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A B S T R A C T

This paper presents an innovative approach to optimising the cold flow dynamics in combustion engines by 
integrating machine learning (ML) techniques with computational fluid dynamics (CFD). The research focuses on 
predicting and optimising critical pre-combustion parameters, such as turbulence kinetic energy (TKE) and 
tumble-y, which are pivotal for enhancing the air–fuel mixing during the intake and compression phases. Three 
ML models, Random Forest Regression (RFR), Gaussian Process Regression (GPR), and Neural Networks (NN), 
are evaluated for their predictive capabilities. The GPR model outperforms the others, demonstrating superior 
accuracy and reduced uncertainty, as highlighted by metrics such as Mean Absolute Error (MAE), Mean Squared 
Error (MSE), Pearson Coefficient (PC), and R-squared (R2). Additionally, the ML-based approach achieves a 
remarkable 21.6x speedup compared with traditional CFD solvers, significantly reducing the computational costs 
while maintaining high fidelity in capturing momentum and thermal characteristics. The optimization results 
underscore the critical role of TKE and tumble-y in creating favourable conditions for efficient combustion. For 
instance, as demonstrated in Design #1 (TKE = 396.56 J/kg, Tumble-y = -0.1535, Temp. = 846.42 K, Pres. =
1.52 bar) and Design #2 (TKE = 366.77 J/kg, Tumble-y = -0.1535, Temp. = 549.59 K, Pres. = 2.81 bar), higher 
TKE and optimized tumble-y values enhance air motion dynamics, promoting better fuel–air mixing and thermal 
performance. The rigorous assessment of optimization results using the Euclidean distance as a fitness function 
validates the reliability of the predictions and highlights the potential of ML models for efficient, scalable and 
cost-effective design exploration. Therefore, the present work provides a beneficial relationship between CFD 
simulation and experimental findings on cold flow dynamics and how these might play a leading role in pre- 
combustion process. Results provide a frame-shifting pathway toward optimization of engine design for the 
improvement of thermal efficiency, and meeting sustainability targets.

1. Introduction

Internal combustion engines (ICEs) have been central to modern 
transportation, powering diverse vehicles, including heavy-duty trucks, 
road vehicles, and off-road machinery. As global demands for efficiency 
and environmental sustainability grow, optimizing combustion pro-
cesses in ICEs has become a priority. Heavy vehicles used for trans-
porting goods require robust engines capable of withstanding long-haul 
journeys and heavy loads. Similarly, road vehicles such as cars and buses 
demand engines that balance power and fuel efficiency, particularly in 
urban and suburban environments. Off-road vehicles, including con-
struction and agricultural machinery, face unique operational 

challenges, requiring specialized engine designs to meet their perfor-
mance needs. The ongoing development of ICE technology focuses on 
improving thermal efficiency, reducing emissions, and minimizing 
environmental impacts. A wide range of strategies has been explored, 
including low-temperature combustion engines [1], advanced combus-
tion strategies [2], and the use of alternative fuels such as synthesis gas 
[3]. Researchers have also examined the effects of ultrasound waves on 
combustion [4], alternative fuels for emission reduction [5,6], and air 
filter pressure drops on emissions [7]. Dual-fuel combustion approaches 
in compression-ignition engines [8], reactivity-controlled compression 
ignition (RCCI) modes in biodiesel/natural gas engines [9], and RCCI 
combustion strategies [10] have also demonstrated significant potential 
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for improving ICE performance. Other innovations include asymmetric 
fuel injection in hydrogen engines [11], pilot fuel injection optimization 
in dual-fuel engines [12], and advanced injection strategies for pre-
mixed charge compression ignition (PCCI) combustion [13]. Research 
on optimizing spray angle and combustion chamber geometry has 
further contributed to improving engine efficiency and reducing emis-
sions [14]. Recent studies have also investigated fundamental processes 
such as fuel droplet heating and evaporation. Xie [15], for instance, 
provided critical insights into how these processes influence combustion 
in ICEs. Alternative fuels like ammonia have gained significant attention 
due to their potential to mitigate greenhouse gas emissions. Studies on 
ammonia jets have revealed key mixing characteristics and flammability 
limits, demonstrating their feasibility for ICE applications [16]. Addi-
tionally, performance analyses of ammonia-diesel dual-fuel engines 
have shown that optimizing ammonia energy ratios enhances thermal 
efficiency and reduces emissions, offering a promising pathway toward 
low-carbon transportation [18].

Parallel to advancements in combustion strategies and alternative 
fuels, machine learning (ML) has emerged as a transformative tool in ICE 
optimization. ML algorithms excel at handling the complex, multidi-
mensional nature of combustion, emissions, and heat transfer processes. 
By leveraging large datasets generated through experiments and simu-
lations, ML models can predict engine performance, optimize design 
parameters, and reduce the need for costly physical testing. Wu et al. 
[19] developed high-fidelity turbulent combustion surrogate models 
using deep learning, enabling real-time simulations of combustion pro-
cesses. Ihme et al. [17] reviewed ML’s role in combustion science, 
emphasizing its potential to uncover actionable insights from large-scale 
datasets. These advancements highlight the critical role of ML in driving 
innovations in ICE technology. The application of ML in ICE research has 
advanced significantly, demonstrating its effectiveness across a variety 
of domains, including combustion phasing, emissions modelling, heat 
transfer analysis, and power output prediction. In combustion phasing, 
artificial neural networks (ANNs) have been used to model nonlinear 
processes in natural gas spark-ignition engines, accurately predicting 
parameters such as peak cylinder pressure, ignition lag, and burn 
duration. These models reduce computational costs while maintaining 
high predictive accuracy [20]. Similarly, ML algorithms have been 
employed to predict engine emissions. Comparative studies between 
random forest (RF) and ANN models have shown that while RF provides 
quick initial predictions, ANN achieves higher precision, particularly for 
emissions forecasts [24,36].

In addition to emissions modelling, ML has proven valuable in ana-
lysing heat transfer dynamics in ICEs. ANN models have been used to 
study the heat transfer characteristics of spark-ignition natural gas en-
gines, revealing how combustion chamber geometries and fuel–air ratios 
influence thermal performance [35]. Furthermore, ML models have 
been applied to predict engine power output. RF models, for example, 
have accurately estimated indicated mean effective pressure (IMEP), a 
key performance metric, with minimal errors. These models offer cost- 
efficient alternatives for experimental design and engine calibration 
[36]. The integration of ML with CFD simulations has further enhanced 
ICE optimization. ML-driven approaches have improved mesh genera-
tion, refined turbulence and combustion models, and automated cali-
bration processes, reducing computational costs and human effort 
[24–31]. Studies by Yang et al. [32] and Zhou et al. [33] have demon-
strated ML’s ability to predict engine power output and emissions while 
aiding in combustion modelling and fuel optimization. For example, ML 
models have been used to calibrate RCCI strategies, improving com-
bustion efficiency and reducing emissions in biodiesel/natural gas en-
gines [10]. The versatility of ML has been further demonstrated in 
studies aimed at improving operational efficiency and reducing fuel 
consumption. For instance, Karunamurthy et al. [34] reviewed ML ap-
plications in predicting engine performance metrics such as brake 
power, brake-specific fuel consumption, and brake thermal efficiency 
under various operating conditions. These studies collectively illustrate 

the transformative impact of ML on ICE research and its potential to 
accelerate the development of environmentally friendly engine 
technologies.

