). It is geographically situated on the Gulf of Guinea and has a population of 6.6 Million 

(USDS, 2015).  The year 1960 saw the country gain its independence which was followed by a 

very long social, economic and political crisis that led into the deterioration and closure of many 

of its infrastructures (USDS, 2012). In 2006 alongside its neighbouring countries (Ghana and 

the Benin Republic), the country faced a serious energy crisis as energy demands grew and 

supply inadequate. This was also in effect due to hydro energy being the main country source 

of power generation declining due to climate change effects (PPIAF, 2015 report). In 2008 a 

plan to invigorate various sectors crumbling the economy was engaged by the Government and 

this included the energy sector. In the invigoration of various Government sectors, an emphasis 

was also placed in the telecommunication and transport sectors which are vital sectors of the 

economy. 

Energy has always been an issue for Togo since the sharing of Togoland (the loss of German 

colonies, Britannica, 2011). Togo depends on its fossil fuel reserves, mainly natural gas and 

diesel for its electricity generation (UNFCCC, 2003a). Currently there are four main diesel 

power utilities and a number of hydro power stations spread around the country that generates 

about 130 MW of electricity, of which 30 MW is of Hydro power (DGE, 2001). The Togolese 

energy sector has a heavy reliance on imported fuel oil and electricity, an increasing gap 

between demand and supply, a lack of reliability of the grid and poor performance of equipment 

and appliances used by consumers. The peak load is currently at 100 MW, while the base-load 

is between 50 and 60 MW. By comparison, power availability in the dry season in 2007 was 

roughly 40 MW, leading to a high level of unsatisfied demand. Imports accounted for 84% of 

the total electricity supply in 2008, with nearly a quarter of domestic generation capacity 

relying on fuel oil imports. Transmission and distribution losses in 2008 were 19.1% (REEP, 

2016). This rise in demand is envisaged to continue due to accelerated growth in the republic 

of Togo industrial sector (IEPF, 2015). Current statistics shows that electricity generation of 
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fossil fuel is estimated at 78% and Hydro power of 22% and it’s been argued that such figures 

could lead to a projection of CO2 emission for the year 2020 to be approximately 2000t of CO2 

generated per year. It is therefore eminent that there is a strategical need to: utilise the available 

renewable energy resources, meet growing demand, replace the aforementioned technology 

and reduce CO2 emission. This PhD research project is to conduct the necessary theoretical 

and practical investigation, into barriers to implement the technology for the benefits of Togo’s 

Energy industry, environmental sustainability and economic sector.  

The country geographical position is an advantage as the country is expected to have more 

rains in the years to come which means levels of rivers would automatically rise. Considering 

the country’s aim to attain full electrification in the long run, it is important to consider cleaner 

sources of energy generation. It is in that light that this research aims to provide a system of 

which its preamble indicates the possibility of a computer aided design of a 3D renewable 

energy platform for Togo’s smart grid power system infrastructure that will efficiently help the 

country in attaining its long term vision being the full electrification of the country by the year 

2030. The computer aided design of a 3D renewable energy platform for Togo’s smart grid 

power system infrastructure will go a long way to help any other country, government, 

organization that will feel the derivatives of this research will help them in one way or the other 

in generating cleaner energies and meeting up demands of a particular city, country or 

community. 

Energy generation methods and its supply is one of the most discussed and worrying issues in 

current world press (M. Komlanvi et al, 2015). The supply of clean energy and its security is 

becoming an issue for most developing countries considering new policies on limitations of 

fossil fuels usage for energy generations, and also the high dependency on imported fuels and 

their ever climbing prices.  

Problems in the energy sector do not only abstain to the safe supply of clean Energy, but also 

in terms of environmental degradation due to carbon emissions for which the energy sector is 

the main contributor. It is believed that the development of sustainable energy infrastructures 

would be efficient contribution to defining solutions to successfully reduce on global carbon 

emissions and promote the usage and development of Green technology for Green power 

generation and distribution through smart grids. The research covered by this PhD program 

being a computer aided design of a 3D renewable energy platform for Togo’s smart grid power system 

infrastructure is also presented as business model. 
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1.2. AIM & OBJECTIVES OF THIS INVESTIGATION 

 

The main aim of this research programme is to conduct the necessary investigation, into the 

barriers to implement renewable energy technology generation in the Republic of Togo’s and 

develop an efficient renewable energy platform that would suit the energy sector smart grids 

industrial applications. 

Objectives 

The objectives of the research are:   

 Conducting a primary research and assessing information’s from the Togolese Ministry 

of Mines & Energy. 

 assessing the current energy generation methods and business models in Togo and their 

impact on the current environmental and economic sectors, 

 examining the possible available renewable energy resources and their impact on the 

current energy generation method with an evaluation of the impact on Togo 

environmental and economic sectors,  

 investigating the current barriers to the successful implementation of renewable energy 

technologies, 

 conduct a forecast analysis into the energy demand for the country in the next 5 to 10 

years considering population growth rate and industry expansion/power demand, 

 investigate the current challenges facing the renewable energy resources technology 

and investigate the possible technological advancement to improve the efficiency at a 

low cost, 

 Conduct the necessary computer simulation using MATLAB /Simulink software to the 

proposed 3D renewable energy platform. This will entail simulation of two of the three 

renewable energy sources (Wind-Hydro). The objectives of the simulation will then be 

used to evaluate power generation abilities of these system’s and efficiency of the 

sustainable renewable power station 

 Design and build an actual mini 3D practical platform, 

 adapting the business model in Togo’s and other neighbourhood countries 
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1.3. RESEARCH METHODOLOGY  

Research methodology describes the overall approach to a research process. According to 

(Saunders, Lewis, & Thornhill, 2007) Research methodology can be described as consecutive 

steps taken by a researcher in analysing a problem with project objectives and goals in mind. 

The research method adopted for this research will be a deductive, Exploratory, Constructive 

and Empirical in nature. The three methods will allow the researcher to investigate the needs, 

identify the application design specifications, develop system architecture, define the system 

main hardware & software units, develop a solution by obtaining an outline design, and then 

test the feasibility of the design using empirical evidence. A prototype will be developed and 

will be tested based on design specifications and needs to verify the potential of the technology 

from an economic, social and policy point of view. 

1.4.  ORGANISATION OF THE THESIS 

The remainder of this thesis is divided into eight chapters (see Figure 1-2). 

 

Chapter 2. Presents a critical literature survey of the key database, governmental reports, 

publications, technical reports and case studies, related areas to the current research 

programme. This is to conclude with the possible recommended business model and renewable 

energy platform.  

 

Chapter 3. Introduces the possible business model and recommended renewable energy 

platform that could suit Togo’s smart grid power systems infrastructure and industrial 

applications.  

Chapter 4. Provides Computer Aided Design and Analysis of the front End renewable energy 

resources of the proposed platform. This is mainly aiming to investigate the possible factors of 

improving the efficiency of the front end units. The computer aided design and analysis has 

been carried to Hydropower units (water wheels, Kaplan turbine, dual feed arrangement for 

both water wheel and Kaplan turbine …etc.), Wind turbine units, 2D arrangements i.e. wind 

and hydropower …etc.  

Chapter 5. Presents the Computer Aided Design, simulation and Modelling of the Backend of 

System (BoS) of the proposed renewable energy platform i.e. control system, multi-level 

converted and relevant filtration system. The chapter concluded with the possible 
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recommendation of multi-level converter, relevant filtration system based on possible load 

nature and applications.  

Chapter 6. Introduces system integration of the proposed renewable energy platform into the 

smart grid. The chapter gives a good introduction about the smart grids, relevant technology 

development, the steps that can be taken to integrate the proposed renewable energy platform 

into the grids …etc. The Chapter concluded with a computer simulation and analysis model of 

the system that shows the dynamic behaviour of the proposed model which is examined under 

different operating conditions. 

Chapter 7.  Presents the laboratory validation and evaluation of the proposed renewable energy 

platform. It demonstrates a series of experimental evaluation into the dynamic response of the 

system, stability of the system and its output and control capability. 

Chapter 8. Sets out the general conclusion and discussion for this research. It also provides an 

overview of the innovation, contributions and limitations of the developed system. 

Chapter 9. Presents the recommendations and future work. This is followed by a list of 

references, appendices and list of publications. 

 

 Appendix (A) Simulink Models 

 

 Appendix (B) MATLAB Scripts 

 

 Appendix (C) Overview of the system architecture 

 

 Appendix (D) Laboratory validation key components  

 

 Appendix (E) Author Publication 
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Figure 1-1 Structure and organisation of Thesis 
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CHAPTER 2 

CHAPTER 2: LITTERATURE SURVEY 

2.1. INTRODUCTION  

This chapter presents a comprehensive literature survey into current and previous work related 

to the theme of this work. It covers the components of the design and development of a 

Computer aided design of an efficient renewable energy platform for Togo’s smart grid 

infrastructure able to provide clean energy on a micro scale, medium, and industrial scale 

2.1.1.  TOGO’S ENERGY SECTOR  

Total energy consumption in Togo in 2012, was estimated at 976 million Kwh, of which 67% 

was biomass. Oil accounted for 29%, electricity 4% of annual energy consumption. The 

national electrification rate is approximately of which 13.5% was for urban areas and 5% in 

rural areas. The Government of Togo expects to achieve a rate of 50% of national electrification 

by 2024 (SCAPE, 2017). Final energy consumption is mainly distributed between households 

(64%), transport (24%), market and public services (9%), and industry accounts for 3% (CEET, 

2015). 

ENERGY SUB SECTOR  

The energy sector is represented by two main companies “CEB” Benin Electricity company 

whose primary mission is to Generate and transmit electricity through the power grid whilst 

“CEET”- Togo’s energy and Electricity Company distribute low and medium voltages whilst 

also in charge of maintaining the power distribution network  

The total power delivered to Togo’s network was 1042GWh in 2012, of which 886 GWh 

delivered to CEET by CEB. CEET own production based on thermal power plants in 2012 

amounted to 14.3 GWh. Given a total guaranteed power of 40 MW from CEB plants, 100 MW 

from independent producer plants and 10 MW from CEET’s own available plants, the total 

implemented power capacity of Togo raises to 150 MW, 20 of which (13%) is from renewable 

hydroelectric source. The peak power of the network was 140 MW in 2012 and 163 MW in 

2013. Production facilities and distribution are old and are causing frequent power outages. 

CEB has installed 105 MW of which 65 MW is hydropower and 2 × 20 MW thermal gases. 

One of the turbines of the thermal power plant is currently broken, and the hydroelectric power 

plant Nangbéto (2 x 32.5 MW) requires rehabilitation; as a result, they cannot produce full 
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power. Therefore, most of Togo’s electricity consumption is imported (65-70 %) from 

Transmission Company of Nigeria (TCN), Nigeria, the Volta River Authority (VRA) of Ghana 

and Compagnie Ivorienne d’Electricité (CIE) in Côte d’Ivoire. Since October 2010, an 

independent producer, “CONTOURGLOBAL” built a 100 MW thermal power plant that can 

run on heavy fuel oil, the DDO or natural gas service. The plant currently operates on heavy 

fuel oil (HFO), which has the effect of significantly raising the cost of production (from 40 

F/kWh with gas to 80 F/kWh with fuel oil), but discussions are underway with Nigeria’s 

potential gas suppliers to feed the West Africa Pipeline. For an average growth of 8% per year, 

the demands for electricity will eventually increase over the next 10 years, therefore an 

additional need for 200 MW to meet the country's demand would be needed. Taking into 

account the fact that Nigeria and Ghana are the main electricity providers through CEB, they 

could reduce their electricity exports due to an increase of the demand in their own countries. 

The projected hydroelectric dam of Adjarala (147 MW of implemented capacity) will provide 

an average power supply of 42 MW for both countries (Benin and Togo). Togo should then 

construct 180 MW over the next 10 years to fill the gap. Providing modern, reliable, cheap and 

clean energy to consumers still remains a challenge. 

2.1.2. INSTITUTIONAL FRAMEWORK IN TOGO  

The Ministry of Mines and Energy (MME) is responsible for the energy sector, including the 

subsector of electricity through the General Directorate of Energy (DGE), which has the task 

to : (i) develop and implement the energy policy , (ii) monitor the implementation of the 

investment program , (iii) preserve state assets , (iv) carry out studies when necessary to ensure 

the reliability of energy and equipment safety, (v) identify and propose measures of energy 

efficiency and energy technology proven , and ( vi) act as energy advisor to the Government, 

the local communities and investors. Other institutions in the energy sub-sector are: The 

Regulatory Authority for Electricity Sector ( ARSE ), established in July 2000 to regulate the 

sub-sector of electricity : (i) defining and enforcement of the sub-sector (ii ) reviewing and 

overseeing procurement mechanisms (iii) advising on proposals and decisions regarding tariff 

, (iv) providing advice on the development of energy infrastructure , (v) providing advice on 

issuances of expropriation for public utility (vi) monitoring and certifying electrical 

installations , and (vii) managing potential conflicts between distributors and consumers. It 

should be noted that CEB, is not regulated by the ARSE yet.  

The Compagnie d’Energie Electrique du Togo (CEET): public entity created in 1963, is 

responsible for the distribution of electricity in the country. CEET operates some thermal 
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power plants in areas where the CEB network is absent, but buys most of its electricity from 

CEB and ContourGlobal (a private producer). Most of the network is interconnected, but 

several provinces of the country are not yet connected to the national network. These 

communities are powered by diesel generators power plants with an installed capacity ranges 

from 32kW to 750 kW. In 2012, there were 37 localities supplied with insulated electrical 

system, with a total installed capacity of 9.6 MW. 

The Communauté Electrique du Benin (CEB): was created in 1968 by Benin and Togo 

through the Benino-Togolais electricity code to import, produce and transmit electricity for the 

benefit of the two countries. This code Benino- Togolais was revised in December2003 to open 

the sector to independent producers. However, CEB remains the sole buyer of the power system 

(both countries) and delivers electricity to Benin Electric Power Corporation (SBEE) in Benin, 

and CEET in Togo and some large industrial customers. Exceptionally, the energy produced 

by ContourGlobal is sold directly to CEET. 

 The independent producer Contour-Global Togo: is an independent power producer (IPP), 

operating since 2010 in Lomé, with a thermal power plant with a capacity of 100 MW operable 

with natural gas, heavy fuel or DDO. The power plant is equipped with six (06) production 

groups, working with heavy fuel oil (HFO) due to the lack of natural gaz. The government has 

initiated discussions with potential gas suppliers in Nigeria to get the necessary volume of gas 

delivered through the West Africa Pipeline to operate the plant. Contour-Global does not work 

full time; it is requested in case of shortage of power supplied from CEB. 

2.1.3. REGULATORY FRAMEWORK   

The adoption of Law No. 2000-012 of 18 July 2000 on electricity and its implementing Decree 

No. 2000-089/PR 08 November 2000 defines the conditions to exercise certain regulated 

activities, as decided by Law n° 2000 regulating the electricity sector. This was an important 

step forward to ensure the development of sub-electricity sector. However, this legislation has 

a number of shortcomings related to the absence of provisions on:  

 The electrification of rural areas;  

 the use of renewable energy;  

 the need for technology transfer in the energy field; 

 the fate that should be reserved for production surpluses made by private companies, 

particularly in the context of industrial operation;  
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 The obligation to ensure price transparency through the development, publication and 

wide dissemination of tariff policy; 

The Code Benino- Togolais of electricity revised in 2003 opened the segment of power 

generation to the private sector and dedicated CEB as the sole buyer. This code should be 

revised to adapt itself to the new regional ECOWAS recommendations. 

2.1.4. ENERGY POLICY   

Togo's energy policy as adopted in 2014 (REEEP, 2015). The draft energy policy has a lot of 

provisions such as, to: (i) the development and adoption of an investment code or law which 

includes tax and incentives for the promotion of renewables energies; (ii) development and 

adoption of rules defining the conditions for the production of renewable energy and 

connection to the national network at a discounted price; (iii) development and adoption of a 

law to define energy efficiency policy by promoting equipment using low energy; (iv) develop 

and adopt specific legislation to promote the electrification of rural and economically 

disadvantaged areas, specifically setting up a national rural electrification agency and a Rural 

Electrification Fund. (v) Implement the program for the liberalization of the electricity market 

to promote the inclusion of Togo in the Regional Market ECOWAS. (vi) develop an 

institutional framework to establish a public-private partnership: • Definition of a favourable 

tax and customs arrangements for electrification projects in rural areas; • Establishment of a 

funding mechanism with the participation of external donors and the national financial system; 

(vii) Encourage the production and off-grid energy supply in remote or isolated areas and 

provide appropriate incentives to businesses to ensure a reasonable return on investment. (viii) 

Facilitate the creation of industrial facilities for the local manufacture of electrical equipment; 

(ix) Explore sedimentary basin for petroleum products and gas. 

2.1.5. RESILIENCE TO CLIMATE CHANGE  

Togo, in its draft energy policy aims to promote alternative energy sources to reduce pressure 

on wood resources, develop appropriate technologies for the use of these alternative energy 

sources (ARSE, 2015). The country also intends to develop and promote the use of efficient 

wood stoves and raise awareness about the problems of desertification and soil erosion from 

deforestation, as well as alternative technologies for fuel wood and charcoal wood 

2.1.6. TARRIF POLICY  

Togo does not have a formal tariff policy. The practice is that CEET and CEB formulate their 

requests for revision of tariffs to the ministry of Energy. For CEET, the regulator (ARSE) 
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examines the merits and issues professional advice to Government authorities. The Ministry of 

Mines and Energy (MME) is responsible for the tariff policy for electricity and is responsible 

for proposing revisions to the Government after review. The last rate increase was adopted in 

November 2010 and implemented in January 2011. Rates revised were below the level 

expected by CEET. An operating subsidy of CFAF 3 billion, £4M approx... Is paid annually 

by the Government to CEET to supply fuel to the power plant Contour-Global. Energy is 

bought by CEET at the average of 58 FCFA, (£0.77)/KWh form CEB and 121 FCFA / kWh 

from Contour-Global. Average tariffs (tax free) for distribution are 100 FCFA, (£1.60) /kWh 

for medium voltage customers and 98 FCFA / kWh for low voltage customers. When tariff 

policy is defined, implemented and sustained by an independent regulatory, it gives more 

visibility and confidence to private businesses willing to invest in the sector. The sector reform 

will aim to reinforce the independence of the regulator and make it decide for tariffs. 

2.1.7. ELECTRICITY SUB SECTOR REGULATION  

The regulator of the electricity sector (ARSE), although under the Ministry of Mines and 

Energy, has a relative independence. ARSE is following the implementation of the 

performance contract between CEET and the Government. ARSE does not have the 

responsibility to regulate tariff, but advises the Government. The ARSE is not associated with 

the negotiation of power purchase agreements for electricity production. In the context of sector 

reform agenda, the authority of ARSE should be strengthened. 

2.1.8. ECONOMIC PERFORMANCE OF THE SECTOR  

 

a) CEET ECONOMIC PERFORMANCE   

 The rate of energy billing recovery is 84 %, a rate of technical and non-technical losses 

by 16%, which is respectable result, compared to several countries in the sub-region.  

 The recovery rate of private bills costumers is 95 %, while the administrative costumers 

are only 35- 50 %. They represent 32 % of consumption and seriously affect the results 

of CEET. - The time of interventions to achieve small scale work and connections are 

still very high (30 to 40 days) due to the difficulties to address supply and connection 

materiel. 

Net operating income of CEET revolves around balance (WB, 2015). In 2009, it was positive 

to 0.1 billion FCFA, before falling to - 3.8 billion FCFA in 2010,and then rose to 2.4 billion in 

2011 and 3.24 billion FCFA in 2012. The financial situation of CEET has improved due to: (i) 
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impact of tariff increase in January 2011, (ii) the change in the power purchase contract of 

Contour Global by CEB (decrease of about 10 billion FCFA francs in the expenses of CEET) 

(iii), an annual operating subsidy of about 3 billion FCFA. However, the financial results of 

CEET the past three years remain fragile. The electricity from the CEB and Contour Global 

purchase represent 70 % of the expense of CEET. The financial situation of CEET is therefore 

strongly influenced by the prices of electricity imported from Nigeria and Ghana, and by 

fluctuations in fossil fuel prices on international markets. The financial flexibility is limited; 

CEET is limited to self-finance the investment needed for its development. 

b) CEB ECONOMIC PERFORMANCE   

The benefits of CEB were positive from 2008 to 2010 but then deteriorated in 2011 and 2012 

with respective losses of 3.67 billion FCFA and 7.45 billion FCFA despite the increase of 10% 

of the tariff effective in July 2009 (the rate increased from 50 to 55 FCFA / kWh) (CEET, 

2015). CEB is highly dependent on its purchases in Ghana and Nigeria. Like CEET, it is 

essential that CEB has a clear tariff policy and an adjustment mechanism to pass on increases 

in the cost of imports of electricity (WAPP, 2014). 

2.1.9. INSTITUTIONAL AND TECHNICAL CAPACITY  

A) INSTITUTIONAL CAPACITY   

Procurement is regulated by the Law 2009-013 of 30/06/2009 relating to public procurement 

and delegation of publics services. There is a procurement control institution (Direction 

Nationale du Contrôle des Marchés Publics -DNCMP) and a regulator of public procurement 

(Regulatory Authority for Public Procurement -AGP). All public institutions have a person 

responsible for public procurement and a procurement board which is controlled by the 

National Board. This is to ensure transparency in procurement process. The procurement law 

is consistent with the sub-regional organization West African Economic and Monetary Union 

(WAEMU) directives that require tenders to be open to the economic space of the WAEMU. 

However, after a certain threshold, bids are open internationally. In case of dispute in the 

acquisition process, bidders may appeal to the ARMP for arbitration. 
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B) TECHNICAL CAPACITY   

Togo has already experienced the production and use of renewable energy for productive 

purposes.  

Solar: experiences of using the solar energy were made in the 80’s and 90’s for the 

electrification of social infrastructure such as schools, health centres, drinking water pumping 

in rural areas. In 2003, UNDP supported the project «Solar energy for domestic needs of 

women in Regions of Central and Kara" in Program Improvement Livelihoods Populations 

(PAMEP). In 2009, UNDP has also funded under the program mentioned above, the 

municipalities of Kountoiré and Naki-East. This program has helped to promote this form of 

energy through the use of solar cookers, solar dryers and solar equipment but hasn’t been scaled 

up (UNDP, 2013). 

Wind: The use of wind power is marginal or almost non-existent. Installed capacity is estimated 

at about 5.7 kW. It is used for various purposes in rural areas, particularly in Atalote (Prefecture 

Keran) and Gapé - Kpédji (Zio Prefecture) for water pumping (WBG, 2012). 

Hydroelectricity: the country capitalizes a long experience with hydroelectric power plant; 

Nangbéto (65 MW) for the CEB and a mini hydropower system of Kpimé (1.6 MW) for CEET. 

The Ministry of Energy will strengthen its staff capacity through various programs. The 

Government is identifying capacity building needs in the context of the administration’s 

modernization. More staff will be recruited to reinforce the capacity at the Ministry. 

Furthermore, ECREEE organization (one of ECOWAS organization in charge of renewable 

energy) regularly trains staff of the Ministry and the CEET each year (WBG, 2014). 

It is to be noted also that CEB has undertaken a study of pre-feasibility in order to conduct a 

pilot plant from solar photovoltaic system power 5 MW with a private developer. Similarly, a 

project of 13,000 solar street lights is being implemented with funding from China Exim Bank. 

This project was preceded by a pilot phase and enters its implementation phase. The contract 

has been awarded and work is scheduled to start in June 2014. Another project called Program 

of development of renewable energy and energy efficiency (PRODERE) is funded by 

WAEMU and aims to power 22 rural community infrastructures (schools, health centres); 

nearly 1340 households and 19 boreholes for water drainage are programmed to be equipped. 

This program is now in its implementation phase after contract award to selected contractors. 
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AFDB and the World Bank have agreed to participate in the financing of the construction of 

the hydroelectric dam Adjarala; the project is at the stage of evaluation. 

2.2. OUTLOOK FOR RENEWABLE CAPACITY IN TOGO  

Figure 3-1-1 shows a trend of renewable capacity in Togo  showing an installed capacity of 

67MW since 1992 clearly pointing out a staganation of the renewable market till date. The 

main renewable energy contributor in Togo is Hydro power and no other renewable sectors are 

currently forecasted to have operational installed capacity any time soon ( Energi-ci, 2016).  

 

Figure 2-1 renewable Capacity Data sheet 1992-2017 (World Bank data, 2015) 

2.2.1. ENERGY POTENTIAL  

Togo is not a producer of neither oil nor petroleum products (World Bank, 2015). The country 

relies on imports to meet its needs for petroleum products. It has, however, resources in 

renewable energy untapped. 
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2.2.2. SOLAR POTENTIAL  

   Togo is located in an area of strong sunlight where solar radiation is fairly well distributed 

throughout the country. its geographical position makes it quite ideal for solar power 

harnessing as the country benefits from at least 10-12 hours of sun rays with an average 

temperature of 33 (°C) degree Celsius daily (Sunspec, 2015) . With unstable electricity supply, 

the application of single PV systems will enable the delivery of approximately 79KW over a 

12hours period depending on panel’s size and ideal weather conditions. The average home 

consumption per capita in the country is rated at 103 KWh daily (W-underground, 2015) 

making two (02) solar panels enough for a single home. The global solar energy irradiation on 

a horizontal plane is estimated at 4.4 kWh/m²/day for Atakpamé (Plateaux Region) and 4.5 

kWh/m2 /day in Mango in savanna Region. The use of solar energy for thermal or electrical 

purposes began in the 80’s with: (i) the installation of solar water heaters in some health 

services and hotels by NGO’s, (ii) power telecommunications relays (iii) illuminated billboards 

and (IV), the installation of solar pumps in rural areas.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2 Togo average weather conditions May 2012-May 2013 (W-underground, 2015) (a) the map and geographical 
location of Togo’s & (b) weather forecast 

Togo average weather conditions (2012-2013) 

Weather Underground. 2015. Lomé, Togo History | Weather Underground. [ONLINE] Available 

at: https://www.wunderground.com/history/daily/DXXX/date/2013-12-27. [Accessed 11 October 2015]. 

CONTENT REMOVED FOR COPYRIGHT REASONS 

https://www.wunderground.com/history/daily/DXXX/date/2013-12-27
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Figure 2-3 Average daily solar power generation (power (kW) versus time Period, (EIA, 2013) 

2.2.3. WIND POTENTIAL 

Togo is ranked among the quiet areas although transient spikes wind can reach high values up 

to 4m/s in some areas especially in the northern part of the country during the dry season period. 

Only the coastal area of the country has favourable evidence with wind speeds of 7m/s on 

average. The development of wind power can be considered as a viable alternative. The main 

project, currently being considered by the country is the proposed construction and operation 

of a 25.2 MW plant by Delta Wind Togo who has signed a concession agreement with the 

Government for its implementation. The wind in Togo is quite an advantage to this proposed 

technological model as the country’s geographic location on the gulf of guinea benefits from 

the wind coming from the Atlantic Ocean which is located at the south side of the country 

(Weather-spark, 2015). 

 

 

 

 

 

 

 

Figure 2-4 Mean annual wind speed in Togo’s around one year (Weather-spark, 2015) 

Kw 

hr 

Mean Annual Wind speed in Togo 

Average Weather in Togo, Year Round - Weather Spark. 2015. [ONLINE] Available 

at: https://weatherspark.com/y/45795/Average-Weather-in-Lom%C3%A9-Togo-

Year-Round. [Accessed 07 October 2015]. 

CONTENT REMOVED FOR COPYRIGHT REASONS 

 

https://weatherspark.com/y/45795/Average-Weather-in-Lom%C3%A9-Togo-Year-Round
https://weatherspark.com/y/45795/Average-Weather-in-Lom%C3%A9-Togo-Year-Round
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2.2.4. HYDROPOWER POTENTIAL  

Studies conducted in 1984 identified nearly forty sites on different streams of which nearly half 

(23) has potentials greater than 2 MW of energy production. The expected energy production 

of all sites is estimated to be around 850 GWh for an installed capacity of about 224 MW. The 

most important project is Adjarala located on the Mono River whose watershed is shared with 

Bénin. Some rivers are almost dry now, that’s why updating the studies is needed. Adjarala 

dam one’s potential estimated at 100 MW is now 147 MW after new studies were done recently 

(World Bank, 2015). Togo imports at least 85% of its electricity (Tititudorancea, 2013) while 

there are great possibilities of using its hydro sites for power generation. The country equally 

has a wonderful coastline that extends to about 55 Km on the Atlantic sea, River Oti and Mono 

of which water flow strength could be great for hydro and tidal power generation.  

2.2.5. BIOMASS AND BIOGAS POTENTIAL       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5 Togo Biomass carbon on the wider land scale& (b) Soil carbon (Carbon bio-diversity, 2013) 

BIOMASS MAP OF TOGO 

BIOMASS MAP Togo. 2018. Togo. [ONLINE] Available 

at: https://www.worldenergy.org/data/resources/country/togo/biomass/. [Accessed 05 

September 2014]. 

CONTENT REMOVED FOR COPYRIGHT REASONS  

 

https://www.worldenergy.org/data/resources/country/togo/biomass/
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Figure 2-5 shows the country biomass carbon on a wider scale with a closer view on the soil 

carbon potential available in Togo. The analysis reveals that the terrestrial carbon stocks is 

estimated at 680Mt made up of 362 Mt of carbon in above and below ground biomass shown 

in part (a), 317 Mt of soil carbon is then obtained in the soil figure (b) (Carbon bio-diversity, 

2013).  Soil biomass potential and carbon biomass are spread around the country as shown in 

figure 3-5; the highest area having a 15% of carbon density hence covers only a mere 5% (2800 

km2) of the country land area (Carbon bio-diversity, 2013). These data’s means that the country 

generally has a low biomass potential and most of the considered part are formed of high soil 

carbon. Its importance however shouldn’t be overlooked as considerable development 

strategies could see the light if these biomass potentials are efficiently used in the production 

of energy.   

2.2.6. RENEWABLE ENERGY POLICY AND ITS APPLICATION  

 

The development of alternative energy in Togo is a real necessity in a context of scarcity of 

natural resources, the fight against climate change and desertification and reducing greenhouse 

gas emissions. Togo has so resolutely committed to the promotion of renewable energies to 

overcome its energy deficit and ultimately contribute to the reduction of poverty. At 

Government level, the activities related to renewable energy are governed by the General 

Directorate of Energy, housing a division of renewables. It should be noted that the 

Government of Togo in its development strategy SCAPE 2013-2017, is committed to (i) 

improve the regulatory and institutional framework for the promotion of renewable energy, (ii) 

exempt taxes on imported equipment in the context of renewable energy and (iii) promote the 

construction of solar power plant (5 MW) and wind turbines (12 MW) in order to generate 

electricity. In the context of energy policy being finalized, it is envisaged the establishment of 

a Rural Electrification Agency whose missions will also be to cover the development of 

renewable energy and energy efficiency. The revision of the law 2000 - 012 - (on the electricity 

sector) is in project and includes provisions to promote renewable energies. 

2.2.7. ENERGY POLICY  

The demand for electricity in Togo continues to increase at an average rate of 8% per year 

and could double in the coming next 10 years. The country's electricity supply is heavily 

dependent on oil and its derivative products (including natural gas), which are subject to 

international price volatility. Diversification of energy supplies will achieve a broader energy 

mix and will ensure greater energy security to the nation. The Togolese Government intends to 
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develop renewable energy. This orientation was included in the axis 2 of the Accelerated 

Growth Strategy and Promotion of Employment (SCAPE), adopted in 2013. 

2.2.8.  BARRIERS TO THE IMPLEMENTATION OF RENEWABLE ENERGY  

Although the option of promoting renewable energy has been acknowledged by the 

Government in its strategy to accelerate economic growth and employment (SCAPE 2013- 

2017), there were obvious some barriers to overcome so as to enable potential investors to 

invest considering energy state at the time. Indeed, at the regulatory level, besides the code 

Benino- Togolais of electricity which legislated a joint venture for energy sharing and 

infrastructure support, there were no laws or directives that regulated the promotion of 

renewable energy in the country. In addition, the lack of studies on the potential of renewable 

energy sources and specific policies encouraging the private sectors contribution to the energy 

mix are obstacles to the development of these renewables energies. Moreover, CEET, the 

country’s energy management institution should conduct a study on the capacity of its 

distribution network to integrate alternative power generation from renewable energy including 

the use of smart grid and green systems that private producers may have the opportunity to also 

inject in the network. 

To meet the key challenges of ensure an adequate and reliable supply of electricity over the 

next 10 years, it is detrimental that an increasing access to electricity services in a context of 

future demand increase be considered through the implementation of an energy mix approach 

thereby reducing reliability from neighbouring countries. Togo needs to be focused and 

proactive. Substantial private and public financing will also need to be mobilized over the next 

10 years and the sub-sector financial equilibrium will need to be secured through adequate 

tariffing. 

 The key challenges and recommendations facing Togo’s electricity sub-sector and the 

Ministry responsible for Electricity can therefore be regrouped in four broad categories: (i) 

implementing investment in generation, transmission and distribution and in personnel; (ii) 

increasing access to electricity services; (iii) ensuring the financial equilibrium of the sub-

sector, CEET and CEB, and reviewing the tariffs; (iv) adjusting the regulatory framework to 

account for internal and regional requirements. This is discussed in the proposed business 

model in chapter (5)  

 



39 
 

Sensitivity: Internal 

2.2.9. CURRENT BUSINESS MODEL 

 

Figure 2-6 Current Energy Business model &Energy management operations in Togo 
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Figure 2-6 depicts the current business model in Togo. The business model as one can see 

agrees with some of the findings from the literature review in the earlier chapter. The business 

model has three parts, the production, the transportation and the distribution of electricity. From 

2003, Electricity production / transportation, its transit, import from Ghana, export to Togo and 

sales were conducted by CEB - Republic of Benin under the agreement of the joint electricity 

scheme between CEET & CEEB (World Bank report, 2010, no 52831-TG). 

The business model currently adopted in Togo satisfies current Energy demand but does not 

take into account future challenges, demand growth and grid expansion. The criticism of this 

business model would also take into account on cost incurred by the import of Diesel from 

Nigeria via the West African power pool pipeline for the 6 Tri fuel diesel engines plant for 

contour global even though potential for renewable energy sources would have been the most 

sustainable investment 

Efforts therefore, needs to be conjugated to meet future energy demands hence the full 

optimisation and implementation of renewable energy systems for sustainable energy 

production and supply must be sought (MOE, 2014). The possibilities of this however becomes 

a reality if Political, Economic, Social, Technological, legal and environmental factors in the 

country are favourable for the implementation of a new business model that will ensure the 

production of clean energy and would ensure sustainability over a long period. A PESTLE 

analysis was then carried out to this effect.  

Political Factors 

- Stable political environment 

- Taxes are regulated by the Government 

- Marketing ethics are set by Unions, and regulated by Government 

- Good economic policy planned and regulated by Government 

- Government isn’t involved in any company’s culture and religion unless necessary 

- High Government involvement in trading agreement 

Economic factors  

- High interest rates are realisable but depending of management 
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- There is a low inflation employment per capita 

- A good and long term prospect for the economy GDP due to good governing policies 

put in place 

- Encouraging reforms by the Government through support funds into entrepreneurship/ 

business ideas/ and opening of a company within 24 hours of request approval   

Sociocultural factors 

- Foreign products and ideas are well embraced 

- The dominant religion is Christianism followed by Islam  

- Speaking the local language isn’t considered a barrier as a bunch of people do speak 

English due to the sharing border with Ghana and French which is the national language  

- There is a high level of Nepotism as a culture at CEET almost at all management levels 

Technological Factors 

- There is a low technical knowledge at CEET and in the country in general as new 

technologies are not quickly introduce at higher education and technological 

institutions 

- At CEET, when a new technology is introduce, the machines are being bought and 

installed, and set to work by manufacturers but no proper training is given to CEET 

staff for them to carry out maintenance of those machines or equipment’s when 

damaged 

- As the country isn’t involved in manufacturing of any parts either electrical or 

mechanical of any kind, getting new electrical parts becomes very expensive as they 

have to be imported 

- There is a bad and poor internet reception in the country generally hence this affects 

communication  

- License to operate walky-talky systems are expensive and the only available way to 

communicate which is mobile phones is equally costly. 
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- There is no proper effort on the government side to improve communications hence 

industries and companies such as CEET found it hard to create a proper Customer 

relationship Management 

Legal factors 

- CEET has recently in the interest of improving their image offered legal compensations 

to any customers complaining of bad installation or connection fault done by their staff 

- Accident insurance and public liability insurance has recently been introduced and 

offered to clientele 

- The government also reserve the right to anyone in terms of fairness to take CEET to 

court if an agreement cannot be reached upon discussion of both parties. 

Environmental Factors  

- Both companies never had any recycling policies 

- Presence of bad and archaic ways of connections to the power grid which left cable 

criss-crossing and hanging in the air 

- High rate of pollution due to diesel engines being used 

- No planning of generating carbon neutral electricity ( CEET, 2016) 

The PESTLE analysis carried out above shows that both companies had issues towards dealing 

with customers and meeting their needs. The analysis shows that politically, the Government 

had too much involvement in the trading agreement act which could lead to the government 

implementing a tax law on any foreign company which might consider investment in this 

sector, on the other hand having a stable political environment is really an advantage for any 

business hence this could lead to the encouragement of any foreign companies or industries 

with a good aim of contributing to the country economy to assist in matter such as meeting 

energy demand in the country. The technological laxness however is a discouraging factor to 

any foreign investment that would want to implant its operation in the country, hence any new 

business model should be one that requires less maintenance and a dedicated  personnel that 

will be in charge ensure system maintenance, function and efficiency.  Looking at the new call 

for energy companies and industries to emit less CO2 and switch to a zero carbon culture, it is 

believed that the derivative of this research could form basis of a new business venture that 

will solely operate on close to or a zero carbon energy generation. 
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Like other renewable energy technologies, the problem of high upfront costs has always been 

a huge challenge for energy mix implementation. This problem is particularly pronounced in 

emerging economies where limited purchasing power and a lack of suitable financial products 

constitute additional obstacles for a broader dissemination of RE technology. The present is a 

collection of case studies of business models and financing mechanisms which show possible 

ways how such obstacles can be addressed and overcome in innovative ways. 

Three case studies of innovative business models and financing mechanisms are presented, 

ranging from pico-sized systems to large-scale PV plants including grid-connected as well as 

off-grid PV systems: 1) A pay-as-you-go business model, developed by Azuri Technologies, 

UK, shows how thousands of low-income households in Africa can get access to affordable 

lighting and phone charging systems. 2) A business model developed by Mosaic, United States, 

shows how crowdfunding can be used to offer individual people investment opportunities in 

PV installations. 3) Gham Power, Nepal, has developed a business model for urban hybrid 

micro-grids as an answer to unreliable electricity supplies from the public grid. The case studies 

illustrate that the generation of successful business models is not an easy task that can be done 

in just a couple of days. The specific regulatory, economic, social and cultural situation in a 

region has to be well understood and addressed in business models. Successful business models 

usually include a financing component. This is particularly important for the mass market in 

rural areas of emerging regions where most people do not have access to commercial financing, 

or are overwhelmed in dealing with loan applications. Furthermore, to be attractive for potential 

customers, business models must appear to be clear and simple, even if sophisticated processes 

run below the surface. 

2.2.10. CASE STUDY ENERGY SECTOR, ETHIOPIA 

Though producing 82% electricity from renewables, electricity access in Ethiopia is rated at a 

mere 16%( EEPC, 2006). The power sector development program ( PASDEP) of the country 

hence was mandated to increase this to 50 % by (2009/10) which will mean an increament of 

energy generation from 791MW to 2218MW ( EEPC, 2007) hence a grid expansion to 13,054 

Km. This new development will mean an improvement of the energy efficiency and energy  

reduction from 19.5% to the agreed international standard 13.5%. This daring project  partly 

funded by the Ethionpian and Chinese government; the world bank was estimated at $ 5.3 

billion  USD ( World bank, 2006) and completion estimated in the next five years. At the 

completion of the project in 2011, 86% of the country generated electricity comes from 
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hydropower, 13% from diesel and 1% from gethermal and an increase of available power from 

30 MW in 2006 to 3000MW in 2012 (EEPCO, 2011). 

 

Figure 2-7 Ethiopia Energy production proportion (EEPCO, 2011) 

The analysis reveals that the Ethipopian government is fully involved in the energy sector and 

have the sole responsibility of providing energy for its country in order to promote long term 

development and imporve the country’s economy through industrialization. For such system 

to be possible the Ethiopian government has set energy policies in conjunction with the 

Ethiopian electricity power cooperation (EEPCO) in order to promote the use of renewable 

enrgy sources, and prepare and integrate a plan in order to highlight the  power sector 

development by 2018 to a further 7850 MW of power considering the envisaged industrial 

growth and household demands due to grid expansion (EEPCO, 2010) . The policies drafted 

by the EEPCO and the Ethiopian government has also voted an enactment to promote 

independent power producers to invest in the energy sector so as to encourage economic 

devellopment and the usage of renewable energy in the country. (EEPCO, 2007)  

Considering all of the above, The energy business strategy put in place by the Ethiopian 

government is an initiative that can very well work in Togo if energy policies are drafted for 

that purpose hence an energy booard or electricity survey board could be put in place to assess 

with certainty the country’s current energy policies and current business model in order to draft 

policies that will enable energy production and its sustainability in the long run.  

Independent power producers will definetely bring about a new business model in the country 

that could be adopted in order to promote the use of renewable energy sources and at the same 

time act as a strong tool for economic development as this doesnt exist currently. 
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Several studies have shown that global energy demand, currently estimated at 12.5 TW is due 

to increase to 17 TW in 2030, and can be met with just 2.5% of accessible wind and solar 

resources, using current technologies (L. Brown, 2010). Delucci and Jacobson (2010) picked 

one mix of eight renewable generation technologies, increased transmission, and storage in 

grid integrated vehicles (GIV), and shows without equivocation that a single mix is sufficient 

to provide world electricity and fuels. However, these global studies do not assess the ability 

of variable generation to meet real hourly demand within a single transmission region, nor do 

they calculate the lowest cost mix of technologies. 

O.Ekren and Ekren (2010) analysed a small-scale system with batteries, PV, wind turbines, and 

auxiliary power. The study assumes near-constant load (for communications), calculates only 

an energy capacity for the batteries and not power limits, and optimizes the configuration for 

minimum capital cost, not minimum total cost. Unfortunately, Ekren and Ekren only report 

their optimized system cost and area of solar and wind rotor as well as battery size so it is 

difficult to analyse these results. In a real grid, we must satisfy varying load, and with high-

penetration renewables, charging and discharging storage will at times be limited by power 

limits not just by stored energy. More typical studies combining wind and solar do not seek 

any economic analysis and/or do not look at hourly match of generation to load (e.g. Markvart, 

1996). 

 A critical literature research also shows that Hart and Jacobson (2012) determined the least 

cost mix for California of wind, solar, geothermal and hydro generation (E.K. Hart et al, 2012). 

Because their mix includes dispatchable hydro, pumped hydro, geothermal, and solar thermal 

with storage, their variable generation (wind and photovoltaic solar) never goes above 60% of 

generation. Because of these existing dispatchable resources, California poses a less 

challenging problem than most areas as practical renewable energy sources are variable 

generation, and dedicated storage must be purchased for levelling power output. We cannot 

draw general conclusions from the California case's results; for example, one might plausibly 

infer from this study that it is possible to have a power system with 60% variable generation, 

but not a higher fraction; or, we might conclude that a grid based exclusively on variable 

generation would require prohibitively expensive amounts of storage. 

For developing countries, a large number of studies exist and a detailed review of this literature 

is beyond the scope of this paper. Instead we focus on a selected set for our purpose. Givler 

and Lilienthal (2010) conducted a case study of Sri Lanka where they identified when                      
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a PV/ diesel hybrid becomes cost effective compared to a stand-alone small solar home systems 

(50 W PV with battery). This study considers an individual household base load of 5W with a 

peak of 40 W, leading to a daily load average of 305 watt-hours. Through a large number of 

simulations, the study found that the PV-diesel hybrid becomes cost effective as the demand 

increases. However, this study focuses on the basic needs as such and does not include 

productive use of energy.  

Munuswamy et al (2011) compared the cost of electricity from fuel cell-based electricity 

generation against the cost of supply from the grid for a rural health centre in India, applying 

HOMER simulations. The results showed beyond a distance of 44km from the grid, the cost of 

supply from an off-grid source is cheaper. This work just considered the demand of a rural 

health centre and was not part of any traditional rural electrification programme.  

