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ABSTRACT

In recent years, nucleotide sequencing has become increasingly
instrumental in both research and clinical settings. This has led to
explosive growth in sequencing data produced worldwide along
with an increase in complex analysis algorithms. As the amount of
data and analysis increases, so does the need for automated solu-
tions for processing and analysis. The concept of workflows has
gained favor in the bioinformatics community, but there is little
in the scientific literature describing end-to-end operational au-
tomation systems. We provided an automation system that aims at
providing a solution to the genomics related operational challenges
that face sequencing of both research and clinical facilities. We
built on existing open-source technologies, with a modular design
allowing for a community-driven effort to create plug and play
services. In this research, we describe the system and elaborate
on the underlying conceptual framework. Which can be reduced
to 3 conceptual levels: Data tagging (using metadata automation),
Classifying Storage systems (the steps involved in the classification
of storage systems), and execution (using a series of rules to move
data around on an operational level).

CCS CONCEPTS

« Information Systems-Data management systems;

KEYWORDS
meta data, automation, genomics operational pipeline

ACM Reference Format:

Zeeshan Ali Shah and Mohsen Farid. 2023. Storage aware data manage-
ment system for Genomics. In 2023 5th International Conference on Big-data
Service and Intelligent Computation (BDSIC 2023), October 20-22, 2023, Singa-
pore, Singapore. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3633624.3633628

1 INTRODUCTION

Genomics is commonly defined as the study of the complete genetic
material of any given organism [8]. This hereditary material is
deoxyribonucleic acid (DNA) in the shape of a double helix. DNA
itself consists of four different kinds of chemical bases called
nucleotides: Adenine, Thymine, Guanine, and Cytosine [6]. Pairs
of these four bases are twisted into a ladder shape, also known as
the double helix. More, in terms of the pairs, adenine and thymine
exclusively bond with each other and the same can be said for
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guanine and cytosine. What makes each human unique is the way
the nucleotides are arranged; each stretch of DNA is arranged in
different orders and is of different lengths [3]. Sometimes, however,
the enzymes responsible for the process of DNA translation
and transcription make mistakes and lead to often time deadly
mutations [10], or alterations from the normal genome code. For
example, the change of a single nucleotide base from the normal
“AGCTTTGC” to “AGCTATGC” could lead to negative health
effects. Interpretation of genetic material holds the key to the
future of medicine [5]; it leads to the beginning of an era defined
by Genomics medicine, as each human as his or her own personal
sequence of DNA and therefore, his or her own personal genome,
filled with various mutations, some helpful and some harmful.

In a genomics sequencing facility, there are instruments that take
biological samples from diverse organisms as input and generate
the computer representation of their genomics sequences as output.
The underlying processes on how to perform the sequencing are
purely platform-specific [2]. The focus in this thesis will be on
the output sequences, where the in-silico data management and
its handling intricacies begin [7], as opposed to upstream wet-lab
sample processing.

[11] Genomics based medicine, usually referred to as genomics
medicine, became an important component in the healthcare system.
This could not have been the case without the recent advancements
in next generation sequencing (NGS) technology, which reduced
the cost and time of reading the genome. NGS is currently used
in the clinic to find variants (mutations) related to the disease to
improve the diagnosis, prognosis, or to find optimized treatment
plans. For computational scientists, the wide use of NGS in the
clinic has introduced new challenges. The clinical grade data anal-
ysis requires more optimized algorithms to reach reliable results,
which accordingly increases the running time. Moreover, to reach
a list of variants with the necessary information for the clinic, a so-
phisticated computational workflow of many software tools should
be used. The input to this workflow is the list of NGS reads and
the output is the list of significant annotated variants related to the
disease. In this workflow, the programs run according to certain
dependency plan and the results of one program is fed to the next
one through intermediate files.