While previous studies have focused on ML-driven enhancements in 
mesh generation, turbulence modelling and emissions prediction, this 
study takes a novel approach by leveraging CFD-validated data to train 
ML models for targeted optimization of in-cylinder flow dynamics. 
Recent works, such as Liu and Wang [52], have explored ML-assisted 
modelling of mixing timescales for large-eddy simulations (LES) in 
turbulent premixed combustion, demonstrating the potential of ML to 
refine physical models under extreme conditions. Similarly, studies like 
Liu et al. [53] have showcased ML-assisted predictions of exhaust gas 
temperature in natural gas engines, providing insights into the rela-
tionship between ML algorithms and traditional physical models in ICE 
research. Building on these advancements, this study integrates ML and 
CFD simulations to create a reduced-order modelling framework 
[58–60] tailored to ICE optimization. By combining the predictive 
power of ML with detailed CFD simulations, this methodology provides 
a robust framework for uncovering the complex relationships between 
turbulence kinetic energy (TKE), tumble, and other critical flow pa-
rameters. Unlike traditional iterative simulations, which are computa-
tionally intensive, the trained ML models allow for rapid exploration of 
different operating conditions, enabling adaptable initial and boundary 
conditions (IC/BCs) tailored to specific engine requirements. This inte-
gration not only accelerates the optimization process but also provides 
engineers with insights into hidden layers of data, such as the effects of 
varying TKE and tumble intensities on air–fuel mixing during the cold 
flow phase [38]. These advancements demonstrate the potential for ML 
to enhance both the efficiency and accuracy of ICE development pro-
cesses, offering scalable and cost-effective solutions for modern engine 
optimization challenges. This study addresses this gap by introducing an 
innovative methodology that leverages ML to enhance CFD simulations 
and optimize key combustion parameters in ICEs. The research critically 
evaluates multiple ML models, including Random Forest Regression 
(RFR), Gaussian Process Regression (GPR) and Neural Networks (NN), 
using extensive metrics such as Mean Absolute Error (MAE), Mean 
Squared Error (MSE), Pearson Coefficient (PC) and R-squared (R2) to 
identify the most effective model for predicting complex in-cylinder 
phenomena. The selected ML model is then applied to optimize the 
engine designs by targeting crucial parameters like turbulence kinetic 
energy (TKE) and Tumble-y, demonstrating the capability to signifi-
cantly enhance the engine performance while reducing computational 
costs. Furthermore, the research explores the application of a surface 
field model to predict flow velocities, achieving a considerable speedup 
in the design process compared with traditional methods. This approach 
represents a novel integration of ML and CFD, enabling rapid and ac-
curate predictions of engine behaviour and optimization of design 
parameters.

These contributions advance the state-of-the-art by providing a 
unified, efficient framework for ICE optimization. This study not only 
reduces the reliance on computationally expensive simulations but also 
introduces a robust ML-driven process for achieving optimal engine 
configurations. By addressing the dual objectives of enhancing perfor-
mance and promoting environmental sustainability, this research dem-
onstrates a vital step toward the development of next-generation ICEs.

2. 3D modelling of engine

2.1. Engine configuration

The present study adopted the same engine configuration as that 
used in a comprehensive experimental study by Schiffmann et al. [21]. 
The commercial CFD software, STAR CCM+, was employed to conduct 
the simulations. The geometry consists of a four-valve cylinder (two 
exhaust valves and two intake valves) with the piston positioned at the 
top dead centre. To reduce the computational costs, the computational 
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domain includes only half of the engine with the symmetry boundary 
condition implemented along the central plane. The use of symmetry 
conditions is a widely accepted practice in CFD simulations when the 
geometry and flow characteristics are symmetric, as it allows for sig-
nificant computational savings without compromising the accuracy of 
results. For instance, Shateri et al. [4] employed symmetry conditions in 
a combustion chamber to investigate turbulent flow with chemical re-
actions, demonstrating the reliability of this approach. Similarly, Klay-
borworn and Pakdee [45] considered half of the computational domain 
for a round combustion jet burner, explicitly stating that this simplifi-
cation saves computational resources while preserving all essential in-
formation. Additionally, the study by Blunier et al. [46] applied 
symmetry assumptions in the analysis of annular combustors with 
symmetric designs, further validating this approach in symmetric con-
figurations. Fig. 1 presents a three-dimensional (3D) model of the en-
gine. Table 1 provides the engine specifications, including the bore 
diameter of 92 mm, stroke length of 86 mm, crank radius of 40 mm, 
connecting rod length of 145 mm, and start angle of 300 degrees.

2.2. Mesh generation

Mesh resolution and quality are critical for accurately representing 
the engine geometry and capturing in-cylinder fluid dynamics. In this 
study, a fully automated approach in Simcenter STAR-CCM + was used 
to generate trimmed meshes that adapt to the motion of the piston and 
valves. Automatic remeshing was employed whenever cell distortion 
necessitated adjustments, ensuring fidelity in flow dynamics. The 
baseline mesh specifications are detailed in Table 2, and the mesh 
configuration from top and side views is shown in Fig. 2. The mesh 
resolution was set to 0.5 mm, corresponding to the fine resolution 
described in the Simcenter STAR-CCM + In-cylinder Solution White Paper 
[57]. This resolution was selected based on findings in the white paper, 
which demonstrated that while coarse meshes (1 mm and 0.75 mm mesh 
sizes) show mesh dependency for flow dynamics parameters such as TKE 
and tumble ratio, the fine resolution of 0.5 mm yields mesh-independent 
results. Additionally, the finer mesh better captures key flow features, 
including intake jet dynamics and tumble evolution, and provides good 
agreement with the experimental particle image velocimetry (PIV) data 
[57]. By adopting this validated mesh resolution, this study ensures high 
accuracy in capturing the in-cylinder fluid dynamics and turbulence 
characteristics.

2.3. CFD setting for the engine

The simulation was initiated at a 300-degree crank angle and 
concluded at a 720-degree crank angle. The intake port inlet serves as 
the entry point for air while the exhaust port outlet acts as the exit point 
with both boundaries modelled as pressure outlets. To model the 

property of air accurately, a multi-component gas mixture, which was 
composed of 23.31 % oxygen and 76.69 % nitrogen by mass volume 
rate, was used. To ensure the reliability and validation of the results, the 
initial conditions within the cylinder and ports were based on the data 
obtained from the experiment [21]. The initial absolute pressure was set 
to 1.47 bar, while the initial temperature was 1052.57 K. At a 300-de-
gree crank angle, the intake port pressure value was specified as 0.98 
bar, and the temperature was set at 316.77 K. For the exhaust port, the 
initial absolute pressure was determined as 1.35 bar, and the initial 
temperature was established as 986.68 K.