Hafez and Bhattacharya (2012) analysed the optimal design and planning of renewable energy-

based micro-grid system for a hypothetical rural community where the base load is 600 kW 

and the peak load is 1183 kW, with a daily energy requirement of 5000 kWh/day. The study 

considers solar, wind, hydro and diesel resources for electricity generation. Although the study 

considers electricity demand over 24 hours, the purely hypothetical nature of the assumptions 

make the work unrealistic for many off-grid areas of developing countries. 

Lau et al (2010) analysed the case of a remote residential area in Malaysia and used HOMER 

to analyse the economic viability of a hybrid system. The study uses a hypothetical case of 40 

households with a peak demand of 2 kW. The peak demand is 80kW and the base demand of 

around 30 kW is considered in the analysis. Although such high rural demand can be typical 

for Malaysian conditions, it is certainly not true for others. The study also does not consider 

any productive use of electricity. 

Similar case studies are presented in other studies as well. For example, Himri et al (2009) 

present a study of an Algerian village; Nandi and Ghosh (2013) discuss the case of a 

Bangladeshi village, while Nfah et al (2014) and Bekele and Palm (2010) provide case studies 

of Cameroon and Ethiopia respectively. The table below summarises the technology choices, 

demand focus and country of application of these studies 
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Table 2-1 Literature review derivatives 

Reference Technology 

application 

Country of 

application 

Supply duration/ type 

Givler and Lilienthal 

(2005) 

PV-battery – diesel Sri Lanka Domestic Application 

 

Hafez and 

Bhattacharya (2012) 

 

PV, Wind, Hydro, 

Diesel, Battery 

 

Hypothetical 

24 hour service but 

unrealistic demand 

profile for a rural area 

of developing 

countries. 

 

Lau et al (2010) 

 

PV-diesel hybrid 

 

Malaysia 

24 hour service but 

uses a high demand 

profile for a rural area  

 

 

Himri et al (2008) 

 

 

Wind-diesel hybrid 

 

 

Algeria 

Adding wind turbine 

to an existing diesel-

based supply; Limited 

technology options. 

 

Bekele and Palm 

(2010) 

 

PV-wind hybrid 

 

Ethiopia 

Randomised load 

profile from 

hypothetical load data. 

 

 

Nfah et al (2012) 

 

 

PV, Micro-hydro, LPG 

generator, battery 

 

 

Cameroon 

Diesel as main 

generator 

supplemented by PV 

and micro-hydro, load 

based on grid  

 

It can be seen that the hybrid options have often considered a limited set of technologies. 

Moreover, most studies concentrate on supplying electricity merely for domestic purposes and 
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do not take into account the electricity demand for industrial activities and for small-scale 

business units for the socio-economic developments. The load profiles are also not carefully 

considered in many cases. These issues are considered in the present study, thereby bridging 

the knowledge gap. 

2.3. STATE OF THE ART OF EXISTING RENEWABLE ENERGY TECHNOLOGY  
 

2.3.1. EXISTING WATER WHEELS   

There are three main categories of hydro wheels, overshoot, undershoot and Breastshoot or 

Zuppinger wheel (Muller et al, 2002). Secondary research data shows that the most efficient of 

the wheels is the overshoot wheel with an average output of 80% guarantying a good output 

power due to its distinctive geometry of cells and design inflow details (Muller et al, 

2002).Considering the aim of this research to provide an improved efficiency than the 80% 

average for the overshoot at an affordable cost, an evaluation of the wheels is conducted to 

analyze which will best fit the renewable energy platform for Togo’s smart grid infrastructure 

model guarantying a high efficiency machined at a low cost. The design specification of all the 

wheels presented will help in evaluating and considering a better design which will offer a 

more improved efficiency  

2.3.2. OVERSHOT WATER WHEEL  

 

 

 

 

 

 

 

 

 

Figure 2-8 Schematic of the overshot water wheel (Wedner et al, 2002) 

 

ARCHITECTURE OF OVERSHOOT WATER WHEEL  

TES Teach with Blend space. 2017. Hydro Electricity-Overshoot Water Wheel. [ONLINE] 

Available at: https://www.tes.com/lessons/kMBZdxfPAvDZCQ/hydro-electric-water-wheel. 

[Accessed 03 February 2017]. 

CONTENT REMOVED FOR COPYRIGHT REASONS  

 

https://www.tes.com/lessons/kMBZdxfPAvDZCQ/hydro-electric-water-wheel
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 The principle of operation of this wheel is to capture the water in its bucket or cells where its 

weight permits a constant rotation of the wheel turning mechanical energy into electrical 

energy. The buckets or cells shape play a significant role in obtaining a good efficiency hence 

they are shape in such a way that air can escape allowing the water jet from the inflow to enter 

each cell at its natural angle (Shire P, 2001). Capturing the water makes the wheels effective 

almost immediately and in order to avoid loss of water the design should consider a 

perpendicular shape of the buckets allowing it to be filled up to 30-50% of its total volume 

(Muller et al, 2009). The efficiency of the overshot wheel for a given application is dependent 

of the head difference, the diameter and flow volume with the considerations of a free or 

regulated inflow which impacts the head hence the speed (Stephen et al, 2009). 

 

 

 

 

 

 

 

Figure 2-9 Efficiency Kauppert, 2003 (a) Efficiency flow rate of any turbine & (b) Efficiency against speed of overshot wheel 
(Muller et al, 2002). 

Figure 2-9 shows Test carried out on the overshot water wheel and efficiency flow rate 

measurements of turbines generally. Figure 2-8(b) shows a typical efficiency curve of the 

overshot water wheel with the efficiency reaching above 80% allowing a ratio of Q / Qmax of 

≈ 0.3 and maintain an almost constant curve so as to allow the water wheel when well design 

to be efficient and have a wide performance ratio. 

 

 

 

 

EFFICIENCY OF OVERSHOOT WATER WHEEL  

TES Teach with Blend space. 2017. Hydro Electricity-Overshoot Water Wheel. [ONLINE] Available 
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2.3.3. UNDERHSOT WATHER WHEEL  

 

 

 

 

 

 

 

 

Figure 2-10 Schematic of the undershot (Zuppinger) water wheel (Green Museum, 2012) 

The undershot water wheels operates exactly as the overshot water wheel however differs in 

the direction of water inflow as the Zuppinger wheel has a side elevation with a backward 

inclined blade with a dam type inflow. The potential energy (mgh) is used as the driving force 

and the size of the blades and weight offers a rotation allowing the buckets to be filled rapidly 

(Culture P., 2012). The cells are designed in such a way to accommodate about 25 to 40% of 

the water at entry point, which is comparably less than the overshot but less water is loss due 

to blade head of each cell which is gradually reduce where water is discharge as wheel rotates 

with again minimum loss of water (UOS, 2012) . It is apparent that Geometry requirements 

and measurements of the space between the blades with diameter considerations as shown in 

Figure 2-9 should be the key to getting a good output and efficiency hence should be considered 

before any design is carried out (Informers, 2013) 

 

 

 

 

 

 

 

 

 

Figure 2-11 Efficiency as a function of flow rate (Q) max for the Zuppinger water wheel (UOS, 2012) 

 

ARCHITECTURE OF AN UNDERSHOOT WATER WHEEL  
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Figure 2-10 shows the expected efficiency curve measurements of a Zuppinger wheel designed 

with a head difference of 1.35 m; diameter of 6.0 m; width of ≈ 2.5m and available max flow 

rate of 4.0 m³/s. Measurements were then taken with a speed of 4.87 rpm over two flow rates 

thus 1.53 and 3.3 m³/s which showed an efficiency of 77% when Q /Qmax = 0.5 and 71% for 

when Q /Qmax = 1.  Secondary research data reveals that most efficiency for the undershoot 

wheel are within the range of 60 -75% making the overshot much efficient than the undershot  

2.3.4. BREASTSHOT WHEEL  

 

 

 

 

 

 

 

Figure 2-12 Schematic of the Breastshoot water wheel, (a) breast shoot wheel & (b) Principle of operation of Breastshoot 
wheel  

The Breast shot water wheel is one that is used mainly considering location and where it 

application could best fit (British Hydro, 2015). The design is done in such a way that the water 

enters the bucket at a rather steep angle which allows the bucket to be filled quicker hence these 

cells are designed to respond to the resultant force acting in the rotation direction of the wheel 

(Muller et al, 2002); making water to be reduced at a downstream of 90° angle (Muller et al, 

2002). Similarly, like the undershot the potential energy is used as the driving force where the 

water pushes the paddles to allow a rotation. The buckets or paddles are aired in order to allow 

air to escape during inflow and captivated when the paddles rise above lowermost point. The 

simple mechanism hence reflects the working principle of the undershot where the rotation of 

the wheel is created with the constant or high speed inflowing water (Muller et al, 2010). 

ARCHITECTURE OF AN BREASTSHOOT WATER WHEEL  

Breastshoot Design ideas final - 2015.  [ONLINE] Available 

at: http://www.powerinthelandscape.co.uk/water/water_wheels.html. [Accessed 10 May 

2015]. 
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Figure 2-13 Efficiency of Breast shot as a function of flow rate (Muller et al, 2010). 

The test for the breast shoot of which its efficiency characteristics is shown in figure 2-13 was 

carried out under a model test on a 1m Diameter and 1:4s scale model for the breast wheel 

(Weidner, 2003). Practically it was noticed that the wheel of the breast shoot could only absorb 

10% of its design flow rate making the rotation of the wheel very slow. The maximum 

efficiency obtained was estimated at approx. 79% (Weidner, 2003) making it the closest to the 

overshot efficiency obtained shown in fig.2-10. It is therefore eminent to say that the efficiency 

could be improved in case there is a further increase in both inflow and outflow rate hence the 

design of the buckets and the availability of high flow of water could lead to an improved 

efficiency overall. Considering design specifications and accurate measurements assumptions, 

water wheels can generate greater power even with low flow volumes without using complex 

control systems, the experiments carried out revealed that the power / speed curves were quite 

smooth, indicating that speed control of the wheels isn’t the focus to obtain good efficiencies 

but rather design speed due to good design specifications (Muller et al, 2010).. Slow flow of 

water means that small gear transmissions ratios needs to be employed making energy loss 

within the range of 2-3% but undoubtedly haver significant effect on project cost thus ≈ 30% 

for undershot wheels and ≈45% for overshot. The experiments results carried out for the 3 

wheels shows that the most efficient is the Overshot water wheel with over 80% efficiency 

obtained 

2.3.5. PV PANELS TECHNOLOGY   

Energy from sun can be considered the main source of all types of energies. It can be used by 

various techniques such as making full use of sunlight to directly generate electricity or by 

using heat from the sun as a thermal energy. In this section, a comparison survey is included 

which investigates the three generations of PV cells with the latest characteristics. 

 

 

EFFICIENCY OF A BREASTSHOOT WATER WHEEL  
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First-Generation: Crystalline Silicon  

Crystalline Silicon is a semiconductor material suitable for PV applications, with energy band 

gap of 1.1 eV. Crystalline silicon is the material commonly used in the PV industry, wafer-

based C-Si PV cells which also dominate current market (A Farghly, 2012). Crystalline silicon 

cells are classified into three types as:  

• Mono-crystalline (Mono c-Si). 

• Poly-crystalline (Poly c-Si), or multi-crystalline (mc-Si).  

• Ribbon silicon  

Commercial production of C-Si modules began in 1963 when sharp Corporation of Japan 

started producing commercial PV modules and installed a 242 W PV module on a light house, 

the world’s largest commercial PV installation at that time (Green M, 2015). Crystalline silicon 

technologies accounted for about 87% of global PV sales in 2010(S Shoot, 2014). The 

efficiency of crystalline silicon modules ranges from 14% to 19%. While a mature technology 

continued cost reductions through improvements in materials and manufacturing processes. 

Similar efficiency improvements were also noted for Ribbon and crystalline silicon  

Second Generation: Thin film  

Thin - film solar cells are beginning to be deployed in significant quantities. Thin - film solar 

cells could potentially provide lower cost electricity than c-Si wafer based solar cells (K.I. 

Chopra, 2010). Thin - film solar cells are comprised of successive thin layers, just 1 to 4 µm 

thick, of solar cells deposited into a large inexpensive substrate such as glass, polymer, or metal 

and Cadmium is a by-product of zinc. A potential problem is that tellurium is produced in far 

lower quantities than cadmium and availability in the long term may depend on whether the 

copper industry can optimize extraction, refining and recycling yields (E, Sachs, 2015). 

Cadmium also has issues around its toxicity that may limit its use. As a consequence, they 

require a less semiconductor material to manufacture in order to absorb the same amount of 

sunlight (up to 99% less material than crystalline solar cells). In addition, thin films can be 

packaged into flexible and light weight structures, which can be easily integrated into building 

Components building integrated Photovoltaic (BIPV). The three primary types of thin-film 

solar cells that have been commercially developed are: Amorphous silicon (A-Si and A-Si/µc-
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Si), Cadmium -Telluride (CdTe), Copper-Indium-Selenide (CIS) and Copper-Indium-Gallium 

Diselenide (CIGS). 

Third Generation: PV Technology 

PV technologies are at the pre-commercial stage and vary from technologies under 

Demonstration (Multi - junction concentrating PV) to novel concepts still in need of (quantum-

structured PV cells). Some third - generation PV technologies are beginning to be 

commercialized, but it remains to be seen how successful they will be in taking market share 

from existing technologies. There are four types of third-generation PV technologies: 

Concentrating PV (CPV), cooling of concentrating PV system, Organic solar cells and Dye-

sensitized solar cells (DSSC).Responsible for the charge separation (photocurrent)   

Reviewing the three generations, we can say that the First-generation solar cells dominate the 

market with their low costs and the best commercially available efficiency. They are a 

relatively mature PV technology, with a wide range of well-established manufacturers. 

Although very significant cost reductions occurred in recent years, the costs of the basic 

materials are relatively high. It is not clear whether further cost reductions will be sufficient to 

achieve full economic competitiveness in the wholesale power generation market in areas with 

modest solar resources. Second-generation Thin-film PV technologies are attractive because 

of their low material and manufacturing costs, but this has to be balanced by lower efficiencies 

than those obtained from first-generation technologies. Thin-film technologies are less mature 

than first generation PV and still have a modest market share, except for utility-scale systems. 

They are struggling to compete with very low c-Si module prices and also face issues of 

durability, materials availability and materials toxicity (in the case of Cadmium). Third-

generation technologies are yet to be commercialized at any scale. Concentrating PV has the 

potential to have the highest efficiency of any PV module, Other organic or hybrid 

organic/conventional (DSSC) PV They offer low efficiency, but also low cost and weight, and 

free-form shaping. Therefore, they could fill niche markets 
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Technical Appraisal of PV systems 

 

 

 

Figure 2-14 PV system Architecture & simulation output 
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Since the field tests can be expensive and depend primarily on weather conditions it is very 

convenient to have simulation models to enable work at any time. For this reason the research 

investigates a simple one-diode solar cell mathematical model, which was implemented 

applying MATLAB script. The model can be considered as an easy, simple, and fast tool for 

characterization of different types of solar cells, as well as, determines the environmental 

conditions effect on the operation of the proposed system. It can conclude that the changes in 

irradiation mainly affect the output current, while the changes in temperature mainly influence 

the output voltage. The characteristics of PV system have been developed. The simulation helps 

in understanding the PV characteristics, whilst the simulation model shows the curve between 

P-V & V-I relationship for varying temperature & varying irradiance. The results obtained from 

the model show close correspondence to manufacturer’s curve. The results as it can be seen 

provides a clear and concise understanding of the I-V and P-V characteristics of the PV module 

which may be a suitable model for our renewable energy platform. 

2.3.6. WIND TURBINE TECHNOLOGY  

A wind turbine, like all forms of power generating technologies, is a device that converts one 

type of energy into electrical energy (BBC, 2016): in this case, the kinetic energy of the wind. 

The turbine does this by slowing down the stream of air flowing past it and the resulting change 

in momentum is converted to electrical output via a generator. In order for the turbine to be 

100% efficient, all the kinetic energy would need to be removed from the air stream (Ra Eng., 

2015). But this would mean that the air behind the turbine blades would be stationary and no 

air could flow. In the early part of the 20th century, Frederick Lanchester, Albert Betz and 

Nikolay Zhukovsky independently determined that the theoretical maximum efficiency of any 

turbine, irrespective of design, is 59.3%(F Lanchester, 2012). This is similar to the theoretical 

efficiency of heat engines that are limited by Carnot’s theorem and, as is the case in heat 

engines, in the real world; this theoretical maximum is never reached. Additional losses occur 

as the result of a variety of factors such as wake rotation, tip-loss and turbulence (Green E, 

2013). In practice, the highest attainable power coefficient is around 0.47 or about 80% of the 

theoretical limit (F Beltz, 2010). It is often said that wind power is ‘inefficient’, but ‘efficiency’ 

can be confused with ‘load factor’ which is the measure of how much electricity is actually 

generated relative to its theoretical potential. Turbines achieve overall efficiencies of almost 

50% compared to approaching 60% for a modern combined cycle gas turbine or a maximum 

of around 30% for an internal combustion engine. In practice, a wind turbine will produce its 

maximum power output over a range of wind speeds and will be designed in such a way as to 
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maximise the energy output for the wind speed distribution at the location where it is to be 

installed. In general, a turbine will not produce any output for wind speeds below around 3m/s 

(7mph); it will attain maximum output at around 12m/s (27mph) and will cut out at about 25m/s 

(56mph). Cut-out at high wind speed can create problems for the grid system as it occurs more 

abruptly than cutting in from low wind speeds but current turbines are being designed to cut 

out in a more gradual and controlled fashion. 

Technical Appraisal of wind systems 

Wind turbines come with different topologies, architectures and design features. The schematic 

of a wind turbine generation system is shown in Fig. 5. Some options wind turbine topologies 

are as follows 

 Rotor axis orientation: horizontal or vertical;  

 Rotor position: upwind or downwind of tower;  

 Rotor speed: fixed or variable; Rigidity: still or flexible;  

 Hub: rigid, teetering, gimbaled or hinged blades; Yaw control: active or free 

 Number of blades: one, two, three or even more;  

 Power control: stall, pitch, yaw or aerodynamic surfaces;  
 

Reviewing most literature’s, horizontal-axis wind turbines (HAWTs), are the prevailing type 

of wind turbine topology, as is confirmed in the design below  

 

Figure 2-15 Wind turbine generation systems  
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Wind turbines include critical mechanical components such as turbine blades and rotors, drive 

train and generators. They cost more than 30% of total capital expenditure for offshore wind 

project (Jamieson, 2015). In general, wind turbines are intended for relatively inaccessible sites 

placing some constraints on the designs in a number of ways. For offshore environments, the 

site may be realistically accessed for maintenance once per year. As a result, fault tolerance of 

the wind turbine is of importance for wind farm development. 

One of key components in the wind turbine is its drive train, which links aerodynamic rotor 

and electrical output terminals. Optimization of wind turbine generators cannot be realized 

without considering mechanical, structural, hydraulic and magnetic performance of the drive 

train. An overview of the drive train technologies is illustrated in Fig. 2-15 for comparison. 

Generally, they can be broken down into four types according to their structures (Jamieson, 

2015):  

 Conventional: gearbox and high speed generator with few pole pairs. 

 Direct drive: any drive train without a gearbox and low speed generator with many pole 

pairs.  

 Hybrid: any drive train with a gearbox and the generator speed between the above two 

types.  

Multiple generators: any drive train with more than one generator. Drive train topologies may 

raise the issues such as the integration of the rotor and gearbox/ bearings, the isolation of gear 

and generator shafts from mechanical bending loads, the integrity and load paths. Although it 

may be easier to service separate wind turbine components such as gearboxes, bearings and 

generators, the industry is increasingly in favour of system design of the integrated drive train 

components. 

Wind energy has attracted much attention from research and industrial communities. One of 

growth areas is thought to be in the offshore wind turbine market. The ongoing effort to develop 

advanced wind turbine generator technologies has already led to increased production, 

reliability, maintainability and cost-effectiveness. At this stage, the doubly-fed induction 

generator technology (equipped with fault-ride-through capacity) will continue to be prevalent 

in medium and large wind turbines while permanent magnet generators may be competitive in 

small wind turbines (Liserre, 2016). Other types of wind turbine generators have started to 

penetrate into the wind markets to a differing degree. The analysis suggests a trend moving 

from fixed-speed, geared and brushed generators towards variable-speed, gearless and 
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brushless generator technologies while still reducing system weight, cost and failure rates ( Ma, 

H, Chen, 2015) 

In summary, there may not exist the best wind turbine generator technology to tick all the 

boxes. The choice of complex wind turbine systems is largely dictated by the capital and 

operational costs because the wind market is fundamentally cost-sensitive. In essence, the 

decision is always down to a comparison of the material costs between rare-earth permanent 

magnets, superconductors, copper, steel or other active materials, which may vary remarkably 

from time to time, location and amount of energy that is to be produced. 

2.3.7. CONTROL TECHNIQUES  

Control technique plays a very important role in enhancing system efficiency and desired 

output of a combined RE system such as ours. The availability of power from a hybrid system 

can be economically maximized by choosing proper control technique in the system design 

process. Jonathan et al (2014) presented a control technology for HRES that track and make 

control decisions based on the definite battery state of charge offering significant advantages 

over other methods. Ottoson et al (2012) used a data logger and gave exhaustive analysis of 

the energy production and performance of a remote hybrid power plant having solar, wind and 

diesel plant. Nogaret et al (2012) developed a new expert system based control system tool for 

HRES and used an advanced control system for the optimal operation and supervision of 

Photovoltaic and wind based medium size power system. CAD (Computer aided design) tool 

is used by Chedid et al (2010) for optimal design and control of a hybrid wind solar power 

systems considering all ecological factor. Linear programming techniques are used to reduce 

the production cost while meeting the load requirement. Pitrone and Pitrone (2011) used an 

expert system, fuzzy logic theory, neural network and programmable logical controller for on 

line supervision and control of distributed hybrid renewable energy power plant. A real time 

analysis of the control structure and management functions of a solar wind hybrid micro-grid 

system is reported by Gaztanaga et al (2011) which works perfectly in both operation and 

transition mode. Based on the power transfer utility concept Jinhong and Seulki (2014) 

developed several power control module in service modes such as normal operation, power 

dispatching and power averaging according and effectively controls the inverter. The control 

module has environmental and utility friendly operation policy such that power injection into 

network is less fluctuating. Based on supervisory controller, Abdulwahid and Manwell (2014) 

developed a dynamic central communication system for hybrid power system. Capacitor 

voltage equilibrium control scheme is used to control hybrid cascaded H bridge inverter with 
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single direct current (DC) source to get rid of higher order harmonics for an integrated energy 

system by Hui et al (2010). Research also shows that Vechu et al (2011) developed digital 

control over analogue control with a 3 phase four leg inverter for HRES. This system 

compensates unbalance voltage conditions and the addition of a fourth leg provides an extra 

degree of freedom, making it possible to handle the natural current caused by unbalance load. 

In this technological amalgamation , we also found out that Zhang et al (2011) used PSO based 

statistical dynamic control system to manage Wind-PV hybrid system operation giving a new 

concept control design using a Petri-net regulator which calculates the operating mode of the 

multisource renewable energy system to optimize the energy transfer and the load irregularity 

for Hybrid RES. Arulampalam et al (2009) also developed micro-grid control of PV-wind-

diesel hybrid system with island and grid linked function suing an MPPT control scheme to 

track the global power of the wind–solar hybrid generating system according to the basic 

standard of the variable step perturbation tracking maximum power point algorithm. On the 

other hand, Prabhakar et al (2015) proposed a control system for accomplishing consistent 

harmonization of wind–solar energy adaptation system in remote locations. The control 

technique is formulated to utilize the available energy source in an efficacious manner to render 

power at nearly constant voltage and frequency to the isolated load. This was compensated by 

Croci et al (2011) whom developed obedience based control method which handles the energy 

exchange directly for PV-Wind HRES.  The review of control methodologies used for the 

combined renewable energy technologies for clean energy generation shows that various 

methods have been adopted by various researchers and engineers for various projects and 

although research is on-going in this field to define the most appropriate control methodologies 

for combined renewable energy systems, control methodologies differs with each project as 

they are particularly designed to suit a the demand of each project. It is therefore clear that one 

of these methodologies mentioned above would be considered and possibly modified so as to 

ensure its suitability for our intended renewable energy platform. 

2.4. TOGO’S SOCIO-ECONOMIC, ENVIRONMENTAL, AND FUTURE 

DEVELOPMENT OF THE ENERGY SECTOR IN TOGO 

2.4.1. SOCIO ECONOMIC CONTEXT 
Togo’s 2010 population was 6,191,155 (4th Census, 2010), with an average annual growth rate 

of 2.84% (WB, 2010). On that basis, the country can expect to reach 7,121,673 inhabitants in 

2018, 60% of whom under the age of 25. As a result, Togo will need to meet the challenge of 

providing decent jobs to that population, once it hits the labour market. Gross domestic product 
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(GDP) rose from FCFA 1,581.3 billion in 2010 (baseline year) to FCFA 2,076.6 billion in 

2015, or a per capita GDP of FCFA 255,419 and FCFA 291,583 respectively (WB, 2013). 

Despite the progress made (0.459 in 2012 (HDI Report, 2013), or a 0.007 improvement over 

2010), Togo’s Human Development Index (HDI) remains low (ranked 159th out of the 187 

countries evaluated). Poverty is still very high in Togo, affecting 58.7% of the population in 

2011 (SCAPE, 2013), compared with 61.7% in 2006. The household lighting penetration rate 

stands at 23%, according to the National Energy Efficiency Action Plan (NEEAP, 2015). The 

2011 QUIBB well-being indicator questionnaire showed that the main social indicators had 

generally improved, although their levels are still worrying: net primary schooling rate 

(87.8%), adult literacy rate (60.3%, with a clear disparity between the sexes: 74.0% for men 

and 47.9% for women), and unemployment rate (24.3%) (World Bank, 2014). 

2.4.2. COMMITMENT TO SUSTAINABLE DEVELOPMENT 
For several years now, Togo has been engaged in a proactive strategy for sustainable 

development and against global warming (AFD, 2013). Its efforts focus mainly on: bad 

production practices in the economic sectors; lack of institutional control; and the high poverty 

rate, which is exacerbated by the negative impacts of climate change, further reinforcing the 

vulnerability of the production sectors and the pressure on natural resources. This political will 

can be seen, amongst others, in the National Environmental Action Plan (NEAP), the National 

Environmental Management Programme (NEMP), the National Sustainable Development 

Strategy (December 2011), the National Environmental Management Capacity-building 

Strategy (October 2008), the National Programme for Reducing Greenhouse Gas Emissions 

from Deforestation and Forest Degradation (REDD+) 2010-2050, the National Strategy for 

Reducing the Risk of Catastrophes in Togo (December 2009), the National Medium Term 

Priority Framework (NMTPF) for Togo (2010-2015), and the National Action Plan for Marine 

and Coastal Environmental Resources Management. Further, Togo’s membership in the 

Climate & Clean Air Coalition (CCAC) means it could raise funds to finance its short term 

GHG and climate pollutant mitigation actions. 

2.4.3. ENVIRONMENTAL AND GHG EMISSIONS IN TOGO  
Togo plans to adopt an approach based on contributions founded on both measures to be 

introduced and targeted results in order to better identify any opportunities for co-benefits in 

terms of reducing GHG emissions that might potentially be derived from synergies between 

adaptation and mitigation. Togo’s contributions to global mitigation work can be characterized 

as follows:  
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Commitments: Togo confirms its commitment to contributing to the achievement of the 

UNFCCC’s objectives to limit temperature rises to 2°C by 2030 (UNDP, 2015). Togo has 

already implemented activities to reduce greenhouse gas emissions, especially in the energy, 

agriculture and LULUCF (land use, land-use change and forestry) sectors. Subject to being in 

possession of the necessary resources, Togo has confirmed that it is aiming for a more 

ambitious reduction target.  

 Main data sources: national climate strategies, policies and actions plans; prior 

UNFCCC submissions; declarations at the United Nations Climate Summit; Nationally 

Appropriate Mitigation Actions (NAMA); national communications; and a new 

analysis performed for the purpose of producing the INDC.  

 Cover: Entire economy.  

- Main sectors: Energy, agriculture and LULUCF.  

- Gases: CO2, CH4 and N2O.  

 Scenario trajectories: Togo aims to reduce its emissions as shown in the graph in Figure 

2-15 below, which provides information on both unconditional and conditional options. 

 

Figure 2-16 Togo aims to reduce its emissions (MOE, 2016) 

Togo’s GHG mitigation measures in its three priority sectors (energy, agriculture, and land use, 

land use change and forestry) and the associated costs (totalling US$1.1 billion) are described 

below.  
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I. In the energy sector, they pertain to the promotion of household using Renewable 

Energies plus solar electricity for road transport. As concerns with RES, this will entail 

the implementation of a proactive policy (with incentives, support and training for 

craftsmen, appropriate distribution channels, etc.) that can promote the roll-out of 

energy-efficient stoves, which can yield 50-60% savings in wood and charcoal. 

Emphasis will also be placed on the introduction of solar equipment in households and 

on capacity-building for the various actors concerned. In terms of road transport, the 

planned actions aim to reduce the consumption of fossil fuels in Togo by 20% over the 

course of the period under review, by improving the road system, promoting the use of 

public transport, reducing the average age of imported vehicles (to 5-7 years) and 

promoting active modes of transport (bicycles, walking, bike paths) 

II. For the agricultural sector, mitigation options have been identified in the fields of 

livestock farming, rice growing, farmland and the burning of the savannahs. 

Concerning livestock, the actions will involve the introduction of fodder to improve 

animal digestion, support in the promotion of local breeds, and extensive livestock 

farming. In terms of the rice industry, the actions will target the identification and 

promotion of varieties of rain-fed rice, and support and guidance in the better use of 

organic matter (for faster decomposition) in the paddy fields. For farmland, a study will 

be conducted to characterize it into agro-ecological zones, as well as a research and 

support programme on organic and synthetic enriching agents that release less GHG, 

the study and promotion of optimal waste management for livestock and harvest 

remnants, and the promotion of land use planning practices that boost carbon’s binding 

to farmland and agroforestry. In respect of the burning of the savannahs, the planned 

actions target a participatory fight against bush fires (World Bank, 2016) 

III. In the land use, land-use change and forestry sector, the priority actions relate to: (i) the 

promotion of private, community and State reforestation through the creation of 

plantations and the promotion of agroforestry on cultivated land; (ii) sustainable forest 

planning and protection (by managing brush fires, regenerating degraded sites, and 

demarcating and developing protected areas and tourist sites); and (iii) the cartographic 

study of geographic areas with a strong potential for the development of biofuels in 

conjunction with food security issues ( World Bank, 2016). 
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2.4.4. FUTURE DEVELOPMENT PF THE ENERGY SECTOR 
The commendable efforts Togo has made these past years have helped to raise the electricity 

access rate from 20% in 2010 to 28% in 2014 (CEET, 2015). However, this rate remains lower 

than the 40% average for ECOWAS countries and 35% for Sub- Sahara Africa. The current 

situation falls short of the minimum standard access rate set by ECOWAS at 50 %( ECOWAS, 

2012). The objective set by the national Accelerated, Inclusive Growth and Employment 

Promotion Strategy Paper (SCAPE 2013-2017) was set to increase electricity generation 

capacity from 161 MW in 2010 to at least 300 MW in 2015, which is today far from achieved. 

Since 2010, the only probable investment is the current on-going construction of a 147-MW 

hydropower dam at the Adjarala site (Mono River) to be shared by Togo and Benin. This 

outlook points to an aggravation of the energy deficit in the short to medium term which can 

only be remedied by opening up the generation segment to the private sector 

Also, SCAPE (2013-2017) indicates that until July 2009, the average price of low voltage 

electricity in Togo was CFAF 100/kWh, compared to the average of CFAF 56/kWh in Sub 

Saharan Africa, CFAF 30/kWh in Latin American and CFAF 17/kWh in Southern Asia (World 

Bank data, 2013). These price proportions have not changed significantly from that time. Togo 

operates with highly administered electricity prices which are not sufficiently influenced by 

market forces and competition (UNDP, 2012). Applying a price that is lower than the 

generation cost and at the same time relatively higher than the price applied in the rest of the 

world is among the major constraints of Togo. 

Furthermore, electricity generation, transmission and distribution activities are not sufficiently 

segmented to achieve economies of scale. They are rather managed as a single package. In 

some situations, no distinction is made at the accounting and fiduciary levels between distinct 

activities of the electricity value chain. Togo can draw lessons from reforms already undertaken 

in Ghana and Côte-d’Ivoire to successfully adapt its electricity sector to the vagaries of market 

forces. The Togolese authorities are aware that strong State presence and monopolies in the 

electricity value chain have been partly responsible for the structural financial deficits of 

national electricity companies for several decades (K Moglo, 2012). These deficits are reflected 

in over 70% electricity imports and weak institutional capacity to meet an aggressive demand 

which resulted in the informal acquisition of «cobwed» electricity. They, in a nutshell, are weak 

electricity generations with comparatively high electricity prices thereby reducing the level of 

competitiveness of Togolese enterprises and the influx of investments (TVT, 2014). The 

current challenge is no longer the fiscal consolidation of State owned enterprises in the 
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electricity value chain but the need for their in-depth reform (AFDB, 2015). An in-depth 

structural reform of electricity generation, transmission, distribution and supply activities, 

embracing private sector participation, will allow for a better visibility of the profitability of 

the different electricity segments. These restructuring efforts will culminate in other 

appropriate measures the large-scale generation of electricity and lower costs in order to 

increase the level of access. The short and medium-term challenge of the Togolese State is to 

define appropriate terms and conditions for competition among electricity producers using 

Renewable energy preferably. They will have to sell to competing wholesale dealers, through 

transmission and distribution networks that are only partially subjected to market forces 

(AFBD, 2015). 

2.5. SUMMARY OF CONTRIBUTIONS 
The litterature review covered three main sections  

 Togo’s energy sector, Togo’s energy regulatory framework and its renewable 

energy potential 

 Togo’s curent energy business model  

 State of the Art of existing renewable energy technology  

Technical feasability of the energy renewable energy platform for Togo’s smart grid 

infrastructure  

The outcome of this chapter focusing on Togo’s energy potential has shown that the country 

has enough renewable energy potential for the exploitation of these resources to be included as 

part of the energy and economic sector development and also offer an opportunities for green 

businesses implementation and for Independent energy producers to successfully implement a 

solid business model allowing the expansion of already existing industries and new ones to 

come. Fine-tuning a business model can easily take several months or even years. To be 

attractive for potential customers, business models must appear to be clear and simple, even if 

sophisticated processes run below the surface. This is particularly important for the mass 

market in rural areas of developing countries where most people do not have access to 

commercial financing, or are overwhelmed in dealing with loan applications.  

 

The technical feasability of the computer aided design of a 3D renewable energy platform for 

Togo smart grid power system infrastructure shows that the amalgamation of these three 

sources represents the advanced stage in hybrid power generation systems with litteratures 
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showing easy integration into smart grid enabling this innovative 3D renewable energy 

platform to come  as a sustinable methodlogy to developing solutions to Togo’s energy issues. 

The current business model also shows significant encouragement from the government for 

IPP’s to be integrated and for the promotion of renewable energy power generation 

The case study presented and discussed has shown that the generation of a successful business 

model is not an easy task. The specific regulatory, economic, social and cultural situation in a 

region has to be well understood and addressed when generating new business models. Fine-

tuning a business model can easily take several months or even years. To be attractive for 

potential customers, business models must appear to be clear and simple, even if sophisticated 

processes run below the surface. Of course, customers should be given a guarantee that the 

systems function properly. Successful business models usually include a financing component. 

This is particularly important for the mass market in rural areas of developing countries where 

most people do not have access to commercial financing, or are overwhelmed in dealing with 

loan applications. Traditional trading companies seem to have trouble with this fact. In contrast, 

younger firms with a concern for economic and sustainable development seem to be able to 

manage this. The importance of a simple financing component for business models is also 

reflected in the success of third party ownership models in the residential PV sector in western 

countries. Such lease models may not be the most attractive option in financial terms, but they 

are definitely the most comfortable option for the customer in administrative terms. 

The outcome of this chapter focusing on Togo’s energy potential has shown that the country 

has enough renewable energy potential for the exploitation of these resources to be included as 

part of the energy and economic sector development and also offer an opportunities for green 

businesses implementation and for Independent energy producers to successfully implement a 

solid business model allowing the expansion of already existing industries and new ones to 

come. Fine-tuning a business model can easily take several months or even years. To be 

attractive for potential customers, business models must appear to be clear and simple, even if 

sophisticated processes run below the surface. This is particularly important for the mass 

market in rural areas of developing countries where most people do not have access to 

commercial financing, or are overwhelmed in dealing with loan applications.  
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CHAPTER 3 

CHAPTER 3- PROPOSED RENEWABLE ENERGY PLATFORM FOR TOGO’S SMART 

GRID POWER SYSTEMS INFRASTRUCTURE  

3.1. INTRODUCTION 

 

This chapters introduces the possible business model and recommended 3D renewable energy 

platform that could suit Togo’s smart grid power systems infrastructure and industrial 

applications.  

 A proposed business model is thereby presented and explained due to earlier findings 

in chapter 2 of this thesis. 

 The possible 3-Dimentional (3D) renewable energy platform and its relevant 

Architectures and system of operations is critically analysed with simulation results 

presented as a validation process prior to field testing and further evaluation’s.   

 Economic and Environmental impact on Togo is also evaluated and discussed 

thoroughly  

3.2. POTENTIAL ENERGY BUSINESS MODEL THAT COULD BE IMPLEMENTED IN TOGO 

 

Electricity systems across Africa and Togo in particular face significant challenges in the 

transition to low-carbon energy. While the transition provides plenty of opportunities for 

investors, businesses, and consumers alike, the current business and regulatory models of 

investor owned utilities (IOUs) and independent power producers (IPPs), which have mainly 

developed around competitive markets for fossil fuel generation, are particularly ill-suited to 

take advantage of these new opportunities. 

Innovations in business models across all subsectors of the industry are crucial to scaling-up 

renewable energy deployment. The businesses that have played the largest role to date –IOU 

and IPPs– are facing significant challenges. In both the Africa and Togo in particular, many of 

the most important players have been hard hit by slower demand growth, partly a result of a 

slowing economy, along with adverse trends that are emerging as a transition to a low-carbon 

system accelerates. 
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To create a clean, secure, and low-cost electricity system at scale, each of the main business 

segments of the existing electricity industry will need to evolve: 

1) Generation – New business models are needed to reduce renewable financing costs and 

focus conventional generation on providing grid flexibility. New financing models 

should match the investment characteristics of renewable generation with investors, 

like institutional investors, that are looking for investments with the profile of 

renewable energy. 

2) Transmission – Transmission systems must improve integration of renewable 

energy.  Transmission grids should continue to consolidate to balance renewable 

resources across a greater area. 

3) System balancing and market operation – Markets and business models need to adapt 

to promote investment in flexibility resources for a low carbon grid. Markets will need 

to be adjusted to value the differences between the flexibility services provided by fossil 

fuel generators and energy supply provided by renewables. 

4) Distribution – Models for financing and operating distribution systems will need to 

adapt to changing demand patterns and new distributed energy and flexibility resources. 

Distribution grids will need to adapt to the greater levels of distributed generation, 

reducing load on local systems. 

5) Customer Management – Customers will play an increasingly active role in the 

electricity sector. Customer management must bring in new models to finance and 

integrate the demand response, energy efficiency and electrification of the system, 

including, especially, integrating the electrification of energy services such as the 

charging of electric vehicles into the system in ways which reduce system costs. 
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Figure 3-1 Possible future energy business model (investigators own design) 

      Moving away from existing models will involve major changes in the way of doing 

business. However, the first steps are already happening. As an example, financing models for 

renewable energy are emerging that can substantially lower costs and catalyse changes across 

the industry. These models, such as Yield-Cos, can be built to provide investors secure cash 

flows from renewable energy projects and other benefits such as the liquidity and 

diversification potential of exchange-traded stocks and bonds. While these models are already 
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emerging, they are not yet in a form that will realize the full potential cost advantage available 

and still require adjustments and fine tuning to optimize their value to the system. The industry 

needs creative thinking, careful design, and a regulatory, financial, and structural push to 

reduce the cost and improve the value and reliability of the electricity system. Policymakers 

can help accelerate this transition by working with investors, electricity companies, financial 

regulators, and consumers to enable the development of new financing vehicles, redefine 

markets, and build new institutional structures for a 21st century low carbon electricity system. 

With these changes, the costs of renewable electricity can be lowered by up to 20%, customers 

can benefit from the value they can lend to the system, and new markets can reduce the cost of 

integrating new energy sources, and uses, all while improving reliability and accelerating 

innovation. 

Recommendations following this new business plan could be  

 Implementing investment in generation, transmission and distribution and in 

personnel.  

This would include  

a) improving the quality of supply (imports and distribution) by rehabilitating, 

strengthening and extending CEET’s distribution networks;  

b) developing a generation and transmission master plan, to firm up priorities, 

including reassessing the technical, economic and financial viability of Togo’s 

medium size hydro plants, and adopting a short-term supply management plan 

c) For the Adjarala hydro project (147MW), accelerating the completion of the 

technical, economic, environmental and social and financial studies, the definition 

of the implementation arrangements and the mobilization of financing; 

d) Mobilizing the Governments and ECOWAS to secure and speed-up the delivery of 

natural gas from Nigeria through the WAGP pipeline, as this is one of the cheapest 

supply options, and would also diversify the energy matrix; and  

e)  Defining and mobilizing financing for capacity building and technical assistance 

in the Ministry of Energy and CEET. 

 

 Increasing access to electricity services, in the urban/Peri-urban and rural areas 

a) CEET, of an access and quality strengthening program for the main cities; and  
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b)  The Government, of a rural electrification program promoting innovative 

approaches based on decentralized and small scale operations. To significantly 

increase access to electricity services in rural areas, many countries have decided 

to: (i) set-up new institutions such as a Rural Electrification Agency focusing solely 

on rural electrification and delivering the services using a mix of service providers 

(small private enterprises, NGOs, communities, etc.), proposing various levels of 

services and of tariffs, supporting productive activities and financing of the up-front 

investment; and to (ii) let the main power utility concentrate on urban/Peri-urban 

areas with different tools. Togo should benefit from the experiences of emerging 

economies and design a RE strategy and an implementation plan that meets its 

objectives and traditions, and ensure sustainability 

 Ensuring the financial equilibrium of the sub-sector, CEET and CEB, and reviewing 

the tariffs. 

a) A thorough analysis of the investment programs (including of CEET and of CEB);  

b) a detailed financial and tariff analysis together of CEET and CEB, building up on 

the financial modelling tools now available to CEET; and  

c)  a transparent and open framework for all the stakeholders to participate in the initial 

design and in the development of solutions 

 Adjusting the regulatory framework to account for internal and regional 

requirements 
a) Deciding and adjusting if necessary the regulatory framework including 

amendments to the Benin-Togo Electricity Code (“Code Benino-Togolais de 

l’Electricité”) applicable to CEB to align it with Togo’s commitments with 

ECOWAS and WAEMU;  

b) Increasing the autonomy and capacities and reviewing the modus-operandi 

regarding the regulator, ARSE;  

c) Strengthening and adopting a new PPP framework and key implementing 

regulations, covering also renewable energies and rural electrification 

 Another approach would be  

To Delineate an energy efficiency and demand management program through first a feasibility 

study covering the priorities areas, assessing the benefits and costs, the financing requirements, 

the sustainability of such program and the implementation arrangements. 
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3.3. ENERGY CURRENT TARRIF  

 

Figure 3-2 Electricity tariffs levels (2011-2016) (World Bank data, 2016) 

 

Figure 3-3 Generating companies Electricity tariffs levels (2011-2016) (World Bank data, 2016) 

Figure 3-2 and 3-3 shows the various generating companies and their electricity tariffs. In 

Togo, the energy prices are estimated at 21.3 c/Kwh for domestic usage and 35.3 c/Kwh for 

Industrial purposes. These Prices are predicted to rise due to increasing diesel prices used for 

the 100MW power plant, making an increment by 25% for industries and 10% for households. 

In a country where 58.7% of the population live below the poverty line ( World Bank data, 
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2013), there is a social and moral need to subsidies the energy sector, opt for renewables energy 

power generation in order to alleviate energy cost on the population and promote development. 