The output of an NGS machine is a large set of short reads (DNA
fragments) [9]. The number of these reads depends on the technol-
ogy and the model of the NGS instrument. For Ion technology, one
expects around 80 million reads per run for the Ion Proton model.
For Illumina technology, one expects up to 20 billion reads per
run for the recent NovaSeq model. Processing such huge number
of reads entails huge I/O operations, especially when a workflow
of multiple independent programs is used. This causes two prob-
lems: First, a considerable fraction of the analysis time is spent in
reading/writing of the data.
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Second, such considerably amount of time spent by researchers
to bring data in high-speed medium which is a manual operation
and which interrupts the operation and increases the operational
costs. To solve these problems, it is important to automate data
management as much as possible.

Fortunately, the recent advancement in data discovery and meta
data management coupled with modern automation techniques
based on Machine learning makes this possible.

We found out that aforementioned is a data intensive problem,
which requires multiple computations on same data sets [1] - It is
not like high through put computing (HTC) in which Data can be
chunked and distributed as D1, D2, D3 and Tasks T1, T2, T3 executed
in their own set of chunks. NGS analysis requires different sets of
tasks T1, T2, T3 executing on same Data Dx . This requires different
scheduling algorithms and execution engines than traditional HTC.
Let us re-elaborate the process of NGS,

Step-1: Sample is taken from patient, and it is sent to wet-lab for
DNA extraction,

Step -2: Extracted DNA processed in sequencing machines such
as Jon Protons, Illumina that is called primary analysis, this primary
analysis output is in a FASTQ format file.

Step-3: FASTQ file generated from step-2 is aligned with refer-
ence genome and converted into Sequence Aligned mapped or brief
(SAM File). This is further converted into binary format and coined
a new acronym BAM (Binary aligned Mapped file)- This BAM file
is used for future analysis and archive for long term by various
sequencing centers.

Generated from Step-3 above the BAM file that is usually of size
200-300 GB per run is used for tertiary analysis such as finding mu-
tations, variants and etc. and on every instance, it is to be accessed
from underlying storage platform. Finding single mutation such as
Cancer would need to access BAM around 20-30 times and as we
need to find more mutations and sequence more patients the I/O
load increases exponentially.

2 PROBLEM

In massive parallel genomic sequences, the main objective is often
to reduce the total wall clock execution time to release the find-
ings, often patients are waiting before the diagnosis begins or even
before the doctor prescribes the appropriate medicine specific to
the patient’s genome. this is often coined as personalized medicine.
Rather than simply increasing CPU power or adding more fast stor-
age do not increase the time-to-release. Because so many different
factors are present, you cannot expect a linear improvement in
performance just by adding more and more nodes or adding more
and more storage.

One of the most important factors is the inherent parallelism
present in the pipeline from an infrastructure point of view, many
additional factors can also contribute to improved performance.
Such as what storage systems should be better suited to that partic-
ular stage.

Usually, the decision to select and move the date between differ-
ent genomics analysis stages need human intervention and is often
semi-scripted which results in a delay of the final analysis. This
is because the genomics analysis is a multistep process which is
often called workflow also the storage system is not only classified
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as space available but rather there are multiple factors involved
such as the network speed, the disk performance, and resiliency.
Selection of appropriate storage medium on the specific stage of
analysis could not be done manually as we see in most current
situations, rather we suggest that it could be automated with the
help of a rule engine. This is further explained in later chapters.

Since the logic to process data manually would require a sub-
stantial human effort, it is desirable to put an automated yet flexible
system in place that can serve bioinformatics research. In partic-
ular, repetitive and error-prone steps that need manual attention
from specialists should be avoided as much as possible by software
means.

We are focusing to remove above barriers of selecting correct
storage medium with velocity of data. Not bothering about the
semantic of data and its format. This will give the strength of being
not only data format agnostic but also storage layer agnostic, as
the date aware engine itself would decide these.

2.1 Proposed solution

We are proposing a Data Aware pipeline, which would bring the
data in advance into designated compute environment so that task
can start immediately. This will reduce the NGS analysis time that
is the core requirement for Genomics medicine.