To accurately capture the turbulent flow characteristics inside the 
engine, the Realizable k-ε Two-Layer turbulence model with All y + Wall 
Treatment under the Reynolds-Averaged Navier-Stokes (RANS) 
approach was employed for all simulations in this study. This model was 
selected for its robust performance in handling complex internal flows, 
such as those encountered in engine intake and exhaust systems, where 
the flow separation, recirculation and anisotropy are critical phenomena 
[22,23]. The Realizable k-ε model improves upon the standard k-ε model 
by satisfying the realizability constraints on Reynolds stresses and 
providing a more accurate representation of turbulent kinetic energy 
dissipation, particularly in regions of strong curvature or rotation. This 
enhancement enables better predictions in flows with significant 
anisotropy or separation, such as in-cylinder flows in combustion en-
gines [48,49]. The model relies on two transport equations: one for 
turbulent kinetic energy (k) (i.e., Eq. (1)) and the other for the dissipa-
tion rate (ε) (i.e., Eq. (2)) [48]: 

Fig. 1. Three-dimensional (3D) model of the proposed engine.

Table 1 
Geometric parameters of the proposed engine.

Engine specification Value Unit

Bore 92 mm
Stroke 86 mm
Crank radius 40 mm
Connecting Rod length 145 mm
Start angle 300 degree
Compression ratio 10:1 −

Table 2 
Mesh characteristics of the engine model.

Mesh specification Value Unit

Mesh min size 0.5 mm
Prism layer total thickness 0.25 mm
Number of prism layers 2 −

Sharp edge angle 5 degree
Mesh type Trimmed
Mesh motion Morph/ remesh/ map solution
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Here, ρ is the fluid density, and k is the turbulent kinetic energy, and ε 
denotes the turbulent kinetic energy dissipation rate. ui and xi are the 
velocity components and coordinates along the ith direction. The effec-
tive diffusivities for k and ε (Γk and Γε), are defined as Γk =

μt
σk 

and Γε =
μt
σε

, where μt is the turbulent viscosity and σk, σε, are the turbulent Prandtl 
numbers for k and ε, respectively. Additionally, Gk is the production 
term for k, and Cε and Cε2 are model constants. The Realizable k-ε model 
introduces a variable damping function (fμ) that adjusts the critical co-
efficient Cμ dynamically to ensure the model adheres to physical con-
straints on turbulent stresses. This enhancement improves the model’s 
ability to predict boundary layers, flow separation, and recirculating 
flows, making it suitable for engine simulations.

The All y+ Wall Treatment integrates wall functions for high y+ re-
gions and a two-layer approach for resolving low y+ regions. This 

ensures an accurate representation of near-wall turbulence, a critical 
factor in capturing boundary layer phenomena. The velocity distribution 
near walls is modelled using the law of the wall: 

u+ =
1
κ

ln(Eʹy+) (3) 

Here, u+ is non-dimensional velocity, y+ is non-dimensional wall dis-
tance, κ is Von Kármán constant, and Eʹ is defined as Eʹ = E

f , with E is the 
log law offset, and f is the roughness function [48–50]. This model is part 
of the in-cylinder module provided by Star-CCM + and is identified as a 
high-accuracy option under specific conditions, including the mesh 
resolution and flow parameters used in this study. According to Star- 
CCM + documentation [57], the Realizable k-ε model with All y + Wall 
Treatment is particularly well-suited for in-cylinder simulations, where 
high accuracy is required to capture the transient flow structures, tur-
bulent mixing and boundary layer effects.

3. ML framework for combustion process

In recent years, there has been a growing interest in CFD and heat 

Fig. 2. Mesh visualisation of the engine model: (a) top view and (b) side view.

Fig. 3. Flowchart of CFD simulation, data extraction, model training, and evaluation.
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transfer communities using ML models to expedite their simulations. 
One platform that has gained prominence in this regard is Monolith AI 
[37]. A methodology incorporating ML techniques has been employed to 
enhance the precision of CFD simulations, particularly in the context of 
ICE simulations (see Fig. 3). The flowchart in Fig. 3 illustrates the 
comprehensive process starting with CFD simulation, data extraction, 
and the train-test split procedure. Following this, the flow moves on to 
DL model training, surface model predictions, and the application of 
three distinct ML models: Random Forest Regression (RFR), Neural 
Network (NN), and Gaussian Process Regression (GPR). Subsequently, 
the evaluation of these models is conducted using various metrics 
including Mean Absolute Error (MAE), Mean Squared Error (MSE), 
Prediction Correlation (PC), and R-squared (R2). Finally, the flow cul-
minates in the generation of the final prediction based on the preceding 
stages. During the training process, the ML models learn the underlying 
correlations between the input variables, such as initial conditions, 
boundary conditions, and the output variables, including pressure, 
swirl, TKE, and tumble-y. The trained ML models are subsequently 
validated using a separate test set to assess its generalization ability and 
accuracy in predicting engine performance.

The integration of ML with CFD is a promising approach for accel-
erating engine optimization and extracting hidden insights from com-
plex flow simulations. However, the implementation of this hybrid 
methodology presents several challenges that must be addressed to 
ensure its effectiveness. Generating high-quality data for training ML 
models requires careful curation of CFD simulation results. This includes 
ensuring that the simulation data is complete, consistent, and repre-
sentative of the full parameter space. In the present study, significant 
efforts were devoted to maintaining consistency across crank angles, 
operating conditions and geometrical configurations. Additionally, data 
conditioning was performed to remove the outliers and correct in-
consistencies arising from numerical instabilities in CFD simulations. 
Labelling CFD-generated data with appropriate metadata, such as crank 
angles, TKE, tumble-y, and geometrical parameters, is essential for an 
effective ML training. This process was particularly challenging because 
the multidimensional nature of CFD data required precise segmentation 
and annotation. Automated scripts were developed to extract and label 
key flow parameters across multiple simulation cases. CFD simulations 
inherently contain noise due to discretization errors, numerical ap-
proximations and convergence tolerances. This noise can degrade the 
performance of ML models if not properly addressed. In this study, 
noise-reduction techniques, including statistical filtering and smoothing 
algorithms, were applied to minimize the noise while preserving 
important physical trends. Representing the geometrical features of the 
in-cylinder flow domain in a format suitable for ML was another sig-
nificant challenge. CFD simulation data was converted into the VTK 
(Visualization Toolkit) format, which allowed for the spatial represen-
tation of velocity fields, pressure distributions, and turbulence param-
eters. This process required considerable preprocessing, including 
meshing consistency checks and data interpolation, to ensure compati-
bility with ML workflows.