As indicated earlier, CEET current tariff levels are too low on average as the utility can barely 

cover its costs, and cannot contribute adequately to the mobilization of the financing required 

for executing any investment program. Private sector investors (such as IPPs) must therefore 

seek additional comfort and guarantees from the Government. Furthermore, the tariff challenge 

will get more acute over time as CEET’s generation and import costs are expected to increase 

over time and are not geared to quickly reflect changes in the prices of fossil fuels. 

Therefore, the delineation of a clear tariff policy accompanied by a comprehensive financial 

and tariff study should be carried out as soon as possible covering CEET’s services (and may 

be other services such as rural electrification) together with potential investment studies. Such 

policy formulation and financial analysis should also be coordinated with CEB’s own review 

and modelling of its financial outlook including in particular the impacts of likely tariff 

adjustments to be expected from Nigeria and Ghana, and the incorporation of Adjarala’s in-

service costs. 

3.3. PROPOSED 3D RENEWABLE ENERGY PLATFORM 

The proposed 3D renewable platform presents a new approach of implementing the renewable 

energy technology in Togo’s smart grid system. This proposed innovative system can be 

implemented using Solar, Wind and Hydropower technology. It also can be implemented as a 

1D, 2D or 3D depending on the geographical location and the availability of the renewable 

energy resources. Design and development of such system and its relevant back of system i.e. 

control and power electronics in modular forms would make it easy for any energy sector to 

adopt such platform with high flexibility. However, there are many other consideration that 

should be taken into account such as the type of load, power demand and cost of maintenances.  

3.3.1. PROPOSED 3D RENEWABLE ENERGY PLATFORM DESIGN AND STRUCTURE  

Figure 3-4 shows the platform structure and it consists of a wind turbine, a dual overshoot 

wheel and Kaplan turbine together with a PV system. The platform structure is therefore made 

up of three section representing the Back end of the entire system thus (wind, hydro, solar 

generation systems unit). With the purpose of having an efficient and eco-friendly system, the 

platform structure been created with a high level of modularity and flexibility. They should be 

sustainable and are supposed to show stable parameters of produced energy (according to the 

relevant standards). Figure 3-4 shows the general structure of a renewable energy system 
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platform. This proposed 3D renewable energy platform will be ideal for smart grids where 

distributed generation is made possible using this renewable platform technology. 

 

Figure 3-4 Designed Assembled unit 
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Figure 3-4 shows the assembled unit of the 3D renewable energy platform. The 3D renewable 

energy platform architecture presented initial results showing the importance of the approach 

used in the design and its smart grid application possibilities. It also demonstrated challenges 

that should be considered prior to building the system for reel field test. To typify this feature, 

the investigation considered studies for the suitability of using solar, wind and hydro resources 

available in Simulink tools allowing the development of the simulation model referred to 

steady, transient systems, with the possibility of active and reactive power flowing evolution. 

It is worth noting the importance of the presented model considering its usefulness tool in 

energy management system domain and its technological advantages for future sustainable, 

hybrid, and smart applications developments. 

The assembled unit presented the preliminary research undertaken to develop the 3D renewable 

energy platform for smart grid applications. It introduced a solution to challenges in the energy 

generation sector which do not only refrain only to the safe supply of clean Energy but the 

reduction of carbon emissions. A major importance for the theoretical study of hybrid systems, 

based on renewable energy (photovoltaic, wind, hydro system) is the availability of the models 

that can be utilized to study the behaviour of hybrid systems and most important, computer 

aided design simulation tools. As the available tools are quite limited, the outcome of this 

research presented the most current and up to date model which was designed using 

SOLIDWORKS and each segments of the design, studied with simulation showing safety 

margins and purposes of the 3D renewable energy platform for smart grid applications as well 

as for educational purposes. 

3.3.2. PROPOSED 3D RENEWABLE ENERGY PLATFORM ARCHITECTURE  

     Figure 3-5 show the 3D renewable energy system architecture. It shows also the possible 

back up system using storage battery or fossil fuel generation arrangement. The architecture 

presented shows a probable assembled version of the 3D renewable platform architecture. The 

intent of the design is therefore for the 3D renewable platform generation to be directly fed into 

the storage “battery” where load power is driven from. This also is ideal for meeting losses in 

power network where the surplus power generated could be directly injected into LPN (local 

public network). Active power shows approximately 3 × 104 𝑊 generated for both active and 

reactive power which shows that power compensation within the network is efficiently 

managed with the capacitive bank within the network. It can therefore be concluded from the 

simulation analysis that the presence of reactive power is a result of the nonlinear elements 

used within the simulation model thus the power transformers, converters based on electronic 
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switching elements and the highly nonlinear nature of the consumer loads. This then introduce 

the question about optimizing the 3D system so as to exercise control over the power generation 

and its output. The proposed control model for the 3D renewable platform and its control 

strategy offers a proper tool for optimizing 3D renewable platform power system performance, 

such that it may be used in smart-grid applications. Circuit models are developed; using 

“MATLAB” simulations software to highlight the characteristics of the control circuitry and 

output power characteristics. The control system therefore focuses on the development and use 

of an efficient multilevel inverter capable of synthesizing a near sinusoidal voltage from several 

levels of DC/AC voltages whilst generating output voltages with very low distortion, whilst 

reducing the dv/dt stresses; thereby reducing on electromagnetic compatibility (EMC) 

problems. The advantages of using these type of inverters as well reside in their abilities to 

operate at both fundamental switching frequency and high switching frequency PWM. It should 

be noted that lower switching frequency usually means lower switching loss and higher 

efficiency.  

 

Figure 3-5 2D renewable energy platform system architecture 
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3.3.3. PROPOSED SYSTEM OPERATIONS PRINCIPLS AND IMPLEMENTATIONS 

 

Figure 3-6 Integrated renewable energy Micro Grid system simulation 

Figure 3-6 shows the design of the 3D renewable energy micro grid system simulation with a 

photovoltaic generator (PV), Dual wind turbines (wind1 and wind2), a diesel generator (diesel 

representing the Hydro system) and a battery as an accumulator. This mode of operation is 

characterized by both generation subsystems set to operate at their maximum energy 

conversion points. Moreover the battery bank in the system is able to revert its energy flow, 

acting as a power supplier instead as a recipient of energy. This has been introduced as an 

effective way of meeting power fluctuations and shortcomings of the renewable energy 

sources.  Operation in state Wind, Battery (hydro) is maintained as long as the energy available 

in the battery bank is about a fixed percentage (said 24%) of maximum stored energy, otherwise 

the diesel generator is connected to fulfill the load demand.  Three loads (load1, load2 and 

load3) representing houses were connected to a multi-plug system made up of a DC/AC 

converter used to determine the power output. Figure 3-6 shows the sustainable renewable 

micro grid with source intensities is1; is2; is3 and load intensities il1; il2; il3 representing current 

generated by the 3D renewable energy platform and load output current. Figure 3-7 shows the 

system dynamic model simulation which controls feedbacks from the output voltage (V). The 

modelling of the turbines drive (hydro/wind) considers the aerodynamic torque principles of 

the turbine which in theoretical terms is a non-linear function of the turbines rotation with 

respect to the tip speed ratio and the pitch angle. As the intended design of the turbines and the 
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application, stability is of high essence, the linear relation of the tip speed ratio, the pitch angle 

and the rotational speed could be analysed using the non-linear torque function taking into 

account the Taylor series theory.  

 

Figure 3-7 3D renewable energy platform Micro grid simulation [output voltage, output current, and real power] 

3.3.4. ECONOMIC AND ENVIRONMENTAL IMPACT ON TOGO 

- Environmental impact  
 

 

 

 

 

 

 

 

 

 

 

Figure 3-8 Environmental Assessment (Eon, 2017) 

The implementation of the 3D renewable energy platform would significantly impact 

Emissions resulting to power plant emissions being lower than what would have occurred had 

LOW CARBON ENERGY STRATEGY 

What Is Community Energy | Community Energy - E. ON. 2018. [ONLINE] Available 

at: https://www.eonenergy.com/for-your-business/community-energy/what-is-

community-energy. [Accessed 10 July 2016]. 

CONTENT REMOVED FOR COPYRIGHT REASONS  
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the prevalent fossil fuel technology been used. (ii) Emission reductions are expected to be real, 

measurable and long term. (iii) Establishment of emissions additionally (reduction in 

emissions) is a prerequisite under the implementation of the 3D renewable Energy platform 

and new energy business models in Togo. (iv)Baselines can be plant-specific or standardized. 

(v) The 3D platform would contribute to sustainable development in Togo and other developing 

countries. (vi)On a global scale the plant brings ‘‘clean’’ electricity to end-user, thus reducing 

even neglecting fossil fuel import dependence. Another important function of the 3D platform 

would be to improve the quality of power supply in the remote locations, through improvement 

in voltage, reduction in system losses and a reduction in the interruption of power supply. Our 

proposed system is one that could be applied as a 1D, 2D or 3D system and could be used for 

power generation as a decentralised system thereby reducing on transmission losses and lowers 

carbon emissions. Security of supply is increased nationally as customers don’t have to share 

a supply or rely on relatively few, large and remote power stations.  

Economic Impact  

 

Figure 3-9 Impacts of Renewable Energy (IRENA, 2016) 
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Togo has worked hard since 2007 to boost its economy and build the foundation for a solid 

growth which has been among the most significant seen in the region (AU, 2016). This relaunch 

of the economy has helped to reposition Togo as a dynamic player in the region and seen it 

achieve some significant initial economic success, thereby earning the confidence of 

international investors (BBC, 2015). The country has seen flourishing growth (of 4% on 

average over the last five years) with a very stable Political environment allowing new 

investment code with many advantages for investors to be legislated and implemented (AU, 

2016). Although there is continuous improvements being brought to the business environment 

(up 15 places in the 2015 Doing Business rankings), the country energy sector is one that needs 

a major transformation through which it is believed that the implementation of the proposed 

3D renewable energy platform would be ideal in impacting the economy positively. Economic 

growth in countries is often a result as local technologies and resources increase their 

independence in supplying the energy needs of citizens (SF gate, 2015).  The international 

Organisation for Economic Co-operation and Development explains that sustainability within 

a country's energy sector increases efficiency and security, encouraging prosperity and growth 

through energy access, industry development, job creation and competitive technological 

innovation (IOCD, 2015). 

Predicted changes in Togo economy considering the implementation of our proposed system 

would therefore remain in the affordable access to energy in the form of electricity which is 

important not only for individual citizens, but also for the industries that drive the country’s 

economy. As the development of renewable energy proceeds in increasing system capacity and 

efficiency, the costs of energy production will eventually drop (IRENA, 2015).   These trends 

will increase the availability of clean electricity over time, eventually benefiting the country's 

manufacturing sector through lowered costs, and lowered pollution or energy taxes which will 

positively impact the economy 

3.4. SUMMARY 

The outcome of this chapter introduced the possible business model and recommended 3D 

renewable energy platform that could be adopted for Togo’s smart grid power systems 

infrastructure and industrial applications. The proposed business model based on a critical 

literature review shows that the implementation of renewable energy businesses in Togo is 

highly encouraged as demonstrated by Government newly legislated policies. Togo’s plan to 

expand its power infrastructure makes the business a viable one that could positively impact 

Togo’s energy, environment and economic sector. We were able to expatiate on the possible 
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3-Dimentional (3D) renewable energy platform and its relevant Architectures and system of 

operations with possible back up system using storage battery or fossil fuel generation 

arrangement. The simulations showed that the 3D renewable energy platform mode of 

operation is characterized by both generation subsystems set to operate at their maximum 

energy conversion points with a battery bank in the system able to revert its energy flow, acting 

as a power supplier instead as a recipient of energy which makes the 3D renewable energy 

platform mode of operation an effective way of meeting power fluctuations and shortcomings 

of the renewable energy sources.   

Economic and Environmental impact on Togo is also evaluated and discussed thoroughly. By 

supporting technologies such as renewable energy, Togo can remain ahead of the curve in 

worldwide industry development; by investing in renewable energy, Innovative technologies, 

adequate skills that could yield to competiveness in the international market. The OECD has 

found countries that embrace innovation more likely to strengthen their economies and rebound 

from recessions (OECD, 2015). By depending less on energy resources from other countries 

and more on local technological development, the economic growth of Togo can be regulated 

and encouraged from within. 
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CHAPTER 4 

CHAPTER 4- COMPUTER AIDED DESIGN AND ANALYSIS OF THE FRONT END 

RENEWABLE ENERGY RESOURCES OF THE PROPOSED 3D RENEWABLE ENERGY 

PLATFORM  

4.1.  INTRODUCTION 

This chapter provides Computer Aided Design and Analysis of the front End renewable energy 

resources of the proposed platform. This is mainly aiming at investigating the possible factors 

of improving the efficiency of the front end units. The computer aided design and analysis has 

been carried for Hydropower units (water wheels, Kaplan turbine; dual feed arrangement for 

both water wheel and Kaplan turbine), Wind turbine units, 2D arrangements i.e. wind and 

hydropower, wind and PV systems, PV and Hydro systems.  

The work presented in this chapter also looked at the various relevant mathematical and control 

model of power conversion showing the dynamic behaviour of the proposed model which is 

examined under different operating conditions. Real-time measured parameters are used as 

inputs for the developed system. The proposed model and its control strategy offers a proper 

tool for optimizing hybrid power system performance, such that it may be used in smart-house 

applications, commercial and industrial applications as well. Solidworks models are developed; 

using simulations software to highlight the characteristics of the output power characteristics.  

 

4.1.1. HYDRO WHEEL SYSTEM COMPUTER SIMULATION AND ANALYSIS  

  Hydropower generation of which production figures is widely encouraging is predicted by the 

International Energy Association, UN to rise up to 6000 Terrawatt-hours by 2050 (IEA, 2012), 

hence the technology innovation of hydrowheels/ turbines and their designs must be a self 

reliant and provide above the average 80% efficiency that is being currently marketed to be 

able to meet the set world hydro energy generation target by 2050 (EPRI, 2006). Various types 

of hydrowheels and turbines with the probability of  reaching 80% efficiency are evaluated 

using secondary research data and suggestions on how this could be improved is clearly 

established. The research undertaken to design and develop a 3D platform to fully utilize 

Togo’s renewable energy resources into their smart grid power system infrastructure couldn’t 

possibly be complete without a critical review of the potentialities of hydro power and its 

generation. Studies reveal that hydro wheels are not as efficient as turbines but could offer 
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efficiency in excess of 80% for overshoot & undershoot water wheels, with 75% for Breast-

shoot water wheels. The technical issues that limit the hydro wheel efficiency have been studied 

and a new design is presented. The simulation of the new design is hereby presented with the 

experimental measurements of efficiency and power generated. Designs will be carried out 

using Solidworks, and simulations carried out to study flow analysis patterns with possible 

calculations that will amount to efficiency improvement of the turbine offered at an affordable 

cost  making the design cost effective. 

 

 

Figure 4-1 New Eco-wheel Design with Flow simulation (a) overview of wheel, (b) flow simulation of wheel (k Moglo et al, 
2015)  
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The design of the Eco-wheel was conducted by first of all considering measurements of the 

hydro wheel test canal and implementations of the measurements was introduce in the 

mechanical CAD design software “Solidworks”. Solidworks is a mechanical software used for 

design of 3D CAD (computer aided Design) able to transform ideas into product with aided 

tools such as 3D CAD solutions, simulations, product data management, life cycle assessment 

(Mathworks, 2013). The aim of the Eco-wheel design was to offer a wheel that will use Green 

products for its manufacturing and offer a better efficiency for the overshot wheel technology. 

As expressed earlier in this research and in reference to fig 2-7 the estimated overshot 

waterwheel output efficiency is ≈ 80% on average. Considering the design however, a flow 

simulation analysis of the wheel was conducted using the same software where we obtained a 

maximum velocity of 44.23 m/s as seen in the flow simulation enabling us to apply various 

theoretical models conducted. The efficiency was obtained by considering power derived from 

gravitaional potential energy with buckets tipped out at an angle θ.  It was also assumed that 

the reaction force acting on the buckets is equal to the main force applied in the first instance 

by the water on the buckets but in different direction, in so doing the derivative of resultant 

force gave a clear understanding of the role of gravity on the wheels hence we applied Newton’s 

second law of motion to determine the force and input power. The efficiency was then obtained 

to be higher than the expected overshot water wheel efficiency as it was obtained to be 85.3%. 

The design was done in such a way that it does allow buckets on the Eco-wheel to be filled ≥ 

50% making weight a factor of faster rotation for the wheels. The experimental results obtained 

from the Eco-wheel; hence the 1D hydro optimisation system proves that the technology is 

efficient and would be very useful to the 3D renewable sustainable power station. It is however 

important to mention that there is a possibility of implementing a 2D system as well thus 

juxtaposing solar PV systems technology with Hydroelectric for example, the advantages of 

this would then be a higher total delivered output power as energy will be generated from two 

renewable sources. The disadvantages however of having a 1D, 2D as compared to a 3D system 

is that the geographical conditions and locations are not always ideal for a 1D or 2D system 

hence the necessity for a 3D system where if energy produced by the hydro could be used to 

feed the wind turbine, causing a rotation that will generate energy at all time. 

4.1.2. MICRO-HYDROPOWER SYSTEM DATA ANALYSIS  

 

Considering results obtained with the overshot, undershot and breastshoot wheels, it was 

apparent to consider efficiency improvement of the Overshot water wheel. Offering an average 
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of 80% already (PDMHS, 2013) this could be scaled up by taking a step by step approach of 

the designs with careful measurements and calculations. The aims of this design is hence to 

offer a much efficient overshoot water wheel that could offer a higher efficiency than what is 

already being obtained currently with careful material selection making the overall design a 

very affordable one by all standard. This will then be preferred than other designs considering 

efficiency improvement and affordability. A wide range of theoretical calculations will be done 

to determine the efficiency and flow simulation carried out using Solid works will equally be 

conducted to further explain how the efficiency of the overshot wheel could be obtained. The 

unit will then be practically done and used for a 3D Renewable sustainable Power station with 

Low cost and high efficiency. 

4.1.3. KAPLAN TURBINE  

 

Figure 4-2 Schematic of Kaplan Turbine rate ( K Moglo et al, 2015) 

The ideal practical importance of a kaplan turbine adresses the technology behind its design, 

condition assessment, maintenance operations, with the sole objective of improving 

performance and its reliability in the hydro power production sector. The aim of this Kaplan 

turbine is to act as a prime mover directly producing horsepower to the generator. Secondary 

research shows that Kaplan turbine is the most significant and most reliable system in 

hydropower turbines as its design, operation and maintenance factors all aim to provide the 

most of impact on the overall efficiency, reliability and general performance. The performance 

however of the Kaplan turbine is dependent on the reliability of the related components used 



86 
 

Sensitivity: Internal 

such as the axial flow runner with adjustable wicket gates and control mechanism, draft tube, 

spiral case etc…. Kaplan turbines are mostly used in a low head and high flow application with 

adjustable blade types as earlier mentioned leading to a higher efficiency and power output 

range (EM, 2003). Figure 4-3, shows a typical efficiency performance curve of the Kaplan 

turbine is shown. The kaplan trurbine wicket gate control shows a very narrow range of high 

efficiency as a fixed blade unit, this shows that an accurate and optimal adjustament with 

careful considerations of flow analysis must be conducted in order to obtained an optimised 

performance of the blade. In contrast, the double regulated kaplan turbine reveals a much 

improved efficiency range which is due to its absolute peak setting and individual blade tilt 

enabling a gate blade relationship to be be established in order to obtained an optimised 

performance (EM, 2003). 

 

 

Figure 4-3 Kaplan Turbine efficiency evaluation 

4.1.4. NEW MICRO HYDRO POWER GENERATOR    

Considering the efficiency obtained during the practical test for the Eco wheel micro hydro 

generator, a better concept of the 1D hydropower system have been introduced with a blade 

pitch control system for the Kaplan turbine and a bevel gear directly connected to it and the 

generator. The DMGES (Dual Micro Generator Eco wheel system) consists of two overshot 

wheel positioned horizontally opposite each other and directly connected to the piston driving 

the Kaplan turbine and feeding the generator. Both positioned at an angle of 90 degrees receives 

water at the top of the wheels at the water inflow which with its forces a rotation.  A minimised 

compact penstock is then used to collect the water at the outflow stage so as to build a strong 

pressure which will force a rotation of the Kaplan turbine. This pressure is then increased by 

water flowing from both angles and enclosed leading to a much stronger rotation experienced 

by the Kaplan blades. 

Gate % 
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Figure 4-4 Dual micro-generator Eco-wheel system & the Kaplan Turbine 
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Figure 4-5 Hydro wheels test canal 

𝑇𝑒𝑠𝑡 𝐵𝑒𝑑 𝐿𝑒𝑛𝑔ℎ𝑡 = 5 𝑚 

𝑇𝑒𝑠𝑡 𝐵𝑒𝑑 𝑤𝑖𝑑𝑡ℎ = 7.2 𝑐𝑚 

𝑇𝑒𝑠𝑡 𝑏𝑒𝑑 𝐻𝑒𝑖𝑔ℎ𝑡 = 24.5 𝑐𝑚 

𝑇𝑒𝑠𝑡 𝐵𝑒𝑑 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 24 𝑐𝑚 

In order to determine the water flow Speed, a timed volume of water 0-30 Liters was allowed 

to flow 

𝐿𝑜𝑜𝑘𝑖𝑛𝑔 𝑓𝑜𝑟 𝑤𝑎𝑡𝑒𝑟 𝑓𝑙𝑜𝑤 𝑠𝑝𝑒𝑒𝑑 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑊𝑎𝑡𝑒𝑟

𝑇𝑖𝑚𝑒
=  

30

35.95 𝑠𝑒𝑐
= 0.8344 𝑚/𝑠 … … … … … … (1) 

𝐿𝑜𝑜𝑘𝑖𝑛𝑔 𝑓𝑜𝑟 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐶𝑎𝑛𝑎𝑙 𝑡𝑢𝑏𝑒 = 𝑊𝑖𝑑𝑡ℎ × 𝐻𝑒𝑖𝑔ℎ𝑡 = 24.5 × 7.2 = 𝐴 = 176.4 𝑐𝑚2…… (1) 

𝐿𝑜𝑜𝑘𝑖𝑛𝑔 𝑓𝑜𝑟 𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝐹𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 

= 𝐴𝑟𝑒𝑎 × 𝑊𝑎𝑡𝑒𝑟 𝐹𝑙𝑜𝑤 𝑠𝑝𝑒𝑒𝑑 = 0.1764 𝑥 0.8344 = 0.141 𝑚3/𝑠….. (2) 

𝐿𝑜𝑜𝑘𝑖𝑛𝑔 𝑓𝑜𝑟 𝑀𝑎𝑠𝑠 = 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑊𝑎𝑡𝑒𝑟 × 𝑉𝑜𝑙𝑢𝑚𝑒 = 1000 Kg / 𝑚3 × 0.072= 72 Kg…… (3) 

𝐿𝑜𝑜𝑘𝑖𝑛𝑔 𝑓𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 𝑚𝑔ℎ = 72 × 9.81 × 7.2 = 5085.504 𝑃𝑎 𝑜𝑟 5.08𝐾𝑝𝑎 … . . (4) 

𝐿𝑜𝑜𝑘𝑖𝑛𝑔 𝑓𝑜𝑟 𝑃𝑜𝑤𝑒𝑟 = 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × 𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝐹𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 … … … … . (5) 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑀𝑎𝑥 𝑂𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟 = 5085.504 × 0.141 = 721.4 𝑊𝑎𝑡𝑡 

𝐿𝑜𝑜𝑘𝑖𝑛𝑔 𝑓𝑜𝑟 𝑀𝑎𝑠𝑠 𝐹𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 =  𝜌 × 𝑉 × 𝐴 = 1000 × 0.141 × 0.176 … … . ( 6) 

𝑀𝑎𝑠𝑠 𝐹𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 = 24.82 𝐾𝑔/𝑠 
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Figure 4-6 Overshot waterwheel powered by gravitational potential energy, with buckets tips out at angle θ (Denny et al, 
2000) 

The considerations to getting the overall efficiency value of the wheel will have to incorporate 

unavoidable realities such as the water momentum, probable spillage of the water and friction. 

We can then assume that the buckets in fig 4-6 are at angle of θ where 0< θ ≤ θ1 are filled with 

water and the other buckets are empty. There are about 10 buckets on the designed wheels but 

other wheels could take more depending on the design. The buckets are at an angle of ∆θ around 

the wheel so one could say that ∆θ= 2π.  

Considering that the mass of the water in each of the buckets is 

∆𝑚 =  𝜌𝑓 × ∆𝑡…………………………….. (7) 

Where 𝜌 represents the density, 𝑓 is the flow rate and ∆𝑡 the time interval taken to fill the next 

bucket on the rim. This is obtainable by equating equations 𝜔∆𝑡 = ∆𝜃 with 𝜔 representing the 

waterwheel angular speed hence the equation will be 

∆𝑚 =
𝜌𝑓

𝜔
 ∆𝜃…………………………………. (8) 

Considering that the mass of the water in each of the buckets is ∆𝑚 =  𝜌𝑓 × ∆𝑡 where 𝜌 

represents the density, 𝑓 is the flow rate and ∆𝑡 the time interval taken to fill the next bucket 

on the rim.  

 In order to obtain the efficiency, one needs to understand that the theorem of force applied 

on a body is obtained by the controlled volume of fluid excreted, which is similar to the rate 

of change of momentum, the theorem can be conveyed as 

𝐹 = 𝑀𝑜𝑢𝑡. 𝑉𝑜𝑢𝑡 − 𝑀𝑖𝑛. 𝑉𝑖𝑛…………… (9) 
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Where M represent the mass flow rate earlier obtained, F the force exerted by the water on a 

solid body, the total force exerted in the procedure could be expressed as  

𝐹 = 𝐹1 + 𝐹2 + 𝐹3 = 𝑀𝑜𝑢𝑡. 𝑉𝑜𝑢𝑡 − 𝑀𝑖𝑛. 𝑉𝑖𝑛………….. (10) 

F1 stands for the force of the fluid on the buckets, F2 the returning force of the buckets on the 

fluid and F3 the force of the fluid exerted outside the control volume. These different forces 

need to be in the analysis as the equation can be simplified by the simple understanding that 

the reaction force is equal to the main force applied in the first instance by the water on the 

bucket but in different direction hence it could be neglected due to gravity and the assumption 

made that the pressure of the water is maintain at a constant which will make F2 &F3 equal to 

zero. This now gives the clear understanding of the role of gravity and the two direction in 

which the waterwheel rotates in; hence considering for    

 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (𝑥)𝑅𝑥 = 𝑚. (𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡)……………………………... (11) 

𝑤ℎ𝑖𝑙𝑒 𝑖𝑛 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (𝑦)𝑅𝑦 = 𝑚. (𝑣𝑖𝑛 − 𝑉𝑜𝑢𝑡)𝑦 …………………………… (12) 

The resultant for Direction x and y can be expressed as 

                       𝑅 =  √𝑅𝑥
2 + √𝑅𝑦

2…………………………………. …………... (13) 

𝐴𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑁𝑒𝑤𝑡𝑜𝑛′𝑠 𝑆𝑒𝑐𝑜𝑛𝑑 𝐿𝑎𝑤 𝑜𝑓 𝑀𝑜𝑡𝑖𝑜𝑛 

𝐹 = 𝑚(𝑣𝑡 − 𝑉𝑖)………………………………... (14) 

Where m is the mass flow rate earlier obtained, vt is the velocity of the wheel and vi is the 

velocity of the water.  

Using the above equation, Mass flow rate= 24.816 m3/s, Vi= 0.8344 m/s, Vt= 44.23 m/s 

𝐹 = 24.816(44.23 − 0.8344)= 1076.9N 

𝐹 = 𝑅𝑑𝑢𝑒𝑡𝑜𝐹2 &𝐹3 = 0 𝑎𝑛𝑑𝑡ℎ𝑒𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡𝑓𝑜𝑟𝑐𝑒𝑏𝑒𝑖𝑛𝑔𝑒𝑞𝑢𝑎𝑙𝑡𝑜𝑡ℎ𝑒𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑓𝑜𝑟𝑐𝑒 

=  1076.9 𝑁 

The total input power will then be considered as the total sum of the input force on each bucket 

and the water flow rate applied on the buckets enabling a constant rotation, this could be found 

by applying  

𝑃𝑖 = ∑ ∫ 𝑅
𝜃𝑓

𝜃𝑖
𝑑𝜃 ………………….................… (15) 

Where Pi= Input power; 𝜃𝑓is the final angular displacement; 𝜃𝑖 is the initial angular 

displacement and 𝑑𝜃 represents the change in angular displacement 
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𝑃𝑖 = ∑ ∫ 𝑅
𝜃𝑓

𝜃𝑖

𝑑𝜃 = 1076.9 ×
𝜋

4
= 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑃𝑖 = 845.79 𝑤𝑎𝑡𝑡𝑠   

The mechanical efficiency of the wheel could then be determined by applying the formulae 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑂𝑢𝑡𝑝𝑢𝑡 𝑃𝑜𝑤𝑒𝑟

𝐼𝑛𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟
× 100% ; 𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝐸 =   

721.36

845.79
× 100% 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 85.3 %   

One of the research objectives was to design a 3D renewable energy platform to fully utilize 

Togo’s renewable energy resources into their smart grid power system infrastructure. A 

computer simulation and modelling of a Micro-Hydro power generator using Kaplan turbine 

for domestic and industrial Applications has been done and presented. Studies reveal that water 

wheels are not as efficient as turbines although they contribute to an improved efficiency and 

offer efficiency in excess of 80% for overshoot and efficiency above 90% for Kaplan turbines. 

The technical issues that limit the water wheel efficiency and the Kaplan turbine have been 

studied and a new design is presented. The simulation to the new design is hereby presented 

with some modeling control. 

4.1.5. DESEIGN APPROACH  

 Penstock  
 

A penstock is an intake structure that control water flow. The penstock is use to direct the flow 

to the turbine blades within the turbine enclosure in this design. The penstock in this design is 

not only used to direct the flow but also to increase the velocity of the flow which will in turn 

increase the rotational speed of the turbine resulting to a higher hydropower generation. Figure 

3-23 below is an example of the type of penstock that will be used to direct water to the Kaplan 

turbine blade. The water inlet of this penstock is design to collect water at a very streamline 

form.  

 

 

Figure 4-7 Dual micro-generator Eco-wheel system –Penstock design 

Water in P1 V1 A1 

Water in P2 V2 A2 
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 Kaplan turbine 
 

The FEA analysis of the turbine is very important, as it provides an analysed detail of the design 

safety factor and how strong the turbine is with possible displacement of the blades. A factor 

of safety of 1.7 is obtained which is quite good for the design as shown in figure 4-8. Figure 4-

8 shows the flow simulation of the Kaplan turbine using a single penstock to stimulate the 

turbine. The flow simulation reveals that with a reduced housing, a better focus of the penstock 

tube to the blades is achieved with an improved rotation per munities of the turbine, leading to 

a much better and more efficient result. It therefore means that, the reaction of the water to the 

turbine blades causes rotation and the circular motion of the flow also influences the rotation 

of the turbine. We then reduced the RPM of the blade to 500rpm, which is the expected amount 

of revolution per minutes for turbine at the flow head of 5m and obtained a much higher 

velocity of up to 33.75m/s.as demonstrated in figure 4-8 below. 

 

Figure 4-8 Kaplan turbine Design & Finite element analysis flow simulation  
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4.1.6. BEVEL GEARS 

     

 

Figure 4--9 Bevel Gear design for the Generator (a) Overall gearing system  
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   A bevel gear design for the overall system have been presented in Fig 4-9 (b) Bevel gearing 

system are gears where the axes of the two shafts intersect and the tooth-bearing faces of the 

gears themselves are conically shaped. This will permit the individual rotation of both 

standalone Eco wheel and that of the Kaplan hydro turbine to individually rotate and direct 

horsepower generated to the generator. A careful analysis of the gears was done in 

SOLIDWORKS in order to allow a close comfortable seat and fit of the Eco wheels on the gear 

system. The use of the bevel gears was perfect as it allows a joint system of the 3D to be 

possible whilst offering a high efficiency (can be 98% or higher), and can transfer power across 

nonintersecting shafts. This type of spiral bevel gears transmits loads evenly and are quieter 

than straight bevels. 

4.1.7. DUAL MICRO GENERATOR ECO WHEEL SYSTEM & THE KAPLAN 

TURBINE DESIGN   

 

Figure 4-10 Dual micro-generator Eco-wheel system & the Kaplan Turbine design 

The dual micro generator Eco wheel system and the Kaplan turbine design presented in figure 

4-10, consists of two different overshot water wheel of improved efficiency for which test were 

carried out on. Aiming for a complete system to deliver a high output power and improved 

efficiency, a Kaplan turbine was added to the system for which test strength were equally 

carried on. The Importance of micro hydro generator design comes as a solution to provide 
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sustainability in energy supplies. The presented design offers a much more interesting approach 

to hydropower generation and the design approach expressed aren’t limited to a small scale 

power production as the topology used could be applied on an industrial scale. The design will 

indeed affect how energy is consumed in homes or in industries as this does provide a much 

improved efficiency, a solid reliance on the system and another renewable energy system that 

is independent and comes at no cost except for the manufacturing and installation of the 

designed system  

4.2. 2D WIND TURBINE AND HYDRO SYSTEM  

 

 

Figure 4-11 Double rotation Wind turbine system (k Moglo et al, 2016) 

A double rotation wind turbine system will be used and nonlinear simulation software for the 

performance prediction will be presented. The notable feature of the double rotation wind 
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turbine system is that it consists of two rotor systems positioned horizontally at upwind and 

downwind, and a generator installed vertically inside the tower. The double rotation wind 

turbine system has a constrained multi-body system, and the equations of motion are obtained 

by using the multi-body dynamics approach. Aerodynamic forces and torques generated from 

each rotor blades are calculated using the blade element theory. A relatively simple model for 

the load torque will be obtained by using the test data of the doubly fed induction generator 

adopted in the double rotation wind turbine system. Finally, a MATLAB / Simulink-based 

hybrid simulation software will be used to predict and analyse the performance of the double 

rotation wind turbine system. The combination of the Hydro system and that of the wind trubine 

will form the 2 Dimensional system.  

 

Figure 4-12 Double rotor wind turbine  

Modern, utility-scale horizontal axis wind turbine rotor blades are aerodynamically 

optimized in outboard region, whereas blade sections near turbine hub (i.e., root of blades) 

are designed primarily to withstand structural loads (i.e., bending and torsional). Therefore, 

very high thickness-to-chord ratio aerofoils, which are aerodynamically poor, are used near 

turbine root to provide structural integrity. Such configuration results in a “dead” wind zone 

near rotor axis where virtually no energy is extracted from the wind which is why a distance 

of 0.25m is allowed between the two blades. Up to 5% loss in wind energy extraction 
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capability is estimated to occur per turbine due to this compromise (Sharma, 2010). These 

“root losses” occur even in turbines that operate in isolation, i.e., with no other turbine nearby. 

Array interference (wake) losses resulting from aerodynamic interaction between turbines in 

wind farms have been measured to range between 8 - 40% (Barthelmie et al., 2007) 

depending on wind farm location (e.g., onshore versus offshore), farm layout, and 

atmospheric stability condition. While there is abundant literature documenting root losses 

and wake losses in wind farms, researches on concepts that can mitigate these losses are still 

very inadequate. 

    As shown in Figure 4-13, the double rotor wind turbine system will employ a secondary, 

smaller, co-axial rotor with two objectives: (1) mitigate losses incurred in the root region of 

the main rotor by using an aerodynamically optimized secondary rotor, and (2) mitigate 

wake losses in the double rotor wind turbine system through rapid mixing of turbine wake. 

Mixing rate of the double rotor wind turbine wake can be enhanced by (a) increasing radial 

shear in wind velocity in wakes, and (b) using dynamic interaction between primary and 

secondary rotor tip vortices. Velocity shear in turbine wake can be tailored (by varying 

secondary rotor loading) to amplify mixing during conditions when wake/array losses are 

dominant. The increased power capacity due to the secondary rotor can also be availed to 

extract energy at wind speeds below the current cut-in speeds of conventional single rotor 

wind turbine. Given the substantial efficiency improvement potential, success of the 

proposed concept will be added innovative advantage to the 3D renewable energy platform. 

 



98 
 

Sensitivity: Internal 

          

 

Figure 4-13 Double rotor wind turbine simulation 

Figure 4-13 shows the simulation of the double wind rotor wind generator considering various 

angles so as to ascertain its ability to capture the most wind and ensure efficiency.  Tests were 

carried out using a 15 and 45 degree angle and we noticed that the aerodynamics of the wind 

turbine is still revealing many challenges, like understanding and predicting the unsteady rotor 

blades performance, dynamic stress and aero-elastic response of the blades. Moreover, the wind 

turbines often subjected to complicated environmental conditions, such as atmospheric 

turbulent flow, ground effects, spatial and directional variation in wind shear. Hence, the 

understanding of these environmental phenomena and their impact on the wind energy 
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conversion process are essential for efficient exploitation of wind-energy. Recent 

developments have shown that the easiest way to increase power coefficient is to increase the 

rotor size, and develop an efficient pitch control system that could offer extended tracking of 

the rotation enabling efficient power generation.   

4.2.1.  PITCH CONTROL  

In the strategy to be investigated, the turbine is controlled to operate near maximum efficiency 

(energy capture) in low and moderate wind speeds. At high wind speeds, the turbine is 

controlled to limit its rotational speed and output power. This is accomplished by forcing the 

rotor into an aerodynamically stalled condition. Referred to as the “soft-stall” approach, 

because it allows the introduction of rather benign stall characteristics for purposes of 

controlling maximum power. Thus, in contrast to a constant-speed wind turbine, the variable-

speed wind turbine has the capability of shaping the RPM-power curve. This concept is 

explored in terms of its technical feasibility, rather than cost and reliability, which are the 

subject of future work. Figure 4-14 shows the system under consideration, with the dashed 

lines indicating the main control loop. The wind turbine rotor is connected to a variable-speed 

generator through a speed-increasing gearbox. The generator output is controlled by the power 

converter to follow the commanded RPM-power schedule. The generator responds to the 

torque command almost instantaneously. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-14 Physical diagram of the system  

 

In general, a variable speed wind turbine has 3 main different operating regions: below, 

intermediate and above wind speed as illustrated in Figure 4-15. In a fixed pitch, variable speed, 

stall-regulated wind turbine, maximum power regulation below rated wind speed is regulated 

by changing the rotor/generator speed at large frequency range. In such a turbine, capturing the 
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power at a maximum value is obtained by keeping the power coefficient (Cp) at maximum 

peak point by maintaining the tip speed ratio (λ) at its optimum value. 

 

 
Figure 4-15 Operating regions vs. control strategies  

 

The power (P) converted by a wind turbine is related to the wind speed as shown in Equation 

16. In the present context, the equation represents net electrical power after considering the 

aerodynamic efficiency of the rotor blades and the mechanical and electrical system losses.  

𝑃 =  0.5𝜌𝐴𝐶𝑝𝑉3 ………………. (16) 

Where: ρ = mass density of air  

A = area swept by the rotor blades  

V = wind speed Cp = non- dimensional power coefficient  

For a variable-speed turbine, the objective is to operate near maximum efficiency, where the 

resulting target power can be expressed as shown in Equation 2.  

𝑃𝑇𝑎𝑟𝑔𝑒𝑡  =  0.5𝜌𝐴𝐶𝑝𝑇𝑎𝑟𝑔𝑒𝑡 (𝑅/𝑇𝑆𝑅𝑇𝑎𝑟𝑔𝑒𝑡)3𝜔3 ……………. (17)   

Where: R = rotor radius measured at the blade tip 

ω = rotational speed of the blade 



101 
 

Sensitivity: Internal 

The tip-speed-ratio (TSR), which is a non-dimensional tip speed, is defined as the ratio between 

the rectilinear speed of the blade tip and the wind speed, as shown in Equation 18. 

       𝑇𝑆𝑅 =  𝜔𝑅/𝑉 ………………. (18)           

4.2.2. MODEL OF VARIABLE SPEED FIXED PICTH FOR WIND ENERGY 

CONVERSION SYSTEMS  

A wind speed generally varies with elevation of the blades (i.e., every single spot on the 

turbines may not have the same speed). Modelling of both turbines speed takes into account all 

Different positions on the blades which could therefore be very difficult. For this reason, a 

single value of wind or hydro speed is normally applied to the entire turbines. Modelling the 

rotor blade characteristic requires the tip speed ratio (TSR) and the relationship of torque and 

power coefficient versus tip speed ratio. The tip speed ratio (TSR) is obtained from 

 

ƛ =  ƛ(𝑣𝑡, 𝜔𝑡) =  
𝜔𝑡𝑅

𝑣𝑡
⁄ … … … … … … … … … … … … … … … . . (19) 

 

where ƛ = tip speed ratio [rad−s] 
vt =   wind speed [m−s] 
ωt = rotational speed [rad−s] 
R = blade radius [m]  
 

 The power captured by the blades, 𝑃𝑡𝑢𝑟𝑏 can be calculated by applying  

 

𝑃𝑎𝑒𝑟𝑜 =  
𝜌

2
𝜋𝑅2𝑣𝑡

3𝐶𝑝( 𝑣𝑡, 𝜔𝑡, 𝛽) … … … … … … … … … … … … … … . (20) 

 

The aerodynamic torque acting on the blades, 𝑇𝑎 is obtained by  

 

𝑇𝑎 =  
𝜌

2
𝜋𝑅2𝑣𝑡

3𝐶𝑇( 𝑣𝑡, 𝜔𝑡, 𝛽) … … … … … … … … … … … … … … … … (21) 

 

 Where ρ = Air density [Kg−m3
] 

Cp = Power coefficient [– ] 

CT = Torque coefficient[−] 

β = Pitch angle [degree] 

 

Considering the following, 𝐶𝑝 the aerodynamic torque can also be obtained from  

 

𝑇𝑎 =
𝜌

2
𝜋𝑅2𝑣𝑡

3𝐶𝑇  
( 𝑣𝑡, 𝜔𝑡, 𝛽)

𝜔𝑡
⁄ … … … … … … … … … … … … … … … . (22) 
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Considering the above equations, Cp & CT are functions of ƛ &β where β would be kept at a 

constant; namely the pitch angle would equally be fixed and this is generally true for small and 

medium sized turbines. Therefore Cp & CT depend only on the tip speed ratio(ƛ) 

Aerodynamic model represents the interaction between turbine and the wind stream. The 

performance of useful mechanical power in the wind is greatly depended on the blade profile. 

The efficiency of power extracted from the wind or also called as power coefficient, C p of this 

kind of studied turbine has maximum power coefficient, C p max value of 0.4781 at tip speed 

ratio of 5.781. Tip speed ratio is the ratio between the peripheral blade speed, ωr R and the 

wind speed, U. The value of power coefficient C p is calculated by using Equation (2), whereas 

the tip speed ratio ƛ  is computed by using Equation (18). Equation (19) and (20) then are used 

to calculate the aerodynamic torque, Taero and aerodynamic power, Paero. 

4.2.3. MATHEMATICAL MODEL OF THE DRIVE TRAIN  

The modelling of the turbines drive trains considers the aerodynamic torque principles of the 

turbine which in theoretical terms is a non-linear function of the turbines rotation with respect 

to the tip speed ratio and the pitch angle. Considering the intended design of the wind turbines 

and the application of a double fed wind turbine system, stability is of high essence, hence the 

linear relation of the tip speed ratio, the pitch angle and the rotational speed could be analysed 

using the non-linear torque function taking into account the Taylor series theory   

 

𝑇𝑎𝑦𝑙𝑜𝑟 𝑠𝑒𝑟𝑖𝑒𝑠 𝑡ℎ𝑒𝑜𝑟𝑦 =  ∆𝑇𝑎 = 𝜃∆𝑣𝑡 + 𝛾∆𝑤𝑡 + 𝑘∆𝛽 … … … … … (23) 

 

Considering the linearization of the tip speed ratio, the pitch angle and the rotational speed, the 

linearization around the operating point is literally the product of the derivative of the 

aerodynamic torque and that of the wind speed as the wind speed is considered the disturbing 

factor. The application of the pitch control allows the linearization and the control of the turbine 

using the linear coefficient 𝑘 and the tip speed ratio ƛ and the pitch angleβ. The aerodynamic 

control torque can then be written as  

∆𝑇𝑎 = 𝜃∆𝑣𝑡 + 𝛾∆𝑤𝑡 … … … … … … … … (24) 
 

The modelling of the drive train can be considered as a single weight with the assumptions that 

there is little or no interaction between the drive train itself, the tower dynamics of the turbine 

and gravitational force has no impact on the turbine blades leading to further excitation. The 

aerodynamic torque of the drive train henceforth could be define as  
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𝑇𝑎 = [ 𝐽𝑡. 𝜔𝑡] + [𝐵𝑡. 𝜔𝑡] + 𝑇𝑔 … … … … … … … … (25) 

 

Where 𝐽𝑡 is the Inertia of the turbine [kg / m2] 

          𝐵𝑡 Is the Frictional coefficient of turbine [N.s / m2]  

         𝑇𝑔 Is the Generator Torque [N. m]  

The rotational speed 𝜔𝑡 =  
1

𝐽𝑡
( 𝑇𝑎𝑢𝑥 − 𝑇𝑔);  𝑇𝑎𝑢𝑥 =  𝑇𝑎 −  [𝐵𝑡. 𝜔𝑡] … … … (26) 

 

 Figure 3-33 represents the drive train model of wind turbine system. In the drive train model, 

the difference between low speed shaft and the high speed shaft is shown by the gearbox ratio. 