These systems need to be designed not only to support the
analysis of data but to address additional aspects associated with
operating a genomics operational pipeline. Examples include
automatically starting data processing when a sequencing run has
finished, do the quality analysis once the primary analysis finished,
further do the secondary and tertiary analysis with appropriate
algorithms according to the initial findings and require by the
patient later move the data to archive to remote storage with
selective data removal when needed. These operational aspects
have not been thoroughly investigated in the scientific literature
but are essential when taking a bird’s-eye view of the complete
process of refining raw genomics data to scientific results on a
high-throughput scale. Tackling these issues involves examination
of how higher-level orchestration, integration, and management
of workflows can be done in an efficient yet flexible manner, while
providing a clear enough understanding of the system so that
changes can be implemented with minimal mental overhead and
risk of breaking existing functionality.

We fill a niche by providing a systematic way of approaching the
operational aspects of data management and analysis of genomics
data.

One example of a system addressing the operational challenges
outlined above in the context of a sequencing core facility is de-
scribed by Cuccuru et al. [14]. They describe a system with a cen-
tral Automator that handles orchestration of the processes in an
event-based manner, using the Galaxy platform [15] as a separate
workflow manager. The Galaxy platform provides a web-based in-
terface, making bioinformatic analysis accessible to users who lack
the training to use command line tools. The system’s Automator is
based on daemons monitoring a RabbitMQ [16] based event queue.

Other system shares ideas with the Arteria system [4], but it
does not involve tagging of data with meta data and furthermore it
lacks the classification of storage system which as we stated is one
requirement for automating the data movement.
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Table 1: Attributes of Genomics meta-data

Attributes of Genomics Dataset
Workflow Stages Priority Type of Experiment
Output Samples Type
[D1]FASTQ [D6]Initial [D11]Rapid [D13]Clinical [D15]WES
[D2]BAM [D7]Primary [D12]Normal [D14]Research [D16]WGS
[D3]VCF [D8]Tertiary
[D4]CSV [D9]Delivery
[D5]PDF [D10]Archival
Table 2: Attributes of Storage systems
Attributes of Storage systems
Size Network types Network Medium Filesystem
Speed
[S1]100GB [S6]Ethernet [S11]1G [S15]Memory [S19]ext
[SZ]1TB [S7]Fibre [S12]10G [S16]Solid [S20]ZFS
state drive
[$3]10TB [S8]Low latency [S13]40G [S17]Spinning [S21]NFS
Disks
[S4]100TB [S9]Direct [S14]100G [S18]Tapes [S22]Cluster
attached FS
[S5]1PB [S10]ISCSI [S23]Parallel
FS

We basic workflow of genomic data movement are described as:

To store the data attributes in meta-data system

To record the storage attributes in meta-data system
Match the data attributes with the best data location.

Move the data in consideration of its attributes to appropriate
storage.

e Automation of above steps to avoid human errors and scaling
purposes.

Classification of storage systems in Genomics pipeline involves
with different attributes and mechanisms. Genome sequence work-
flow typically consists of the following:

1.Sequence appliance store data in a centralize location (that
storage should resilient enough to tackle the load)

2.The finished primary sequence data (called as run) consists of
different samples of patients which range from 1 to 96 usually. This
Run copy to primary analysis storage.

3.The tertiary Analysis of genomics needs to move the run either
into a cluster with high speed storage or a dedicated FPGA/GPU.

4.0nce the tertiary analysis finished the run will be moved to a
long-term storage for archival and retrieval purpose.

In above steps the requirements of storage are different with
following attributes such mentioned in Table 1

The decision to move the data according to the attributes to the
desired storage are so far manual and requires human intervention.
This cause delays and prone to human errors. As the sequence
cost goes down the rate of doing sequences are growing exponen-
tially. To effectively solve the delay and human error problem the
date movements should be automated and intelligently decided in
consider with both data and storage attributes.

There should be an automated mechanisms which decides if the
data attribute is X than move it to Storage Y for e.g. Decision of both
X andY are not simple, instead it requires a sort of machine learning
algorithms to make the optimize decision for data movement.

We are working with sensitive clinical data and reliably need to
produce results that may have a significant effect on the treatment of
patients. We cannot afford to waste time on repetitive manual tasks
and the undocumented, unrepeatable changes that come with it.