3.1. Data structure

In this study, a CFD simulation was conducted starting at a 300-de-
gree crank angle and running for 420 degrees, covering the complete 
engine cycle. For each crank angle, a dataset was extracted, resulting in 
420 datasets. Each dataset consisted of a varying number of rows, 
ranging from 9500 to 10000, and 18 columns. The variation in the 
number of rows was due to the movement of the piston from top dead 
centre to bottom dead centre, which created more space in the cylinder 
and generated additional geometrical and operational data. Aggregating 
the data across all 420 crank angles resulted in a total of approximately 4 
million rows of data. Following best practices in machine learning (ML) 
[17,35], 80 % of this data (approximately 3.2 million rows) was allo-
cated for training the ML models, while 20 % (approximately 800k rows) 

was reserved for testing. This extensive dataset, collected over a wide 
range of crank angles, enabled the ML models to capture intricate re-
lationships between the input parameters (e.g., cylinder temperature, 
pressure, and mass flow rates) and the output parameters (e.g., cylinder 
pressure, TKE, and tumble-y). Furthermore, retraining experiments 
using subsets of the training data confirmed that this allocation ensured 
a balance between the computational efficiency and model prediction 
accuracy.

In this study, a carefully curated set of parameters were selected to 
train the machine learning (ML) model for predicting the turbulence 
kinetic energy (TKE) and tumble-y, which are pivotal for understanding 
the in-cylinder air motion dynamics during the cold flow phase of an 
internal combustion engine. These parameters include Cylinder Tem-
perature (CT), Cylinder Tumble-x (CT-X), Cylinder Mass (CM), Exhaust 
Port Pressure (EPP), Exhaust Port Temperature (EPT), Exhaust Port Mass 
Flow Rate (EPMFR), Intake Port Mass Flow Rate (IPMFR), Intake Port 
Pressure (IPP), and Intake Port Temperature (IPT). Each parameter was 
chosen for its direct or indirect influence on TKE or tumble-y, ensuring 
the ML model captures the intricate physical relationships governing 
these phenomena. CT and CM are fundamental thermodynamic vari-
ables that influence the turbulence generation within the cylinder. CT 
impacts air density and velocity gradients, which are primary contrib-
utors to turbulence formation, while CM governs bulk flow character-
istics, affecting the momentum that drives swirl and tumble motion. The 
inclusion of CT-x reflects the rotational motion of in-cylinder air, which 
is critical for evaluating the intensity and distribution of the rotational 
flow. Tumble motion plays a crucial role in enhancing the air–fuel 
mixing and turbulence, particularly during the intake and compression 
phases. The exhaust and intake port parameters provide critical 
boundary conditions that shape in-cylinder flow behaviour. For 
example, IPMFR determines the volume of fresh air entering the cylin-
der, which directly influences the initial turbulence levels. IPP and IPT 
set thermodynamic conditions at the intake, affecting the shear layer 
dynamics that contribute to both TKE and tumble formation. Similarly, 
EPMFR, EPP and EPT characterize the expulsion of exhaust gases, which 
indirectly influence the dissipation or maintenance of tumble motion. By 
integrating these parameters, the ML model can establish a compre-
hensive understanding of the thermodynamic state, mass distribution 
and flow dynamics during the engine cycle. This systematic selection 
enables the ML model to predict TKE and tumble-y with high accuracy, 
uncovering the underlying physical relationships and providing valu-
able insights for optimizing in-cylinder flow processes under varying 
engine operating conditions.

Furthermore, the ML model aims to predict several critical output 
parameters essential for comprehending combustion process, namely 
Cylinder Pressure (CP), Cylinder Swirl (CS), Cylinder tumble-y (CT-Y), 
and TKE. To comprehensively address this, a sensitivity analysis 
employing the Sobol method with the first-order variable combinations 
was carried out. This sophisticated analytical approach facilitates the 
exploration of both direct effects and interactions among the parameters 
concerning the model outputs [40–42]. The outcomes of this analysis 
provide a visible representation of the impact of each input parameter 
on the corresponding model outputs. As shown in Fig. 4, the correlation 
between the inputs and outputs is depicted, revealing notable findings. 
Specifically, the maximum correlation coefficients are observed for 
temperature as an input on TKE, registering at 0.3148; while for CS, it 
stands at 0.3195, and for CP, it is 0.2070. Additionally, the correlation 
coefficient for CM as an input on CT-Y is reported at 0.2019. This 
analysis provides valuable insights into the intricate connections be-
tween the input parameters and the model outputs.

Fig. 5 presents the learning curves, which illustrate the relationship 
between the MSE and the proportion of used data for training. The curve 
reveals that as the proportion of training data increases, the accuracy of 
the ML model is improved. Specifically, the model trained by 80% of the 
available data exhibits twice the accuracy of the model trained by only 
20%. This observation suggests that a larger volume of training data 
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Fig. 4. Correlation coefficient heat map of selected parameters with Cylinder Pressure (CP), Cylinder Swirl (CS), Cylinder Tumble-y (CT-Y) and TKE in IC engine.

Fig. 5. Train split learning curves of RFR, NN and GPR models for CP, CS, CT-Y and TKE.
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facilitates the development of a more accurate and reliable ML model. 
The increase in accuracy using a more extensive training dataset can be 
attributed to several factors. First, a larger volume of data provides the 
model with a more comprehensive representation of the underlying 
patterns and relationships within the dataset. This enables the model to 
learn more effectively and make more accurate predictions. Second, a 
more extensive dataset helps to mitigate the impact of potential outliers 
or noise in the data, leading to improved generalization and robustness 
of the model [17,39].

3.2. ML models

The Monolith AI platform provides a suite of ML models, including 
NN, RFR, GPR, Support Vector Machines (SVM), Polynomial Regressions 
(PR), and Decision Trees (DT). The selection of RFR, GPR and NN for this 
study was guided by their adaptability to the specific challenges of 
modelling cold flow phenomena in combustion engines. These 

phenomena involve highly nonlinear interactions between turbulence 
kinetic energy (TKE), tumble, pressure, and temperature. The chosen 
models were selected based on their ability to capture the complex re-
lationships, scale effectively with large datasets and quantify uncer-
tainty in predictions. RFR was chosen for its ensemble-based approach, 
which reduces overfitting and provides feature importance metrics, of-
fering insights into the influence of various parameters. Its ability to 
handle the high-dimensional data and resilience to noise make it an 
effective choice for regression tasks involving intricate patterns [17,39]. 
GPR was selected for its probabilistic framework, which models un-
certainties in predictions and provides confidence intervals, a crucial 
feature in engineering applications. GPR is particularly suited for 
moderate-sized datasets, where its ability to provide both predictions 
and uncertainty bounds adds significant value. Compared with Gradient 
Boosting (GB), which is not available in the Monolith AI platform, GPR 
offers a more accessible and interpretable framework for this study. NN 
models were included for their ability to learn complex, high- 

Fig. 5. (continued).
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dimensional patterns from large datasets. They are particularly effective 
in analysing relationships between TKE, tumble and other cold flow 
parameters, enabling deeper insights into nonlinear interactions. While 
GB models are well-regarded for their performance in regression tasks, 
their exclusion in this study is due to their unavailability within 
Monolith AI and their sensitivity to hyperparameter tuning, which adds 
complexity to their implementation [17,39]. While SVM was consid-
ered, its use was limited in this study due to its computational re-
quirements, particularly for kernel-based methods in regression tasks. 
As noted in [52], SVM had the smallest error, but it required the highest 
computational resources. This trade-off made SVM less practical for 
large-scale, nonlinear problems, despite its strong performance in 
smaller datasets.