 
Figure 4-16 Drive Train Model 

The drive train model is developed by using the simplest equation of motion to avoid the 

complex analysis where only rotational inertia is considered. The effects of damping and 

twisting angle of the shaft are ignored. In wind turbine system, unbalance torque occurs when 

turbine torque is dissimilar with the generator torque. As a result, shaft is accelerating or 

decelerating. The equation of motion for this rotation can be described as in the equation below  

𝑗
𝑑𝜔𝑚

𝑑𝑡
= 𝑇𝑎𝑐𝑐 = 𝑇𝑎𝑒𝑟𝑜 − 𝑇𝑙𝑜𝑎𝑑 … … … … … . . (27) 

Where  

J = moment of inertia of turbine and generator, kgm2 m  

ω = Angular velocity of the rotor, rad/s  

t = Time, s acc  

T = Accelerating or decelerating torque, N.m  

𝑇𝑎𝑒𝑟𝑜= Aerodynamic torque, N.m  

𝑇𝑙𝑜𝑎𝑑 = Load torque or generator torque, N.m  

 Jr = rotor inertia  

Jg = generator inertia  

G = gearbox ratio 
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4.2.4. CLOSED LOOP SCALAR CONTROL  

The main objective of this paper is to keep the power at the rated value,𝑃𝑟𝑎𝑡𝑒𝑑 .It is where the 

tip speed ratio operated between the optimum value, λopt at 5.781 and λmin at 2.408, when 

wind speed reaches 12m/s up until 20 m/s. Then, from Equation (8) to (11), we can obtain the 

maximum power available in the wind by applying the foolowing 

𝑃 =  
1

2
𝜌𝜋𝑅5𝐶𝑝𝑚𝑎𝑥

𝜔𝑟3

λ𝑜𝑝𝑡
3 … … … . . (28) 

An effective way to change the generator speed for squirrel cage induction generator wind 

turbine with fixed number of poles, is to change the frequency of the applied voltage. With this 

adjustable frequency drive, the fixed frequency supply voltage is able to convert to a continuous 

variable frequency, thereby allowing a proportional change in synchronous speed and rotor 

speed. Equation (14) shows the relationship between flux, applied voltage and frequency of the 

machine. 𝑬𝟏 = 𝟒. 𝟒𝟒∅ ∫ 𝑵 𝟏 

A closed-loop scalar control that was used to achieve this goal as shown in Figure 3-34. From 

the figure, it shows that the generator speed, ωm which is measured by a tachometer will be 

compared with the demanded generator speed, ωm*. The demanded generator speed is 

obtained from the demanded (optimum) rotor speed, ωr_dem which is calculated by using 

Equation (18), when λ vary between 2.408 or power coefficient vary from max Cp at 0.4781 

to min C p at 0.1032. Then, the error of these speeds is entered into a PI controller. The result 

of PI control is the reference value of slip speed, ωsl* where this reference slip speed can be 

limited in the constant value even though the frequency and the voltage of the stator are varied. 

For the purpose of stability, it is necessary to ensure that the reference slip speed must be 

smaller than the critical slip speed. This is important because if the slip speed is larger than the 

critical slip speed, the current will become too large and hence will lead to overheat of the 

generator. 

 
Figure 4-17 Scalar controlled drive system with slip speed controller 
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Then, the estimated reference slip speed, ωsl* is added with the current value of the generator 

speed to calculate the new reference of synchronous speed, ωsynch*. With new ωsynch*, the 

stator’s reference voltage and the stator’s reference frequency can be estimated. All mentioned 

speeds are in the unit of rad/s. These two variables are then fed into the generator side converter 

or also known as inverter. For variable speed drive, there are two types of inverter which is 

called as voltage source inverter (VSI) or current source inverter (CSI). VSI is more common 

used in the industry than the CSI. By using VSI, the six-step or pulse width modulation (pwm) 

inverter can be used. However, the detail modeling of the inverter is not covered since this part 

concerns mostly in the grid interface side. 

 

4.2.5. PITCH CONTROL IMPLEMENTATION 

 

It is given: 𝜆 =
𝜔𝑡

𝑣𝑡
𝑅  and 𝑇𝑎 =

𝜌

2
𝜋𝑅2𝑣𝑡

3𝐶𝑝

𝜔𝑡
… … … (29) 

Then; 𝐶𝑝 =
2𝑇𝑎

𝜌𝜋𝑅2𝑣𝑡
3; but 

𝜔𝑡

𝑣𝑡
=

𝜆

𝑅
; Therefore, 

𝐶𝑝 =
2𝑇𝑎𝜔𝑡

𝜌𝜋𝑅2𝑣𝑡
3 =

2𝑇𝑎

𝜌𝜋𝑅2𝑣𝑡
2

𝜆

𝑅
=

2𝑇𝑎

𝜌𝜋𝑅3𝑣𝑡
2 𝜆 

The above equation expresses 𝐶𝑝 as a function of 𝜆 

 

Figure 4-18 Pitch control system  

 

The PID block settings are shown below. Essentially, a PI control is implemented. The results 

for the simulation are also shown for different values of pitch angle𝛽. From the results, it is 
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seen that the power coefficient 𝐶𝑝 varies with the tip speed ratio 𝜆 but is also variant with the 

pitch angle. Optimal value here was 0.43. 

 

Figure 4-19 Pitch controlled angles 

4.3. CONTROL SYSTEM FOR HYDRO POWER GENERATION USING PID 

CONTROLLERS  

In reaction turbines such as overshoot wheels, Kaplan turbines, the vertical turbine 

configuration directly is considered an advantage as it causes rotation to be faster but inversely 

impact on the cost of the runner and alternator. To control the speed of the above mentioned 

wheels and turbines, Proportionality-Integration-Derivative controller is used in the governing 

system. The basic block to control a speed of a hydraulic system are: governing system, servo 

system, hydraulic system and turbine dynamics. 

 

Figure 4-20 Speed control block diagram of Hydraulic systems  

The main function a governing system is to control the network frequency on an isolated 

electrical network. This constant frequency can be brought into account if the speed is constant. 

The governor in a hydraulic system changes the rate of flow of water bringing the speed to a 
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constant value. This then provides a balance between the input and output stage of the system. 

Since the flow of water in small hydro increase or decrease depending on the river condition 

or water intake, the chance of disturbance is more. It is therefore imperative to minimise error 

through the Proportionality-Integration-Derivative controller used in the governor control. 

Figure 4-21 shows the dynamic of the PID controller where the D mode reacts fast to the change 

in input to the controller, I mode leads the error to zero value by increasing the control signal 

and P mode takes suitable action to control the error. This modes help to determine the change 

in water speed from its rated value thereby implementing a control mechanism to make the 

speed constant whilst eliminating oscillations. Stability of the system is improved by the 

Derivative mode which enables an increase value of gain K and also decreases integral time 

constant, thereby controller response speed increases. 

 

Figure 4-21Hydro PID control system  

As it can be seen on figure 4-21, a servo system representing the brain of the controller is used. 

A servo system consist of a controller, amplifier, motor and a position sensor. The servo system 

receives signal from governing system. These signal are amplified and electric current is 

transmitted to the servo motor to produce motion which is proportional to input signal. The 

position sensor report the actual status of the motor. This position is compared with the input 

value. Any deviation in the system is identified by Proportionality-Integration- Derivative 

controller which responds fast to any changes at the input stage. 
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Figure 4-22 simplified diagram of the Servo system controller 

 For the servo system  

In the PID controller, the transfer function F(s), related to x number of output to “e” position 

error is  

𝐹(𝑠) =  
𝑥

𝑒
= 𝑃 + 𝑠𝐷 +

1

𝑠
… … … … … … (30 ) 

Where  

P = Proportionality gain of the controller 

D = Derivative gain 

I = Integral gain 

In Amplification mode, the input voltage V is directly proportional to the output current  

𝐼 = 𝐾𝑎𝑉 … … … … … … . . (31) 

Then, Torque produced will be,  

𝑇𝑎 =  𝐾𝑡𝑙 … … … … … … . . (32) 

Where 𝐾𝑎 is the proportionality constant,  

              𝐾𝑡 Is the Torque constant 

When the total moment of inertia of load and motor is J, and 𝑇𝑓 is the opposition friction, 

then total torque produced in the system is, 

𝑗𝛼 =  𝑇𝑎 + 𝑇𝑓 … … … … … (33) 

The angular acceleration, 𝛼 is  

𝛼 =  
𝑑𝜔

𝑑𝑡
… … … … … . (34) 
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Where 𝜔 =  
𝑑𝜃

𝑑𝑡
 

Taking Laplace transform of equation (18) and (19) 

𝜔 =  
𝛼

𝑠
 𝑎𝑛𝑑 𝜃 =

𝜔

𝑠
… … … … . (35) 

If 𝑇𝑓 is negligible, substituting equation (33), and solving for 𝜃 

𝜃 =  
1

𝑆2

𝐾𝑡𝑙

𝐽
… … … … (36) 

Solving Equation (36) in equation (31), the servo system motor equation obtained is  

𝜃

𝑉
=  

𝐾𝑎𝐾𝑡

𝐽𝑆2
… … … (37) 

The encoder gain represented by 𝐾𝑓 is equal to the number of units of feedback per one 

radian for a single rotation. For number of turns “n” the encoder gain will be obtained as  

 𝐾𝑓 =  
2𝑛

2𝜋
… … … . . (38) 

 For the Hydraulic turbine model  

The hydraulic turbine equation for input torque changes is given as  

∆𝑈 =  
𝑘1 + 𝑘2 𝑇𝑊 𝑆

1 + 𝑘5 𝑇𝑊 𝑆

∆𝑌 +
𝑘3 + 𝑘4 𝑇𝑊 𝑆

1 + 𝑘5 𝑇𝑊 𝑆

 ∆𝑁 … … … (39) 

𝑘1 𝑎𝑛𝑑 𝑘5 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦  

𝑘1 =  
𝜕𝑈

𝜕𝑌
 

𝑘2 = (
𝑄

2𝐻
−

𝑁

2𝐻

𝜕𝑄

𝜕𝑁
)

𝜕𝑈

𝜕𝑌
+ (

𝑁

2𝐻

𝜕𝑄

𝜕𝑁
−

𝑈

𝐻
)

𝜕𝑄

𝜕𝑌
… … . . (40) 

𝑘3 =  
𝜕𝑈

𝜕𝑁
… … . . (41) 

𝑘4 =  
𝑄

2𝐻

𝜕𝑈

𝜕𝑁
−  

𝑈

𝐻

𝜕𝑄

𝜕𝑁
… … … … . (42) 

𝑘4 =  
𝑄

2𝐻

𝜕𝑈

𝜕𝑁
− 

𝑈

𝐻

𝜕𝑄

𝜕𝑁
 

𝑘5 =  
𝑄

2𝐻
− 

𝑁

2𝐻

𝜕𝑄

𝜕𝑁
… … … … (43) 

Where Q stands for the discharge 

            N stands the turbine speed 
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            H stands for the turbine head 

            Y stands for the Gate position  

            U stands for the Torque 

 

The hydraulic turbine equation makes mention of 𝑇𝑤 which is basically the water inertia time 

constant 

𝑇𝑤 =  
𝑄𝑛

𝑔𝐻𝑛

𝐿

𝐴
… … … . . (44) 

Where 𝑄𝑛 stands for the rated discharge 

            𝐻𝑛  Stands for the rated head at the turbine entrance 

            L stands for the Penstock length 

            A stands for the cross section Area  

            g stands for the acceleration due to gravity 

The Turbine model is represented in terms of torque and speed by ∆𝑇 𝑎𝑛𝑑 ∆𝑁 

∆𝑁 =  
∆𝑈

𝑇𝑚𝑆
… … … (45) 

𝑇𝑚 = 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑇𝑜𝑟𝑞𝑢𝑒 =  
𝜋𝐺𝐷2𝑁2

120𝑔𝑈𝑛
… … … (46) 

Where 𝑈𝑛 stands for the rated Torque at rated speed 

            𝐺𝐷2  Stands for the flywheel effect 

𝐺𝐷2 =  
1800𝑃𝑇

𝜖𝑁2
… … … (47) 

Where P stands for the rated power 

            T stands for the time closure of the wicket gate 

            휀 Stands for the coefficient for the incremental permissible speed 

 

휀 =
∆𝑁

𝑁
… … … … . . (48) 

Figure 3-10 shows the implementation of the hydraulic turbine control system which we will 

test under various conditions as shown in table 1-3 below  

           Table 4-1 PID governor constant                                                          Table 4-2 Servo system constant values 

Gov. PD 

𝑲𝒑 5.0 

𝑻𝒉 .01 

𝑲𝒉 0.1 

𝑲𝒊 10.0 

Kdp 0.04 

                                       

𝑲𝒑 20 

𝑲𝒅 0.1 

𝑲𝒊 1 

k 0.0488 

𝑲𝒂 0.5 

𝑲𝒕 0.1 

J 0.004 

𝑲𝒇 565 
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                                                      Table 4-1 Turbine model constant 

 

Figure 4-23 Implementation of the Hydraulic turbine system control 

 

Figure 4-24 Speed versus Time for PID Servo system 

Controller PID 

Y 0.72 

K1 0.72 

K2 -0.8 

K3 -1.4 

K4 -0.22 

K5 0.76 
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Figure 4-24 shows the sharp rise in speed as soon as the servo system is applied to the system 

input. The application of the PID controller reacts quickly to the changes at the input stage and 

provide a constant speed control thereby responding to the changes. The controller brings back 

the speed to a constant value and the amplifier amplifies the signal avoiding the oscillation in 

the speed characteristic. 

 

Figure 4-25 Speed Versus Time controlled graph 

Figure 4-25 shows the speed versus time controlled when the PID controller is implemented. 

It shows that the speed becomes constant after only 30 seconds and factors such as losses and 

over speed are significantly controlled and reduced due to the low setting time and the 

controlled frequency regulated due to speed control 

 

Figure 4-26 Speed versus Time in application of the PID governing system 

The speed is brought back to a constant value after a sudden rise in value. This rise in speed is 

due to sudden force of water exerted on the turbines. Presence of permanent droop compensator 

determines the amount of output change in response to a change in unit speed and compensates 

it. 
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4.4. PHOTOVOLTAIC SYSTEM 

    The conditions for Photovoltaic (PV) cell measurement are standardized for comparison 

purposes but may not reflect actual operating conditions. Considering a review of few 

literatures, the best PV cell efficiencies are estimated at 24.2 % and the highest efficiencies 

devices demonstrate few practical limits without regards to cost or manufacturing 

considerations hence a simulation of the PV cells at average testing conditions were carried out 

and presented with an average output voltage of 22.5 volts at a temperature ranging from 0◦ to 

25◦C. 

PV Temperature & Output Voltage Analysis  

 

 

Figure 4-27 PV cell Temperature and irradiance variance test 
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Figure 4-27 shows the evaluation of the solar panel under ideal testing conditions, considering 

the voltage output and the power generated. It can define a single PV cell to produce 

approximately 3.15 Amps which is quite ideal for a micro power generation system. 

Photovoltaic systems are systems made up of solar panel which converts light emitted from the 

sun to electrical energy. Each panels used is rated by its own unique DC output power. 

Currently the best commercial solar panel efficiency is around 17.4%. PV system output for 

micro scale power system can be expected to be around 24 V and upwards depending on cell 

sizes and irradiance. Considering our intended 3D design, a sample panel was chosen for which 

the technical details would be used to define its efficiency and a MATLAB/ Simulink 

simulation would be carried out to evaluate its output. These data would be used for the 

Practical design of the 3D unit 

 

         

 

 

 

 

The technical details of the solar panel provided are ideal for micro power generation 

considering the maximum power output and the current magnitude. In order to define the 

Table 4-2 PV cell Technical data 

Technical details 

Cell Material Mono Crystalline 

Maximum power 20 watts 

Nominal voltage 12 volts  

Maximum voltage 17.6 volts 

Open circuit voltage 21.8 volts 

Maximum current 1.14 Amps 

Short circuit current 1.25A 

Maximum system voltage 600 volt 

 

     Dimensions 

length 24 ½ inch 

Width 10 ¾ inch 

Thickness 1  inch  

Glass thickness 3.2 mm 

Maximum wind resistance 65 m/s -145 MPH 
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system efficiency, it would assume that the power supply needed is for 2 x 20 watt bulbs and 

a fan of 20 watts. 

Considering a 4 hour back up time, 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑎𝑑 =  44 ℎ × 40 𝑤𝑎𝑡𝑡𝑠 = 160𝑊𝐻−1 ( 𝑤𝑎𝑡𝑡𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟) 

Measure battery Ampere needed for the Load 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝐼) =
160

12
= 𝐼 = 13.33 𝐴𝐻 

This means that the battery needed is a 12 volts / 14 AH 

Generally, a battery charging current = 10% of its AH therefore: 

𝑇ℎ𝑒 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝐼) =
13.33

10
= 1.4 𝐴𝑚𝑝𝑠 

𝑆𝑜𝑙𝑎𝑟 𝑝𝑎𝑛𝑒𝑙 𝑛𝑒𝑒𝑑𝑒𝑑 =  1.4 𝐴 × 12 𝑣𝑜𝑙𝑡𝑠 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑃𝑜𝑤𝑒𝑟 =  16.8 𝑤𝑎𝑡𝑡𝑠 

 

From these data’s it can assumed that the charge controller is 12 v/ 1.4Amps 

 System loss is not added to these measurements, so as recommended a 25% system loss 

will be added  

 Solar panel = 20 watts  

 Battery= 12 volts, 15 AH 

 Charge controller = 12 volts / 2Amps  

The efficiency of the solar panel can then be calculated Light from sun to earth surface is 

estimated at 1M2 = 1KW  

Therefore: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑂𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟

𝐼𝑛𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟
× 100% ; 

16.8

1000
= 16.9% ≈ 17% 
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4.5. HYDROPOWER GENERATION SYSTEM- OVERSHOT WHEEL AND KAPLAN 

TURBINES 

4.5.1. OVERSHOT WHEEL  

Hydro turbine is a rotary engine that extracts energy from a fluid flow by transferring the 

potential energy to electricity generation. Depending on head and water flow rate, variation of 

pressure and momentum causes the runner blades to rotate. This static simulation in Solidworks 

studies the effects of pressure and velocity of fluid flow on blades which help in improving the 

hydro turbine efficiency. The computational Fluid Dynamics (CFD) was used to simulate the 

pressure and velocity distributions on blades of hydro bulb turbine, which consists of runner 

with ten blades and rotating at 500 rpm, by using Fluent Software. The Large Eddy Simulation 

(LES) model of turbulence flow, under the practical condition of unsteady and incompressible 

fluid flow, was conducted in order to study the effects of blade angles on hydro turbine earlier 

designed and presented in appendix D1.  

 At the average head of 21 m, blade twist angle of 25° and the blade camber angle of 32°, the 

simulation was applied on varying guide vane angle at different angles of 60° , 65° and 70° 

respectively for comparing the maximum and minimum pressure on blades. The simulation 

showed that, at guide vane angle of 60° , 65° and 70° , the maximum pressures at leading 

pressure side are 213 kPa, 217 kPa and 207 kPa and the minimum pressures at leading suction 

side are -473 kPa, - 465 kPa and -581 kPa, respectively. By adjusting the guide vane angle, it 

clearly affects the pressure distribution and the efficiency of the hydro turbine.  

The simulation is on the hydro bulb turbine which consists of five-blade runner and rotates at 

500 rpm. After meshing and specification of boundary conditions, the models are exported into 

Fluent Mesh program. These files are imported into file case-mesh of fluent program. The 

following steps had been followed:  

• Set up the scale of model (Grid Mode).  

• Set up and define mode.  

-Viscous model  

-Materials  

- Boundary condition  

- Grid interfaces (outlet bulb and inlet Guide Vane, outlet Guide Vane and inlet rotor, outlet 

rotor and inlet Draft tube)  
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Work is done by the fluid rotating the runner at 500 rpm. Static pressure distributions on runner 

blades are shown in appendix D, at different guide vane angles. The contours are showing the 

distribution of velocity and pressure of fluid inside the turbine. According to these contours, it 

implies that velocity and pressure distribution in the turbine is under acceptable condition. The 

maximum and minimum pressures on the blades are shown in Table 4- 5  

Guide Vane 

Angles 

RPM Static 

pressure 

Efficiency (T) Efficiency (CFD) 

32 500 105 96.16% 90.27% 

60 319.55 213 80.79% 77.65% 

65 290.7 217 77.38% 69.32% 

70 218.75 207 60.58% 58.69% 

Table 4-3 CFD efficiency & Theoretical efficiency 

 

Figure 4-28 Efficiency comparison of CFD & Theoretical evaluation of Hydro wheel 

Figure 4-28 graph shows the hydraulic efficiencies of the hydro systems tested under different 

velocity cases for theoretical and CFD. According to these graphs, it implies that the CFD and 
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theoretical result are very close and under acceptable conditions by the characteristics curve. 

These results reflected the validation of the system considering the CFD and theoretical results. 

The maximum efficiency regime indicated by both approaches are essentially closer to each 

other. The Reason behind the slight difference in efficiency computed theoretically and CFD 

method can be associated with human errors or to discretisation of domains and solution of 

differential equations in computational methods. Hence the result obtained are fairly matching, 

however streamlines flow in the simulation shows presence of turbulence which is due to 

occurrence of losses for which values are not precise at this point. Prediction of turbine 

performance by CFD indicates patterns of the flow behaviour inside the turbine model and the 

information about the intricacy of flow pattern. Considering the result obtained, the system is 

ideal for implementation, hence for power generation. In order to further verify this, CFD 

analysis and stress analysis on runner blades and guide vane blades are conducted together with 

fatigue analysis and factor of safety for that model. Structure analysis on the blades shows a 

satisfying maximum life together with a minimum potential for damages. In other hand factor 

of safety is at maximum implying that this model is completely safe. 

4.5.2. KAPLAN TURBINE  
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Figure 4-29 Structural and static analysis for the Kaplan turbine 

Figure 4-29 shows static simulation run on the kaplan turbine. For the Kaplan turbine 

hydraulics a maximum efficiency of 93% (EM, 2003) could be achieved. For the purpose of an 

evaluation of the cavitation sensitivity of the designed runner, the Sigma value (Sigma-

pHisto0.005) necessary for a guaranteed cavitation-free operation of the runner was applied. 

The numerical simulation results shows similar pattern for velocity and pressure variation by 

average circumferential area (ACA) and the distribution between hub and shroud, efficiency 

and also power output affected by the rotational speed of the runner. The resultant of the 

simulations shows static pressure fields in the volute for different Reynolds numbers. We 

observe that the static pressure increases with the increasing of the Reynolds numbers up to the 

maximum value at the volute outlet. We observe also, for the high Reynolds numbers, low 

pressure around the volute medium. The pressure field is almost uniform and is characterized 

by a strong gradient of pressure inside the region near the outlet. The volute geometry generates 

a dissymmetry on the pressure field inside the turbine insinuating that the static pressure is low 

at ring axis of the distributors. This value increases slowly up to distributor outlet. We observe 



120 
 

Sensitivity: Internal 

also the formation of boundaries layers showing the gradual increasing of the axial velocity 

from the ring axis and a gradual decreasing of the tangential velocity 

 

 

Loading conditions Simulation Results Experimental 

results 

 % Of error 

35° guide vane 

opening 

 

89.2 

 

91.5 

 

2.5% 

40° guide vane 

opening 

 

90.3 

 

92.0 

 

1.8% 

50° guide vane 

opening 

 

88.5 

 

90.8 

 

2.5% 

Table 4-5 Simulation and Experimental results 

Boundary wall Smooth with no slip 

 

Input boundary condition 

Mass flow rate specified as 0.525 m3/s 

for 35° guide vane opening 0.620 m3/s 

for 40° guide vane opening 0.714 m3/s 

for 50° guide vane opening 

Outlet boundary condition Specification of reference pressure at 

draft tube outlet as 0 atm 

Stationary blade rows Stay ring and guide vanes 

 

Rotating blade row 

Runner with rotational speed specified as 

1050 rpm for 35° guide vane opening 

1150 rpm for 40° guide vane opening 

1375 rpm for 50° guide vane 

Type of interfaces Fluid-Fluid 

Pitch change Automatic, GGI Connection 

Turbulence model SST κ-ω model 

Table 4-4 Simulation setting for Kaplan turbine simulation 
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Figure 4-30 shows the flow velocity distributions numerically simulated and experimentally 

measured. They are the velocity distribution at the runner outlet. In these figures, the velocity 

value is normalized by the averaged axial velocity value corresponding to each operating 

condition, and the measure point locates 400mm downstream of the turbine centre. As for the 

direction of tangential velocity, the negative value designates the rotational direction of runner. 

It is found a satisfactory agreement between the results of numerical simulation and experiment 

The efficiency obtained from numerical simulation for different guide vane openings under 

steady flow condition are compared with experimental results as shown in table 4-5. The 

efficiency obtained in case of numerical simulation is slightly higher than the experimental 

results because all losses may not be incorporated in numerical simulation. The high accuracy 

prediction method based on the whole flow passage model is applied for the study of a Kaplan 

turbine and the prediction accuracy is evaluated with a response surface method. As for the 

efficiency characteristic of a Kaplan turbine, the relation with cavitation coefficient is 

accurately captured by the proposed numerical method with response surface method 

turbulence model. The critical cavitation coefficient is predicted and the turbine efficiency 

breakdown is found with the pressure drop on the hub surface. As for the pressure fluctuation 

characteristic, RSM turbulence model is found not accurate for the prediction on a Kaplan 

turbine. The blade tip induced vortex is numerically damped out before reaching the runner 

outlet. The pressure fluctuation at the runner outlet is therefore underestimated. In essence the 

numerical simulation on the whole flow passage of a Kaplan turbine is carried out with 

proposed response surface method found sufficient to have a satisfactory accuracy on 

efficiency and cavitation prediction. Its accuracy replaces the burdensome preparation and cost 

for model test, and also facilitates future research and design works.  
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4.5.3. BEVEL GEAR  

 

Figure 4-30 Bevel gearing system 

Pinion 

Gears  

Lower thrust Bearing  

Upper Thrust 

bearing  

Jack Nut   
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Industrial gearboxes mainly have input shaft and output shafts for the power input and output. 

Input shaft are connected to the power source such as the motor via coupling and the output 

shaft drives the shaft that need power to be transmitted. Both input and output shafts need 

bearing (various types of bearings can be used based on the type of gearing and loads) supports 

for efficient power transmission. Bearing liners are also used to reduce the impact of bearings 

taking abnormal loading as opposed to liners. The objective of this design is, to strategically 

have a liner is that replacing a liner is cost effective as opposed to bearing and time saving 

process too. Further the main components include pins to hold the bearings on the planet, end 

caps to prevent from oil spilling from the casing. Casing (usually) in two pieces are held 

together via bolts.  With the use of engineering analysis tools gears, for each part of the Bevel 

gear is designed involving sun gear, pinion and the planet. Using CES material selection tool, 

gear material along with gearbox casing design is carried out.  Similarly like the overshot and 

the Kaplan turbine, the aim of using CES engineering analysis tool is to optimise the gearbox 

design with the aim of making the design safe. In our 3 D design, the gearbox is the main 

system linking the wind system and the hydro system. For this, essential considerations needs 

to be taken into account as the architecture of bevel gears allows for a parallel integration of 

both wind and Hydro systems. However, once the gearbox design is complete it is correlated 

to the wind blade size requirements that represents swept diameter.  

Based on the assumed power requirements at 50KW for both wind and hydro systems, 

calculations are performed to obtain the gear teeth parameters. Considering the magnitude of 

power that would be transferred through the gearbox, a single stage gearbox system would 

suffice. Therefore, the gearbox architecture will have single input shaft, planetary gears and 

output shaft. The large input shaft will utilise the planets (3 gears) and act as power increaser 

to drive the hub on the wind turbine. The calculations of the gearing system will define the 

geometry for the complete rotating elements apart from the bearing selection. Bearing selection 

is based on the L10 hours which will usually design the bearing for one million cycles. Separate 

calculations are performed for bearings. Two casing designs are carried out approximately to 

hold the rotating elements, and are provided with horizontal mounting base plate. This will 

transmit the power in horizontal axis/plane. The design of gears often requires calculations that 

details the dimensional considerations before the gear is modelled. The design intent dimension 

will be used in the calculations as well to show how the values in the table are obtained. The 

gears involve in this design are, 1 sun gear, 4 planet gears (bevel gear) and 1 ring gear.  
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Sun gear: The sun gear as well as the planetary gear converts the vertical motion of a beam 

into circular motion within a planetary system of gearing. The sun gear used in this design will 

be connected to the shaft via the wind turbine. If the sun gear is in a planetary of gear train, it 

is regarded as a floating gear. They will have three degrees of freedom in case of planar 

analysis. The planetary gear on the other hand will be a set of four bevel gears and they will all 

be connected to a ring that will be connected to the casing and the shaft to the generator.  

Module (M): The module of a gear is defined as the unit size indicated in millimetre (mm).  

The value is calculated by dividing the pitch (P) of the gear tooth by pie (π).  

Sun gear design 

 

The sun gear will be the gear connected to the shaft from the turbine blade and that to the 

generator. That is to say, the first sun gear will be connected to the shaft from the blade and the 

other sun gear will be connected to the shaft leading to the generator. To design the sun gear 

the sketch was made using the solid works to form the base of the gear, by sketching on the 

right plane using centre line. The base is then formed by using revolve cut feature to form the 

solid structure. The next stage was the formation of the second axis using right and top planes. 

The first plane is formed at 34.236 degree to the top plane and the second plane was formed as 

an offset of the first plane at 26.63mm. A sketch of the tooth is then made on the offset plane 

and an apex profile is mark at the midpoint of the two axis line previously formed. The lofted 

cut tool is used to form a half pitch of a gear tooth as shown in Appendix D4. The tooth pattern 

is formed by circular pattern of the lofted cut up to 22 patterns to form the sun gear teeth as 

shown in figure 4-10. The shaft connected to the sun gear from the blade is then extruded using 

the extruded boss and then a cut for the fittings is then formed using extruded cut. The images 

on figure D6 shows the shaft. The sun gear modelling is completed and ready for the FEA 

simulation. The next stage would be modelling the planet gear. The planet gears in this design 

had similar procedure but smaller diameter and lesser number of teeth.  

The Ring gear: The ring gear in this design is the mother gear in which all the other gears will 

be fixed and held in place. The modelling procedure involves 10 steps. The first step was the 

design of the base. The sketch is made; using the revolved boss the base of the ring gear, two 

axes are formed in the centre using the top plane and the front plane, then the top plane and the 

right plane. Two planes are formed, at angle 21.80 degrees from the top plane and the other is 

formed as the offset of the previous plane with a distance of 53.852mm. The first tooth space 

width is sketched and the apex is formed at the mid-point of the two axes at distance of 
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44.60mm from the origin and then revolved cut is used to create the solid structure of the space 

width. The space width is then pattern using the pattern feature set at 50 patterns of equal space 

at 360 degrees on the base of the ring gear.  

The next stage of the gearing system modelling was to create the structure to house the 

remaining of the bevel gear and to put them in place so as to avoid them falling apart. A 

diameter of 30mm is sketched and extruded cut at the centre of the base. Then two rectangular 

blocks of equal sizes are sketched and extruded by 39mm forming a diameter of 10mm. The 

third rectangle is then sketched and extruded by 5mm on the top to form a square box where 3 

fillets are used to smoothen the sides of the rectangular beams as shown in figure 4-31 

Housing is then built to enclose the gear in a cylindrical box that is made transparent so the 

gears are visible in the assembly. See images below on figure 4-31 show the procedure used.  

  

Figure 4-31 Housing formation  

The housing elements was designed so as in-house the entire bevel gear unit enabling a system 

assembly of the 3D practical unit. Note that the ring gear has been designed as such that 

Pinion Gears 

Support  
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additional gears could be included, if need be. However, the concept of the design is to have a 

simple and cost effective gear system that can transmit up to 50kw output power. From both 

wind and hydro systems.  A unit assembly was then carried out as shown in figure 4-32 where 

the components of the gear system were inserted into the assembly ground and the mate used 

to perform the mating. There were six coincide mates and four gear mate. Two sun gears were 

used where the driver gear was connected to shaft from the turbine blade and the bevel gear 

straight to the generator. The driver sun gear is mated concisely with the sketch of the 30mm 

diameter of the ring gear and the bevel gear is concisely mated with the 15mm diameter on the 

top of the frame constructed on the ring gear. Two smaller gears are also mated on the side 

diameter of the frame concisely. The gear mate is used to mate the tooth of the sun gears and 

the planet gears. The final gear assembly is shown on the figure 4-32  

 

Figure 4-32 Bevel Gear systems fit for the 3D SRMPS 

Figure 4-32, shows a bevel gear that has been designed and analysed using current industry 

standards combined with the implementation of learned methodology and test results. The gear 
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was designed for use in an intermediate gearbox of a medium class enabling a parallel junction 

of the wind and hydro system around the existing transmission components in use, specifically 

utilizing the current transmission housings, bearings, and seals. A detailed summary of material 

selection, material processing, design of gear teeth, and selection of design factors was 

presented in order to clarify the proper selection of certain design parameters. Upon completion 

of the design phase of the gear, analysis was conducted to ensure appropriate margins of safety 

had been implemented into the design 

   A bevel gear design for the overall system have been presented in Figure 4-40. The Bevel 

gearing system its axes and two shafts intersect and the tooth-bearing faces of the gears 

themselves are conically shaped. This will permit the individual rotation of both standalone 

Eco wheel and that of the Kaplan hydro turbine to individually rotate and direct horsepower 

generated to the generator. A careful analysis of the gears was done in SOLIDWORKS in order 

to allow a close comfortable seat and fit of the Eco wheels on the gear system. 

Gear loads were calculated based on geometry of the bevel gear teeth and bearing support 

structure. Fatigue analysis was then conducted at the most critical sections of the gear as shown 

in Appendix D9-10. Margins of safety were calculated at the two critical sections and a margin 

of safety equal to .48 was determined insinuating that the system is very safe. Static analysis 

was then performed at approximately 2.5 times the endurance limit of the gear, producing a 

margin of safety equal to .87. A positive margin of safety was shown to provide adequate safety 

for operation in this application. 

According to the investigation, the maximum stress of the sun gear is given as 1.495 × 1011 

and the calculated allowable stress is 510.12N/mm2. The least stress is far higher than the 

calculated stress as well. However, the yield strength is 6.204X108N/m2. The displacement on 

the other hand shows a very high value of 3.2mm which is very high for gears of such size.  

The statics strain on the other hand shows similar result to the stress but the strain value is 

5.324 ESTRN and it is maximum at the shaft contact to the gear and at the base of the gear and 

partially on the teeth. The factor of safety on the other hand is very low as compared with the 

calculated value. As it could be seen from the result, the factor of safety shows great safety 

promises and the result could be improved using another material or carrying out further design 

optimization on the design.  
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4.6. SUMMARY  

Computer aided design and analysis of the front end unit of the proposed business model and 

3D renewable energy platform have been carried out in this chapter. It is clearly shown that the 

subsystems that can control the efficiency of 3D front units can be sumarrised as follow:  

Hydropower Turbine System:  The design concept of the 1D Hydropower system has been 

completed and tested. This is comprised of a double overshoot water wheel and a Kaplan 

turbine for hydro turbines, Considering the Hydro power generation, the choice of turbine type, 

size and speed is based on the net head and maximum water flow rate, which was determined 

by the flow rate. The investigation into the state of the art of the hydropower technology shows 

that our system efficiency achieved an above average efficiency due to a better optimised 

design. 

Wind Turbgine System: The design concept was made up of a contra rotation double wind 

turbine which was tested using computational fluid dynamics and a 3D Inventor modelling 

program using a FLUENT DDP in CFD to define the lift, drag and pressure coefficient. Initial 

results showed that flow conditions were steady and front rotor speed reached 600 rpm and 

3.14 tip speed ratio for the rear rotor. Testing conditions shows that wind directions are of a 

uniform velocity. The calculation result of velocity resultant distribution along the blades 

showed an efficiency of about 34% at 500 rpm and 15 Nm Torque. It could then be confirmed 

that the methodology used for this design analysis and testing is a perfect tool for optimum 

blade profile where the numerical simulation was perfectly correlated for preliminary design 

in order to have estimated design and testing characteristic of contra rotation blade span. 

2D i.e. Dual Hydropower and Wind Turbgine System system arragement: The initial results 

showed the importance of the approach and its smart grid application advantages. It also 

demonstrates the challenges that should be considered prior to building the system for reel field 

test. The system architecture allows for a dual renewable energy to be generated which is 

directly fed into the storage “battery” thereby acting a standby energy storage for meeting 

losses in the network with surplus power fed straight into LPN (local public network). Both 

active and reactive power shows that power compensation within the network is efficiently 

managed with the capacitive bank therefore we can then conclude that the behaviour of our 1, 

2D and 3D renewable energy platform is deal for meeting the research aim. 
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These results provide a framework, with plausible technical recommendations and factors to 

be considered when the 3D proposed renewable energy system is adopted by Togo’s energy 

sector. 
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CHAPTER 5 

CHAPTER 5- COMPUTER AIDED DESIGN AND SIMULATION OF THE 

BACKEND OF SYSTEM OF THE PROPOSED RENEWABLE ENERGY 

PLATFORM  

5.1. INTRODUCTION  

This chapter focuses on three main aspects 

I- The System back end with a presentation of the proposed 3D renewable energy 

platform, its system design, Architecture, Static simulation of the Wind and Hydro 

systems and parts using SOLIDWORKS  

II- The System Middle end focusing on the introduction of the use of the multilevel 

inverter for the design and development of a 3D platform to fully utilise Togo’s 

Renewable Energy resources into their smart grid power system infrastructure as 

some its features and abilities would enable extremely low distortion for the output 

voltage  

III- The system front end represented by a friendly HMI system displaying power 

generated and load feeding to the grid  

5.1.1. BACKEND-OF-SYSTEM 

The presentation of the proposed 3D renewable energy platform and its system design; covers 

the components of the design and development of  the 3D renewable energy platform using 

SOLIDWORKS, with a detailed explanation focusing on how the systems was assembled 

together with static simulation of the assembled system. It also looks at the laboratory facilities 

and elements of the practical unit assembly that will be used and proposes the technical and 

economic advantages the design. The presentation of the proposed 3D platform and its system 

design would present mechanical elements of the system with static simulations run on the 

hydro system and the wind system. The importance of this simulation is to present the 

mechanical agility of the entire 3D platform and relate simulation results to earlier feasibility 

studies carried out in the literature review. This also presents the overall effort invested in 

investigating the advantages of recent advances on design of hydro power generation namely 

hydro turbines and wheels and wind turbines. One of the objectives of this research was also 

to conduct the necessary computer simulation using CAD software that will entail simulation 

of the two of the three renewable energy sources (Wind-Hydro). The objectives of the 
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simulation will be to evaluate the power generation ability of both wind and hydro systems and 

confirm earlier technical evaluations carried out in the literature. This is to say that the 

derivatives of this simulation will represent a vendor-neutral dynamic simulation models for 

both fixed- and adjustable-speed for wind and hydro systems. In other words, these models 

simulations validate the 3D renewable energy platform through which power and control 

system for a combined renewable energy power system would be designed, tested and 

validated. The Power and control system studies fit for such models are designed to:  

 Determine operating strategies and power transfer limits  

 Investigate the stability of the system following disturbances (transient stability) or 

incremental impacts (small signal stability)  

 Analyse the control of frequency and/or system voltages Thus it is very important that 

the models used in the above analysis be accurate.  

5.1.2. FRONT END OF SYSTEM   

This section introduces the function and topologies of multilevel inverter technology which has 

emerged as an alternative methodology in the area of high-power medium-voltage energy 

control. It therefore introduces the use of the multilevel inverter for the design and development 

of a 3D renewable energy platform to fully utilise Togo’s green Energy resources into their 

smart grid power system infrastructure as some its features and abilities would enable 

extremely low distortion for the output voltage and lower𝑑𝑣 𝑑𝑡⁄ ; They draw input current with 

very low distortion, generate smaller common-mode (CM) voltage through sophisticated 

modulation methods, and eventually eliminates CM voltages.  

The section is structured as such that  

 A comparison of conventional inverters to new multilevel inverter topologies are 

examined and reported.  

 A Review of Multilevel inverters based on Diode clamped; flying capacitors and 

cascade multilevel inverter is examined so as to define the best level of inverters needed 

for our design. 

 A study of Control techniques based on sinusoidal pulse width modulation method, the 

selective harmonic elimination and space vector modulation method which are all 

studied so as to define the most ideal approach for our design  
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 A focus on Selective Harmonic Elimination considering it has low switching losses, 

minimum total harmonics at the output is also studied with a focus on Generic 

Algorithms, Newton Raphson method, Particle Swarm Optimization theories which 

also advocates for an efficient method in multilevel inverter controls 

  A review of the IET regulations based on the [IEEE-519 standard] providing 

recommendations for total harmonic voltage and current distortion limitations to be ≥ 

5% would be reviewed so as to ascertain which level of inverters could deliver total 

harmonic voltage and current distortion limitations to be ≥ 5% thereby respecting the 

[IEEE-519 standard] condition in view of which the design of the multilevel inverter 

would be finalised with appropriate simulations. 

5.1.3. CONVENTIONAL INVERTERS VERSUS MULTILEVEL INVERTER 

    This section introduces the function and topologies of multilevel inverter technology which 

has emerged as an alternative methodology in the area of high-power medium-voltage energy 

control. It therefore introduces the use of the multilevel inverter for the design and development 

of a 3D renewable energy platform to fully utilise Togo’s green Energy resources into their 

smart grid power system infrastructure as some its features and abilities would enable 

extremely low distortion for the output voltage and lower𝑑𝑣 𝑑𝑡⁄ ; They draw input current with 

very low distortion, generate smaller common-mode (CM) voltage through sophisticated 

modulation methods, and eventually eliminates CM voltages.  

The chapter is structured as such that  

 A comparison of conventional inverters to new multilevel inverter topologies are 

examined and reported.  

 A Review of Multilevel inverters based on Diode clamped; flying capacitors and 

cascade multilevel inverter is examined so as to define the best level of inverters needed 

for our design. 

 A study of Control techniques based on sinusoidal pulse width modulation method, the 

selective harmonic elimination and space vector modulation method which are all 

studied so as to define the most ideal approach for our design  

 A focus on Selective Harmonic Elimination considering it has low switching losses, 

minimum total harmonics at the output is also studied with a focus on Generic 

Algorithms, Newton Raphson method, Particle Swarm Optimization theories which 

also advocates for an efficient method in multilevel inverter controls 
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  A review of the IET regulations based on the [IEEE-519 standard] providing 

recommendations for total harmonic voltage and current distortion limitations to be ≥ 

5% would be reviewed so as to ascertain which level of inverters could deliver total 

harmonic voltage and current distortion limitations to be ≥ 5% thereby respecting the 

[IEEE-519 standard] condition in view of which the design of the multilevel inverter 

would be finalised with appropriate simulations  

5.1.4.  CONVENTIONAL INVERTERS  

In conventional inverters mainly PWM inverters are used to obtain a controllable voltage (K. 

Jang-Hwan et al, 2008). The two level inverter is a circuit which consists of sources with some 

amount of voltage and many switches for controlling voltage or current. In high power and 

high voltage applications the conventional two level inverters is used, however, have some 

limitations in operating at high frequency mainly due to switching losses and constraints of the 

power device ratings (S. Buso, 2006).  