The idea is to collect the limitation factors or attributes of storage
systems as shown in Table 5 and take them in consideration when
move the data according to its attributes as show in Table 1
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Table 3: Genomics Run Data Sample

Genomics Run Data Sample

Current Attribute Run ID

Last Attribute Updated on

D1,D7,D12,D13,16

210527-A00781-0035-BH7]JXXX

D1,D6,D12,D13,16 220806-1223

D3,D8,D012,D13,15

211216-A00781-0046-BHYFYZ2DM

D2,07,D12,D13,15 210806-1013

Table 4: Storage details

Storage details

Attribute Storage ID

Mount Point Updated on

$21,517,511,56,52 Buffer-Galaxy

Lustre-Clinical

$5,58,514,517,523

/buffer-galaxy 220806-1223

/lustre/clinical 210806-1013

Table 5: Data to Storage Mapping

Data to Storage Mapping

Data Attribute

Storage ID

D1,D7,D12,D13,16

Buffer-Galaxy

D3,D8,D012,D13,15

Lustre-Clinical

Else if

If data_attributes are [D1,D07,D12,D13,D16] than use storage-id buffer-galaxy;

data_attributes are {D3,D08,D12,D13,D15] than use storage-id lustre-clinical;

Figure 1: Sample if-this-than-that statement

Ideally the data movement complexity should be hidden from
human errors which would lead towards scale-able and a sort of
autonomous system.

Furthermore, for automation the idea is to use StackStorm for
automation but extends it with irods for meta data management.

Our central StackStorm orchestrator queries this service and
raises an event every time new sequencing data is available. Based
on this event, downstream data processing steps can be initiated
for each new dataset.

The irods system perform the metadata tagging over data accord-
ing to Table 1 and mentioned in previous research [12], the Stack
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storm utilizes the algorithm to move the data with combination of
storage attributes Table [4] and mapping Table [5].

The interconnectivity between irods and stackstorm system is
based on microservices which assist in customization. These move-
ment of data happens autonomously, efficiently, reliably, and fully
audited.

Above mentioned If-Else statements are not that simple as data
attributes keep changing which requires complex rules engine with
flexible rule language. Here comes the support of rule engine lan-
guage from stackstorm which comprises of rules and action. Not
just simple if -than-else statement.



Storage aware data management system for Genomics

BDSIC 2023, October 20-22, 2023, Singapore, Singapore

name: "storage-data "
pack: "genomics"

enabled: true

trigger:
type: "trigger_type ref"

criteria

type: "regex"
pattern: "~D11,012,D3%"

type: "iequals”
pattern : "S1"

action:
ref: "action_ref"
parameters:
move: "Lustre-archive”

description: "Data movement rule."

trigger,payload parameter DataAttribute:

trigger.payload_StorageAttribute2:

baz: "{{trigger.payload_parameter_1}}"

Figure 2: Sample rule in yaml format

With above system there are no out-of-working-hours delays,
no menial tasks for researchers to perform, no inconsistencies due
to slight differences in manual steps.

3 RESULTS

Detecting new data utilizes host of useful tools and routines to
help with the common tasks of a sequencing center. One of those
tools is a folder monitor, which watches a defined directory for new
sequencing data and keeps track of its state.

Our central orchestrator queries this service and raises an event
every time new sequencing data is available. Based on this event,
downstream data processing steps can be initiated for each new
dataset..

The data from the sequencing machine first tagged in a meta
data system that is recognized by the rule engine. Sample applies
with underlying storage systems whose tagging also storage in
central meta data management systems.

After a new dataset has been detected, a StackStorm rule calls
the script to trigger the data movement. The script calls back to
the StackStorm instance allowing further steps to happen without
human intervention. In case of a conversion success for instance
the data is then automatically transferred to the compute cluster
for analysis. Analysis pipeline(s) There are several post processing
steps to be taken to ensure quality, comparability, and usefulness
of the data to researchers and clinicians beyond our team.

Data and results dissemination the data lifecycle does not stop
at the results though. Data and results need to be available in a way
that clinicians, collaborators, and other parties can easily access it
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and it needs to be safe and reliably stored for future reference. We

plan to put data distribution modules in place that automate this
process and make sure we comply with regulatory requirements as

well as community demands.
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