3.3. Evaluation of ML models

In the realm of predictive modelling, the assessment of model 
generalization and the mitigation of overfitting should be considered 
critically. Cross-validation, which is a statistical technique in Monte 
Carlo (MC) method family, plays a pivotal role in achieving these ob-
jectives. By dividing the data into distinct sections for model training 
and validation, cross-validation enables a comprehensive evaluation of a 
model’s performance, thus enhancing its generalization capacity and 
reducing the risk of overfitting [43]. One of the fundamental types of 
cross-validation is the k-fold cross-validation, which has been widely 
adopted in engineering. This technique involves dividing the dataset 
into k segments or folds, followed by k iterations of training and vali-
dation. During each iteration, a different fold is held out for validation 
while the remaining (k-1) folds are used for model training. The use of k- 
fold cross-validation allows for the assessment of a model’s performance 
across various subsets of the data, contributing to a more robust eval-
uation process. The selection of the number of folds, k, is a critical 
consideration, with the typical range being from two to ten, to ensure 
robust model assessment and guard against overfitting [44]. For this 
study, a 5-fold approach was employed to achieve these objectives. In 
the evaluation of predictive models, several key performance metrics 
come into play. R2, for instance, measures the proportion of the variance 
in a dependent variable that can be explained by the independent var-
iables. A higher R2 value signifies a more accurate model, indicating that 
a significant portion of the variation in the dependent variable is 
captured by the model. MAE and MSE are used to quantify the average 
differences between the predicted and actual values, with lower values 
indicating higher model accuracy. In addition, the PC is employed to 
assess the linear correlation between two variables, providing insights 
into the strength and direction of the relationship [41]. This approach 
contributes to the advancement of predictive modelling techniques and 
the development of more reliable and accurate models for various ap-
plications. To evaluate the models, various metrics are employed and 
presented in Table 3. The results indicate that GPR outperforms the 
others in terms of accuracy, as evidenced by the metrics: MAE, MSE, PC, 

and R2. For example, in the case of CP, GPR achieves an MAE of 0.0556, 
MSE of 0.06923, PC of 1, and R2 of 1, while RFR and NN exhibit slightly 
higher values for these metrics. Similar trends are observed for CS, CT-Y 
and TKE. Fig. 6 illustrates a Box and Whisker plot that compares the 
performance metrics of the models. This visible representation offers 
insights into the median, minimum and maximum data points, as well as 
the 1st and 2nd quartiles for four key metrics: R2 and PC. The findings 
presented in Fig. 6 unequivocally indicate that the GPR model demon-
strates remarkably precise predictions, surpassing both the RFR and NN 
models across all the assessed metrics. The lower median values, and 
narrower interquartile ranges for the GPR model signify its superior 
performance and resilience in accurately forecasting the engine perfor-
mance values. The primary reason for GPR’s outperformance lies in its 
probabilistic nature, which allows it to provide not only point pre-
dictions but also uncertainty estimates. This capability is particularly 
advantageous for modelling complex in-cylinder flow phenomena 
characterized by nonlinear and multidimensional interactions. Unlike 
RFR, which may produce inconsistent predictions in regions of sparse 
data, and NN, which requires extensive tuning and larger datasets for 
optimal performance, GPR excels in adapting to sparse data regions 
through its kernel-based approach [54–56]. The choice of kernel, such as 
the radial basis function (RBF) kernel used in this study, allows GPR to 
capture smooth and nonlinear variations in TKE, tumble-y, and other 
key parameters. This makes GPR well-suited for capturing spatial and 
temporal dependencies inherent in the CFD-generated data. Moreover, 
GPR’s ability to quantify predictive uncertainty provides engineers with 
actionable insights for making informed decisions during optimization.

4. Results and Discussion

An essential aspect of ensuring the reliability of the simulation re-
sults involves comparing them with the data derived from a previous 
experimental study [21], which is considered as a benchmark case. 
Detailed comparison has been presented in Sec. 4.1 to establish the 
credibility and validity of the simulation approach. Sec. 4.2 presents the 
in-depth predictions generated in ML models concerning a variety of 
engine parameters. The prediction for the parameters includes the 
pressure, swirl, TKE, and tumble-y.

4.1. Validation of CFD results against experimental data

The present CFD results are validated by comparing with the 
experimental findings of Transparent Combustion Chamber-III (TCC-III) 
Optical Engine obtained at the University of Michigan [21]. The engine 
features a spark-ignition, 2-valve, 4-stroke design with a pancake- 
shaped combustion chamber, a geometrical compression ratio of 10:1, 
and bore × stroke dimensions of 92 × 86 mm. Extensive optical access is 
provided by a full quartz cylinder and a 70 mm-diameter flat quartz 
piston window. High-frequency piezo-resistive absolute-pressure trans-
ducers were installed in the intake and exhaust systems to record intra- 
cycle pressure at 0.5 CAD intervals. PIV measurements were conducted 
in four planes using a high-speed camera and a high-repetition-rate dual- 
cavity frequency doubled Nd:YLF laser. This comprehensive experi-
mental setup yielded detailed data on pressure, temperature, and ve-
locity fields, which served as a benchmark for the CFD simulations in 
this study. As discussed in Sec. 2, the engine configuration of the 
simulation is the same as in the experiment. Nevertheless, to minimize 
the computational costs, the simulation focuses on the crank angle 
ranging from 300 to 720 degrees, whereas the experimental study en-
compasses the full crank angle range of 0–720 degrees. In the context of 
combustion process, the crank angle of 0 degrees typically corresponds 
to the top dead centre of the piston at the beginning of the intake stroke, 
and the 180-degree mark represents the bottom dead centre at the end of 
the exhaust stroke. Therefore, the simulation focusing from 300 to 720 
degrees captures the latter part of the power stroke and the entire 
exhaust stroke, aligning with the relevant operational characteristics 

Table 3 
Comparison of performance metrics for the cylinder pressure, swirl, tumble-y 
and TKE between NN, RFR and GPR models.

Output ML model MAE MSE PC R2

CP GPR 0.0556 0.0923 1 1
CP NN 1.2633 3.3478 0.99965 0.99909
CP RFR 0.6658 1.0726 1 1
CS GPR 0 0 1 1
CS NN 0.00059 5.00E-05 0.99981 0.99911
CS RFR 0.00012 0 1 1
CT-Y GPR 0 0 1 1
CT-Y NN 0.00728 9.00E-05 0.99978 0.99949
CT-Y RFR 0.00024 0 1 1
TKE GPR 0.00039 0 1 1
TKE NN 2.07397 3.34937 0.99988 0.99951
TKE RFR 0.04213 0.00728 1 1
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while optimizing computational resources.
Fig. 7 illustrates the comparison of key in-cylinder flow metrics 

derived from CFD simulations and experimental data for the TCC-III 
engine. Fig. 7(a) highlights the intake and exhaust valve lift profiles as 
a function of crank angle. The results demonstrate a strong agreement 
between the CFD and experimental valve lifts, as evidenced by the 
overlapping curves for both intake and exhaust valves. This alignment 
verifies the accurate representation of valve dynamics in the simulation, 
which is essential for capturing the air-flow characteristics during the 
intake and exhaust phases. Fig. 7(b) presents the in-cylinder trapped 
mass variation with crank angle. The trapped mass, critical for deter-
mining the mass of air available for combustion, shows excellent 
agreement between CFD and experimental results. Both profiles closely 
follow the same trend, with minimal deviation observed across the crank 
angles. Fig. 8 (a-b) show the comparison between the predicted cylinder 
pressure/temperature at different crank angles and the corresponding 
experimental data. It can be seen from Figs. 7 and 8 that an excellent 
agreement between the CFD results and the experimental data is 
reached. This provides compelling evidence of the robust accuracy 
achieved in the present CFD simulations, demonstrating its capability to 
accurately capture the key characteristics of the combustion process.