Conventional inverters have many limitations in high-voltage and high-power applications like 

poor power quality, high voltage stress, EMI/EMC issue etc. (S.-K. Sul, 2010). In recent years, 

multilevel inverters (MLI) have been introduced as alternative controllers for high-power 

applications due to their ability to control and smoothen more than two voltage levels at the 

input and output waveforms that has lower dv/dt and lower harmonic distortions. Series and 

parallel combination of power switches are used in order to achieve the power handling 

voltages and currents (P. N. Enjeti, 2011).  

In the conventional two level inverters the input DC is converted into the AC supply of desired 

frequency and voltage with the aid of semiconductor power switches. Depending on the 

configuration, four or six switches are used. A group of switches provide the positive half cycle 

at the output which is called as positive group switches and the other group which supplies the 

negative half cycle is called negative group. Some new approaches have been recently 

suggested such as the topology utilizing low-switching-frequency high-power devices, 

complex circuits can often seen in two level inverter circuits, due to its complexity and cost 

also increases. 

Their performance is highly superior to that of conventional two-level inverters due to reduced 

harmonic distortion, lower electromagnetic interference, and higher dc link voltages. By using 

conventional method, the performance of the inverter is low. In this paper a new topology with 



134 
 

Sensitivity: Internal 

reversing voltage component is suggested to improve the performance of multilevel inverter. 

This topology requires fewer components and therefore the cost and complexity is low. 

Power inverters available on the market today vary greatly in efficiency and output type. 

Generally, of higher end inverters, the output waveforms seen are either pure sine or modified 

sine. Another characteristic which determines the quality and price of an inverter is the power 

output in Watts (P inverters, 2015). Intelligent Inverters are currently available on the market. 

Microchip Technologies provides a detailed list for the functions of an intelligent inverter 

 Digital On/Off control for low standby power 

 Power supply sequencing and hot-swap control 

 Programmable soft-start profile 

 Power supply history logging and fault management 

 Output voltage margining, Current fold back control 

 Load sharing and balancing 

 Regulation reference adjustment 

 Compensation network control and adjustment 

 Full digital control of power control loop 

 Communications for status monitoring and control 

 AC RMS voltage measurement, Power factor correction 

They are designed for both grid-tie and off the grid applications. They operate much like 

uninterruptable power supplies (UPS). The main goal is be able to supply power to a load 

directly from a main power source, be it a generator (RE sources) or a wall outlet while 

available and continue to provide constant power when that main source of power goes offline. 

When connected to an established power grid (i.e., where the frequency and voltage are actively 

regulated), inverters typically operate as controlled current sources. This means that the high 

frequency switching of the inverter is controlled so that the output current from the inverter is 

actively forced to follow a reference signal. The design of the feedback control system that 

accomplishes this may differ from one manufacturer to another, but with an optimum design 

the output current control can be extremely fast (<1 ms response) and accurate (<1%). 

Furthermore, the control response can be practically unaffected by disturbances in the grid 

voltage. 

The controlled output current of an inverter has several important implications:  



135 
 

Sensitivity: Internal 

As seen from the grid, the "impedance" of the inverter is very high. As a result, the inverter 

output current continues to follow the internal reference signal, even when power system faults 

cause large changes in voltage. This is generally true for positive- and negative sequence 

components. Most inverters provide a three-wire native output from their power electronics to 

an ungrounded winding on an isolation transformer, so they do not influence the zero-sequence 

component of output current. Thus the apparent zero-sequence impedance seen from the grid 

is a combination of the zero-sequence impedance of the isolation transformer plus the effect of 

any neutral grounding impedance. With alternative inverter topologies, it is possible for the 

inverter to also control the zero-sequence component, but the extra equipment expense is rarely 

justified. The high output impedance of an inverter is quite different from the case of a rotating 

synchronous machine generator, which can contribute relatively large transient output currents 

under fault conditions. It is important to note that, although an inverter acts as a current source 

with high output impedance, it also has a limited maximum output voltage available. In other 

words, it will not present "infinite" voltage at its terminals if an upstream feeder breaker is 

suddenly opened while the inverter is running. The maximum output voltage is in fact 

determined by a combination of the inverter DC terminal voltage and the action of the control 

system 

The output current is limited. The internally generated current reference signal takes account 

of prevailing voltage variations to maintain a required power output, but it is always subject to 

an over-riding current limit that corresponds to the level of current needed to output rated kVA 

at the minimum specified working voltage, usually 0.9 per-unit (p.u). This means that with a 

properly designed control system, the output current from an inverter during a grid fault should 

not exceed approximately 1.1 p.u. In most cases, a 1.1 p.u fault contribution from distributed 

generators should be negligible in relation to the conventional fault contribution fed from the 

transmission system. Add to this the consideration that the inverter output currents are largely 

in phase with the system voltage, whereas the conventional fault currents are largely in 

quadrature, and it is safe to say that inverters contribute a negligible amount to the total fault 

level on a distribution feeder. 

The output current can be reduced to zero in an extremely short time. If necessary, the native 

output current from the inverter bridge can be stopped in a few microseconds (followed by 

some short-lived [<1 cycle] decaying transients between the output filter and the grid). This 

can be very important for the protection and management of the distribution system. If the 
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utility is concerned about circuit breaker capacity, provisions can be made for the output current 

from an inverter-based generator to be stopped well before any mechanical switchgear starts to 

operate. In this situation, the inverter controls can autonomously initiate rapid shutdown when 

abnormal grid conditions are sensed, or the controls can respond to a signal from the utility 

(e.g., a transfer trip). 

The complex (apparent) output power (𝑺 =  𝑷 +  𝒋𝑸) can be controlled in any of the four 

power quadrants. Because the magnitude and the phase angle of the fundamental output 

current relative to the grid voltage can be arbitrarily selected, the real power (P) and reactive 

power (Q) components of the complex output power (S) can be directly and independently 

controlled. The real power output is typically controlled so as to regulate another internal 

quantity such as the DC voltage or power generated by any RE sources. The active control of 

real power also allows important over-riding real-power-limiting functions, such as power 

curtailment and power ramping, to be implemented in response to inputs received from a 

remotely located system operator (e.g., via supervisory control and data acquisition or 

SCADA). These real power management functions are expected to become essential tools for 

utilities under a high-penetration scenario, especially in smaller grids (e.g., islands) where the 

power system may not always be able to accept additional real power and where frequency 

regulation is a concern. Apart from the management of real power output, the inverter has 

unique capabilities to generate and strategically deploy reactive power output. This topic is 

especially important and warrants a separate in-depth discussion in the following sections. The 

reactive power output that can be generated by inverters at a PV, Wind, or hydro system which 

are valuable resource for utilities and is expected to be crucial for regulating the voltage in a 

distribution system with a high penetration of renewables. 

The complex output power can be controlled with very high bandwidth. In most cases it is 

not desirable to change real power output very rapidly because of the impact on system voltage 

(and frequency in weaker systems). Consequently, real power changes are usually made to 

follow slow time ramps whenever possible. The same consideration may often be true for 

reactive power. However, by means of the high bandwidth control of reactive power, the 

inverter can also act as a fast autonomous local voltage control system. Fast automatic response 

is essential for correction of the voltage deviations associated with voltage flicker, for example.  

The inverter can absorb real power from the grid and deliver it to charge an energy storage 

device connected to the DC-side collector bus (could also be fed from any RE sources type). 
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This can facilitate the implementation of an energy management system in which the inverter 

supplies real power to the grid from storage at times when RE power is not available. To 

achieve different objectives, the energy storage device might be relatively small (to facilitate 

power ramping) or very large (e.g., for frequency regulation or power output levelling). 

The inverter output current can be controlled to correct pre-existing low-order voltage (or 

current) harmonics on the grid. In order to do this, the inverter must deliberately produce 

corresponding harmonics in the output current. This rather specialized "active filter" function 

is sometimes performed by dedicated inverters installed specifically for this purpose. To 

facilitate the production of controlled harmonic output currents, an inverter would ideally 

switch at the highest practical frequency, and it would be designed with a small output filter 

inductor in order to minimize the inverter voltage needed to drive the harmonic currents. In 

addition, because the oscillating harmonic power produced at the AC terminals must be 

matched by an approximately equal harmonic power at the DC terminals, it is desirable to 

provide a larger-than-normal DC bus capacitance in order to minimize the corresponding 

harmonic voltage that develops on the DC bus. It would be relatively costly to produce a PV 

inverter designed to simultaneously deliver real power while also serving as an active filter. 

However, active-filter capability might be useful when normal RE power production is very 

low or zero, such as during the night. 

The inverter can help to correct for unbalanced fundamental voltage at the point of connection 

to the grid by controlling output current to include a negative sequence fundamental 

component. In this mode the inverter essentially acts as an active filter for the minus-one (-1) 

order harmonic. The negative sequence fundamental output current produces a second 

harmonic power pulsation at the AC terminals, matched by a similar power pulsation at the DC 

terminals. As in the case of the active filter, a large DC capacitance is needed to absorb this 

pulsating power with acceptably small DC voltage deviation. As mentioned previously, most 

inverters can only correct for the negative-sequence fundamental. However, using a costlier 

alternative inverter topology (e.g., a four-leg inverter bridge), a similar correction could be 

provided for the zero-sequence components in an unbalanced system. 

5.1.5.  MULTILEVEL INVERTERS  

  A multilevel inverter is a power electronic device which is capable of providing desired 

alternating voltage level at the output using multiple lower level DC voltages as an input. 

Mostly a two-level inverter is used in order to generate the AC voltage from DC voltage. Now 
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the question arises what’s the need of using multilevel inverter when we have two, three, five, 

nine etc... Level inverter. In order to answer this question, first we need to look at the concept 

of multilevel inverter. 

First take the case of a two-level inverter. A two-level Inverter creates two different voltages 

for the load i.e. suppose we are providing Vdc as an input to a two level inverter then it will 

provide + Vdc/2 and – Vdc/2 at the output. In order to build an AC voltage, these two newly 

generated voltages are usually switched. For switching mostly PWM is used although this 

method of creating AC is effective but it has few drawbacks as it creates harmonic distortions 

in the output voltage and also has a high dv/dt as compared to that of a multilevel inverter. 

Normally this method works but in few applications it creates problems particularly those 

where low distortion in the output voltage is required. 

The concept of multilevel Inverter (MLI) is slightly similar to the two-level inverter. In 

multilevel inverters we don’t deal with the two or three level voltage; but in order to create a 

smoother stepped output waveform, more than two or three voltage levels are combined 

together and the output waveform obtained in this case has lower dv/dt and also lower harmonic 

distortions. Smoothness of the waveform is proportional to the voltage levels, as we increase 

the voltage level the waveform becomes smoother but the complexity of the controller circuit 

and components also increases along with the increased levels.  

A multilevel converter has several advantages over a conventional two-level converter that 

uses high switching frequency pulse width modulation (PWM). The attractive features of a 

multilevel converter can be briefly summarized as follows.  

● Staircase waveform quality: Multilevel converters not only can generate the output voltages 

with very low distortion, but also can reduce the dv/dt stresses; therefore, electromagnetic 

compatibility (EMC) problems can be reduced.  

● Common-mode (CM) voltage: Multilevel converters produce smaller CM voltage; therefore, 

the stress in the bearings of a motor connected to a multilevel motor drive can be reduced. 

Furthermore, CM voltage can be eliminated by using advanced modulation strategies  

● Input current: Multilevel converters can draw input current with low distortion.  

● Switching frequency: Multilevel converters can operate at both fundamental switching 

frequency and high switching frequency PWM. It should be noted that lower switching 
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frequency usually means lower switching loss and higher efficiency. Unfortunately, multilevel 

converters do have some disadvantages. One particular disadvantage is the greater number of 

power semiconductor switches needed. Although lower voltage rated switches can be utilized 

in a multilevel converter, each switch requires a related gate drive circuit. This may cause the 

overall system to be more expensive and complex. 

Plentiful multilevel converter topologies have been proposed during the last two decades. 

Contemporary research has engaged novel converter topologies and unique modulation 

schemes. Moreover, three different major multilevel converter structures have been reported in 

the literature: cascaded H-bridges converter with separate dc sources, diode clamped (neutral-

clamped), and flying capacitors (capacitor clamped). Moreover, abundant modulation 

techniques and control paradigms have been developed for multilevel converters such as 

sinusoidal pulse width modulation (SPWM), selective harmonic elimination (SHE-PWM), 

space vector modulation (SVM), and others. In addition, many multilevel converter 

applications focus on industrial medium-voltage motor drives (Rastogi, M, 2015), utility 

interface for renewable energy systems, flexible AC transmission system (FACTS), and 

traction drive systems (Peng z et al, 2010). 

This chapter reviews state of the art of multilevel power converter technology. Fundamental 

multilevel converter structures and modulation paradigms are discussed including the pros and 

cons of each technique. Particular concentration is addressed in modern and more practical 

industrial applications of multilevel converters and in this case with the 3D renewable energy 

platform to fully utilise Togo’s green Energy resources into their smart grid power system 

infrastructure as some of its features and abilities would enable extremely low distortion for 

the output voltage and lower𝑑𝑣 𝑑𝑡⁄ ; They draw input current with very low distortion, generate 

smaller common-mode (CM) voltage through sophisticated modulation methods, and 

eventually eliminates CM voltages. A procedure for calculating the required ratings for the 

active switches, clamping diodes, and dc link capacitors including a design example is equally 

provided.  
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5.2. MULTILEVEL POWER CONVERTERS STRUCTURES  

 

  As previously mentioned, three different major multilevel converter structures have been 

applied in industrial applications: cascaded H-bridges converter with separate dc sources, diode 

clamped, and flying capacitors. Before continuing the discussion on this topic, it should be 

noted that the term multilevel converter is utilized to refer to a power electronic circuit that 

could operate in an inverter or rectifier mode. The multilevel inverter structures are the focus 

of in this chapter; however, the illustrated structures can be implemented for rectifying 

operation as well. 

5.2.1. Cascaded H-bridges  
A single-phase structure of an m-level cascaded inverter is illustrated in Figure 5-1. Each 

separate dc source (SDCS) is connected to a single-phase full-bridge, or H-bridge, inverter. 

Each inverter level can generate three different voltage outputs, +Vdc, 0, and –Vdc by 

connecting the dc source to the ac output by different combinations of the four switches, S1, 

S2, S3, and S4. To obtain +Vdc, switches S1 and S4 are turned on, whereas –Vdc can be 

obtained by turning on switches S2 and S3. By turning on S1 and S2 or S3 and S4, the output 

voltage is 0. The ac outputs of each of the different full-bridge inverter levels are connected in 

series such that the synthesized voltage waveform is the sum of the inverter outputs. The 

number of output phase voltage levels m in a cascade inverter is defined by m = 2s+1, where s 

is the number of separate dc sources. An example phase voltage waveform for an 11-level 

cascaded H-bridge inverter with 5 SDCSs and 5 full bridges is shown in Figure 31.2. The phase 

voltage van = va1 + va2 + va3 + va4 + va5 

For a stepped waveform such as the one depicted in Figure 31.2 with s steps, the Fourier 

Transform for this waveform follows (T. G. Habetler, 2015) 

𝑉(𝜔𝑡) =
4𝑉𝑑𝑐

𝜋
∑[cos(𝑛𝜃1) + 𝐶𝑜𝑠(𝑛𝜃2)+. . +𝐶𝑜𝑠(𝑛𝜃𝑠)

𝑛

]
𝑆𝑖𝑛(𝑛𝜔𝑡)

𝑛
, 𝑤ℎ𝑒𝑟𝑒 𝑛 = 1,3,5,7 … (𝑒𝑞. 49) 
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Figure 5-1 Single-phase structure of a multilevel cascaded H-bridges inverter. 

 

Figure 5-2 Output phase voltage waveform of an 11-level cascade inverter 
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From (eq. 1), the magnitudes of the Fourier coefficients when normalized with respect to Vdc 

are as follows: 

𝐻(𝑛) =
4

𝜋𝑛
[∑[cos(𝑛𝜃1) + 𝐶𝑜𝑠(𝑛𝜃2)+. . +𝐶𝑜𝑠(𝑛𝜃𝑠)

𝑛

] ; 𝑤ℎ𝑒𝑟𝑒 𝑛 = 1,3,5,7, … (𝑒𝑞. 50) 

The conducting angles,𝜃1, 𝜃2,𝜃𝑠, can be chosen such that the voltage total harmonic distortion 

is a minimum. Generally, these angles are chosen so that predominant lower frequency 

harmonics, 5th, 7th, 11th, and 13th, harmonics are eliminated (Y. Zhuang, 2011). More detail 

on harmonic elimination techniques will be presented in the next section. Multilevel cascaded 

inverters have been proposed for such applications as static VAR generation, an interface with 

renewable energy sources, and for battery-based applications. Three-phase cascaded inverters 

can be connected in wye, as shown in Figure 5-3, or in delta. Peng (2013) has demonstrated a 

prototype multilevel cascaded static VAR generator connected in parallel with the electrical 

system that could supply or draw reactive current from an electrical system (Z. Peng et al, 

2013). The inverter could be controlled to either regulate the power factor of the current drawn 

from the source or the bus voltage of the electrical system where the inverter was connected. 

Peng and Joos et al (2013) have also shown that a cascade inverter can be directly connected 

in series with the electrical system for static VAR compensation. Cascaded inverters are ideal 

for connecting renewable energy sources with an AC grid, because of the need for separate dc 

sources, which is the case in applications such as photovoltaics or fuel cells. Cascaded inverters 

have also been proposed for use as the main traction drive in electric vehicles, where several 

batteries or ultra-capacitors are well suited to serve as SDCSs (Leon M, 2012). The cascaded 

inverter could also serve as a rectifier/charger for the batteries of an electric vehicle while the 

vehicle was connected to an AC supply as shown in Figure 5-1. 
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Figure 5-3 Three-phase wye-connection structure for electric vehicle motor drive and battery 

Manjrekar has proposed a cascade topology that uses multiple dc levels, which instead of being 

identical in value are multiples of each other. He also uses a combination of fundamental 

frequency switching for some of the levels and PWM switching for part of the levels to achieve 

the output voltage waveform. This approach enables a wider diversity of output voltage 

magnitudes; however, it also results in unequal voltage and current ratings for each of the levels 

and loses the advantage of being able to use identical, modular units for each level. The main 

advantages and disadvantages of multilevel cascaded H-bridge converters are as follows (M. 

D. Manjreka, 2008). 

Advantages:  

• The number of possible output voltage levels is more than twice the number of dc sources (m 

= 2s + 1).  

• The series of H-bridges makes for modularized layout and packaging. This will enable 

the manufacturing process to be done more quickly and cheaply.  
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Disadvantages: 

• Separate dc sources are required for each of the H-bridges. This will limit its application 

to products that already have multiple SDCSs readily available.  

Another kind of cascaded multilevel converter with transformers using standard three phase 

bi-level converters has been proposed (P. Enjeti, 2015). The circuit is shown in Figure 5-4. The 

converter uses output transformers to add different voltages. In order for the converter output 

voltages to be added up, the outputs of the three converters need to be synchronized with a 

separation of 120° between each phase. For example, obtaining a three-level voltage between 

outputs A and B, the output voltage can be synthesized by 𝑉𝑎𝑏= Va1-b1+Vb1-a2+Va2-b2. An 

isolated transformer is used to provide voltage boost. With three converters synchronized, the 

voltages Va1-b1, Vb1-a2, Va2-b2, are all in phase; thus, the output level can be tripled (Z. 

Peng, 2013). The advantage of the cascaded multilevel converters with transformers using 

standard three-phase bi-level converters is the three converters are identical and thus control is 

simpler. However, the three converters need separate DC sources, and a transformer is needed 

to add up the output voltages.  

 

Figure 5-4 Cascaded multilevel converter with transformers using standard 
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5.2.2. DIODE-CLAMPED MULTILEVEL INVERTER 
The neutral point converter proposed by Nabae, Takahashi, and Akagi in (1981) was essentially 

a three-level diode-clamped inverter (A. Nabae, 2015). In the 1990s several researchers 

published articles that have reported experimental results for four-, five-, and six-level diode-

clamped converters for such uses as static VAR compensation, variable speed motor drives, 

and high voltage system interconnections (F. Z. Peng, 2015). A three-phase six-level diode-

clamped inverter is shown in Figure 5-5. Each of the three phases of the inverter shares a 

common dc bus, which has been subdivided by five capacitors into six levels. The voltage 

across each capacitor is Vdc, and the voltage stress across each switching device is limited to 

𝑉𝑑𝑐 through the clamping diodes. Table 5.1 lists the output voltage levels possible for one phase 

of the inverter with the negative dc rail voltage V0 as a reference. State condition 1 means the 

switch is on, and 0 means the switch is off. Each phase has five complementary switch pairs 

such that turning on one of the switches of the pair requires that the other complementary switch 

be turned off. The complementary switch pairs for phase leg 𝑎 are (𝑆𝑎1,𝑆𝑎′1), (𝑆𝑎2,𝑆𝑎′2), 

(𝑆𝑎3,𝑆𝑎′3), (𝑆𝑎4,𝑆𝑎′4), and (𝑆𝑎5,𝑆𝑎′5), Table 1 also shows that in a diode-clamped inverter, the 

switches that are on for a particular phase leg are always adjacent and in series. For a three 

phase three -level inverter. 

 

Figure 5-5 Three-phase three-level structure of a diode-clamped inverter 
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Voltage 𝑽𝒂𝟎 

 

𝑆𝑎3 𝑆𝑎2 𝑆𝑎1 𝑆𝑎′3 𝑆𝑎′2 𝑆𝑎′1 

𝑽𝟑 = 𝟑𝑽 𝒅𝒄 1 1 1 0 0 0 

 

𝑽𝟐 = 𝟐𝑽 𝒅𝒄 

 

0 

 

1 

 

1 

 

1 

 

0 

 

0 

 

𝑽𝟏 = 𝑽 𝒅𝒄 

 

0 

 

0 

 

1 

 

1 

 

1 

 

0 

 

𝑽𝟎 = 𝟎 

 

0 

 

0 

 

0 

 

1 

 

1 

 

1 

 

Table 5-1 Diode-clamped six-level inverter voltage levels and corresponding switch states. 

Figure 5-6 shows one of the three line-line voltage waveforms for a three-level inverter. The 

line voltage consists of a phase-leg a voltage and a phase-leg b voltage. The resulting line 

voltage is a 5-level staircase waveform. This means that an m-level diode-clamped inverter has 

an m-level output phase voltage and a (2m-1)-level output line voltage. Although each active 

switching device is required to block only a voltage level of Vdc, the clamping diodes require 

different ratings for reverse voltage blocking. Using phase “A” of Figure 5-5 as an example, 

when all the lower switches Sa’1 through Sa’3 are turned on, D3 must block 3Vdc, D2 must 

block 2Vdc, and D1 must block Vdc. If the inverter is designed such that each blocking diode 

has the same voltage rating as the active switches, Dn will require n diodes in series; 

consequently, the number of diodes required for each phase would be (m-1) × (m-2). Thus, the 

number of blocking diodes is quadratically related to the number of levels in a diode-clamped 

converter (J. S. Lai, 2014). One application of the multilevel diode-clamped inverter is an 

interface between a high voltage dc transmission line and an AC transmission line (J. S. Lai, 

2014). Another application would be as a variable speed drive for high-power medium-voltage 

(2.4 kV to 13.8 kV) motors. Static VAR compensation is an additional function for which 

several authors have proposed for the diode-clamped converter. The main advantages and 

disadvantages of multilevel diode-clamped converters are as follows (J. Rodriguez, 2012) 
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Figure 5-6 three line-line voltage waveforms for a three-level inverter 
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Advantages:  

 All of the phases share a common dc bus, which minimizes the capacitance 

requirements of the converter. For this reason, a back-to-back topology is not only 

possible but also practical for uses such as a high-voltage back-to-back inter-connection 

or an adjustable speed drive.  

 The capacitors can be pre-charged as a group.  

 Efficiency is high for fundamental frequency switching.  

Disadvantages:  

 Real power flow is difficult for a single inverter because the intermediate dc levels will 

tend to overcharge or discharge without precise monitoring and control.  

 The number of clamping diodes required is quadratically related to the number of 

levels, which can be cumbersome for units with a high number of levels. 

5.2.3. FLYING CAPACITOR MULTILEVEL INVERTER  
Meynard and Foch introduced a flying-capacitor-based inverter in 1992 (T. A. Meynard, 2012). 

The structure of this inverter is similar to that of the diode-clamped inverter except that instead 

of using clamping diodes, the inverter uses capacitors in their place. The circuit topology of 

the flying capacitor multilevel inverter is shown in Figure 5-7. This topology has a ladder 

structure of dc side capacitors, where the voltage on each capacitor differs from that of the next 

capacitor. The voltage increment between two adjacent capacitor legs gives the size of the 

voltage steps in the output waveform. One advantage of the flying-capacitor-based inverter is 

that it has redundancies for inner voltage levels; in other words, two or more valid switch 

combinations can synthesize an output voltage. Table 5-2 shows a list of all the combinations 

of phase voltage levels that are possible for the five-level circuit shown in Figure 5-7. Unlike 

the diode-clamped inverter, the flying capacitor inverter does not require all of the switches 

that are on (conducting) be in a consecutive series. Moreover, the flying-capacitor inverter has 

phase redundancies, whereas the diode clamped inverter has only line-line redundancies (G. 

Sinha, 2014). These redundancies allows a choice of charging/discharging specific capacitors 

and can be incorporated in the control system for balancing the voltages across the various 

levels. In addition to the (m-1) DC link capacitors, the m-level flying-capacitor multilevel 

inverter will require (m-1) × (m-2)/2 auxiliary capacitors per phase if the voltage rating of the 

capacitors is identical to that of the main switches.  
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Figure 5-7 flying capacitor multilevel inverter circuit layout for a) 3-levels, and b) 5-levels. 
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One application proposed in the literature for the multilevel flying capacitor is static VAR 

generation. The main advantages and disadvantages of multilevel flying capacitor converters 

are as follows (T. Habetler, 2009). 

Advantages:  

 Phase redundancies are available for balancing the voltage levels of the capacitors.  

 Real and reactive power flow can be controlled. 

 The large number of capacitors enables the inverter to ride through short duration 

outages and deep voltage sags.  

Disadvantages:  

 Control is complicated to track the voltage levels for all of the capacitors. Also, pre-

charging all of the capacitors to the same voltage level and start up are complex.  

 Switching utilization and efficiency are poor for real power transmission.  

 The large numbers of capacitors are both more expensive and bulky than clamping 

diodes in multilevel diode-clamped converters. Packaging is also more difficult in 

inverters with a high number of levels. 

Output voltage Level 𝑽𝒂𝒏 Value Switch state ( 5 level) 

 

𝑽𝟒 

 

𝑉𝑑𝑐
2⁄  

 

1 

 

1 

 

1 

 

1 

 

0 

 

0 

 

0 

 

0 

 

𝑽𝟑 

 

𝑉𝑑𝑐
4⁄  

1 1 1 0 1 0 0 0 

0 1 1 1 0 0 0 1 

1 0 1 1 0 0 1 0 

 

 

 

𝑽𝟐 

 

 

 

0 

1 1 0 0 1 0 0 1 

0 0 1 1 0 0 1 1 

1 0 1 0 1 0 1 0 

1 0 0 1 0 1 1 0 

0 1 0 1 0 1 0 1 

0 1 1 0 1 0 0 1 



151 
 

Sensitivity: Internal 

 

𝑽𝟏 

 
−𝑉𝑑𝑐

4⁄  

1 0 0 0 1 1 1 0 

0 0 0 1 0 1 1 1 

0 0 1 0 1 0 1 1 

𝑽𝟎 −𝑉𝑑𝑐
2⁄  0 0 0 0 1 1 1 1 

Table 5-2 Switching states for 5-level fly capacitor multilevel inverter 

5.3. GENERALISED MULTILEVEL TOPOLOGY   

Existing multilevel converters such as diode-clamped and capacitor-clamped multilevel 

converters can be derived from the generalized converter topology called P2 topology proposed 

by Peng (F. Z. Peng, 2010) as illustrated in Figure 5-8. The generalized multilevel converter 

topology can balance each voltage level by itself regardless of load characteristics, active or 

reactive power conversion and without any assistance from other circuits at any number of 

levels automatically. Thus, the topology provides a complete multilevel topology that embraces 

the existing multilevel converters in principle. Figure 5-8 shows the P2 multilevel converter 

structure per phase leg. Each switching device, diode, or capacitor’s voltage is 1Vdc, for 

instance, 1/ (m-1) of the DC-link voltage. Any converter with any number of levels, including 

the conventional bi-level converter can be obtained using this generalized topology (F. Z. Peng 

et al, 2010) 

 

Figure 5-8 Generalized P2 multilevel converter topology for one phase leg. 
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5.3.1.  MIXED-LEVEL HYBRID MULTILEVEL CONVERTER  
To reduce the number of separate DC sources for high-voltage, high-power applications with 

multilevel converters, diode-clamped or capacitor-clamped converters could be used to replace 

the full-bridge cell in a cascaded converter ((F. Z. Peng et al, 2010). Figure 5-9 shows a nine-

level cascade converter incorporates a three-level diode-clamped converter as the cell. The 

original cascaded H-bridge multilevel converter requires four separate DC sources for one 

phase leg and twelve for a three-phase converter. If a five-level converter replaces the full-

bridge cell, the voltage level is effectively doubled for each cell. Thus, to achieve the same nine 

voltage levels for each phase, only two separate DC sources are needed for one phase leg and 

six for a three-phase converter. The configuration has mixed-level hybrid multilevel units 

because it embeds multilevel cells as the building block of the cascade converter. The 

advantage of the topology is it needs less separate DC sources. The disadvantage for the 

topology is its control will be complicated due to its hybrid structure. 

 

Figure 5-9:  Multilevel cascaded unit configuration using the three-level diode-clamped converter to increase the voltage 
levels. 
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5.3.2. SOFT-SWITCHED MULTILEVEL CONVERTER  
Some soft-switching methods can be implemented for different multilevel converters to reduce 

the switching loss and to increase efficiency. For the cascaded converter, because each 

converter cell is a bi-level circuit, the implementation of soft switching is not at all different 

from that of conventional bi-level converters. For capacitor-clamped or diode-clamped 

converters, soft-switching circuits have been proposed with different circuit combinations. One 

of soft switching circuits is a zero-voltage-switching type which includes auxiliary resonant 

commutated pole (ARCP), coupled inductor with zero-voltage transition (ZVT), and their 

combinations (B. M. Song et al, 2005)  

5.3.3. BACK-TO-BACK DIODE-CLAMPED CONVERTER  

Two multilevel converters can be connected in a back-to-back arrangement and then the 

combination can be connected to the electrical system in a series-parallel arrangement. Both 

current demanded from the utility and the voltage delivered to the load can be controlled at the 

same time. This series-parallel active power filter has been referred to as a universal power 

conditioner (H. Fujita et al, 2011) when used on electrical distribution systems and as a 

universal power flow controller (Y. Chen, 2012) when applied at the transmission level. 

Previously, Lai and Peng (2010) proposed the back-to-back diode-clamped topology for use as 

a high-voltage dc inter connection between two asynchronous ac systems or as a 

rectifier/inverter for an adjustable speed drive for high-voltage motors. The diode-clamped 

inverter has been chosen over the other two basic multilevel circuit topologies for use in a 

universal power conditioner for the following reasons:  

 All six phases (three on each inverter) can share a common dc link. Conversely, the 

cascade inverter requires that each dc level be separate, and this is not conducive to a 

back-to-back arrangement.  

 The multilevel flying-capacitor converter also shares a common dc link; however, each 

phase leg requires several additional auxiliary capacitors. These extra capacitors would 

add substantially to the cost and the size of the conditioner.  

Because a diode-clamped converter acting as a universal power conditioner will be expected 

to compensate for harmonics and/or operate in low amplitude modulation index regions, a more 

sophisticated, higher-frequency switch control than the fundamental frequency switching 

method will be needed. For this reason, multilevel space vector and carrier-based PWM 
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approaches are compared in the next section, as well as novel carrier-based PWM 

methodologies. 

5.4. CONTROL TECHNIQUES – SINUSOIDALE PULSE WIDTH MODULATION, 

SELECTIVE HARMONIC ELEMINATION & SPACE VECTOR MODULATION   

 

 

Figure 5-10 Classifications of control Techniques (A, Basem, 2016) 

 By increasing the number of levels in the inverter, the output voltages have more steps 

generating a staircase waveform, which has a reduced harmonic distortion. However, a high 

number of levels increases the control complexity and introduces voltage imbalance 
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problems. The modulation methods used in multilevel inverters can be classified according to 

switching frequency (N. Celanovic, 2015).  Methods that work with high switching frequencies 

have many commutations for the power semiconductors in one period of the fundamental 

output voltage. A very popular method in industrial applications is the classic carrier-based 

sinusoidal PWM (SPWM) that uses the phase-shifting technique to reduce the harmonics in 

the load voltage (Y. Liang, 2014). Methods that work with low switching frequencies generally 

perform one or two commutations of the power semiconductors during one cycle of the output 

voltages, generating a staircase waveform. Representatives of this family of multilevel are the 

selective harmonics elimination (SHE), the space vector control (SVC), and the sinusoidal 

multicarrier based pulse width modulation (SPWM). Three different topologies have been 

proposed for multilevel inverters with the aforementioned modulation methods as shown in 

figure 5-10, thus, Low- (fundamental-) switching frequency modulation, High-switching 

frequency modulation, Hybrid-switching frequency modulation (A. Basem et al, 2016)  

5.4.1. SINUSOIDAL MULTICARRIER BASED PULSE WIDTH 

MODULATION 

 

Figure 5-11 Basic principle of PWM control (PIC12F683). 

 

In reference to the SPWM, it is evident that the most popular control methodology 

recommended by researchers and adopted by engineering practitioners for multilevel inverter 

control is the SPWM. In effect, it is a fact that SPWM does produce pulses through the 
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comparison of a sinusoidal reference waveform with a triangular carrier waveform, as it could 

be seen in figure 5-11. Sinusoidal Pulse Width Modulation (SPWM) is the name of a technique 

to generate low frequency output signals from high frequency pulses. Rapidly switching the 

output voltage of an inverter leg between the upper and lower DC rail voltages, the low 

frequency output can be though as the average of the voltage over a switching period. In its 

simplest form SPWM output signals are constructed by comparing two control signals, a carrier 

signal and a modulation signal. This is known as carrier-based SPWM. The carrier signal is a 

high frequency (switching frequency) triangular waveform. The modulation signal can be any 

shape. If the peak of the modulation is less than the peak of the carrier signal, the output will 

follow the shape of the modulation signal. If instantaneous magnitude of the modulation signal 

is greater than the carried signal at a point in time, the output voltage of the inverter leg should 

be connected to the positive side of the DC link.  

Phase-Shifted SPWM 

Considering the phase shifted technique, all the triangular carriers have the same frequency 

and same peak-peak amplitude; but there is a phase shift between any two adjacent carrier 

waves. For “m” Voltage levels (m-1) carrier signals are required and they are phase shifted 

with an angle of θ= (360°/m-1). The gate signals are generated with proper comparison of 

carrier wave and modulating signal. Considering minimum distortion is part of the aim here, it 

is noteworthy to accommodate the idea that to obtain the minimum distortion at the output 

waveform for an inverter with 𝑁𝑐𝑒𝑙𝑙𝑠, the carrier signals should be shifted by a displacement 

angle 𝜃= =360°/𝑁𝑐𝑒𝑙𝑙𝑠. The illustration of this modulation method is shown in Figure 5-12 below 

 

Figure 5-12Phase level shifted Modulation simulation 
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Level-Shifted SPWM 

For carrier’s signals, the time values of each carrier waves are set to [0 1/600 1/300] while the 

outputs values are set according to the disposition of carrier waves. After comparing, the output 

signals of comparator are transmitted to the IGBT. This technique is divided into 3 types 

 

Figure 5-13 Level shifted Modulation simulation 

The modulating signal of each phase is displaced from each other by 120°. All the carrier 

signals have an equal frequency and amplitude. The carrier waves and the modulating signals 

are compared and the output of the comparator defines the output in the positive half cycle the 

comparator output will have the value high, if the amplitude of the modulating signal is greater 

than that of the carrier wave and zero otherwise. Similarly, for the negative half cycle, if the 

modulating signal is lower than the carrier wave the output of the comparator is high and zero 

otherwise. The particularity of the application of this modulation technique is that all the 

carriers are in phase but vertically disposed and placed in such a way that they cover the entire 

amplitude range of the inverter (Basem A, 2017). 

5.4.2. MULTILEVEL SPACE VECTOR PULSE WIDTH MODULATION   
Choi et al (2003) was the first author to extend the two-level space vector pulse width 

modulation technique to more than three levels for the diode-clamped inverter. Figure 5-14 

shows what the space vector d-q plane looks like for a six-level inverter. Figure 5-15 represents 

the equivalent dc link of a six-level inverter as a multiplexer that connects each of the three 

output phase voltages to one of the dc link voltage tap points (G Sinha, 2015). Each integral 

point on the space vector plane represents a particular three-phase output voltage state of the 

inverter. For instance, the point (3, 2, and 0) on the space vector plane means, that with respect 
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to ground, a phase is at 3V
dc

, b phase is at 2V
dc

, and c phase is at 0V
dc

. The corresponding 

connections between the dc link and the output lines for the six-level inverter are also shown 

in Figure 15 for the point (3, 2, 0). An algebraic way to represent the output voltages in terms 

of the switching states and dc link capacitors is described in the following.  

For n = m-1 where m is the number of levels in the inverter: 

𝑉𝑐 = [𝑉𝑐1 𝑉𝑐2 … … . 𝑉𝑐𝑛]𝑇;  𝐻𝑎𝑏𝑐 = [

ℎ𝑎1 ℎ𝑎2 ℎ𝑎3 … . . ℎ𝑎𝑛

ℎ𝑏1 ℎ𝑏2 ℎ𝑏3 … . . ℎ𝑏𝑛

ℎ𝑐1 ℎ𝑐2 ℎ𝑐3 … . . ℎ𝑐𝑛

] , 𝑉𝑎𝑏𝑐0 = [
𝑉𝑎0

𝑉𝑏0

𝑉𝑐0

] 𝑎𝑛𝑑 

ℎ𝑎𝑗 = ∑ 𝛿(ℎ𝑎 − 𝑗),

𝑛

𝑗

 

Where ℎ𝑎 is the switch state and 𝑗 is an integer from 0 to n, and where 

 𝛿(𝑥) = 1 𝑖𝑓 𝑥 ≥ 0, 𝛿(𝑥) = 0 𝑖𝑓 𝑥 < 0  

 

Figure 5-14 Voltage space vectors for a six-level inverter. 
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Figure 5-15 multiplexer model of diode-clamped six-level inverter. 

Besides the output voltage state, the point (3, 2, and 0) on the space vector plane can also 

represent the switching state of the converter. Each integer indicates how many upper switches 

in each phase leg are on for a diode-clamped converter. As an example, for h
a 

= 3, h
b 

= 2,             

h
c 
= 0, the H

abc 
matrix for this particular switching state of a six-level inverter would be 

𝐻𝑎𝑏𝑐 = [
0 0 1 
0 0 1
0 0 1

1 1
 1 1
 0 0

] 

Redundant switching states are those states for which a particular output voltage can be 

generated by more than one switch combination. Redundant states are possible at lower 

modulation indices, or at any point other than those on the outermost hexagon shown in Figure 

31.23. Switch state (3, 2, 0) has redundant states (4, 3, and 1) and (5, 4, 2). Redundant switching 

states differ from each other by an identical integral value, i.e., (3, 2, 0) differs from (4, 3, 1) 

by (1, 1, 1) and from (5, 4, 2) by (2, 2, 2). For an output voltage state (x, y, and z) in an m-level 

diode-clamped inverter, the number of redundant states available is given by                                      
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m – 1 – max(x, y, z). As the modulation index decreases (or the voltage vector in the space 

vector plane gets closer to the origin), more redundant states are available. The number of 

possible zero states is equal to the number of levels, m. For a six-level diode-clamped inverter, 

the zero voltage states are (0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4), and (5, 5, 5). The 

number of possible switch combinations is equal to the cube of the level (𝑚3). For this six-

level inverter, there are 216 possible switching states. The number of distinct or unique states 

for an m-level inverter can be given by 𝑚3 − (𝑚 − 1)3 = [6 ∑ 𝑛𝑚−1
𝑛=1 ] + 1 

Therefore, the number of redundant switching states for an m-level inverter is(𝑚 − 1)3. Table 

5- 3 below summarizes the available redundancies and distinct states for a six-level diode-

clamped inverter. 

Redundancies Distinct 

states 

Redundant 

states 

Unique state coordinates: (a,b,c0 where 

0≤a,b,c≤5 

5 1 5 (0,0,0) 

4 6 24 (0,0,1),(0,1,0),(1,0,0),(1,0,1),(1,1,0),(0,0,1)  

3 12 36 (p,0,2),(p,2,0),(0,p,2),(2,p,0),(0,2,p,),(2,0,p) 

where p≤2  

2 18 36 (0,3,p),(3,0,p),(p,3,0),(p,0,3),(3,p,0),(0,p,3) 

where p≤3  

1 24 24 (0,4,p),(4,0,p),(p,4,0),(p,0,4),(4,p,0),(0,p,4) 

where p≤4  

0 30 0 (0,5,p),(5,0,p),(p,5,0),(p,0,5),(5,p,0),(0,p,5) 

where p≤5  

Total 91 125 216 total states 

Table 5-3 available redundancies and distinct states for a six-level diode-clamped inverter. 

In two-level PWM, a reference voltage is tracked by selecting the two nearest voltage vectors 

and a zero vector and then by calculating the time required to be at each of these three vectors 

such that their sum equals the reference vector. In multilevel PWM, generally the nearest three 

triangle vertices, V
1
, V

2
, and V

3
, to a reference point Vf are selected so as to minimize the 

harmonic components of the output line-line voltage (L Liu, 2014). The respective time 

duration, T
1
, T

2
, and T

3
, required of these vectors is then solved from the following equations: 
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𝑇𝑠= 𝑇1 + 𝑇2 + 𝑇3 

Where 𝑇𝑠 is the switching period, therefore;   

[
𝑇1

𝑇2

𝑇3

] = [
𝑉1𝑑 𝑉2𝑑 𝑉3𝑑

𝑉1𝑞 𝑉2𝑞 𝑉3𝑞

1 1 1

]

−1

[

𝑉𝑑𝑇𝑠

𝑉𝑞𝑇𝑠

𝑇𝑠

] 

Redundant switch levels can be used to help manage the charge on the dc link capacitors (Sinha 

G, 2015). Generalizing from Figure 5-15, the equations for the currents through the dc link 

capacitors can be given as 

𝑖𝑐𝑛 = −𝑖𝐿𝑛, 𝑎𝑛𝑑  

𝑖𝑐(𝑛−𝑗) =  𝑖𝐿(𝑛−𝑗) + 𝑖𝑐(𝑛−𝑗+1)𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,2,3, … . . , 𝑛 − 1  

The dc link currents for h
a 
= 3, h

b 
= 2, h

c 
= 0 would be i

c5 
= i

c4 
= 0, i

c3 
= -i

a
, i

c2 
= -i

a 
– i

b
, i

c1 
= -i

a 

– i
b
. To see how redundant states affect the dc link currents, consider the two redundant states 

for (3, 2, 0). In state (4, 3, 1), the dc link currents would be i
c5 

= 0, i
c4 

= -i
a
, i

c3 
= -i

a 
– i

b
, i

c2 
= -i

a 

– i
b
, i

c1 
= -i

a 
– i

b 
– i

c 
= 0; and for the state (5, 4, 2), the dc link currents would be i

c5 
= -i

a
, i

c4 
= -

i
a 
– i

b
, i

c3 
= -i

a 
– i

b
, i

c2 
= i

c1 
= -i

a 
– i

b 
– i

c 
= 0. 

 

Figure 5-16 Sinusoidal reference and inverter output voltage states in d-q plane. 
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From this example, one can see that the choice of redundant switching states can be used to 

determine which capacitors will be charged/discharged or unaffected during the switching 

period. While this control is helpful in balancing the individual dc voltages across the 

capacitors that make up the dc link, this method is quite complicated in selecting which of the 

redundant states to use. Constant use of redundant switching states also results in a higher 

switching frequency and lower efficiency of the inverter because of the extra switching’s. 