The statistical comparison between the CFD results and experimental 

data for 10 random crank angles is depicted in Fig. 9, comprising: (a) 
Temperature, (b) Pressure, and (c) Trapped Mass. The analysis reveals a 
generally good alignment between the two datasets across all three 
parameters, supported by the respective RMSE values. For temperature 
in Fig. 9(a), the Bland-Altman plot indicates a mean difference of 1.48 K, 
suggesting a minor bias in the CFD predictions compared against the 
experimental data. The limits of agreement, spanning from − 2.41 K to 
5.37 K, demonstrate a satisfactory level of precision, particularly 
considering the RMSE value of 1.29 K, which falls within acceptable 
ranges for thermal simulations. For pressure in Fig. 9(b), the agreement 
is exceptional, with a mean difference of − 0.02 bar, reflecting negligible 
bias. The narrow limits of agreement (− 0.05 bar to 0.02 bar) and the 
corresponding RMSE value of 0.11 bar confirm that the CFD predictions 
closely align with the experimental data, capturing the pressure trends 
with high fidelity. For trapped mass in Fig. 9(c), the mean difference of 
2.87 mg highlights a minor positive bias, where the CFD model tends to 
slightly overestimate the trapped mass relative to experimental mea-
surements. However, the limits of agreement (0.38 mg to 5.37 mg) and 
the RMSE of 1.92 mg indicate that the CFD predictions remain within 
acceptable engineering tolerances.

Fig. 6. Comparison of the performance metrics between NN, RFR and GPR models: (a) R-squared (R2) and (b) Pearson Coefficient (PC).

Fig. 7. Comparison of (a) intake/exhaust valve lift and (b) in-cylinder trapped mass between CFD results and experimental data.
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Fig. 8. Comparison of (a) cylinder pressure and (b) cylinder temperature between CFD results and experimental data.

Fig. 9. Bland-Altman analysis of CFD and experimental data for random crank angles: (a) temperature; (b) pressure; and (c) in-cylinder trapped mass.
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4.2. In-Cylinder visualization

Fig. 10 shows the velocity magnitude of a cold flow at different crank 
angles. As mentioned in Sec. 2, this study commences the simulation 
from a crank angle of 300 degrees, progressing toward the cylinder’s top 
dead centre position. Observations reveal that the exhaust valve remains 

open during the crank angle range of 300–360 degrees, followed by the 
opening of the intake valve, which is subsequently closed after reaching 
a crank angle of 600 degrees. This valve motion is also reflected in the 
absolute pressure contour, where the cylinder chamber experiences the 
highest pressure when the valves are closed (See Fig. 11). Absolute 
pressure provides a comprehensive representation of the overall 

Fig. 10. Velocity magnitude (m/s) of a cold flow at different crank angles: (a) 301 degrees; (b) 364 degrees; (c) 400 degrees; (d) 500 degrees; (e) 562 degrees; (f) 625 
degrees; (g) 700 degrees; and (h) 720 degrees.
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pressure inside the cylinder, incorporating both effects of the combus-
tion process and the valve dynamics. In addition, absolute pressure al-
lows a direct comparison of pressures at different levels across different 
crank angles, enabling a clear understanding of the variations in pres-
sure distribution throughout the engine cycle.

4.3. Prediction of ML models

After training the ML models, assessing their quality and accuracy 
using the test dataset is essential. This evaluation process is crucial in 
determining the reliability and performance of the model. Figs. 12(a-d) 
present the data of pressure, swirl, TKE and tumble-y predicted with ML 
models, specifically focusing on the instances where the predictions 
align perfectly with the actual values. Upon the examination of these 
findings in Fig. 12, it becomes evident that all the models perform 
exceptionally well. However, the GPR and RFR show better alignment 
compared with the NN model. The predictions from GPR closely align 
with the actual values across the entire crank angle range, demon-
strating its ability to capture the complex relationships and quantify 

uncertainties. RFR, while effective, shows slightly lower accuracy in 
regions with rapidly changing phenomena, such as TKE during intake 
and compression phases. NN predictions, though promising, exhibit 
higher uncertainties in regions requiring more extensive data or opti-
mized architectures.

The comparison of NN, RFR, and GPR predictions, as shown in 
Figs. 13(a-d), highlights the varying performance of these models across 
different crank angle ranges for predicting pressure, swirl, TKE, and 
tumble-y. The GPR model demonstrates superior accuracy across the 
entire crank angle range, particularly in regions with high gradients (e. 
g., Fig. 13(a) at 620–700 crank angles for pressure and Fig. 13(c) for TKE 
peaks at 500–550 crank angles). This superior performance is attributed 
to the ability of GPR to capture non-linear trends with higher fidelity due 
to its Bayesian framework, which inherently models uncertainty and 
adapts well to sparse or complex data distributions. The RFR model, 
with its robust averaging mechanism, performs well in steady-state re-
gions. For instance, it accurately captures the plateau observed in Fig. 13
(c) for TKE between 350–400 crank angles. However, its discrete, tree- 
based approach shows limitations in regions with rapid transitions, 

Fig. 11. Absolute pressure (Pa) of a cold flow at different crank angles: (a) 301 degrees; (b) 400 degrees; (c) 500 degrees; (d) 600 degrees; (e) 700 degrees; and (f) 
720 degrees.
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such as the TKE peak at 500–550 crank angles, where it exhibits slightly 
higher errors compared with GPR. Similarly, in Fig. 13(d), RFR performs 
reliably for tumble-y predictions in stable regions but shows minor de-
viations in high-gradient regions. The NN model, while performing 
reasonably well overall, demonstrates higher uncertainties, particularly 
in regions with rapid transitions or high variability, as evidenced in 
Figs. 13(a-d). For example, Fig. 13(b) shows the swirl predictions, where 
the NN model struggles to maintain consistency in regions with dynamic 
changes in flow characteristics. Fig. 13(d) for tumble-y further empha-
sizes this trend, where the wide uncertainty bands indicate challenges in 
capturing the complex non-linear relationships between input parame-
ters. This behaviour can be attributed to the sensitivity of NN to 
hyperparameter tuning and the challenges of training on highly non- 
linear phenomena. The wide uncertainty bands in the NN model pre-
dictions suggest potential underfitting in certain regions or limitations in 
learning the intricate interactions of the dataset.

These differences underline the importance of selecting appropriate 
ML models for different crank angle ranges and phenomena. For 
example, GPR is well-suited for scenarios requiring high precision and 
detailed uncertainty quantification, while RFR provides robust pre-
dictions in more stable regions. NN models, although requiring further 
optimization, offer a versatile framework capable of handling a variety 
of input–output relationships with appropriate tuning. The predictions 
generated by the NN model demonstrate promising results having un-
certainty ranges observed between 31.27 and 68.20 J/kg for TKE. The 
predicted value for TKE in the model is 47.06 J/kg. Likewise, the model 
accurately predicted tumble-y values within an uncertainty range of 
− 0.111 to 0.012 along with a model prediction of − 0.048. The predicted 
pressure was about 2 MPa, and the swirl value was 0.215. While the NN 
model predictions align closely with the measured data, it is essential to 
acknowledge some minor differences within the uncertainty range. 

Several recommendations can be considered to optimize the model and 
reduce the uncertainty range: 

1) Increasing the size of the training dataset may enhance the model’s 
capability of capturing a broader range of scenarios and improving 
its generalization stability.

2) Fine-tuning the model’s hyperparameters, such as adjusting the 
learning rate, number of layers, or activation functions, can help 
optimize its performance.

3) Exploring different NN architectures or considering ensemble 
methods, such as combining multiple models, could enhance the 
prediction accuracy and reduce the uncertainty.

4) Continuous evaluation and iteration, and further refining the model 
based on new data, can contribute to its ongoing improvement and 
uncertainty reduction.

The NN model can be further refined by implementing these opti-
mization strategies, allowing for even more accurate predictions and a 
narrower uncertainty range. This iterative process of model improve-
ment is a vital step to ensure the robustness and reliability of the pre-
dictions, continually aligning them with the measured data. Tables 4-6
present a detailed comparison of predicted and measured values for CP, 
CS and CT-Y at random crank angles, utilizing NN, RFR and GPR models. 
Upon analysing the results, it becomes obvious that the GPR model ex-
hibits an exceptional performance, with instances where the GPR ab-
solute error is zero (dash lines), signifying precise predictions that align 
closely with the measured values. This remarkable accuracy underscores 
the GPR model’s ability to effectively capture the underlying patterns 
and relationships within the dataset, resulting in highly reliable pre-
dictions for CP, CS, and CT-Y. Furthermore, the RFR model also dem-
onstrates notable performance, consistently yielding low absolute error 

Fig. 12. Comparison of predicted and actual values by RFR, GPR and NN models for: (a) CP; (b) CS; (c) TKE; and (d) CT-Y.
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Fig. 13. (a) Pressure; (b) swirl; (c) TKE; and (d) tumble-y predicted by NN, RFR and GPR models at different crank angles.

Table 4 
Comparison of predicted and measured values for the cylinder pressure (CP) at random crank angles using NN, RFR, and GPR models.

Crank Angle Measured NN GPR RFR NN Ab. Error GPR Ab. Error RFR Ab. Error

368.19 0.06577 0.08494 0.06411 0.06339 0.01917 0.00166 0.00238
403.65 0.03817 0.03873 0.03798 0.03711 0.00056 0.00019 0.00106
487.87 0.04483 0.05912 0.04483 0.04563 0.01429 0.00000 0.0008
536.63 0.06953 0.08971 0.06947 0.07413 0.02018 6E-05 0.0046
580.96 0.08613 0.10691 0.08832 0.09255 0.02078 0.00219 0.00642
611.98 0.12848 0.13863 0.12881 0.13637 0.01015 0.00033 0.00789
651.88 0.32434 0.31454 0.32434 0.33402 0.0098 0.00000 0.00968
688.55 1.10828 1.07552 1.11509 1.11926 0.03276 0.00681 0.01098
711.31 2.04319 2.01317 2.03559 2.09463 0.03002 0.0076 0.05144
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values and indicating its capacity to provide accurate predictions 
comparing with the measured values.

The analysis of the uncertainty maps in Figs. 14(a-d) is essential to 
evaluate the reliability and robustness of GPR model in predicting en-
gine combustion performance. These uncertainty contours, which 
represent the mean uncertainty for outputs such as CM, CS, CT-Y, and 

TKE, provide valuable insights into the model’s performance under 
different conditions. The fixed input of temperature across all figures, 
along with the second inputs such as Cylinder Mass (CM), Cylinder 
tumble-x (CT-X), Intake port mass flow rate (IPMFR), and Exhaust port 
mass flow rate (EPMFR), offer a comprehensive view of the model’s 
predictive capabilities. The low uncertainty exhibited in all four outputs 

Table 5 
Comparison of predicted and measured values for the cylinder swirl (CS) at random crank angles using NN, RFR, and GPR models.

Crank Angle Measured NN GPR RFR NN Ab. Error GPR Ab. Error RFR Ab. Error

305.83316 0.07038 0.05925 0.07182 0.05193 0.011126 0.001440 0.018444
351.17310 0.01795 0.01814 0.01795 0.01706 0.000186 0.000001 0.000887
400.71176 0.13628 0.13543 0.13634 0.13642 0.000845 0.000064 0.000141
441.74462 0.31695 0.31367 0.31888 0.31414 0.003277 0.001925 0.002812
512.37777 0.69635 0.68474 0.69761 0.69987 0.011619 0.001260 0.003511
600.46568 0.31666 0.31599 0.31666 0.32345 0.000668 0.000000 0.006792
691.63949 0.03338 0.03032 0.03382 0.03576 0.003062 0.000435 0.002378
707.86847 0.02897 0.02107 0.02965 0.03130 0.007897 0.000682 0.002333
305.83316 0.07038 0.05925 0.07182 0.05193 0.011126 0.001440 0.018444

Table 6 
Comparison of predicted and measured values for the cylinder tumble-y (CT-Y) at random crank angles using NN, RFR, and GPR models.

Crank Angle Measured NN GPR RFR NN Ab. Error GPR Ab. Error RFR Ab. Error

303.29 0.15502 0.16188 0.15372 0.14849 0.006866 0.001293 0.006525
350.55 0.09873 0.09271 0.09687 0.09360 0.006024 0.001861 0.005134
400.21 0.66571 0.63483 0.66195 0.65613 0.030874 0.003758 0.009574
458.59 − 0.56986 − 0.56280 − 0.56396 − 0.56266 0.007057 0.005904 0.007197
505.55 − 0.71356 − 0.68961 − 0.71356 − 0.71369 0.023956 0.000000 0.000129
549.79 − 0.54930 − 0.52759 − 0.54874 − 0.54937 0.021709 0.000557 0.000066
620.32 − 0.39215 − 0.38874 − 0.39693 − 0.39336 0.003413 0.004774 0.001205
695.33 − 0.11130 − 0.11267 − 0.11179 − 0.11430 0.001365 0.000492 0.003000
303.29 0.15502 0.16188 0.15372 0.14849 0.006866 0.001293 0.006525

Fig. 14. Mean uncertainty maps for Gaussian Process Regression (GPR) model in prediction of engine performance: (a) CM; (b) CT-X; (c) IPMFR; and (d) EPMFR.
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underscores the high reliability of the GPR model in predicting engine 
performance. The small areas of high uncertainty, which is delineated by 
dash lines in figures, serve as valuable indicators for further data 
collection, model refinement, and the inclusion of more complex phe-
nomena to enhance the prediction accuracy of ML models.