Recently, optimized space vector switching sequences for multilevel inverters have been 

proposed by researchers as well (McGrath, B. P., 2010) 

5.4.3. SELECTIVE HARMONIC ELIMINATION  
The selective harmonic elimination method is also called fundamental switching frequency 

method based on the harmonic elimination theory proposed by Patel et al (1974). The Selective 

Harmonic Elimination (SHE) for multilevel inverters is presented here. This section 

investigates the Selective Harmonic Elimination (SHE) to eliminate harmonics produced by 

Pulse Width Modulation (PWM) inverter. The selective harmonic elimination method for 

Multilevel Inverter is generally based on ideas of opposite harmonic injection. In this proposed 

scheme, the lower order harmonics (3rd, 5th, 7th, and 9th) are eliminated by the dominant 

harmonics of same order generated in opposite phase by Sinusoidal Pulse Width Modulation 

(SPWM) inverter and by using this scheme the Total Harmonic Distortion (THD) is reduced. 

Analysis of Sinusoidal Pulse Width Modulation (SPWM) technique and Selective Harmonic 

Elimination (SHE) is simulated using MATLAB/SIMULINK model. Since most existing 

multilevel inverter topologies belong to either a diode clamped configuration or a cascaded H 

bridge configuration, they both have the drawback of their high number of switching devices. 

Selective harmonic elimination applied to these configurations using traditional techniques will 

add to the overall system complexity. 

Newton Raphson (NR), Genetic algorithms (GAs), Particle swarm optimisation (PSO) are 

stochastic optimization techniques. They are simple, powerful, general purpose, derivative 

free, stochastic global search algorithms inspired by the laws of natural selection and genetics. 

They follow Darwin’s theory of evolution, where fitter individuals are likely to survive in a 

competing environment (Basem A, 2016). These algorithms derived from these techniques are 

derivative free in the sense that they do not need functional derivative information to search 

for a set solution that minimizes (or maximizes) a given objective function. The properties of 

Gas, NR or PTO reduce the computational burden and search time and also enable them to 

solve complex objective function 
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The implementation of the Selective harmonic elimination in this modulation is to predefine 

the switching angles using Fourier analysis based on the magnitude of the output signal, which 

results in eliminating a number of unwanted low-order harmonics, whilst simultaneously 

synthesizing the desired multilevel fundamental-voltage waveform. All the switching angle 

calculations are performed offline, so it is a pre-calculated control technique and can be 

classified as an open-loop control. 

In the application of the selective harmonic elimination, the Total Harmonic Distortion (THD) 

for 3rd, 5th, 7th and 9th order harmonics is firstly defined followed by the amplitude of these 

order (3rd, 5th, 7th, and 9th) harmonics with help of Total Harmonic Distortion (THD). After 

calculating amplitude, the same order of harmonics is injected in opposite amplitude so as the 

resultant disorder sine wave is compared with triangular waveform and results generated in 

pulse so as to allow switching. This method is simple and easily implemented to achieve a 

reduced Total Harmonic Distortion (THD). The simulation of three phase voltage source 

inverter by using selective harmonic elimination method is done in MATLAB/SIMULINK 

software and shown in 5-17. 

 

Figure 5-17 three phase voltage source inverter by using selective harmonic elimination 

http://pubs.sciepub.com/ajeee/2/1/4/#Figure3
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Figure 5-18 Phase voltage output waveform 

 

Figure 5-19 Line voltage output waveform 
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Figure 5-20 Output waveform for Selective Harmonic Elimination (SHE) with filter 
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Figure 5-21 FFT analysis for Sinusoidal PWM Technique 

 

Figure 5-22 FFT analysis for Selective Harmonic Elimination (SHE) 

As shown in figures 5-20, the generation of lower order harmonics, Dominant harmonics, 

Phase angle output wave forms, and Line voltage output wave forms are obtained by the Matlab 

Simulink model. Fast Fourier Transform analysis are also obtained. Figure 5-18 represent the 

phase voltage output waveform where the amplitude and time in period represented in 

obtaining the opposite phase to eliminate the harmonics generated whilst figure 5-19 illustrates 

the line voltage output wave form, injecting the same order of harmonics in opposite amplitude 

Thus the resultant disorder sine wave is compared with triangular waveform and results in 

pulses are produced. Figure 5-20 represents the output wave form for Selective Harmonic 

Elimination (SHE) with LC-section, this shows RGB Harmonics of amplitude in Voltage vs. 

Output Current in Time (ms). Figure 5-21 shows the FFT analysis of Selective Harmonic 

Elimination (SHE) with fundamental frequency of 50 Hz we got 113.3 and the Total Harmonic 

http://pubs.sciepub.com/ajeee/2/1/4/#Figure4
http://pubs.sciepub.com/ajeee/2/1/4/#Figure5
http://pubs.sciepub.com/ajeee/2/1/4/#Figure6
http://pubs.sciepub.com/ajeee/2/1/4/#Figure7
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Distortion of 70.06% this is obtained by without using the LC filter. Fig 5-22 FFT analysis of 

Selective Harmonic Elimination (SHE) with fundamental frequency of 50 Hz we got 113.3 but 

the Total Harmonic Distortion is reduced up to 1.47% this results is produced by using the LC 

filter. Thus the result shows that the Selective Harmonic Elimination (SHE) technique is 

improved by reducing the Total Harmonic Distortion (THD) up to 1.47%. 

The above presented shows a selective harmonic elimination application technique for three 

phase voltage source inverter with the RL load. A Three phase Voltage Source Inverter (VSI) 

changes DC input voltage to a three phase variable frequency variable voltage output. The 

elimination of specific low-order harmonics from a given voltage/current waveform achieved 

by Selective Harmonic Elimination (SHE) technique. We unite the inductor filter with the 

capacitor the ripple aspect will turn out to be more or less autonomous of the load filter. Finally 

Analysis and comparison of Total Harmonic Distortion (THD) for sinusoidal Pulse Width 

Modulation (PWM) technique and selective harmonic elimination technique has been done. 

From the comparison it is very apparent that the Total Harmonic Distortion (THD) for selective 

harmonic technique is less than that of sinusoidal Pulse Width Modulation (PWM) method. 

5.4.4. OVERVIEW OF GA, NR AND PSO 
Various modulation techniques are used in controlling the effects of output voltages of a typical 

multilevel inverter (MLI). According to research, these modulation methodologies can be 

classified considering the magnitude of the switching frequency depending on the techniques 

used for either low or high frequencies (Liu H, 2015). Research also advocates for the space 

vector control and the selective harmonic elimination for being the most ideal techniques with 

the lowest switching of about one or two times during a cycle therefore making the technique 

an ideal one to be used for our MLI.  

Eliminating the specific harmonics especially low-order harmonics of the output voltage of a 

Multilevel inverter using SHE-PWM control scheme is investigated. Harmonic minimization 

is the intricate optimization problems because the nonlinear transcendental equations have 

multiple local optima (A Ajani, 2013). Increasing the degrees of freedom in the suggested 

method means that the number of switching angles increases (Olla A, 2015). The suggested 

method is able to eliminate high number of undesired harmonics through the application of 

SHE which results in lower switching losses and less EMI due to its low switching (A Ajani, 

2013). Furthermore, it can eliminate some of the dominant low order Harmonics and hence 

minimize the size of the required filter at the inverter output. 

http://pubs.sciepub.com/ajeee/2/1/4/#Figure8
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5.4.5. SELECTIVE HARMONIC ELIMINATION USING GENETIC ALGORITHM  

The main problem with the selective harmonic elimination method is how to solve the 

nonlinear equations. Analytical approaches can find solutions of these equations, but if 

switching angles needs to be determined are increased, the system becomes very complex to 

solve (Almari B, 2015). Thus, optimization algorithms can be very useful. Genetic Algorithm 

has three major differences from other traditional optimization methods. It can process an 

encoding set of parameters, it searches a population of points in parallel, and it uses 

probabilistic rules rather than deterministic rules (Rashad M, 2015). GA is considered simple 

and easy to implement as it does not include complex derivations or mathematical modelling. 

It can therefore be easily applied to solve the problem of selective harmonic elimination. Its 

implementation consists of: 1) Initialization of the population, 2) Evaluation of fitness function, 

3) Selection, and 4) Apply genetic operators. Figure (5-23) presents a general flow chart for 

genetic algorithm. 

 

Figure 5-23Flow chart of the GA optimization technique 
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- Initialisation of the population: Initial population plays an important role in heuristic 

algorithms such as GA as it helps to decrease the time those algorithms need to achieve 

an acceptable result. Furthermore, it may influence the quality of the final answer given 

by evolutionary algorithms. Parameters of the optimization problem are coded in a 

binary or floating-point string followed by a set of solutions which is randomly 

generated based on the coded parameters referred to as “initial population” (𝑃𝑖) 

- Evaluation of fitness Function: The most vital item for the GA to evaluate the fitness 

of each chromosome is the cost function. The purpose of this study is to minimize 

specified harmonics; therefore, the fitness function has to be associated to THD. In this 

work the fifth, seventh, eleventh, and thirteenth harmonics at the output of an eleven-

level inverter are to be minimized. 

𝐹𝑉 =  

√∑ 𝑛 = 5,7,11,13,21(
1
𝑛

∑ cos (𝑛𝛼𝐾))25
𝑘=1

∑ 𝐶𝑜𝑠𝛼𝑘5
𝑘=1

… … … … (51) 

For each chromosome a multilevel output voltage waveform is produced using the switching 

angles in the chromosome and the required harmonic magnitudes are calculated using FFT 

techniques. GA is typically set to run for a certain number of iterations to get an answer. After 

the first iteration, FV’s are used to determine new offspring. These go through crossover and 

mutation operations and a new population is created which goes through the same cycle starting 

from FV evaluation (Kumar D et al, 2012). 

- Selection: At selection stage, parents are chosen based on selection rules to produce 

offspring chromosomes (Almari B, 2015). The selected parents are the main 

contributors to form the next generation. In this the fittest individual are likely to 

survive and the less fit are eliminated. 

- Crossover & mutation: Crossover is the most significant operation in GA. It creates a 

group of children from the parents by exchanging genes among them. The new 

offspring contain mixed genes from both parents. By doing this, the crossover operator 

not only provides new points for further testing within the chromosomes, which are 

already represented in the population, but also introduces representation of new 

chromosomes into the population to allow further evaluation on parameter optimization 

(Kumar D et al, 2012. Mutation is another vital operation. It works after crossover 

operation. In this operation, there is a probability that each gene may become mutated 

when the genes are being copied from the parents to the offspring. This process is 
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repeated, until the preferred optimum of the objective function is reached (Singh H et 

al, 2014). 

- New Population: New population is when a solution has been reached basing this on 

the fact that the algorithm should stop after 100 iterations are performed which in some 

cases, the algorithm finds a solution much earlier before 100 iterations converges, it 

tells the algorithm when to stop and terminate. Hence, it decides the optimum solution 

as an output.  

5.4.6. SELECTIVE HARMONIC ELIMINATION USING NEWTON RAPHSON 

METHOD 

Selective Harmonic Elimination technique has been applied on chosen multilevel inverter 

configuration and nonlinear transcendental SHE equations set have been developed. In order 

obtain analytical solution during whole range of modulation index from 0 to 1, deterministic 

and stochastic algorithms have also been developed. Newton-Raphson method is one of the 

traditionally preferred iterative methods to solve non-linear transcendental equations. This 

method based on calculus approach is a fast iterative method with fast convergence to reach 

global minimum, begins with an initial guess and generally converges at a zero. Newton's 

method was first described by Isaac Newton in 1969, twenty years later Joseph Raphson got 

close to Newton’s approach but only for polynomials of degree up to ten. Finally in 1740, 

Thompson Simpson explained NR method as an iterative method to solve optimization 

problems by setting the gradient to zero (BBC, 2016). H. S. Patel et al (1973), first applied NR 

method to solve SHE equations to eliminate harmonics in the half-bridge and full bridge 

inverter output waveforms. Later in literature several authors have used NR method to solve 

non-linear transcendental SHE equations (Rashad M, 2015). Though, this technique is an 

extremely powerful and fast iterative method to solve non-linear equations, it suffers from the 

drawback of requirement of good initial guess. If the initial guess is good, rate of convergence 

is fast and computational time is reduced (H. S. Patel et al, 1973). Providing good initial guess 

is greatly dependent on previous history. However, probability of providing good initial guess 

is very low in most cases. Since the search space of the SHE problem is unknown, and one 

does not know whether a solution exists or not, and if exists, what is the good initial guess     

(Liu H, 2005). Hence, in order to overcome the above mentioned drawback, Jagadeesh Kumar 

et al (1985) have used an approach of “any random initial guess” to obtain analytical solution 

for solving SHE equations by using Newton-Raphson method. Figure 5-24 shows Newton 

Raphson method  
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Figure 5-24 Flow chart of the NR optimization technique 

Main steps for NR method are  

Step 1: Assume any random Initial Guess (say 𝛼0) 

Step 2: set 𝑀𝐼 = 0 

Step 3: Calculate 𝐹(𝛼0), 𝐵(𝑀𝐼) and Jacobian Matrix J (𝛼0) 

Step 4: Calculate error ∆𝛼 = 𝛼0 [
𝛿𝐹

𝛿𝛼
]

−1
[𝐵[𝑀𝐼] − 𝐹[𝛼0]] 

Step 5: Update the switching angle i.e.𝛼(𝑛 + 1) = 𝛼(𝑘) + ∆𝛼(𝑛) 

Step 6: repeat the steps (3) and (5) for sufficient number of iterations to attain error goal  

Step 7: Increment 𝑀𝐼 by a fixed step 

Step 8: repeat steps (2) to (7) for complete range of 𝑀𝐼 

Where (B) represent the values of required harmonic amplitudes, (M) Modulation index, (f) 

frequency  
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5.4.7. SELECTIVE HARMONIC ELIMINATION USING PARTICLE 

SWARM OPTIMISATION (PSO) 
Particle swarm Optimization is a computational method used for optimizing a problem by 

iteratively solving the candidate solution (S Selvaperumal et al 2012). It is a metaheuristic 

approach as it makes few or no assumptions about the problem to be optimized. The system 

was initialized with a population of random solution and optimized by updating generations. 

PSO had no evolutionary operators such as crossover and mutation (S. Muralidharan et al, 

2015). PSO had been successfully applied in many areas like function optimization, artificial 

neural network training, fuzzy system controller etc. (BBC, 2016). 

 

Figure 5-25 Flow chart of the PSO technique 
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At first, PSO algorithm was used to discover the birds flying patterns and their sudden route 

alteration. Swarm members called particles can be led to obtain the best solution using the 

experiences of all particles or social intelligence approach (M. Omid, 2013). Since all particles 

cooperate to reach the aim, this method is more effective than the methods which individual 

agents act (M. Yousefi, 2013). In fact, the particles reform their movement toward the aim 

according to the best previous position of themselves and other neighbours in every iteration. 

In PSO, the velocity and position of particles are updated using the following equations 

respectively. These equations are the main part of updating particles experiment in searching 

space. 

𝑉𝑖(𝑡 + 1) = 𝑤 × 𝑉𝑖(𝑡) + 𝐶1 × 𝑟𝑎𝑛𝑑1(𝑃𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝐶2 × 𝑟𝑎𝑛𝑑2(𝐺𝑏𝑒𝑠𝑡𝑖
(𝑡)

− 𝑥𝑖
(𝑡))

. . (52) 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝑉𝑖
(𝑡+1)

… . (53) 

where ‘i’, ‘t’, ‘v’, ‘x’, ‘rand’, ‘Pbest’ and ‘Gbest’ are particle number, iteration number, particle 

velocity, particle position, random function, the best position ever visited by particle i and the 

best position discovered so far, respectively. In addition, ‘w’, ‘C1’ and ‘C2’ are positive 

constant, which are called inertia weight and acceleration coefficients. Figure 5-25 provides 

PSO flowchart for which  

Step 1 - Initialize swarm: Randomly generate bounded real values to form initial swarm of 

particles. Each particle represents the unknown parameters of neural network. The initial 

swarm is scattered enough for better search space for the algorithm 

Step 2 -Initialization: Following parameter values assigned for algorithm execution. Set the 

number of flights. Set the fitness limit and start cycle count. Set the values of individual best 

and global best acceleration factors. Set the value of inertia weight ω and maximum velocity 

vmax. 

Step 3- Fitness Evaluation: Calculate fitness by using the fitness function given in the 

expressions below 

𝑒1
𝑗

=
1

𝑁
∑[𝐷𝑣 yˆ(𝑡𝑖) − 𝑓(𝑡𝑖, yˆ(𝑡𝑖), 𝐷𝑛yˆ(𝑡𝑖))]

2
𝑗 … . (54)

8

𝑖=0

 

Where s is the number of time steps,𝑦, 𝐷𝑛yˆ 𝐷𝑣 yˆ are the linear combination of the networks. 

The value of s is adjusted as a trade-off between the computation complexity and the accuracy 

of algorithm. Similarly 𝑒1
𝑗
 is linked with initial and boundary conditions and can be written as 
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𝑒2
=𝑗

=
1
𝑁

∑ [𝐷𝑘 
yˆ(0) − 𝑐𝑘]

2
+

1
𝑁

∑ [𝐷𝑘 
yˆ(𝑡𝑏) − 𝑏𝑘]

2
𝑗

𝑁−1

𝑘=0

𝑁−1

𝑘=0

… . (55) 

Step 4-Ranking: Rank each particle of the swarm on the basis of minimum fitness values. Store 

the best fitness particle.  

Step 5 - Termination Criteria: Terminate the algorithm if either predefined fitness value, i.e., 

MSE 10−8for linear FDEs and 10−4for non-linear FDEs is achieved or number of maximum 

flights/cycles is reached. If yes go to Step 7 else continue. 

Step 6- Renewal: Update the Velocity using Equation (49). Update the position using Equation 

(5.3). Repeat the procedure from Step 3 to Step 6 until total number of flights is reached. 

Step 7- Refinement: MATLAB optimization toolbox is used for simulating annealing 

algorithm for further fine-tuning by taking the best fitted particle as start point of the algorithm. 

Store the value of fitness along with the best particle for this run. Stop. 

As a preliminary study of this research work, the ability of NR, PSO and GA to solve the SHE 

problem of a seven-level CHB-MLI was investigated 

5.4.8. Evaluation of GA, NR, PSO  

 

Figure 5-26 Single-phase 7-level cascaded H-bridge inverter  



175 
 

Sensitivity: Internal 

Figure 5-26 shows a single phase 7-Level CHB-MLI for which the switching devices have 

been selected as an IGBT type. Each cell in the system is connected to a separate dc link supply 

of potential difference 100 V. The Modulation index is set to vary over a modulation range of      

(0 𝑡𝑜 1) throughout the analysis. 

 

Figure 5-27 Output voltage of the 7-level asymmetric cascade inverter 

Selective harmonics elimination uses pre-defined switching angles in order to form the 

anticipated multilevel fundamental voltage and thereby supress low order harmonics in order 

to achieve a minim harmonic distortion in total (THD). In this system, the switching angles are 

pre-calculated off-line therefore it is considered an open loop control technique. In our 

endeavour to achieve low THD, we applied Fourier’s expansion, so as the asymmetric cascade 

inverter stepped voltage wave form can be expressed in sum of sine and cosine periodic signals 

and a constant. As one can notice, due to the quarter symmetry of the waveform, the even 

harmonics and the dc constant are cancelled therefore, only odd harmonics are considered. For 

balanced three phase systems all tripled harmonics are zero. Ideally, the output voltage 

waveform can be written as: 

𝑣𝑎𝑛(𝑤𝑡) = ∑
4𝑉𝑑𝑐

𝑘𝜋
[cos(𝑘𝛼1) + 𝐶𝑜𝑠 (𝑘𝛼2) … . +𝐶𝑜𝑠 (𝑘𝛼2)]𝑆𝑖𝑛(𝑘𝑤𝑡). . (56)

∞

𝐾=1,3,5

 

Where (𝑆) is the number of H-bride cells of the inverter 
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Considering the output voltage of the 7 level asymmetric cascade inverter, we can deduct that 

the switching angles are less than a right angle and in ascending order. As it must be with a 7 

level MLI, 𝜃1 is < 𝜃2 is < 𝜃3 is < 90°. The fifth and seventh harmonic were also eliminated 

using non-linear equations approach where the modulation index was introduced and used in 

our equations. This system of equations are highly non-linear and are also called transcendental 

equations. Resolving such systems, therefore requires the application of different techniques. 

The most common algorithms in solving SHE have already been investigated thus Newton-

Raphson (NR), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The results 

obtained by these techniques are compared and discussed using Matlab –Simulink has been 

used considering a modulation index (𝑀𝑖 = 0.05 𝑡𝑜 1.0) 

Table (5-4), shows the detailed calculations of switching angles and THD at each modulation 

index value with the “**” indicating that the algorithm failed to find a feasible solution at that 

point of modulation index 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-4 calculation of switching angles and THD obtained using different solving techniques   

CALCULATION OF SWITCHING ANGLES AND THD OBTAINED USING DIFFERENT SOLVING TECHNIQUES 

B. Alamri and M. Darwish, "Optimum Switching Angles Determination for Cadcaded H-Bridge 

Multilevel Inverters Using Genetic Algorithm (GA)", ResCon, Brunel University, London, UK, 2014. 

[Accessed 10 May 2017]. 

CONTENT REMOVED FOR COPYRIGHT REASONS 
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Using data in table 5-4, comparison graphs were plotted as it can be seen from figure 5-28 and 

5-29. The simulations showed that the application of the Newton Raphson method was not the 

most ideal solution for this MLI as it was unable to find a solution for the complete range of 

modulation index thus (0.05 to 1) but does find a solution for the modulation index range 

ranging between (𝑀𝑖 = 0.3 𝑡𝑜 0.9).  

The application of the Genetic Algorithm and the Particle Swarm Optimisation however were 

able to define solutions for the complete range of modulation index (𝑀𝑖 = 0.05 𝑡𝑜 1.0). It is to 

be noted that the Newton Raphson method was excellently ideal in eliminating the selected 

harmonics, whilst the Genetic Algorithm and the Particle Swarm Optimisation were capable of 

minimizing the THD thereby eliminating the harmonics. It is therefore easy to say that the 

application of the Genetic Algorithm and the Particle Swarm Optimisation in this case were 

much suited in minimizing the THD as compared to the Newton Raphson method. Figure (28) 

present a comparison of THD obtained for different modulation index values using NR, GA 

and PSO with NR having the worst THD profile and GA being the most ideal approach to 

minimising THD. Figure (29) on the other hand presents the THD for each solving method 

used. 

 

 

 

 

 

 

 

 

 

Figure 5-28 THD at different modulation index values  

 

THD OBTAINED AT DIFFERENT MODULATION INDEX  

B. Alamri and M. Darwish, "Optimum Switching Angles Determination for Cadcaded H-

Bridge Multilevel Inverters Using Genetic Algorithm (GA)", ResCon, Brunel University, 

London, UK, 2014. [Accessed 10 May 2017]. 

CONTENT REMOVED FOR COPYRIGHT REASONS 

 



178 
 

Sensitivity: Internal 

 

 

 

 

 

 

 

Figure 5-29 THD profile for each solving technique.  

 

 

 

 

 

 

 

Figure 5-30 Switching angles using NR-GA-PSO.) 

 

 

 

 

 

 

 

Figure 5-31 Harmonic profile using NR-GA-PSO.  

THD PROFILE OBTAINED FOR EACH SOLUTION  

B. Alamri and M. Darwish, "Optimum Switching Angles Determination for Cadcaded 

H-Bridge Multilevel Inverters Using Genetic Algorithm (GA)", ResCon, Brunel 

University, London, UK, 2014. [Accessed 10 May 2017]. 

CONTENT REMOVED FOR COPYRIGHT REASONS 

 

SWITCHING ANGLES OBTAINED FOR NEWTON RAPHSON, GENETIC ALGORITHMS, PARTICLE 

SWAM OPTIMISATION  

B. Alamri, A. Sallama and M. Darwish, "Optimum SHE for Cascaded H-Bridge 

Multilevel Inverters Using: NR-GA-PSO, Comparative Study," AC and DC Power 

Transmission, 11th IET International Conference on, Birmingham, pp. 1-10. 2015,  

 [Accessed 10 May 2017]. 

CONTENT REMOVED FOR COPYRIGHT REASONS 

 

HARMONIC PROFILES OBTAINED FOR NEWTON RAPHSON, GENETIC ALGORITHMS, 

PARTICLE SWAM OPTIMISATION  

B. Alamri, A. Sallama and M. Darwish, "Optimum SHE for Cascaded H-Bridge 

Multilevel Inverters Using: NR-GA-PSO, Comparative Study," AC and DC Power 

Transmission, 11th IET International Conference on, Birmingham, pp. 1-10. 2015,  

 [Accessed 10 May 2017]. 
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Figure (5-30) above shows a comparison of all the calculated switching angles obtained for 

NR, GA and PSO. The analysis of this shows that the application of the GA and PSO results 

partly in similar switching angles. The comparison of harmonic profile however in figure 5-31 

shows that considering the 5th harmonic, the Newton Raphson method had the lowest value of 

THD whilst the Particle swarm optimisation had the highest THD in comparison with the other 

methods. We can easily say at this point that the application of the GA technique has the best 

performance for Selective Harmonic Elimination whilst NR technique had the worst 

performance in this case. Considering the investigation for this 7 level MLI, we can say that 

the problem of SHE into an optimization problem is made possible through the application of 

heuristic algorithms such as GA, PSO, and NR.  

5.5. OVERVIEW OF FILTERS IN MULTILEVEL INVERTERS  
Power quality and their steady state have become topics of research interest because of 

widespread use of nonlinear loads such as diode / thyristor rectifiers, SMPS, UPS, induction 

motor drives etc. (Alexander B, 2003). These nonlinear loads effect in harmonic or distortion 

current and reactive power problems (Joseph W, 1990).  

The harmonics induce malfunctions in sensitive equipment, overvoltage by resonance, 

increased heating in the conductor, harmonic voltage drop across the network impedance and 

affect the other customer loads at the point of common coupling (W. M. Grady, 2000).   

Traditionally passive filters have been used to compensate the harmonic distortion and 

the reactive power; but passive filters are large in size, have aging and tuning problems and 

resonate with the supply impedance (F. Barrerro, 2000).  Recently Active Power 

Line Conditioners (APLC) or Active Power Filters (APF) overcome these problems and 

are used for compensating the current harmonics and suppressing the reactive 

power simultaneously due to fluctuating loads (Bhim Singh, 1999). 

It is therefore important to understand the role played by both active and reactive power filters 

in Multilevel inverters especially considering IEE 519 regulations stipulating that for electrical 

systems that include both linear and nonlinear loads IEEE Recommended Practices and 

Requirements for Harmonic Control In Electric Power Systems for voltages levels up to 69 kV, 

𝑇𝐻𝐷𝑣 should be kept under 5%, and non-individual voltage harmonics should exceed 3%. 

Similarly, 𝑇𝐻𝐷𝑖 follows the standards limits according to the system short-circuit ratio (IEEE, 

1992). 
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5.5.1. PASSIVE FILTERS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-32 Shunt Filters  

SHUNT FILTERS  

B. Alamri, A. Sallama and M. Darwish, " Losses investigation in SPWM-controlled cascaded H-

bridge multilevel inverters," Power Engineering Conference (UPEC), 2015 50th International 

Universities, Stoke on Trent, pp. 1-5. 2015 

 [Accessed 10 May 2017]. 
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Figure 5-32 shows the a summary of  a series of passive filters selection matrix based on various 

conditions namely RL series, RLC shunt tuned and RLC high pass.  

RL Series filters are used to block a single harmonic current (such as the third harmonic) and 

are especially useful in a single-phase circuit where it is not possible to take advantage of zero 

sequence characteristics. The use of the series filters is limited in blocking multiple harmonic 

currents. Each harmonic current requires a series filter tuned to that harmonic. A series passive 

filter is connected in series with the load. The inductance and capacitance are connected in 

parallel and are tuned to provide a high impedance at a selected harmonic frequency. The high 

impedance then blocks the flow of harmonic currents at the tuned frequency only. At 

fundamental frequency, the filter would be designed to yield a low impedance, thereby 

allowing the fundamental current to follow with only minor additional impedance and losses 

The ideal harmonic filter can be seen as a device that is capable of completely eliminating 

reactive current whilst a low pass RL filter is required at the output terminal of inverter to 

reduce harmonics generated by the pulsating modulation waveform. While designing R-L 

filter, the cut-off frequency is chosen such that most of the high order harmonics are eliminated. 

The RLC Shunt Harmonic Passive Filter (SHPF) as shown in Figure 5-32 is generally a series 

RLC circuit configured in parallel arrangement with the AC to DC converter. Its application 

ensures low impedance path to the harmonic currents flowing into the Power distribution 

system connected with nonlinear loads. The Impedance – frequency characteristics describe 

that impedance value exponentially decreases with the increase in the frequency and it ceases 

at 5th harmonic frequency but later on, linearly increases for higher frequencies. 

 RLC High pass is generally a series RLC circuit configured in parallel arrangement with the 

AC to DC converter. The filter passes signals with a frequency higher than a certain curt off 

frequency and attenuates signals with frequencies lower than the cut-off frequency. High-pass 

filters are the second category of shunt filters. Its operation principle is to provide low 

impedance for a wide spectrum of frequencies higher than the cut-off frequency but its 

implementation is considered mostly due to the filter providing high impedance for frequencies 

lower than the cut-off frequency 
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5.5.2. ACTIVE FILTERS  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-33 Shunt Filters (Almari B, 2016) 

SHUNT FILTERS  

B. Alamri, A. Sallama and M. Darwish, " Losses investigation in SPWM-controlled cascaded H-

bridge multilevel inverters," Power Engineering Conference (UPEC), 2015 50th International 

Universities, Stoke on Trent, pp. 1-5. 2015 

 [Accessed 10 May 2017]. 
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The major problems caused by the mains harmonic currents are those associated with the 

harmonic currents themselves, and those caused by the voltage waveform distortion resulting 

from the harmonic currents flowing in the supply source impedance. This distortion of the 

voltage waveform can cause, e.g. serious effects in direct on-line induction motors, ranging 

from a minor increase in internal temperature through excessive noise and vibration to actual 

damage; electronic power supplies may fail to operate adequately; increased earth leakage 

current through EMI filter capacitors due to their lower reactance at the harmonic frequencies. 

To minimize these effects in electricity distribution systems (non-sinusoidal voltages, 

harmonic currents, unbalanced conditions, power de-rating, etc.) different types of 

compensators have been proposed to increase the electric system quality, (Bollen, 1999, 

Hingorani & Gyugyi, 1999). One of those compensators is the active power filter (APF), (Atagi 

et al., 1984). 

An active power filter is a high performance power electronics converter and can operate in 

different modes: harmonics elimination, power factor correction, voltage regulation and load 

unbalance compensation. Different control approaches are possible but they all share a 

common objective: imposing sinusoidal currents in the grid, eventually with unity power 

factor, even in the case of highly distorted mains voltage. Figure 5-33 analyses and compares 

different approach to be used based on semiconductor devices in the control of an active power 

filter and provides system advantages and disadvantages.  Different approaches such as notch 

filter, (Newman et al., 2002), scalar control, (Chandra et al., 2000), instantaneous reactive 

power theory, (Furuhashi et al., 1990, Akagi et al., 2007), synchronous detection method, 

(Chen et al., 1993), synchronous d–q frame method, (Mendalek et al., 2003), flux-based 

control, (Bhattacharya et al., 1996), and closed loop PI, (Bhattacharya et al., 1996), internal 

model control, (Marconi et al., 2007), and sliding mode control, (Saetieo et al., 1995), can be 

used to improve the active filter performance. Also, the direct power control method has found 

application in active filters, (Chen & Joós, 2008). Specific harmonics can be cancelled out in 

the grid using the selective harmonic elimination method (Lascu et al., 2007). In all cases, the 

goal is to design a simple but robust control system for the filter. Usually, the voltage-source 

is preferred over the current-source to implement the parallel active power filter since it has 

numerous advantages, (Routimo et al., 2007). Using higher voltages in the DC bus is desirable 

and can be achieved with a multilevel inverter (Lin & Yang, 2004). 
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It is clear that the filter dynamics depends on the switching frequency; higher frequencies given 

better results but also higher losses. In particular, selective harmonic elimination methods can 

bring additional performance (Routimo et al., 2007). Also, multilevel based topologies allow 

the APF to reach higher voltages and power and so give the filter the possibility of being 

applied in the power systems domain. 

Based on this review of filters, the composite PPF was proposed for optimum multilevel 

inverter design as it features a cost-effective harmonic-elimination solution, a simple structure, 

reliability and easy implementation. Furthermore, the passive filter has excellent harmonic-

mitigation performance compared to active filters and does not require any complex control. 

In addition, the shunt-tuned and high-pass PPF do not carry full-load current, which 

considerably reduces power loss and component weight and size. 

5.6. Multilevel inverter for the proposed 3D renewable energy platform  

In order to define the ideal multilevel inverter system for our proposed 3D renewable energy 

platform, it is essential to consider the system topology prior to designing and testing. In 

adopting a system topology, a comparison of the three classical multilevel inverter topologies 

namely NPC-MLI; FC-MLI, CHB-MLI have been analysed so as to choose the ideal one that 

fit the aim of this research. A comparison of the Neutral point lamped -MLI; Flying capacitor-

MLI, and Cascaded High Bridge-MLI can be found in table 5-5 below. 

Figure 34 provides a complete general block diagram for the proposed methodology adopted 

for the MLI design. The application of this should enable us to have a complete performance 

evaluation of the MLI for our proposed 3D renewable energy platform  

 

 

Figure 5-34 General flow model of proposed methodology for MLI design 
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5.6.1. COMPARISON OF CLASSICAL MULTILEVEL INVERTER   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-5 multilevel inverter topologies (Almari B, 2016) 

CLASSIC MULTILEVEL INVERTERS COMPARISON  

B. Alamri and M. Darwish, "Enhancing Power Quality of Distributed Generator Systems Using Multilevel 

VSC", ResCon, Brunel University, London, UK, 2013.  

[Accessed 10 May 2017]. 
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We could deduct from the findings that for high-power and medium-voltage applications the 

most ideal topology is the CHB-MLI which in essence represents a realistic and feasible 

topology compared to other multilevel topologies. The choice of this is mainly due to the fact 

that in contrast with the use of a two, three or five-level inverter a series of connected 

semiconductors contributes to unequal voltage-sharing between connected devices therefore 

bringing reliability issues within the entire system ((Lascu et al., 2007).Considering the neutral-

point clamped multilevel inverter (NPC-MLI), it is easy to see that its application is mostly 

suitable for three levels MLI  and design become more complex due to the number of diodes 

with higher levels MLI. Similar operation and designs are observed with the flying capacitor 

(FC-MLI) as it needs more capacitors for higher levels leaving us with a clear conclusion that  

The CHB-MLI topology is ideal for high-power and high-voltage applications. 

5.6.2. MODULATION INDEX  
As previously discussed, the application of heuristic algorithms provides an efficient solution 

to SHE challenges than iterative methods. Using MATLAB, simulations are carried out to 

eliminate low-order harmonics and minimise the %THD by varying the modulation index from 

0 to 1. Figure 5-35 shows the application of heuristic solutions thus NR, PSO, GA in order to 

define which best finds a solution for the entire modulation index. The simulation results as 

shown in figure 35 proves that the NR was the least heuristic solution for the entire modulation 

index whilst GA and PSO were able to effectively do that. Nevertheless, results shows that GA 

has significant advantages as aforementioned and in this case GA is said to be the most efficient 

solution for the entire modulation index. We can then conclude by saying that the proposed 

GA could solve the switching angles even in higher levels and implement the optimal SHE 

control for different inverter levels. 

 

Figure 5-35 Minimum THD obtained for defining SHE solutions using NR-PSO-GA 
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Applying GA over a number of Inverter number of levels, we were able to generate GA’s 

response and confirm its ability to provide an efficient solution for our proposed 3D renewable 

energy platform and compared this with the IEEE 519 standard. Figure 5-36 shows at 

modulation index 0.9 the THD percentage against the number of levels. Our findings shows 

that when the SHE control is applied, the %THD of the inverter was less than 5%, which is the 

IEEE-519 standard recommendation for a nine-level inverter and above. 

 

Figure 5-36 %THD versus inverter number of levels at Modulation Index 0.9 

5.6.3. SWITCHING ANGLES  
Multilevel inverters provide a less THD than other inverters and it can improve with more 

levels added. One of the drawbacks is the calculation of the switching angles since the more 

levels are needed, more angles must be calculated and more time is spent in calculation as 

explained in section 5.7.5 of this report. One of the most used techniques for finding the 

switching angles is to use the Fourier coefficients to eliminate some harmonics. The number 

of harmonics to be eliminated is equal to the number of switching angles to be calculated minus 

one, with this technique. THD for p switching angles is 

𝑇𝐻𝐷 =
√𝜋2𝑃2

8 −
𝜋
4

∑ (2𝑖 + 1)𝑎𝑖+1 − (∑ 𝐶𝑜𝑠(𝛼𝑖))2𝑝
𝑖=1

𝑃−1
𝐼=0

(∑ 𝐶𝑜𝑠(𝛼𝑖)
𝑝
𝑖=1

… … (57) 

Equation (5.7) can be used to minimize THD assuming0 < 𝛼𝑖 < 𝛼𝑖+1 < 𝜋
2⁄ , 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑝. 

A computer program can be used to find the switching angles for the minimum THD using the 

same equation, nevertheless the amount of time of calculation increases with the number of 
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angles. Calculation of THD requires computing of p cosines, two square roots, 2p summations, 

p+2 multiplications, and one division, where p is the number of angles to be calculated. 

Calculation of the minimum THD depends on angle resolution. For one degree resolution the 

first angle goes from 1° to 89° in steps of 1°, the second angle goes from 2° to 89° and so on, 

so that for p angles it is needed∏ (90 − 𝑛)/𝑝𝑝
𝑛=1 . The flowchart of the program is shown in 

figure 37. The more switching angles are needed, the more for loops must be nested and the 

program can spent a lot of time running. Applying this technique %𝑇𝐻𝐷𝑀𝑖𝑛 = 121.62 ×

𝑚−1.479  where 𝑚 is the number of inverter levels. Table 6 and 7 provide the optimum 

switching angles from 3 to 31 different inverter levels solved by Genetic algorithms with a 

selected modulation index of 0.95 and 0.90 as they have the least %THD as earlier shown in 

table 4.  

 

Figure 5-37 Flowchart for switching angles calculation 
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No of 

levels 

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

𝜶𝟏 29.67 9.11 5.56 5.30 3.13 3.54 3.27 2.91 3.82 1.12 2.34 1.62 1.25 1.79 0.72 

𝜶𝟐  26.73 16.68 11.80 8.89 8.55 7.83 5.54 4.29 5.12 3.87 3.96 4.03 2.91 3.26 

𝜶𝟑   35.81 23.07 18.18 12.86 9.65 10.04 8.52 7.95 7.32 7.04 5.69 5.83 5.73 

𝜶𝟒    38.67 27.31 23.08 18.65 14.96 13.44 11.65 10.65 9.22 9.10 8.13 7.71 

𝜶𝟓     41.00 28.83 23.01 19.95 17.25 14.68 13.01 12.66 10.57 10.63 10.10 

𝜶𝟔      42.35 31.62 26.18 22.44 20.24 17.36 14.93 14.12 12.25 11.52 

𝜶𝟕       41.49 32.66 27.73 23.69 21.13 18.97 16.94 16.19 14.78 

𝜶𝟖        42.39 34.28 28.88 25.34 22.67 20.62 17.74 16.13 

𝜶𝟗         43.20 35.12 30.01 26.76 23.54 22.30 20.03 

𝜶𝟏𝟎          43.5 35.8 31.71 27.83 24.22 22.58 

𝜶𝟏𝟏           43.1 36.55 31.72 28.74 25.93 

𝜶𝟏𝟐            43.46 36.94 32.26 29.26 

𝜶𝟏𝟑             43.53 37.44 33.05 

𝜶𝟏𝟒              43.41 37.73 

𝜶𝟏𝟓               43.18 

%THD 29.78 8.8 5.31 4.70 3.66 2.31 2.71 1.79 1.76 1.31 1.06 1.01 0.95 1.00 1.08 

Table 5-6 Optimum SHE Switching Angles for t Inverter Levels (3-31) with Mi =0.95, Solved by GA 

No of 

levels 

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

𝜶𝟏 29.69 9.03 5.09 3.29 3.67 4.19 1.52 2.74 2.79 1.23 2.70 0.94 0.64 1.22 1.69 

𝜶𝟐  26.82 16.92 13.24 8.79 8.25 8.48 6.10 4.67 4.65 3.56 4.63 4.15 3.20 2.95 

𝜶𝟑   35.71 23.14 19.89 13.08 10.46 9.80 9.44 9.47 8.00 6.51 6.40 6.71 5.54 

𝜶𝟒    39.96 25.81 23.89 18.63 16.32 13.23 10.56 10.29 9.80 8.53 7.74 8.32 

𝜶𝟓     41.92 28.32 24.21 20.89 18.65 16.28 15.02 13.04 12.91 11.17 9.43 

𝜶𝟔      43.14 32.32 27.07 23.07 20.37 18.24 17.02 14.93 14.80 13.03 

𝜶𝟕       42.88 34.55 28.89 24.75 22.38 19.82 18.65 16.52 15.80 
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𝜶𝟖        44.94 35.78 30.61 26.97 23.93 22.03 20.26 18.25 

𝜶𝟗         45.24 36.34 31.83 28.20 25.42 23.35 21.84 

𝜶𝟏𝟎          45.11 38.32 32.77 29.87 26.80 24.05 

𝜶𝟏𝟏           46.82 39.04 34.25 31.10 28.32 

𝜶𝟏𝟐            47.21 40.53 35.14 31.63 

𝜶𝟏𝟑             48.39 41.30 36.08 

𝜶𝟏𝟒              48.83 41.46 

𝜶𝟏𝟓               47.86 

%THD 29.78 8.83 5.28 4.70 3.45 2.85 2.97 1.68 1.34 0.99 0.96 0.74 0.63 0.64 0.45 

Table 5-7 Optimum SHE Switching Angles for t Inverter Levels (3-31) with Mi =0.90, Solved by GA 

Table 5-6 and 5-7 show the optimum SHE switching angles with modulation indexes 0.95 and 

0.90. The results validation has been done considering the output voltage waveforms of inverter 

levels varying from 3 to 31 which were modelled and simulated (please refer to Appendix). 

5.6.4. PROPOSED PASSIVE FILTER   
 

In order to propose an ideal filter that would serve as a base line for the design of a 3D 

renewable energy platform, it is essential to understand electrical distribution network in Togo. 

Figure 5-38 shows Togo power system from the generating station to consumer’s home through 

a very systematic distribution network. Depending on distribution transformers, 22, 11 or 

6.6Kv are used therefore an example of a PPF fit to handle either 6.6,11 or 22KV would suffice 

in validating the PPF.  We therefore consider a 5 MW load at a lagging power factor of 0.8 at 

the output of CHB-MLI with a rated line-to-line voltage of 11 kV. The ultimate outcome of 

this, would be to have a PPF at the output of a 17, 19 and 21 levels of CHB-MLI topologies 

where its implementation should improve the lagging power factor to between (0.92 and 0.98) 

and reduce the %THD in general.  
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Figure 5-38 Togo Power system  

Proposed Passive power filter for 17 Level CHB-MLI (11KV L-L) 

Filter Type High pass 

Order >19th 

Size (KVar) 2100 

C(µF) 18.41 

L(mH) 1.52 

R(Ω) 9.1 

Quality factor 5 

Total Filter Size (kVar) 2100 

THD Before Filter (%) 3.06 

THD After Filter (%) 1.31 

Table 5-8 Proposed Passive power filter for 17 Level CHB-MLI (11KV L-L) 

TOGO POWER DISTRIBUTION NETWORK  

 Compagnie Energie Electrique du Togo. 2018.  [ONLINE] Available at: http://www.ceet.tg/tg/. [Accessed 10 

August 2016]. 

CONTENT REMOVED FOR COPYRIGHT REASONS  

http://www.ceet.tg/tg/
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Figure 5-39 Output three-phase voltage before filtering 

 

Figure 5-40 Output three-phase voltage after filtering 

Proposed Passive power filter for 19 Level CHB-MLI (11KV L-L) 

Filter Type High pass 

Order >19th 

Size (KVar) 1800 

C(µF) 15.78 

L(mH) 1.78 

R(Ω) 10.61 
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Quality factor 5 

Total Filter Size (kVar) 1800 

THD Before Filter (%) 2.82 

THD After Filter (%) 1.25 

Table 5-9 Proposed Passive power filter for 19 Level CHB-MLI (11KV L-L) 

 

Figure 5-41 Output three-phase voltage before filtering 

 

Figure 5-42 Output three-phase voltage after filtering 
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Proposed Passive power filter for 21 Level CHB-MLI (11KV L-L) 

Filter Type High pass 

Order >19th 

Size (KVar) 1750 

C(µF) 1.83 

L(mH) 15.34 

R(Ω) 10.91 

Quality factor 5 

Total Filter Size (kVar) 1750 

THD Before Filter (%) 2.64 

THD After Filter (%) 1.29 

Table 5-10 Proposed Passive power filter for 21 Level CHB-MLI (11KV L-L) 

 

Figure 5-43 Output three-phase voltage before filtering 
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Figure 5--44 Output three-phase voltage after filtering (B Almari, 2016) 

Figure 5-39 to 5-44 goes to show the great impact of the PPF over the three phase output 

voltages. Considering the simulations results, we can say that the three-phase line-to-line 

voltage waveforms and the associated harmonic profile provides basis for choosing the 21 level 

multilevel inverter for our design considering its lowest %THD and also the cost associated in 

designing it. A study conducted on CHB-MLI using SHE further confirms this choice as 

provided in figure 45 below. 

 

Figure 5--45 Key Measures of Performance Calculated for Designed Inverters at Different Levels (B Almari et al, 2017) 
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5.7. SIMULINK MODEL OF PROPOSED 21 LEVEL INVERTER 

 

Figure 5-46 Simulink model of proposed 21 level inverter 
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Figure 5-47 simulated three-phase output voltage analysis for 21-level CHB-MLI 
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Figure 5-48 simulated three-phase harmonic distortion analysis for 21-level CHB-MLI 

1- The proposed model as shown in figure 5-46 uses only 11 switches and diodes with 

four asymmetrical voltage sources to 21 levels in the output voltage waveforms. The 

main inverter produces only positive voltage of levels 1 to 10. The auxiliary inverter 

converters it positive ten levels, negative ten levels along with one zero level to produce 

an output of 21 levels at their output voltage. Figure 5-46 shows the simulation circuit 

of the proposed inverter. It has 11 switches numbered from S1 to S11. The Switches S1 

to S7, along with three diodes D1, D2 and D3 with four asymmetric voltage sources 

which forms the main inverter whose output will be in positive regions only. The switch 

S8 to S11 forms the auxiliary inverter which is a PWM 3D converter. When switch S8 

and S11 is on it produce the positive voltage levels and when S9 and S10 are on it 

produces the negative voltage. Figure 5-48 shows the total harmonic distortion present 

in the output voltage of the proposed multilevel inverter reveals that THD has been 

reduced by using the proposed PPF. The proposed asymmetric cascaded multilevel 

inverter produces multilevel output with minimum number of power semiconductor 

device. The simulation also proves that if any failure occurs in any one of the switches 

it is still capable of producing multiple voltage levels without shunt downing the entire 

systems. The multilevel inverter was successfully controlled by using GA and was used 

to achieve control of the multilevel output steps both in linear and nonlinear loads. The 
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simulation result also proves the effectiveness of the proposed multilevel inverter which 

uses less number of power semiconductor devices compared to the conventional one 

5.8. Summary 
 

The Computer Aided Design, simulation and Modelling of the Backend of System (BoS) of 

the proposed renewable energy platform i.e. control system, multi-level converted and relevant 

filtration system have been investigated and presented in this chapter. The investigation and 

work carried out recommended that the possible BoS that can suit the proposed 3D renewable 

energy system are: 

 The adoption of Genetic algorithms and the Particle Swarm Optimisation in this case 

were much suited in minimizing the THD as compared to the Newton Raphson method 

but for the 21 level multilevel inverter, the THD was lower hence the Genetic 

algorithms were chosen 

 The adoption of the CHB-MLI was ideal for connecting renewable energy sources with 

an AC grid, because of the need for separate dc sources, which is the case in applications 

such as photovoltaics or fuel cells. Cascaded inverters have also been proposed for use 

as the main traction drive in electric vehicles, where several batteries or ultra-capacitors 

are well suited to serve as separate DC sources  

 

The simulation is done in various nonlinear load conditions. The proportional 

integral control based compensating cascaded passive filter made balance responsibility even 

when the system is nonlinear load.  FFT analysis of the passive filter brings the THD of the 

source current less than 5% as recommended with IEEE 519 1992 and IEC 610003 

standards harmonic under nonlinear and/or unbalanced load conditions. 

 

The multilevel system including the proposed control method is validated through extensive 

simulation with results revealing that the cascaded passive power filter effectively 

filters the harmonics and compensates reactive volt amperes. The measured total 

harmonic distortion of the source currents was found to be 2.36% that is 

in compliance with IEEE 5191992 and IEC 610003 standards for harmonics 
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CHAPTER 6- INTEGRATION OF THE PROPOSED RENEWABLE ENERGY 

PLATFORM INTO SMART GRID  
__________________________________________________________________________________ 

 

6.1. INTRODUCTION  
 

This chapter introduces system integration of the proposed renewable energy platform into the 

smart grid. The chapter gives a good introduction about the smart grids, relevant technology 

development, and the steps that can be taken to integrate the proposed renewable energy 

platform into the grids. The micro-grid is formed by interconnection of small voltage 

generators, storage and controllable load distribution systems and can be connected to the main 

power network or be operated autonomously, similar to power systems of physical islands. For 

controlling a micro-grid some strategies can be used, namely; Supervisor Control, Local 

Decentralized Control, Centralized/decentralized Load Dispatching. Usually these strategies 

can be combined in applications which results in a number of combinations of possible to 

control types.  The Chapter concluded with a computer simulation and analysis model of the 

system that shows the dynamic behaviour of the proposed model which is examined under 

different operating conditions. 

6.2.  SMART GRID SYSTEM  

Smart grid is a concept by which the existing electrical grid infrastructure is being upgraded 

with integration of multiple technologies such as, a two-way power flow, two-way 

communication, automated sensors, advanced automated controls and forecasting system. 

Smart grid enables interaction between the consumer and utility which allow the optimal 

usage of energy based on environmental, price preferences and system technical issues. This 

enables the grid to be more reliable, efficient and secure, while reducing greenhouse gases. 

This paper presents a survey of the recent literature on integrating renewable energy sources 

into smart grid system. Various management objectives, such as improving energy efficiency, 

maximizing utilization, reducing cost, and controlling emission have been explored. 

Considering the increasing demand in energy and the persistent dependency on fossil fuel it 

has become important that efforts be conjugated into the adoption of renewable energy as a 

sustainable way of supplying energy but also cutting down on carbon emission (Zhang, P 

2010). The dependency on renewable energy therefore made important, it must be understood 
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that its integration of these intermitted nature sources into existing electrical grid would need 

serious improvements and modifications which must be considered in order for the system to 

be efficient.   

Smart grid therefore brings efficient monitoring, system management, control and 

communication capabilities to the national electrical power generation and delivery 

infrastructure to meet grid demand around as efficiently and economically as possible. With 

the use of smart grid, smart home technologies and time-varying energy pricing models, there 

is need for smart energy management system (Siano P et al, 2012). The application of smart 

grid system therefore responds to varying cost of energy, by reducing or shading the peak 

demand automatically, reducing the number of required standby power plants, and therefore 

saving utility and user costs which are very much some of the advantages of smart grid 

systems (variaya P, 2011). A comparison between the traditional grid and smart grid is shown 

in Fig.6.1 below 

 

 

 

 

 

 

 

 

 

Figure 6-1 from traditional to Smart grid (ABB, 2015) 

One of the advantages of using smarter grids is its ability to be a Two-way communication. In 

Smart grid systems, a two-way communication facilitates the cooperation between utility 

company and subscribers. This cooperation increases the reliability and efficiency of the power 

grid, minimizes power loss, vanishes peak hours, and minimizes subscriber’s total electricity 

cost (Z Fan et al, 2011). Demand-Side Management (DSM) is commonly a program used to 

manage energy consumption at the subscriber’s side. Residential homes usually use DSM 

SMART GRID VERSUS TRADITIONAL GRIDS 

ASEA BROWB BOVERI| ABB. 2018. Power grid | ABB. [ONLINE] Available 

at: https://new.abb.com/grid/stronger-smarter-greener/digital-grid. [Accessed 10 September 

2018]. 

CONTENT REMOVED FOR COPYRIGHT REASONS  

https://new.abb.com/grid/stronger-smarter-greener/digital-grid
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programs to manage their consumption patterns according to varying electricity prices over 

time (P siano, 2012). Subscribers can participate in DSM in different ways like reducing their 

load demand, shift their load demand to off-peak hours, and rely on renewable energy to limit 

their dependence on grid energy. The technology of smart grid requires the integration of the 

knowledge and expertise from many different fields to design an efficient system. One of these 

fields is mathematical optimization. Linear Programming is a mathematical optimization 

method introduced by George B. Dantzig in 1947 (Jarvis JJ et al, 2011). It is used to optimize 

(maximize or minimize) a linear objective function, under linear equality and linear inequality 

constraints. Renewable energy is a promising option for electricity generation especially solar 

PV, wind and hydro energy systems as they are clean energy sources. Today, the integration 

of renewable energy sources into smart grid system is increasingly gaining importance and 

widely studied by many researchers (De Castro L et al, 2013). A Renewable Energy and Smart 

Grid Interfacing Options Integrating renewable energy sources into the smart grid system 

enables the reduction of the cost associated with sources required for building extra power 

generators, improves power quality and reliability  

Figure 2 shows a clear difference between the traditional grid and the smart grid system. The 

parameters of the traditional gird definitely pose challenges to the implementation of renewable 

energy system due to the fact that it uses a number of sensors application only leading to 

automation of the system being inefficient and also its features allow efficient performance 

only under a centralised power generation system. Renewable energy power generation is 

dependent on nature hence couldn’t be considered as a stable power production system hence 

decentralisation of power plants becomes a strategic approach towards efficiently avoiding 

losses during distribution.  
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Figure 6-2 Smart grid challenges and benefits 

There are many challenges that can be addressed based on smart grid technology which can be 

summarized in Fig 6-2. Renewable energy integration and energy management are the major 

challenges for developers and practitioners of smart grid system (Fadaeenejad, M., et al, 2014).  

6.3. SMART GRID TECHNOLOGY DEVELOPMENT   

 

Smart grid control gives the capability of maintaining system operation, predicting system 

behaviour, anticipatory operation, reduce the cost of operation, handling distributed resource, 

security, stochastic demand and optimal response to smart appliances (Shahraeini, M., et al, 

2010) The self-managing and reliable smart grid is seen as the future of protection and control 

systems (Liserre, M., et a, 2010). Smart grid systems consist of digitally based sensing, 

communications, and control technologies and field devices that function to coordinate 

multiple electric grid processes. A more intelligent grid includes the application of information 

technology systems to handle new data and permit utilities to more effectively and dynamically 

manage grid operations. The information provided by smart grid systems also enables 

customers to make informed choices about the way they manage energy use. 
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Figure 6-3 Smart Grid control Architecture (ESNA, 2015) 

Figure 3 shows the basic smart grid architecture when implemented as an energy control 

system. The true smart grid creates an energy network that will detect and address emerging 

problems in the system before they negatively affect service. It will be able to respond to local 

and system-wide inputs, provide much more information about broader system problems and, 

most importantly, be able to immediately react to or resolve problems that do occur.  

For example, demand response (DR) is becoming instrumental in managing the growing 

demand for energy, especially where it is combined with new and innovative pricing plans and 

consumer energy use portals. The combination of heightened awareness, an ability to track and 

manage energy use and financial incentives will give consumers a sense of “energy 

empowerment” that they have never before experienced. This requires smart metering and 

smart grid systems that offer distributed local intelligence at the neighbourhood transformer to 

effectively manage the edge of the grid thus where decentralized generation, electrical vehicles 

and customers must constructively co-exist. 

6.4. DEPLOYMENT AND INTEGRATION OF DISTRIBUTED RESOURCES AND 

GENERATION 

Distributed energy resources are small sources of power that can help meet regular power 

demand. Distributed energy resources such as storage and renewable technologies facilitate the 

transition to Smart Grids. The coming in of renewable energy sources as distributed generators 

can help mitigate the problems of depleting fossil reserves and the growing consumer demand. 

ARCHITECTURE OF A SMART GRID CONTROL SYSTEM 

ESNA a vision for the future grid. 2018. ESNA a vision for the future grid. [ONLINE] Available 

at: http://www.esna.org/2011/october/article21/index.html. [Accessed 10 September 2018]. 

CONTENT REMOVED FOR COPYRIGHT REASONS  

http://www.esna.org/2011/october/article21/index.html


205 
 

Sensitivity: Internal 

Distributed generation which include wind generators, photovoltaic generators, hydropower 

generators and battery storage systems may incorporate thermal generation and electric 

vehicles. The aggregation of these sources, however, also means that tremendous amounts of 

data would need to be handled and processed. Empirical evidence also shows that individual 

intelligent nodes control of a number of electric assets within the grid, instead of being 

centralized could be a key solution to resolving smart grid challenges. (Penya et al, 2012)  

While many renewable energy studies have been conducted to explore additional sources of 

clean energy, integrating renewable energy sources into the power system is one of the 

challenges in the modernization of the electric grid and making the grid smart. Some grids are 

already highly congested and moving power from wind farms into the grid for consumption 

can be difficult. Renewable energy sources are intermittent and inherently variable. 

Traditionally, electricity has flowed one way, from a power station to a customer. With 

additional sources coming from alternative sources, electricity has to enter the grid from 

multiple locations. Grid automation, two-way power flow and modern controls are needed to 

bring wind, solar and other alternative sources into the distribution grid and move it to its 

destinations. Coordinated efforts are needed to adapt solar photovoltaic, wind, hydro energies 

and new devices in Smart Grid systems in a smart way that they must be able to be easily 

integrated with existing equipment and communicate freely. Computer tools for analysing the 

integration of renewable energy into smart grids are also available. These energy tools are 

diverse in terms of applications, corresponding technologies and objectives they realize but due 

to the research aim and objectives, these will not be critically analysed. 

6.5. POSSIBILITIES OF INTEGRATING OF THE 3D RENEWABLE ENERGY 

PLATFORM INTO A SMART GRID 

 

Evidently, the findings based on the integration of renewable energy into smart grid is a very 

smart and futuristic solution that will help in meeting current and future energy challenges 

associated with fossil fuel power generation and its subsequent exponential and continuously 

increasing carbon dioxide level. The 3D renewable energy platform is made up of distributed 

and varied generation system for which a buck converter was implemented in its control 

strategy so as to ensure a minimum level of power delivery constantly as long as a single energy 

is being harnessed from either of the 3 sources or jointly.   
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Empirical evidences show that the integration of renewable energy into smart grid system is 

definitely possible, an example of this this is the work of (Penya et al, 2012) on the distributed 

semantic architecture for smart grid where the implementation of renewable energy power 

generations are introduced into smart grid system through individual intelligent nodes control. 

Although made easy when being implemented into a new smart grid system, similar operations 

in existing grid poses challenges such as  

 Managing variably and uncertainty during the continuous balancing of the system  

 Balancing supply and demand during generation scarcity and surplus situations  

 Challenges related to high peak load during periods of low variable RE production are 

less technically demanding and are primarily economic challenges related to market 

solutions chosen to remunerate reserve capacity or demand response activities. 

This being said, it goes to show that although feasible variable renewable energy sources are 

uncertain and more variable than conventional generators. System operators and energy 

planners therefore must overcome several challenges when integrating high penetrations of 

variable renewable energy. These challenges can be roughly grouped as either technical or 

economic, policy, and regulatory in nature. Solutions to four specific challenges are emerging, 

and will be important to watch in coming years:  

• Technical: Managing variability and uncertainty during the continuous balancing of the 

system 

• Technical: Balancing supply and demand during generation scarcity and surplus 

situations  

• Economic, Policy, and Regulatory: Deferring or avoiding capital-intensive grid 

upgrades  

• Economic, Policy, and Regulatory: Enhancing Renewable Energy project returns to 

enhance the investment environment.  

Fortunately, there already exist a variety of potential technology and practical solutions that 

can be used to overcome these challenges, such as improved forecasting, smart inverters, 

demand response, storage (distributed and large-scale), real-time system awareness, and 

dynamic line rating. New advanced energy management protocols in the transmission and 

distribution operator interfaces can also support flexible integration of variable Renewable 
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Energy hence it is quite possible that a large scale version of our 3D renewable energy platform 

may be a contributor to defining solutions to current and future energy challenges. 

This 3D renewable energy platform integration into smart grids would contribute to the solution 

of the vulnerability of the power system and its potential environmental and social impacts can 

be mitigated through diversification of the hybrid power generation. Diversity is attained when 

the hybrid generation has variety in the number of options that can utilised, disparity among 

the options (different generation sources and technologies), and balance in the contribution of 

the options (K, Moglo et al, 2016). The importance of hybrid systems has therefore grown as 

they appeared to be the right solution for a clean distributed energy production. It has to be 

mentioned that new implementations such as hybrid systems, require special attention on 

analysis and modelling.  The system integration therefore focuses on the development and 

optimisation of the possible business and technical model of 3D platform.  

6.5.1. PV system  

The conditions for Photovoltaic (PV) cell measurement are standardized for comparison 

purposes but may not reflect actual operating conditions. Considering a review of few 

literatures, the best PV cell efficiencies are estimated at 24.2 % (GPPE, 2017) and the highest 

efficiencies devices demonstrate few practical limits without regards to cost or manufacturing 

considerations hence a simulation of the PV cells at average testing conditions were carried out 

and presented with an average output voltage of 22.5 volts at a temperature ranging from 0◦ to 

25◦C. Photovoltaic systems are systems made up of solar panel which converts light emitted 

from the sun to electrical energy. Each panels used is rated by its own unique DC output power. 

Currently the best commercial solar panel efficiency is around 17.4%. PV system output for 

micro scale power system can be expected to be around 24 V and upwards depending on cell 

sizes and irradiance levels. Considering our intended 3D renewable energy platform, a sample 

panel was chosen for which the technical details would be used to define its efficiency and a 

MATLAB/ Simulink simulation would be carried out to evaluate its output. These data could 

be used for Practical implementation for the 3D platform 
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Figure 6-4 The PV arrays and technical details 

 

 

The technical details of the solar panel 

provided are ideal for micro power generation considering the 

maximum power output and the current magnitude.  

MATLAB/ Simulink Design & Simulation 

Since the field tests can be expensive and depend primarily on weather conditions it is very 

convenient to have simulation models to enable work at any time. For this reason the research 

investigates a simple one-diode solar cell mathematical model, which was implemented 

applying MATLAB script. The model can be considered as an easy, simple, and fast tool for 

characterization of different types of solar cells, as well as, determines the environmental 

conditions effect on the operation of the proposed system.  It can conclude that the changes in 

irradiation mainly affect the output current, while the changes in temperature mainly influence 

the output voltage. 

 

 

Technical details 

Maximum power 20 watts 

Nominal voltage 12 volts  

Maximum voltage 17.6 volts 

Open circuit voltage 21.8 volts 

Maximum current 1.14 Amps 

Short circuit current 1.25A 

Maximum system voltage 600 volt 

 

Dimensions 

length 24 ½ inch 

Width 10 ¾ inch 

Thickness 1  inch  

Glass thickness 3.2 mm 

Maximum wind resistance 65 m/s -145 MPH 

Table 6-1PV cell Technical data 
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Solar Converter System 

 

The controller senses the grid voltage and current and gives the corresponding grid active and 

reactive power. The power controller senses the inverter output voltage and current and gives 

the corresponding active, reactive power. The current controller is mainly used for getting a 

triggering pulse as per the reference value. Using the Proportional Integral (PI) controller as 

shown in Figure 4(a) the reference current (Idref) is obtained with the load voltage, load current 

which is used to determine the RMS value of the load. By using PI controller we can get 

quadrature axis reference current which is another input of current controller. 

The single stage solar converter model simulates one complete AC cycle for a specified level 

of solar irradiance and corresponding optimal DC voltage and AC RMS current. Using this 

model, the optimal values have been determined as 23V DC and 3.15A AC for an irradiance 

of 1000W/m2 and panel temperature of 33 degrees Celsius. Efficiency is determined in two 

independent ways. The first compares the ratio of AC power out to DC power in. The second 

calculates losses by component by making use of Simscape logging. The small difference in 

calculated efficiency value is due to differences between trapezoidal integration used by the 

script and the greater accuracy achieved by the Simulink variable-step solver. 

 

Figure 6-5 PV system  
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(a) Output Current (I) 

 

(b)Output power (w) 

 

                                                            (c) Output Voltage (V) 

Figure 6-6 a) Current, (b) Power, (c) Output Voltage characteristics 



211 
 

Sensitivity: Internal 

The characteristics of Solar PV system behaviour have been developed. The results of the solar 

PV system provide the current and the inverter tracks the reference current from the solar PV 

and supplies to the grid. The simulation of the power converter shown in Figure 4 shows the 

representation of the PV system. The simulation shows the DC voltage being the first 

simulation, the Demanded AC RMS current, the AC voltage and AC current. The simulated 

PV module circuit helps in understanding the PV characteristics, DC to DC converter 

topologies, component calculation & circuit design. A step by step procedure of modelling the 

PV module is shown. In the simulation model, the curve between P-V & V-I is shown in Figure 

6-6 for varying temperature & varying irradiance. It was then interfaced with a buck-boost 

converter. The results obtained from the model show close correspondence to manufacturer’s 

curve. The results as it can be seen provides a clear and concise understanding of the I-V and 

P-V characteristics of PV module which will serve as the model for the 3D design modelling  

6.5.2. Hydro system  

Evaluation of the Hydro system: 

This section focuses on the analysis of the power generation feasibility of both a pump as 

turbine (PAT) and an experimental propeller turbine, when applied to water supply systems. 

This is completed through an analysis of the electrical generation aspects of the PAT’s 

induction motor and of a permanent magnet DC motor, which was connected to the propeller 

turbine. The collected data allows for parameter optimization, adequate generator choice and 

computational modelling. These tests constitute a good sample of the range of applicability of 

small scale turbines as valid solutions for micro-hydro systems. It is also possible to consider 

multiple scenarios, such as rescaling/resizing, for larger turbines and systems, and the use of 

power electronics for further efficiency enhancing. 

6.5.3. Hydro Turbine modelling 

The free flows of water caused due to gravity from higher to lower geodesic points have various 

yet specific kinetic and potential energies.  For  a  stationary hydro system,  lossless  and  

friction- free flow  with incompressibility are mostly experienced (K Moglo et al, 2016), the  

difference of energy  between  the  two  geodesic  points  can  be  calculated  using  Bernoulli 

pressure equation: 

𝑝 + 𝜌𝑤𝑎𝑡𝑒𝑟𝑔ℎ +  +𝜌𝑤𝑎𝑡𝑒𝑟𝑣𝑤𝑎𝑡𝑒𝑟
2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 … … … . . (58) 
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Bernoulli’s equation  can  be  transformed  so  that  the  first,  second  and  third  term  expresses  

the  pressure  level,  the  level of the site and the water velocity level respectively. 

𝑝

𝜌𝑤𝑎𝑡𝑒𝑟𝑔
+ ℎ +

1

2

𝑣𝑤𝑎𝑡𝑒𝑟
2

𝑔
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

The practical difference in head measurement ( ℎ𝑟 ) can be defined through a gradient 

definition of the difference in pressure, in height and in velocity of the water flow: 

ℎ𝑟 =
𝑝2 − 𝑝1

𝜌𝑤𝑎𝑡𝑒𝑟𝑔
+ ( ℎ2 + ℎ1) +   

𝑣𝑤𝑎𝑡𝑒𝑟1
2 −  𝑣𝑤𝑎𝑡𝑒𝑟2

2

2𝑔
… … … . (59) 

Considering Bernoulli’s pressure equation, the power generated by the water could be 

expressed as 𝑃𝑤𝑎𝑡𝑒𝑟  which magnitude can actually be determined by using: 

𝑃𝑤𝑎𝑡𝑒𝑟 =  𝜌𝑤𝑎𝑡𝑒𝑟 𝑔𝑞𝑤𝑎𝑡𝑒𝑟ℎ𝑟 … … … … (60)  

“𝑞𝑤𝑎𝑡𝑒𝑟” considered as the volumetric related flow rate, one can then use the Bernoulli’s 

equation to determine the power generated considering the volume of flow and the practical 

head. One must then consider on a more practical approach two different heads of the river in 

order to define the power by doing: 

𝑃𝑤𝑎𝑡𝑒𝑟 =  𝜌𝑤𝑎𝑡𝑒𝑟 𝑔𝑞𝑤𝑎𝑡𝑒𝑟  ( ℎ2 − ℎ1) 

Considering the Micro hydro turbine, the energy generated through the rotational movement 

of the turbines is converted into a mechanical power with some micro losses during conversion 

described by the turbine efficiency 𝑛𝑡𝑢𝑟𝑏𝑖𝑛𝑒 where the power available at the turbine shaft is 

given as: 

𝑝𝑡𝑢𝑟𝑏𝑖𝑛𝑒 =   𝑛𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝜌𝑤𝑎𝑡𝑒𝑟  𝑔𝑞𝑤𝑎𝑡𝑒𝑟ℎ𝑟  

Where the torque of the turbine can be found by:  

𝑇𝑡𝑢𝑟𝑏𝑖𝑛𝑒= 

𝑝𝑤𝑎𝑡𝑒𝑟

𝜔𝑟
… … … … . (61) 

Where: 𝜔𝑟 represents the rotor angle speed. 

In  micro  hydro  power  generation system such as the one presented in this design,  the  height  

is  kept  constant by the  use of a  fore-bay tank, while the  volume- related  water  flow  can  

be  adjusted  manually  using  an  upstream  guide  vane.  To avoid the repercussions of load 
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variation on the generator dummy load, load controller or ballast load are used for power 

balancing when the system is used as stand-alone. 

 

Figure 6-7 Micro Hydro power induction generator/ turbine (Simulink) 

The modelling and simulation of the micro hydro turbine was carried out done in this paper 

using MALAB/Simulink tools. The simulation results as shown in figure 5 shows that with 

proper choice of governing system, the micro hydropower system leads to proper load sharing, 

constant voltage output and constant speed with variation of  load values. This leads to an 

economical operation of the system. The modelling of this system can be made more accurate 

and attractive by introducing a voltage regulator block, a battery for storage system, a reactive 

power control block … etc. The introduction of a control device block to control the power 

quality of the system may be incorporated in the modelling. Given the results obtained in 

laboratorial testing and due to the nature of water supply systems, the chosen (and simulated) 

control method was the one resorting to flow control valves. The objective of these simulations 

was to control and avoid a runaway situation, which results from a load withdrawal on the 

generator. MATLAB/Simulink was used. The control scheme is described below and the 

simulation results are presented. 
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Figure 6-8 Output waveforms (a) Output voltage of generator (va); (b) Excitation voltage (vf), (c) Speed characteristics vs 
time; (d) Active power 
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The system capacity may be enhanced up to 100kW (maximum limit of micro power 

generation) and other option for connecting other renewable energy sources may be exercised. 

This may be tested for some realistic load patterns of some chosen areas. As it can be noted 

from the output waveforms, active power characteristics Figure 6-8 (d) of the synchronous 

generator, shows a steady state value of 0.6 p.u  i.e. 1800 W which is nothing but the actual 

load connected to the hydro system. It is observed that the steady state is obtained around 27 

sec. To reach the stable operating point on power - angle characteristics, few oscillations 

around this point occurs. This leads to initial overshoots of the power characteristics of the 

micro hydro turbine system. 

6.6. Contra rotation double rotor wind turbine system 
 

The most used and conventional type of wind turbine are made up of large sized wind rotors 

that are known for spawning high outputs even in the presence of moderately strong winds. 

Considering this theory, the relative output of a smaller wind size turbine is micro generated 

as the blades respond mostly to weaker winds. The theory then suggests that the application or 

decision of wind size blades is a direct result of the wind presence and its studies in different 

areas. The conformity of wind turbine size to potential wind circumstances are equipped with 

brakes or pitch control mechanism strategies enabling them to exercise control of turbine 

speeds and protect the generator when in abnormal rotation due to wind speed.  

 

   
 

Figure 6-9 Contra rotation Double rotor wind turbine 
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The contra rotation double wind turbine however is made up of a double rotor wind turbine 

that initially rotates at low wind speed namely but one of the rotors mostly the smaller turbine, 

rotates against the front wind turbine. As wind speed increases, both rotors speed increases but 

the smaller turbines are the rear is even faster due to its smaller size and also due to the direction 

of winds hitting the blade. 

 

Operation of contra rotation double rotor wind turbine  
 

 

  
 

Figure 6-10 Contra rotation Double rotor wind turbine front & rear blades Isometric and front view with Operational mode 

In order to understand the operation of the contra rotation double rotor wind turbine, a 

simulation using computational fluid dynamics  and a 3D Inventor modeling program (Inventor 

2008) version was used for the two and three dimension wind turbine. It then used FLUENT 

DDP in CFD to define the lift, drag and pressure coefficient. The same tool was used to define 

force components which show the impact of velocity increase, wake and wind energy 

turbulence. Considering the aerodynamic analysis conducted, a flow determinant issue was 

found around the distribution of velocity, and pressure variance in axial direction. Initial 

simulation made considered 60cm diameter for the front rotor placed in a wind tunnel of a 

150 × 300 . Initial results showed that flow conditions were steady and front rotor speed 

reached 600 rpm and 3.14 tip speed ratio for the rear rotor. Testing conditions shows that wind 

directions are of a uniform velocity prior to hitting both rotors hence the boundary conditions 

for the rear blade are initial velocity vectors for the front rotor. The pickup boundary Three 

dimension wind turbine rotor is produced using. 
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Simulation results: 

  

Using the 3D FLUENT DDP, the two/three dimension rotors were tested and simulated using 

optimum blade designs methods showing excellent results and similitude. The analysis carried 

out and compared by fluent shows that there is a slight difference between the resultant 

velocities which is indeed normal as the velocity at the rear turbine would essentially be 

different from the front turbine. The calculation result of velocity resultant distribution along 

the blades as well show similar differences where the torque is 15 Nm and the efficiency is ≈ 

34% at 500 rpm. Using numerical simulation Fluent, the torque obtained is approx. 13 Nm and 

the efficiency is ≈29% at 500 rpm. Similarly both efficiencies for the contra rotation double 

rotor wind turbine calculated using calculations and fluent shows similar results and trend. As 

one can deduct from Figure 9, both rear and front rotor have similar order of torque which is 

an ideal performance for this wind system. Considering all, it could say that the methodology 

used for this design analysis and testing is a perfect tool for optimum blade profile where the 

numerical simulation is perfection for preliminary design in order to have estimated design and 

testing characteristic of contra rotation blade span. 

 

 
(a)                                                                     (b) 

 
                                            (c)                                                                                         (d)  

Figure 6-11 (a) Position of pick up velocities & (b; c) torque/efficiency vs rotational speed (Front & rear) (d) efficiency vs 
wind velocity  
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6.7. MATLAB/ SIMULINK DESIGN & SIMULATION   
Isolated micro-grid makes a great sense of supplying power in the area without large power 

grid covers. In this section, an isolated operating micro-grid model is built based on the 

Matlab/Simulink environment, which contains miniature wind power system, PV system and 

energy storage system. In order to improve the quality of electrical energy, a composite control 

method with PI controller and neural network is designed. Simulation result shows the 

presented control method is effective. The 3D system architecture shown in figure 3-15 was 

modelled as such that the primary energy sources with different parameters, and converters 

could easily be integrated making the system an innovative sustainable and smart hybrid system 

with different topologies of the local distribution system and last but not least different types 

of consumers with linear or nonlinear characteristic. It shows the amalgamation of three 

renewable energy sources representing a novel adaptive system for efficient sustainable energy 

production and management. 

Like wind power system, variable step perturbation and observation method is used for tracking 

the maximum power point of the PV generator system, and Boost circuit is also taken for 

stepping the voltage. Energy storage model is established by the super capacitor, and the super 

capacitor is paralleled to DC bus, which is the output of PV generation system and wind power 

system. The super capacitor of DC side can eliminate the ripple by using its energy storage 

characteristics, and it can make the DC voltage has little pulse and to be stable. The super 

capacitor model can be simplified as a serial structure of an ideal capacitor and an equivalent 

resistance, which can also accurately reflect the external electric characteristics in the process 

of charging and discharging. The single phase bridge PWM inverter circuit is selected, and 

IGBT is taken as the switching device. The control aim of inverter is to ensure the stability of 

the micro-grid voltage. PI controller has the virtues of simplexes and easy to be adjusted, so it 

is widely used in the application. Due to the small capacity of the isolated micro-grid, the load 

fluctuation and carrying capacity change in energy storage unit could cause the distortion of 

the voltage. In order to improve the quality of electric energy, a compose method of PI and BP 

neural network is adopted. The prediction model of BP neural network is built firstly. The 

inputs are the DC voltage𝑈𝑑𝑐, filter capacitor voltage𝑈𝑐, inverter voltage𝑈𝑜, inverter current I, 

duty cycle D at the K moment, the estimated inverter voltage Uo and inverter current I at the 

K+1 moment. Three-layer structure is adopted, so the input layer contains 7 neurons, the hidden 

layer contains 9 neurons, and the output layer contains 1 neuron. Tansig function is taken as 

the transfer function of hidden layer, and the purelin function is taken as the transfer function 
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of output layer. Taking the output of the model as a feed forward and add it to the output of the 

single closed-loop PI controller, a compound control method is constructed. 

 

Figure 6-12 3D MATLAB simulation  



220 
 

Sensitivity: Internal 

Figure 6-12 shows the dynamic behaviour of the proposed model which is examined under 

different operating conditions. Real-time measured parameters are used as inputs for the 

developed system. The proposed model and its control strategy offers a proper tool for 

optimizing hybrid power system performance, such that it may be used in smart-grid 

applications.  SIMULINK models are developed; using MATLAB simulations software to 

highlight the characteristics of the output power characteristics. In addition, reactive power 

compensation of the electric grid is included, operating simultaneously and independently of 

the active power generation.  In order to be able to simulate the system, power generation 

blocks (PV, wind / hydro, battery blocks) were used together with measurement tools for 

power, current and voltages. An AC/DC voltage bus bar and voltage regulator blocks were also 

used.  

 
Figure 6-13 Current and Voltage output  

The simulation results show the output of the 3D renewable sustainable micro power station 

for smart grid, house and industrial applications. Figure 6-13 shows the voltage and current 

produced through Simulink simulation generated form the three renewable energy sources (PV, 

wind, hydro). As one can note from the architecture, the energy generated is directly fed into 

the storage “battery” where load power is driven from. This also is ideal for meeting losses in 

the network where the surplus power generated is directly injected into LPN (local public 

network). Active power shows approximately 3 × 104 𝑊 generated for both active and 

reactive power which shows that power compensation within the network is efficiently 

managed with the capacitive bank within the network. The research undertaken to design and 

develop a 3D renewable energy platform for smart grid applications introduces a solution to 

challenges in the energy generation sector which do not only refrain only to the safe supply of 

clean Energy. A major importance for the theoretical study of this innovative systems, based 

on renewable energy is the availability of the models that can be utilized to study the behaviour 
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of hybrid systems and most importantly, computer aided design simulation tools.  As the 

available tools are quite limited, the technical evaluations were presented using the most 

current and up to date model in Simulink. The 3D renewable energy platform architecture is 

presented with initial results showing the importance of the approach and its smart grid 

application advantages. It also demonstrated the challenges that should be considered prior to 

building the system for field test evaluations. To typify this feature, studies were considered 

for the suitability of using solar, wind and hydro resources available in Simulink tool allowing 

the development of the simulation model referred to steady, transient systems, with the 

possibility of active and reactive power flowing evolution.  It is worth noting the importance 

of the presented model considering its usefulness tool in energy management system domain 

and its technological advantages for future sustainable, hybrid, and smart applications 

developments. 

6.8. Design Optimisation and Evaluation of the 3D renewable energy 

platform for Smart Grid Applications 
The design and development of a 3D renewable energy platform for smart grid applications 

focuses on the design optimization process of the station model. It looks at the evaluation of its 

productivity, discussing the possible applications including smart grid application. An 

investigation into the current state of the art of wind, hydro and solar energy conversion system 

have previously been considered and linearization around various outputs and a set of control 

equilibrium techniques is discussed. This is aiming to obtain a linear parameter variable model 

from a nonlinear system regulating the output of the 3D renewable energy platform. The initial 

simulation and practical results of this system based on some experimental measurements of 

the efficiency and possible power level that can be delivered is also presented. 

 

6.8.1. Model description  

A computational hybrid system has been developed, agent based, system modelling and 

simulation method, as a valuable tool for analysis, design and validation of micro-grids. Trying 

to simplify the exposition and the result analysis, and also for didactic reasons, the method is 

applied to a rather simple one. The model has been built in AnyLogic and is composed of 7 

Active Object classes: Battery, Bus, Diesel, Load, Multiplug, PV and Wind besides the Main 

class. Figure 6-17 shows that Once all the objects had been created it is possible to connect 

them and run simulation. Any number objects can be connected to DC bus. The displayed 
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figure represents the AnyLogic simulation window of a simple example with 5 generator 

elements and three loads. 

 

 

Figure 6-14 3D renewable energy platform smart grid integration system and simulation 

Figure 6-14 shows the design of the 3D renewable micro power station implemented into 

“Anylogic” software with a photovoltaic generator (PV), two wind turbines (wind1 and wind2), 

a diesel generator (diesel representing the Hydro system) and a battery as an accumulator. This 

mode of operation is characterized by both generation subsystems set to operate at their 

maximum energy conversion points. Moreover, the battery bank in the system is able to revert 
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its energy flow, acting as a power supplier instead as a recipient of energy. This has been 

introduced as an effective way of meeting power fluctuations and shortcomings of the 

renewable energy sources.  Operation in state Wind, Battery (hydro) is maintained as long as 

the energy available in the battery bank is about a fixed percentage (i.e. 24%) of maximum 

stored energy, otherwise the diesel generator is connected to fulfill the load demand.  

6.9. SUMMARY  
The Smart Grid concept has evolved from a vision into a goal that is slowly being realized. As 

technology grew, devices and systems are able to support the formation of a more intelligent 

grid. Concrete energy policies facilitate Smart Grid initiatives. Smart Grid practices in different 

regions barely indicate competition but rather an unordered community of similar aspirations 

and shared lessons. The basic idea of the Smart Grid is not enough when embarking on this 

complex system. Even with experiences and technologies that are available for reference, the 

Smart Grid pursuit is an investment of time, money and continuous investigation and testing. 

With large efforts put forth for Smart Grid research, the Smart Grid can be more effective in 

helping attain energy sustainability and environmental conservation and preservation. The 

exact future of the Smart Grid may be difficult to predict, but recent innovations display a 

dynamic merging of sectors, mechanics and communities.  

An agent based model for micro-grids has been implemented here using AnyLogic. The model 

is mainly intended to design and try micro-grids and it can be used as a tool for design, 

development and demonstration of control strategies specially Centralized Supervisor Control 

and Decentralized Load-Dispatch Control, design and demonstration of micro-grid operation 

strategies, design and trying of micro-grid communication buses, micro-grid optimal design, 

and economic benefits demonstration. The model can be used to analyse a number of topic 

design of micro-grids like as Design, development and demonstration of control and operation 

strategies, design and trying of micro-grid communication buses, optimal micro-grid design 

and economic benefits demonstration. The system hereby presented will help in balancing out 

short-term fluctuations and ensure sustainable and consistent power supply are supplied as 

needed. Technically the design and development of the 3D renewable energy platform 

represents the amalgamation of smart innovative technologies which today dispels arguments 

that the availability of electricity from renewable energy sources is too dependent on 

meteorological influences. 
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CHAPTER 7 -VALIDATION AND EVALUATION OF THE PROPOSED 

RENEWABLE ENERGY PLATFORM 
__________________________________________________________________________________ 

7.1. INTRODUCTION 

This chapter presents the laboratory validation and evaluation of the proposed renewable 

energy platform. It demonstrates a series of experimental evaluation into the dynamic response 

of the system, stability of the system and its output and control capability as a validation of the 

developed systems. The chapter focuses on the laboratory validation and evaluation of the 

proposed renewable energy platform. The design procedure for this type of renewable energy 

platform is discussed. One of the most innovative approach introduced in this laboratory 

validation and evaluation system is the application of a smart control system able to track for 

each source of the 3D renewable energy platform their maximum delivery point so as to ensure 

maximum efficiency at all stages in power generation and transportation and delivery.  

The control system is applied for the PV system, the Hydro system and the wind turbine. The 

technique implemented is developed so as to ensure that the needs of the output voltage or load 

demand from the back end systems is potentially tracked efficiently and delivered. The use of 

converters are also necessary to step down back end systems voltages and step up the current 

to meeting load demand conditions. With the application of a microcontroller, the PWM (pulse 

width modulation) is configured upon back end systems converters parameters and it’s 

controlled through the algorithms written for the microcontroller so as to deliver maximum 

efficiency.  

7.1.1. SYSTEM ARCHITECTURE OF LABORATORY EVALUATION  

 

Figure 7-1 sustainable renewable micro power station - front end unit 
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The architecture presented above consists of examining renewable energy and its control as a 

viable option and obtaining the maximum amount of ‘green’ energy, thus getting the maximum 

power from the 3D sources at any given time. This is obtained by keeping the 3D power sources 

generated, generating at their Maximum Power Point (MPP) continually. On researching this, 

it has been found that some major factors come into account when the MPP is continually 

trying to deliver its maximum efficiency. This study looks at issues of Maximum Power Point 

Tracking (MPPT) and comes up with a valid solution to overcome the problem and obtain the 

MPP without interruption. To achieve MPPT there are a number of options available to date, 

these are the Perturb and Observe (P&O) MPPT method and Incremental Conductance (IC) 

MPPT method. Extensive research has been carried out on these two MPPT methods and a 

detailed account of the findings is documented.  

7.1.2. POWER SUPPLY  

Power supply used here is made up of a 3D distinctive renewable energy system comprised of 

the wind power generator, hydropower and photovoltaic power generation system as clearly 

expatiated in this report. Its combination has been implemented with the ideology of providing 

an uninterrupted output power to load and through the implementation of smart control system 

meet various load conditions through efficient generations and delivery. This represents the 

system front end as earlier explained and this is backed up by a battery system that stores energy 

generated when load demand is low so as to complement the demand later on when load 

demand increases and natural phenomenon does not allow full power generation from the 3D 

renewable energy platform.  The 3D renewable energy platform generation systems have been 

presented with technical feasibilities covered thereby confirming the potential of each source 

and their relevant output power delivery. It is therefore important to understand each part of 

this controlled system to as to attempt field testing. 

7.1.3. VOLTAGE SENSOR   

For the proposed system, two voltage sensors are used in the setup. One of the voltage sensor 

is connected at the input just after the solar panel terminals, this sensor will provide us with the 

value of the voltage obtained from each of the 3D renewable energy sources and feed it to the 

Arduino analogue input pins. Other sensor including the current sensor are connected from the 

input of the buck converter and measures the voltage being fed the battery so that full tracking 

of the input and output voltages are measured and compared.  
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The voltage sensor is a simple voltage divider that steps down the voltage of the power 

amplifier to something between 0V and 5V so that it can be fed into one of the analogue inputs 

of the Arduino. This will measure the voltage provided by each of the 3D sources. A 100k 

potentiometer is used to achieve this. To calibrate it, 30V was fed into it and a multimeter took 

a voltage reading from the wiper. The potentiometer was then adjusted until the multimeter 

read 4V. Pin 1 is connected to ground, pin 2 in the new output voltage which is connected to 

pin 3 of the Arduino, while pin 3 is the original input voltage.  

7.1.4. BUCK/BOOST CONVERTER  

Buck converter Design Parameters  

Calculations were carried out to find the correct value of components needed. The inductor 

used was an EPCOS product with model number B82721-K with an inductance of 400µH. The 

diode used in the circuit is a schottky diode which has a low forward voltage drop and a fast 

switching action. The capacitor which was used had a value of10µF as calculated above. A 

MOSFET is used in this circuit which acts as a switch. The MOSFET used is a 2.5A, 500V n-

channel MOSFET with model number IRF 820. This requires a gate driver circuit, which 

incorporates a way to drive the gate voltage from the source. The driver chip used to do this is 

a half bridge driver, IRS2003, which outputs reads between 10-20 volts which is perfect to 

drive the MOSFET. The DC to DC buck converter also known as the voltage converter is 

equally based on switching principles and conversion of different voltage magnitude. Buck 

converter for the purpose of this design is used to convert the voltage from a higher level to a 

fixed and stable low level voltage. The voltage from each of the 3D sources is considered at a 

high state in the 1st stage of power generation and also variable, therefore with the use of a 

buck converter, a steady output voltage is obtained and fed to the load or battery.  The buck 

converter circuit consists of a MOSFET, an inductor, a capacitor, a diode and a resistor as 

shown in the circuit. The MOSFET operation is considered as a switch in the case, where a 

PWM signal is driven to the MOSFET, where it operates as a switch to open and close the 

circuit. As the switch is turned ON, the diode in the circuit is open because of the reverse biased 

current flowing through the diode and the inductor where energy is stored as a result of the 

electrons generated from presence of the magnetic field. When the switch is turned OFF, this 

means the circuit is open. This is due to the forward bias nature of the diode which makes short 

circuit and the current in the inductor decrease and discharge its stored energy.  
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7.1.5. CIRCUIT PARAMETERS  

 Maximum Solar Panel Power: 80W 

 Maximum hydro output power: 

 Maximum wind output power    

 Maximum circuit output voltage: 25V 

 Minimum circuit input voltage: 15V  

 Battery bank: 12V  

 Output desired voltage: 12V 

 PWM Switching Frequency: 15KHz 

To find the maximum current output: 

𝐼𝑚𝑎𝑥 =
𝑃𝑜𝑤𝑒𝑟

𝑉𝑜𝑙𝑡𝑎𝑔𝑒
=

𝑃𝑚𝑎𝑥

𝑉𝑚𝑎𝑥
=

80

12
= 6.6𝐴 

Duty ratio calculations: 

To determine the duty ratio for ON and OFF condition states, the following equation is used: 

𝐷 =
𝑉0

𝑉𝑖𝑛
=

12

15
= 0.8 

𝐷 = 80% 

Inductor Value Calculations: 

To determine the value of inductor, first there should be high switching frequency and it’s 

assumed as 15 KHz using the equation below: 

𝐿 =
𝐷(𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡)

∆𝐿 × 𝑓
 

Where, D is duty cycle, F frequency switching, and ∆𝐿 is the current ripple of the maximum 

current calculated above. This ripple current in good circuit designs varies between 40% and 

20%, for our design 25% where chosen ∆𝐿 = 0.25. 

∆𝐿 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑖𝑝𝑝𝑙𝑒 𝑟𝑎𝑡𝑖𝑜 × 𝐼𝑚𝑎𝑥 

∆𝐿 = 0.25 × 6.6 = 1.65𝐴 

Substituting in the equation to find L: 

𝐿 =
𝐷(𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡)

∆𝐿 × 𝑓
=

0.8(15 − 12)

1.65 × 15 × 103
= 0.000096𝐻 = 96𝜇𝐻 

To work out the inductor current, using the following equation: 

𝐼𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 =  
∆𝐿 +  𝐼𝑚𝑎𝑥 

2
=

1.65 + 6.6

2
= 4.125 

The value of the inductor chosen to accommodate our design 100µH and 6A for better current 

rating. 
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Capacitor Value Calculations: 

To determine the value of the capacitor, the equation below is provided: 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 (𝐶) =  
∆𝐼

8 𝑓∆𝑣
 

Where, (f) is switching frequency, ∆𝐼 is current ripple, and ∆𝑣 is voltage ripple. The voltage 

ripple assumed to be 15mv. 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 (𝐶) =  
1.65

8 × 15 × 103 × 15 × 10−3
= 0.000916𝐹 = 916𝜇𝐹 

The values of the capacitor chosen for our design is 1000µF and 100V working voltage for 

better charging and discharging in coupling for better performance. 

The selection of the diode based on higher current rating and performance, as the type of the 

MOSFET and they are commonly used in solar power applications and designs. 

7.1.6. MOSFET DRIVER  

In power electronics, MOSFET does not use voltage control but rather uses the current drive 

for switching “ON” the high output current totem pole of gate driver will have fast switching 

frequency. Therefore the function of gate driver is charging up the junction capacitor. Known 

as the opto-isolator, the MOSFET driver transmits a beam of light from the emitting part and 

send signals between two electronic devices to provide coupling and these can be found in 

electrical isolations circuits between the inputs and the outputs. The principle applied therefore 

reside in protecting the system from any sudden changes that will endanger the system 

especially when using high voltages in passing signal from/to a microcontroller unit driving 

MOSFET to switch between different step sizes.  

The photo-coupler which is essentially a chip consists of two main components, an LED (light 

emitting diode) which is the source of the beam and a photo-sensor represented by a photo 

resistor or transistor, with both components isolated with a barrier from a non-conducting 

material (dielectric). When current flows through the LED, the diode will emit an infrared beam 

detected by the photo-transistor allowing current to pass though the output of the MOSFET.  

With our system however, the Arduino microcontroller board cannot provide enough current 

for the MOSFET to switch and this is due the capacitive gate of the MOSFET. Due to this 

misfortune, the MOSFET driver chip is required to deliver the current for switching purposes 
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where varying the PWM signal steps will be done and supplied to the buck converter circuit, 

so the driver will make good isolation for the MOSFET ground and source.  

 

7.1.7. PULSE WIDTH MODULATION 

 

It is very important to understand the role played by the pulse width modulation. Considering 

the application of the DC to DC converter, there are two main operations required in the 

switching mechanism, the initial one occurs at the Controller stage which supervises the power 

supply precision showing a regulated voltage and the PWM keeping the voltage regulated. In 

theory the PWM provides an analogue results from a digital signal in a square-wave from as 

shown in Appendix C. The Arduino microcontroller board has a set of PWM pins already 

integrated providing the required switching mechanism. In essence we could say that the PWM 

operated by varying the duty ratio of the switching mechanism provides a constant voltage at 

the output stage.  

When the duty ratio is 0%, this means there is no signal and the circuit is grounded to 0V 

signifying that the circuit output would give its maximum voltage if the duty ratio selected was 

100%. Reminding ourselves that the main aim of implementing this design is to obtain the 

maximum power point (MPP) for charging the battery and supplying enough power to the load 

at the same time, therefore the PWM controller will control the signal driven to the MOSFET 

and would also control how much the switch would be fully ON or fully OFF for. In 

programming the Arduino microcontroller, the PWM has to set to operate in both auto and a 

manual setting. The auto setting will work its way from the P&O algorithm to find the 

maximum power by varying the PWM and switch the MOSFET into different steps. The 

manual setting on the other hand would focus on observation and endeavour to maximise the 

power to its peak value.  

7.1.8. PROPOSED TECHNOLOY FOR SYSTEM PROTECTION   

This system was designed specifically to provide protection in order to ensure safety at all 

stages of the system against any changes in the load demand or at the source. The hereby 

proposed system offers protection that can be used for hybrid and system. 

Short circuit current protection& Battery Protection- reverse polarity 
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To protect the circuitry system from short circuit or overcurrent effects, a fuse can be used 

between the circuit and the load output.  In essence, all electronics products have some sorts of 

protection. Considering the complexity of our system however, it is important to consider 

reverse polarity protection due to the fact that there is a chance of getting at the back end of the 

buck converter a reversed current when connecting the battery in reverse, so to drive away high 

current from the inductor which may otherwise result in splitting the diode apart. Overcoming 

this issue would mean implementing an efficient protection system through a circuit using a 

couple of poly-fuses PPTC (Polymeric Positive Temperature Coefficient) in parallel for 

producing any current limit needed for the system. An LED is connected to show when in 

operation and also when the fuses are blown and the circuit is open. They will stay open because 

of the high current passing through them until a low temperature is reached enabling 

conduction 

Low Voltage Protection 

This type of protection is very useful if the batteries became numb, this implies the use of a 

Fuse MOSFET disconnecting the battery from the load whenever the battery the load decreases 

below threshold level. The application of the Arduino implies that the MOSFET can be 

switched ON or OFF based on the output magnitude from the battery voltage level.   

High voltage protection  

Whenever the battery voltage level increases over the limit, the system becomes inefficient, 

and overcharging the battery would mean reducing its life expectancy. It is therefore important 

that when designing a system such as ours, a full range of protections from the low to the high 

voltage be implemented so as to ensure good function of the system. Using the Arduino control 

programmed system, we will be monitoring and controlling the level of the battery between 

the normal and expected ranges and whenever a high voltage is detected at the battery the 

MOSFET will switch off and disconnect the battery form the charging controller circuitry.  

7.1.9. SYSTEM INDICATOR UNITS 

The system has the following monitoring and indications components. 

Nokia 5110 LCD for control display 

This type of LCDs is very small having about 1.5” diameter based on an 84x84 pixel 

monochrome display. The LCD has a backlight making data reading easily even in the dark. A 

graphic LCD means we can view characters of different inputs and displays ranging from the 
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voltage sensor, the current sensor, the power, the duty ratio selected, and the efficiency 

obtained using the PWM and the MPPT methods from the 3D sources input and from the 

battery to load side.  

        ARDUINO NANO MICROCONTROLLER   

The microcontroller to be used to implement the required algorithm is the Arduino. The 

decision to use this microcontroller was made after carrying out an extensive research on it and 

also on the 8051 microcontroller. The Arduino is relatively simple and is perfectly able to 

implement the type of algorithm that is ideal for our system. On researching the 8051 

microcontroller it was found that it was a lot more complicated than the Arduino and may prove 

hard to for the algorithms to be implemented, if chosen.  

The main reasons for choosing the Arduino Nano is that: 

 It is Inexpensive, most Arduino starter kits cost between £30-40.  

 The Arduino will work on Windows, Mac and Linux. 

 Simple clear and open source programming environment. Software for the 

programming of the Arduino can be obtained online for free and the programming 

environment is relatively simple with the language being a mix of C and C++. 

 It has a 6 analogue inputs. 

 Its operating voltage is ≈ 5 volts.  

 DC current I/O pin 40mA. 

 Flash memory of 32kb (0.5kb used by the boot loader). 

 Input voltage maximum of 6-20 volts, recommended to use 7-12 volts 

 14 digital outputs, 3 of which are pulse width modulators (providing 8 bit pulse width 

modulation). 

 Board can be powered by the USB port from a computer, 2.1mm centre positive plug 

in the board, or the 5 volt and the 3.3 volt connection on the board. 

 Clock speed of 16MHz 

7.1.10. LIMITATIONS OF ARDUINO  

 Logic expressions such as “&&, ||0, !” which are AND OR and NOT logical operators 

respectively, were used in when writing the code to program the microcontroller. Operators 

such as these saved time and cut down on the amount of code written.  Algorithms like the one 

employed in this project can sometimes be difficult to implement using the Arduino due to 
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inner workings not being exposed. The Arduino’s relatively inaccurate timer’s means that 

systems have to be ran for a greater number of samples to get accurate results. Interrupt 

commands in the Arduino are hard to implement successfully and the open identification of 

variables between loops can sometimes cause confusion when the microcontroller is being 

programmed. For the program that was used in this study, initially arrays of 100 samples were 

taken to get accurate readings, on testing the software it was found that the code would only 

run correctly up to a certain point. After much research and reading on the principles of 

operations of the Arduino it was found that the SRAM (Static RAM) part of the memory, which 

is used to store these arrays, has a limit of 2k. The arrays in the code were 101 elements with 

each element being a float of 4 bytes long, therefore each array is 404 bytes. The SRAM has a 

limit of 2k which is equal to 2048 bytes. Therefore after the fifth array, an error would occur 

due to the capacity of the memory being used up. The code is made up of 9 arrays as well as 

other variables, so it was decided to decrease the number of samples taken to 10 samples. This 

provides a less accurate solution but solves the problem with the memory’s capacity. Another 

possible solution to the problem was found during data sheet analysis, consisting of using the 

flash program memory, where the Arduino sketch is stored instead of SRAM, where the 

Arduino sketch creates and manipulates variables when it runs. This is done using the 

PROGRAM keyword as the variable modifier, for this the library in which the PROGRAM is 

part of must first be included by including at the top of the sketch: 

#include <avr/pgmspace.h> 

And then putting whatever data required to go into the flash memory into it, using the following 

form: data Type variable Name [] PROGMEM = {dataInt0, dataInt1,dataInt3...}; 

Where data Type is the memory variable type and variable Name is the name of the array that 

is required to be put in the alternative memory. 

7.1.11. ARDUINO CODING  

 

 Coding was done using the Arduino software, which holds all the functions to program 

the chip. Since the P&O algorithm is used to track the 3D sources power production, it was 

selected for its simplicity. The program structure for the P&O algorithm will track whenever 

the voltage or the current from the 3D sources changes thus either increases or decrease. The 

resultant power therefore is measured and recorded. If the power decreases, the algorithm will 
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change its increments in the opposite direction based on the expected output curve of the 3D 

sources. When the maximum power is determined the tracker will hold that peak value and will 

keep oscillating around this value. This is done by selecting the sampling time using the PWM 

adjustment with the Arduino microcontroller capability of implementing this feature and 

uploading it to the system. When the PWM is 100%, it means that the MOSFET is switched 

ON completely and when at a maximum power it ensures full power delivery to the battery. 

The algorithm tracking principle keeps feeding the battery with the maximum power obtained 

from the 3D sources and if any changes occur thus if the current or voltage drops down, the 

PWM will switch between different duty to find a sufficient range that can deliver a stable 

amount of power where the algorithm will keep on running simultaneously so as to obtain the 

maximum power possible.  

7.1.12. SYSTEM INTEGRATION FOR SIMULATION AND FIELD TESTING    

For the purposes simulation and Field testing, the above mention parts making up the system 

entire architecture has to be put up together. The Arduino Nano was connected between the 

sensors to measure and record the current and the voltage from a single source of the 3D this 

being either the solar, wind or hydro. This then means that 3 of these systems were built to 

deliver maximum efficiency of the each of the 3D sources with a unified control system taking 

readings from the output of each of the 3D controller terminals which are fed to a battery for 

field test purposes and could also be fed to a load. The circuit was primarily design to confirm 

feasibilities studies through simulation and was later built and tested. Appendix C shows the 

overall circuitry designed in PROTEUS software powered with a DC battery at the input 

representing either the solar source, wind or hydro and a battery at the output with a load 

connected to it.  

The current and voltage reading at the solar panel end and the battery end was monitored and 

displayed on the LCD. However, tracking mode of maximum power can be manually set 

through calculations and assumptions or could be set to automatic.  The Automatic mode is 

literally where the potentiometer is ON and set at a max of 100%, meaning that when varying 

the potentiometer, different switching modes will be applied to the MOSFET to operate in 

different duty cycles and this can be monitored as well in the LCD with the MOSFET defining 

the maximum efficiency or minimum efficiency for balancing the overall system between the 

input power (solar, wind, hydro) to the output power. As shown in the simulation circuit, the 

voltage at the input reads 34.9V with a current 0.06A and power of 0.6W and at the output a 
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voltage delivery of 21.8V with a current 0.06A and power of 2.1W and 49% efficiency 

therefore balancing the system and delivering the maximum power possible. Further test 

revealed when 34.47 volts was generated by the solar panel end terminals representing the input 

a 25.00 volts being fed to the battery with a power of 2.6 watts at a 69% efficiency. To test the 

switching modes of the MOSFET, an oscilloscope was connected to the MOSFET gate with 

simulation results showing in Appendix C. Following this, the potentiometer was set to 33% 

and the output driven to the MOSFET gate displayed on the oscilloscope. The potentiometer 

was set to 66% and the output driven to the MOSFET gate displayed on oscilloscope, showing 

switching operation mode. The potentiometer was set to 0% and the output driven to the 

MOSFET gate shown as part of the simulation results. 
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Figure 7-2 Overall MPPT System Connection for Simulations 
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Figure 7-3 Overall MPPT System Connection for Simulations showing each block diagram 
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Figure 7-4 Overall MPPT System Simulation 
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Buck converter operation 

The Buck converter circuit operation principle is to drive and supply a stable DC output 

voltage, where the value of this voltage is dependent on the input signal and the duty cycle 

switched from the MOSFET. If the duty cycle selected was 50% and the input supply voltage 

from the solar panel was 35.47V, in this case the output voltage would be half the input voltage 

using the following equation to determine the output voltage but in this case we see more than 

half of the input voltage being fed to the load or battery showing maximum tracking and 

efficient delivery to the output load or battery. 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 × 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 … … … (62) 

𝑉𝑜𝑢𝑡 = 35.47 × 50% = 35.47 × 0.5 = 17.7𝑉 𝑣𝑒𝑟𝑠𝑢𝑠 25 𝑉 𝑓𝑒𝑑 𝑡𝑜 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

It is to be noted that the source of the solar panel for the purpose of simulation was based on a 

variable power supply using a potentiometer and a DC battery source. With variation of the 

power supply, the potentiometer slider, the step duty cycle and the P&O algorithm balance in 

operation is made easy noticing that on the LCD display, the power of the input parameters and 

the battery is balanced with a max efficiency obtained. As generation began and the P&O 

kicked in, the system became much balanced and delivered a stable power to the battery and 

the load, thus a power of 12.06 watts at an efficiency of about 84.35%.  

Recorded measurement  

Input Parameters   
(PV/Wind) 

Output Parameters  
 (Battery End) 

 
 

Voltage 
(V) 

Current 
(A) 

Power  
(W) 

Voltage 
(V) 

Current 
(A) 

Power 
(W) 

16.83 0.73 12.29 10.41 0.96 9.99 81.34% 

10.50 0.90 9.45 8.20 1.12 9.18 97.19% 

10.43 0.89 9.28 5.54 1.37 7.60 81.87% 

15.37 0.93 14.29 6.28 1.92 12.06 84.35% 

Table 7-1 Measurement Result Table 

 

𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚

=
𝑷𝒐𝒘𝒆𝒓 𝑩𝒂𝒕𝒕𝒆𝒓𝒚

𝑷𝒐𝒘𝒆𝒓 𝑺𝒐𝒍𝒂𝒓
× 𝟏𝟎𝟎 
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7.2.  PRACTICAL SYSTEM IMPLEMENTATION  

 

Figure 7-5 3D renewable sources Practical system unit assembly under testing conditions 

 

Figure 7-6 3D renewable energy platform laboratory evaluation (solar output- System front end) 

Voltage and Current 

sensor  

Arduino Nano 
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Switcher  

INPUT 
OUTPUT 
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Figure 7-7 3D renewable energy platform (Wind turbine output- System front end) 

 

 

Figure 7-8 3D renewable energy platform (Hydro output- System front end) 
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Figure 7-9 3D renewable energy platform (Combined 3D output- System front end) 

7.2.1.   SOLAR CONTROLLER   
Figure 7-6 shows the controller for the photovoltaic system. At the input stage the designed 

and built controller tracks a maximum of 6.20 volts at a 61% efficiency and a current generated 

at 4.49Amps with a load delivery of 3.86 Amps. The demand conditions thus the battery draws 

up the output current and voltage needed from the maximum tracked voltage and current at the 

input stage. The application of the microcontroller and that of enables this to be proportionally 

made as demand is fed according to how much power is needed whilst the rest is strategically 

stored in a battery used as a backup of the entire system. Readings on the LCD shows a power 

delivery of 27.9 watts with the potentiometer PWM switch set to Automatic meaning maximum 

delivery is tracked constantly as solar rays or daylight changes during the day. Under laboratory 

conditions light were partly shaded on the solar panels so as to generate between 5-6 volts at 

the input for safety purposes and to maintain continuous operation so as to get a generalised 

output on the main 3D controller. 

7.2.2. WIND CONTROLLER 
Figure 7-7 shows the controller for the Wind turbine system. . At the input stage the designed 

and built controller tracks a maximum voltage of 6.30 volts at a 63% efficiency and a current 

generated at 4.23 Amps with a load delivery of 3.93 Amps. The demand conditions thus the 
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battery draws up the output current and voltage needed from the maximum tracked voltage and 

current at the input stage. The application of the microcontroller and that of enables this to be 

proportionally made as demand is fed according to how much power is needed whilst the rest 

is strategically stored in a battery used as a backup of the entire system. Readings on the LCD 

shows a power delivery of 27.2 watts to the load with the potentiometer PWM switch set to 

Automatic meaning maximum delivery is tracked constantly as wind speed was controlled 

using a regulated transformer delivering a 12 volts to the laboratory fan .  

7.2.3. HYDRO CONTROLLER 
Figure 7-8 shows the controller for the Hydro turbine system which was represented by the DC 

power supply. At the input stage, a maximum of 6.21 volts at a 62% efficiency was obtained 

and a generated current of 4.40 Amps delivering 4.02 Amps. The demand conditions thus the 

battery draws up the output current and voltage needed from the maximum tracked voltage and 

current at the input stage. The application of the microcontroller and that of enables this to be 

proportionally made as demand is fed according to how much power is needed whilst the rest 

is strategically stored in a battery used as a backup of the entire system. Readings on the LCD 

shows a power delivery of 27.6 watts to the load and a generated power supply of 27.3 watts  

7.2.4. 3D CONTROLLER 
 

The controller output is shown in figure 7.9. In essence, the 3D controller unit sums up power, 

voltages and current generated at the solar, wind and hydro output terminals and tracks the 

maximum point delivery of each of the sources and deliver this to the load and in case load 

demand is low, this is fed to a standby battery for charging purposes. The generated output of 

the 3D sources shows a cumulated and maximum tracked power of 22.90 volts with a delivery 

of 23.2 volts whereas a 4.56 amps is obtained at the input and 6.6 amps is delivered to the 

battery. The maximum power delivered was found to be 153.12 watts. The entire system 

efficiency was found to be 67.9% which shows an above average efficiency of the entire 

system.  
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Input Parameters Output parameters Efficiency % 

Voltage (V) Current (I) Power (W) Voltage (V) Current (I) Power (W)  

16.83 0.73 12.29 10.41 0.96 9.99 81.34 

10.50 0.90 9.45 8.20 1.12 9.18 97.19 

10.43 0.89 9.28 5.54 1.37 7.60 81.87 

15.37 0.93 14.29 6.28 1.92 12.06 84.35 

17.37 1.00 17.37 8.28 2.10 17.39 100.12 

 

 

 

7.3. SUMMARY  

 

The practical or field testing of our 3D renewable energy platform has been tested under 

laboratory conditions. The 3D sources were each represented by factory manufactured systems 

for which their specifications and technical parameters were provided in this chapter. Joined as 

single system, the power generation ability of the 3D sources were correlated accordingly 

together with a central control unit enabling full control of the 3D renewable energy platform. 

This 3D central control unit focused on the development of maximum power point tracking 

system using Perturb and Observation (P&O) method. The system consists of a DC-DC buck 

converter circuit which converts the high/not stable voltage obtained from each of the 3D 

sources panel and either charges the battery when load demand conditions are low or supplies 

the load with enough power needed. This system features the use of embedded system based 

on Arduino microcontroller which plays the main part of the system. The microcontroller 

processes all the data and the sensors signal such as the temperature sensor, current sensor, and 

voltage sensors for three of the sources and at the battery terminals. The program runs on the 

chip based on P&O which executes continuously and switches between different duty cycles 

to the MOSFET gate, for maximising the power from the solar, wind and hydro systems and 

maintain a balanced system at the maximum power point obtained. 
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CHAPTER 8 - GENERAL CONCLUSION, DISCUSSIONS & 

RECOMMENDATIONS FOR FUTURE WORK 
__________________________________________________________________________________ 

A highly efficient renewable energy platform that could suit Togo’s power system 

infrastructure and industrial application have been developed and presented in this thesis. The 

developed platform presents an innovative approach to overcome the barriers for implementing 

the renewable energy resources into Togo’s power sector and introduces a new approach based 

on modular form. The modular form of the 3D platform would allow Togo’s power sector and 

other nation adopting such approach to utilise the technology using a number of configurations 

i.e. 1D, 2D and 3D. This is mainly dependent on the renewable energy resources available, 

geographical location, power demand, possible industrial load nature and applications. 

The development process of the proposed system has passed through a number of stages. These 

included: 

An investigation into the governmental reports, key database, publications, technical 

reports and case studies, related areas to the current research programme. This was 

concluded with the possible recommended business model and renewable energy 

platform. 

Computer Aided Design and Analysis of the front End renewable energy resources of 

the proposed platform. This was mainly aiming to investigate the possible factors of 

improving the efficiency of the front end units. The computer aided design and analysis 

has been carried to Hydropower units (water wheels, Kaplan turbine, dual feed 

arrangement for both water wheel and Kaplan turbine …etc.), Wind turbine units, 2D 

arrangements i.e. wind and hydropower …etc.  

Computer Aided Design, simulation and Modelling of the Backend of System (BoS) of 

the proposed renewable energy platform i.e. control system, multi-level converted and 

relevant filtration system. This concluded with the possible recommendation of multi-

level converter, relevant filtration system based on possible load nature and 

applications.  

System integration of the proposed renewable energy platform into the smart grid. This 

concluded with a computer simulation and analysis model of the system that shows the 

dynamic behaviour of the proposed model which is examined under different operating 

conditions. 
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Carry out laboratory validation and evaluation of the proposed renewable energy 

platform. This demonstrated the dynamic response of the system, stability of the system 

and its output and control capability of the proposed system. 

 

Togo for years has been in serious energy deficiency due to many factors ranging from bad 

energy management to failure to invest into renewable energy sources. The country electricity 

supply is mostly based on fossil fuel thus 78% and 33 % hydro. Based on an Area of 56600Km2, 

the country is faced with rapid growth and new industrial investment and project coming in 

due to new government legislation facilitating trade (Rep of Togo, 2010).  In addition, the 

country imports hydrocarbons in order to produce electricity (ECOWAS, 2005) making the 

country succumb to the fluctuation effect of oil price on international markets thereby making 

it very difficult to attain full electricity generation efficiency leading to serious disturbances in 

the country. The country geographical position is an advantage for renewable energy 

exploitation and implementation as the country aims to attain at least 75 % of full electrification 

by 2030 (ECOWAS white paper, 2010). Considering the country’s aim to attain full 

electrification in few years, it is important to consider other and cleaner sources of generating 

energy. It is in this light that this research was aimed at providing a system by name “Computer 

aided design of a 3D renewable energy platform to fully utilise Togo’s renewable energy 

resources into their smart grid power system infrastructure” that will efficiently help the 

country in attaining its energy and electrification target. This application of this highly efficient 

system would not only be beneficial to Togo only but will go a long way to help any other 

country, government, institutions that will feel this innovative technology will help them in one 

way or the other in generating clean energy and meeting up demands of a particular city, 

country or community. 

 

The research undertaken therefore to provide a “Computer aided design of a 3D renewable 

Energy platform to fully utilise Togo’s renewable energy resources into their smart grid power 

system infrastructure” introduces a solution to challenges in the energy generation sector which 

do not only refrain to the safe supply of clean Energy but also aim to contribute towards 

providing a sustainable solution to current environmental challenges. A major importance for 

the theoretical study of hybrid systems, based on renewable energy (photovoltaic, wind, hydro 

system) in relation to this research is the availability of the models that have been utilized to 

study the behaviour of hybrid systems and most importantly, computer aided design simulation 

tools. As the available tools are quite limited, this research has presented the most current and 
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up to date model which can be used for the simulation purposes of the 3D renewable energy 

platform integration as well as for educational purposes. A research methodology needed to 

defined the research strategy and after careful consideration, the research onion model was 

used considering it helped defining in clear terms the methods and processes that can be 

implemented for a successful research. The research methods therefore used for this research 

were Exploratory, Constructive and empirically based. The three methods allowed me to meet 

the research objectives through a step by step procedure, whilst identifying the application 

design specifications, the development of the system architecture, the system main hardware 

& software units, development of a finite solution by obtaining an outline design, and then test 

the feasibility of the design using empirical evidence. A prototype has also been developed and 

tested based on design specifications and needs to verify the potential of the technology from 

an economic, social and policy point of view. The development plan of this PhD research was 

split into three main stages. The initial stage consisted of conducting a feasibility study and 

conduct the literature survey that covered all the elements of the research, a focus on the 

definition of the 3D renewable energy station model system needs, design specification and 

architecture. The second stage consisted of designing and developing the system hardware and 

software units and the last stage focused on the system Integration and Field test validations 

The outcome of the initial stage showed that amalgamation of renewable energy and the use of 

an energy mixed model was plausible based on the fact that empirical evidences showed 

already existing model of the use of a dual renewable energy source based system and the 

possibilities of adding more renewable energy sources to existing technologies considering 

system control have been duly adjusted to cope with this. Simulation and CAD models as 

earlier mentioned were also encouraging factors as efficient tools to carry out design and 

feasibilities studies of each models and design was part of the university available software 

tools.  

The outcome of literature survey was also very interesting as Togo’s Total energy consumption 

in 2012, was estimated at 2 056370 toes (0.31 toes per capita), of which 67% was from biomass 

and 29% from Oil, for which electricity occupied 4% of annual energy consumption. The 

national electrification rate has been stagnant at a 27% rate for a decade now for which 50% 

were concentrated in urban areas and 5% in rural areas. The Government of Togo (according 

to its national strategy SCAPE 2013-2017) expects to achieve a rate of 50% of national 

electrification by 2024. Final energy consumption is mainly distributed between households 

(64%), transport (24%), market and public services (9%), and industry accounts for 3%. 



247 
 

Sensitivity: Internal 

Analysis carried out also showed great potential for solar energy harnessing for photovoltaic 

power generation application with global solar energy irradiation on a horizontal plane 

estimated at 4.5 kWh/m²/day with an average of 10-12 hours of sun rays available daily. Wind 

potential was also investigated with Togo being ranked amongst the quiet geographical areas 

in Africa, although transient spikes wind can reach high values up to 4m/s in some areas 

especially in the northern part of the country during harmattan period. Only the coastal area of 

the country has favourable evidence with wind speeds of 7m/s on average making the 

development of wind power a viable alternative source to consider. Hydropower potential was 

also investigated with studies showing at least 40 sites of which 23 sites have potentials greater 

than 2 MW of energy production totalling 850 GWh for an installed capacity of about 224 MW. 

The country equally has a wonderful coastline that extends to about 55 Km on the Atlantic sea, 

River Oti and Mono of which water flow strength could be great for hydro and tidal power 

generation.  

The literature survey also showed encouraging energy policy focusing on the development and 

adoption of an investment code or law which includes tax and incentives for the promotion of 

renewables energies; the development and adoption of rules defining the conditions for 

production of renewable energy and connection to the national network at a discounted price; 

and the development and adoption of a law to define energy efficiency policy by promoting 

equipment using low energy. The outcome of this concluded Togo’s energy regulatory 

framework and policies analysis which are definitely encouraging factors for the 

implementation of the 3D renewable energy platform. 

Nevertheless, the business model currently adopted in Togo satisfies current Energy demand 

but does not take into account future challenges, energy demand and grid expansion. The 

criticism of this business model would go to the cost incurred by the purchase of Diesel from 

Nigeria using the West African power pool pipeline for the 6 Tri fuel diesel engines plant for 

contour global and the cost incurred originally in the building of a Diesel power plant instead 

of an investment into renewable energy power expansion considering the potentialities of 

renewable energy sources in Togo. Considering all of the above, it is apparent that efforts needs 

to be conjugated to meet future power demands hence the full optimisation and implementation 

of renewable energy systems for sustainable energy production for which a new business model 

focusing on the integration of Independent power producers and policies focused on 

subsidising the renewable energy sector creating opportunities for efficient cash flow from 

investors. With these changes, the costs of renewable electricity can be lowered by up to 20%, 
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where customers can benefit from values they lend to the system, and take advantage of new 

markets able to reduce the cost of integrating renewable energy sources, improving reliability 

and accelerating innovation. The findings of this litterature goes to show that Togo indeed has 

some serious energy defficiency issues together with an average power gneneration system 

used in meeting current energy demands in the country. The cost associated with this however 

is unnimaginable and couldn’t be evaluated considering unavailability of data and also due to 

the fact that ever changing pices of fossil fuel related products. The technical feasability of the 

3D renewable energy platform has also been conducted in Matlab simulink  and simulation 

result shows that the amalgamation of these three sources represents the advanced stage in 

hybrid power generation systems with litteratures showing easy integration into smart grid 

enabling use to define this innovative 3D renewable energy platform as a contributor to the 

solutions to Togo’s energy issues. The current business model also shows significant 

encouragement from the government for IPP’s to be integrated and for the promotion of 

renewable nergy power generation 

8.1. MAJOR CONTRIBUTIONS OF THIS RESEARCH WORK 

The work discussed in this thesis presented contributions in the fields of renewable power 

generation systems, smart grid systems, and power electronics. These are summarised as 

followed  

 The design and development of a 3D renewable energy platform that could be used for 

industrial, commercial and domestic applications. 

 An innovative design focused on the used on the doubly fed wind turbine for the 3D 

system enhancing the efficiency of the entire 3D sustainable renewable micro power 

micro station  

 The design of an overshot water wheel with an average efficiency reaching 85% for 

better hydropower production  

 The implementation a triple fed Hydro generator namely (02 overshot water wheel; 01 

Kaplan turbine) enabling hydropower production to be the most efficient system of 

our 3D renewable energy platform 

 The implementation of many innovative ideas that presents an entirely new perspective 

on the possible usage of a 3D central control unit focused on the development of 

maximum power point tracking system using Perturb and Observation (P&O) method 

consisting of a DC-DC buck converter circuit which converts the high/unstable voltage 
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obtained from each of the 3D sources into a much improved and regulated. This system 

features the use of embedded system based on Arduino microcontroller which mainly 

represented the system intelligence as it processes all the data and the sensors signal 

such as the temperature sensor, current sensor, and voltage sensors for three of the 

sources and at the battery terminals equally.  

 The thesis presented a viable idea into the implementation of the a 3D Renewable 

energy platform to fully utilise  green energy resources into smart grid power system 

infrastructure”  through individual intelligent nodes control enabling efficient 

management of the variable nature of the generated power and uncertainty during 

continuous balancing of the system; a  balancing of the supply and demand during 

generation scarcity and surplus situations and a solution to challenges related to high 

peak load during periods of low variable RE production.  

8.2. LIMITATIONS OF THE CURRENT DESIGN  

The limitations and technical problems faced were purely in the development of the control 

system and the practical unit assembly of the 3D renewable energy platform 

Challenges in the control system: 

The challenges associated with the control system was also in the laboratory validation and 

assembly unit. Initial testing of the control system were inconclusive as the output didn’t 

deliver the expected output which was due to connections error within the assembly of the 

control system. A power management circuit such as ours was designed to rectify the input 

voltage, if necessary and regulates the output voltage to the desired level to charge the battery 

or feed the load. The core part of this control system is the buck converter, and the key 

requirement for the control system to maximize the net energy harvested by (i) transferring 

maximum power from the source to the storage device and (ii) dissipating minimal power. 

Meeting the two requirements needed a trade-off in the control circuitry design for small scale 

energy harvesting. To transfer the maximum power, the load impedance was to match the 

source impedance, and the source impedance changes as operating conditions changes. 

Matching between the source and load were the most complicated but was resolved using 

maximum power point tracking (MPPT), which dynamically adjusts the load impedance (or 

the load voltage for each of the three sources), specifically the input impedance of the buck 

converter. To minimize power dissipation therefore we selected a unique MPPT algorithm 

judiciously by considering the type of transducer, the amount of energy available, and its 
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application.  We also noted that when the storage is drained completely, the control system 

fails to start. Two solutions were adopted; one is to provide a dedicated backup battery for cold 

start, and the other one use the source power to start. Both approaches have pros and cons as a 

controls system for energy harvesting such as ours should be able to harvest energy from a low 

input voltage and should have low standby power dissipation, and desirably a battery controller 

circuit. Some design challenges of control circuitries are specific to energy sources. For 

example, a rectifier circuit for a piezoelectric and electromagnetic generator causes a 

substantial loss for small scale vibration energy harvesting. Implementation of a power efficient 

MPPT is difficult for such vibration energy, and incorporation of a sleep mode may be 

necessary.  

Measurements: 

Considering the challenges associated with the control system, measurements within this 

current area of research is still a very sensitive area.  Specialist equipment’s are not needed to 

measure outputs per say but essentials and accurate measurement from the sensors are still a 

very much sensitive which needs constant improvements and research in order to improve 

sensors efficacy and efficiency. Majority of the measurements carried out in this research were 

taken using available facilities and basic principles of measurement which in fact was a major 

reason to carry out these measurements a few times to ensure that high precision of 

measurements has been recorded 
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CHAPTER 9 - RECOMMENDATIONS & FUTURE WORK 
__________________________________________________________________________________ 

The research work has significant contribution in the field of renewable energy systems, 

methodology for modelling and design, implementation of specific control circuity system fit 

for a micro or large scale renewable energy harvesting system. Subsequently, numerous 

technical points have been duly raised in this area of research and applications and the 

possibility to extend this system to cover different applications is quite viable as one could 

deduce from the outcome of this research.  

Further research work and experimental work is however required to fully implement the 

capability of a developed renewable energy system with their unique control systems. There 

are various ways our proposed system could be developed in order to increase its scope and 

applicability further.  These may include the incorporation of further algorithms for system 

stability. This therefore shows a necessity for future work to be focused on the following 

questions 

 Can this innovative and energy miscegenation system work with same efficiency if the 

load demand increases?  

 Would the parallel operation of all the three renewable energy system (3D) have the 

same effectiveness even in off grid paradigm.  

 The efficiency of solar power system need to be increased over 60%.  

 The size of the system need to be as such that it can be constructed in nearly all possible 

terrains with a single control system embedded within its architecture enabling its 

mobility and facilitate usage for the end user 

 Could artificial intelligence system enable an automatic adjustment and stability of the 

system with various load demands and automatic assessment of the system for 

maintenance purposes? 

A fully practical assembled unit of the 3D unit for micro, mini, medium and large scale 3D 

platform couldn’t have been done yet, hence practical efficiency level using our proposed 

system for various energy deficiency issues couldn’t possibly be confirmed. But once 

completed we need to investigate how well our solution method works practically for a medium 

and large scale applications. This would mean that for Mega systems, new mathematical model 

enabling linearity’s of non-linear signals from the input must be determined clearly for more 

accurate study of system dynamic 
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APPENDIX (A) - SIMULINK MODELS 

 

Figure A-1 Simulink block model for single H-Bridge circuit 

 

Figure A-2 Simulink model of proposed 21 level inverter 
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APPENDIX (B) - MATLAB SCRIPTS 

*************************************************************************  

% This MATLAB code is for solving the problem of SHE using Genetic 

Algorithm  

% (GA) method in Cascaded H-Bridge MLI (7-LEVEL given as example)  

% THE SWITCHING ANGLES SHOULD BE ϴ1 < θ2 < θ3< 90°  
*************************************************************************  

clc  

clear all  

opts = gaoptimset(@gamultiobj);  

opts.Generations=30;  

opts.StallGenLimit=50;  

opts.PlotFcns={@gaplotbestf,@gaplotdistance };  

lb=[0,0, 0];  

ub=[90,90,90];  

[Q,Fval,exitFlag,Output] = ga(@THD_Mingab7,3,[],[],[], ...  

[],lb,ub,[],opts);  

fprintf('\Switching_Angle_1 = ' ,X(1))  

fprintf('\Switching_Angle_2 = ',X(2))  

fprintf('\Switching_Angle_3 = ',X(3))  

fprintf('Total Harmonic Distortion %THD =',THD)  

 

function y = THD_Mingab7( x )  

m=0.9;  

H1 = cosd(x(1))+cosd(x(2))+cosd(x(3));  

H= [1/5*(cosd(5*x(1))+cosd(5*x(2))+cosd(5*x(3)));  

1/7*(cosd(7*x(1))+cosd(7*x(2))+cosd(7*x(3)));  

1/11*(cosd(11*x(1))+cosd(11*x(2))+cosd(11*x(3)));  

1/13*(cosd(13*x(1))+cosd(13*x(2))+cosd(13*x(3)));  

1/17*(cosd(17*x(1))+cosd(17*x(2))+cosd(17*x(3)));  

1/19*(cosd(19*x(1))+cosd(19*x(2))+cosd(19*x(3)));  

1/23*(cosd(23*x(1))+cosd(23*x(2))+cosd(23*x(3)));  

1/25*(cosd(25*x(1))+cosd(25*x(2))+cosd(25*x(3)));  

1/29*(cosd(29*x(1))+cosd(29*x(2))+cosd(29*x(3)));  

1/31*(cosd(31*x(1))+cosd(31*x(2))+cosd(31*x(3)));  

1/35*(cosd(35*x(1))+cosd(35*x(2))+cosd(35*x(3)));  

1/37*(cosd(37*x(1))+cosd(37*x(2))+cosd(37*x(3)));  

1/41*(cosd(41*x(1))+cosd(41*x(2))+cosd(41*x(3)));  

1/43*(cosd(43*x(1))+cosd(43*x(2))+cosd(43*x(3)));  

1/47*(cosd(47*x(1))+cosd(47*x(2))+cosd(47*x(3)));  

1/49*(cosd(49*x(1))+cosd(49*x(2))+cosd(49*x(3)))];  

HH = H.^2;  

HN = sum(HH);  

THD = sqrt(HN)/H1*100;  

'Total Harmonic Distortion %THD =', THD  

'Fundamental', H1-3*m  

'5th harmonic =', H(1,1)/H1*100  

'7th harmonic =', H(2,1)/H1*100  

y = 50*((H1-3*m)^4)+50*(H(1,1)^2+ H(2,1)^2)+THD/100 ;  

end 
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*************************************************************************  

% This MATLAB code is for the optimum design of passive power filter (PPF)  

% using Genetic Algorithm (GA) method in Cascaded H-Bridge MLI (21-LEVEL)  

% Two single tuned filter and one high pass filter  

*************************************************************************  

clc  

clear all  

opts = gaoptimset(@gamultiobj);  

opts.Generations=10;  

opts.StallGenLimit=50;  

opts.PlotFcns={@gaplotbestf,@gaplotdistance };  

lb=[300000,300000, 1000000];  

ub=[1500000,1500000, 3000000];  

[Q,Fval,exitFlag,Output] = ga(@Q_21_level_inverter,3,[],[],[], ...  

[],lb,ub,[],opts);  

fprintf('\nDesigned Parameter Q1= %f',Q(1))  

fprintf('\nDesigned Parameter Q1= %f',Q(2))  

fprintf('\nDesigned Parameter Q1= %f',Q(3))  

fprintf('\nSum of designed parameters Q= %f',Q(1)+Q(2)+Q(3))  

fprintf(' 1.6<%f<3.75',Q(1)+Q(2)+Q(3))  

fprintf('\nTHD= %f \n',THD.THD)  

 

function [Q ] = Q_21_level_inverter(Q)  

assignin('base', 'Q1', Q(1));  

assignin('base', 'Q2',Q(2));  

assignin('base', 'Q3', Q(3));  

sim('Seven_Level_CHB__Inverter_07')  

pause(0.5);  

assignin('base', 'Ploss', ploss);  

f1=[(Q(1)+Q(2)+Q(3))*(1/100)]+[[(max(ploss.Data)/1000)*4380*0.11]*[(((1.05)

^15)-1)/(0.05*((1.05)^15))]];  

assignin('base', 'VLL', VLL);  

THD=power_fftscope(VLL);  

THD.fundamental=50;  

THD.maxFrequency=2500;  

THD.startTime=0.01;  

THD=power_fftscope(THD);  

f2=THD.THD;  

f3= 100-[(Q(1)+Q(2)+Q(3))/1000000];  

assignin('base', 'THD', THD);  

end 
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APPENDIX (C) LAB VALIDATION KEY COMPONENTS 

  

Figure C-1 Voltage sensor (RS components)  

 

Figure C-2 Voltage Divider resistors and connection Setup 

              

Figure C0-3 LM35 Temperature Sensor PIN Configurations 

 

Figure C-4 Temperature Module Sensor Arduino Connection 
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Figure C-5 Photo-coupler Signal Applied to MOSFET 

 

Figure C-6 Signal Oscilloscope Monitoring 
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Figure C-7 3D sustainable renewable micro power station - Middle end unit 

 

Figure C-8 3D renewable sources Practical system unit assembly (Middle end) 
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Figure C-9 Overall MPPT System Connection for Simulations showing each block diagram 
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APPENDIX (D) – SOLIDWORKS DESIGNS 

 

D1- Static simulation Overshot Wheel 
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D2- Static simulation & (b) LES of Turbulence 
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D3-Base formation 
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D4-Teeth formation 
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D5-Shaft extruded and Cut 

 
D6-Ring gear modelling 
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D7-Static Stress distribution and displacement 

 
D8-Static Stress distribution 
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