The sensitivity analysis of the GPR model was conducted to evaluate 
the influence of various input parameters on two critical outputs: TKE 
and tumble-y. The results are depicted in Figs. 15(a) and (b), which 
illustrate the average impact of each input parameter on TKE and 
tumble-y, respectively. For TKE in Fig. 15(a), Cylinder Temperature 
(CT) exhibited the highest normalized impact (0.5), followed by Cylin-
der Mass (CM) (0.221876) and Exhaust Port Mass Flow Rate (EPMFR) 
(0.218143). These findings highlight the importance of thermal and 
mass-related parameters in influencing turbulence generation within the 
cylinder. Conversely, geometric parameters such as X, Y, and Z di-
rections showed minimal influence, emphasizing the predominance of 
operational conditions over geometry in shaping turbulence dynamics. 
For tumble-y in Fig. 15(b), Cylinder Mass was identified as the most 
influential factor (0.5), followed by Crank Angle (0.471453) and 
Exhaust Port Temperature (EPT) (0.44916). This underscores the 
importance of mass distribution and timing in controlling the rotational 
air motion. Notably, Cylinder Tumble-x (CT-X) and Geometrical Z- 

direction (Z) also played significant roles, indicating the interplay be-
tween tumble-y and spatial parameters. Similar to TKE, geometric fea-
tures such as X and Y directions demonstrated lower impacts, further 
emphasizing the dominance of thermal and mass-related inputs. This 
dual analysis provides critical insights into the relative importance of 
input parameters for both TKE and tumble-y, enabling a deeper under-
standing of the engine’s in-cylinder dynamics.

While the ML models demonstrate strong agreement with the CFD 
results across most crank angle ranges, a systematic bias can be observed 
in certain regions, particularly in NN and RFR predictions. For instance, 
as shown in Fig. 13(c), the NN model slightly underpredicts TKE in the 
crank angle range of 400–500 while showing a tendency to overpredict 
in the range of 500–600. Similarly, Fig. 13(a) reveals that the RFR model 
exhibits minor overprediction of pressure at the high crank angle region 
of 620–700, where sharp gradients are observed. These biases, although 
within acceptable error margins, indicate limitations in capturing the 
specific flow dynamics under certain conditions. The systematic 
underprediction in the NN model can be attributed to the sensitivity of 
the model to local minimums during training, particularly in regions 
with sparse or imbalanced data. This may cause the NN to be generalized 
less effectively in areas of rapid changes, leading to underestimation or 
overestimation of key parameters. Additionally, the overprediction in 
the RFR model can be linked to its discrete tree-based structure, which 
struggles to interpolate effectively in regions with high gradients or non- 
linearities. These behaviours highlight the need for refined data cura-
tion, such as ensuring balanced representation of all operating condi-
tions during training, and optimization of hyperparameters to improve 
the model’s generalization capabilities.

Interestingly, GPR does not exhibit significant bias in its predictions, 
as evident from its close alignment with the CFD results across all crank 
angles as listed in Tables 4-6. This can be attributed to its probabilistic 
nature, which allows it to effectively capture the uncertainty and vari-
ability in data. However, the computational cost of GPR models in-
creases with dataset size, which could be a limitation for scaling the 
approach to more complex datasets or simulations. Identifying and 
addressing these systematic biases is critical for further improving the 
accuracy and reliability of the ML models. Possible mitigation strategies 
include increasing the size and diversity of the training dataset, 
employing data augmentation techniques to balance the representation 
of complex scenarios, and incorporating additional physical constraints 
or physics-informed features into the ML training process.

4.4. Surface field prediction

The innovative AI tool Surface Field has demonstrated the significant 
promise of surface field prediction in engineering research. This 
approach empowers engineers to leverage historical 3D simulation data 
to establish correlations between 3D geometries and their corresponding 
surface fields. To show the predictive capability of the model, Fig. 16
illustrates the velocity magnitude at the cylinder centre on a Y plane for 
both ML prediction and CFD simulation. Additionally, the error distri-
bution contour further highlights the similarity between the ML pre-
dictions and CFD results, demonstrating a consistent trend in flow 
patterns and comparable min/max velocity magnitudes. This similarity 
is particularly noteworthy given the significant difference in running 
time and processing resources between the two approaches. In the case 
of CFD simulations, 8 cores were employed for parallel computing, 
resulting in an accumulated CPU time of 966,185 s. The ML approach, 
on the other hand, involved training the model for 80,000 steps on a 
single processor, significantly reducing the computational resource re-
quirements. Table 7 presents a detailed comparison of the CPU time and 
wall-clock time utilized in the computing process for both CFD simula-
tions and the ML model. For accumulated CPU time, the CFD solver 
utilized 8 cores of Intel Xeon Gold 5215 (13.75 M Cache, 2.50 GHz) and 
required 966,185 s, while the ML model required only 44,748 s. This 
results in a remarkable speedup of approximately 21.6 times faster in 

Fig. 15. Sensitivity analysis of input parameters on: (a) TKE and (b) tumble-y 
predictions using GPR model.
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Fig. 16. Velocity magnitude (m/s) of ML prediction (left panel) and CFD simulation (middle panel), and error distribution (right panel): (a) 321 degrees; (b) 361 
degrees; (c) 387 degrees; (d) 403 degrees; (e) 428 degrees; (f) 517 degrees; and (g) 706 degrees.

A. Shateri et al.                                                                                                                                                                                                                                 Fuel 389 (2025) 134590 

17 



terms of accumulated CPU time. However, when considering wall-clock 
time, the CFD simulation required approximately 33.5 h for a single run, 
while the ML model completed its training and inference in 12.4 h, 
yielding a real-world speedup of approximately 2.7 times faster. These 
findings highlight the dual advantages of ML models in significantly 
reducing the computational costs and achieving faster real-world run-
times. This efficiency positions ML as a highly advantageous alternative 
for optimizing engineering processes compared with traditional CFD 
solvers.

Significantly, the increase in the number of training steps is expected 
to produce consistent outcomes, with both the training loss and vali-
dation loss decreasing progressively. This highlights the potential of AI- 
driven surface field prediction as a cost-efficient and effective substitute 
for resource-intensive simulations, underlining its importance and in-
fluence on the future advancement of combustion engineering and sci-
ence. Fig. 17 provides a comprehensive depiction of a model’s training 
process across 100 k training steps, with the blue line denoting the 
validation and the red line representing the training process on selected 
data. The smaller graphs within the figure demonstrate the velocity 
magnitude at specific training steps (20 k, 30 k, 40 k, 60 k, and 80 k), 

offering insight into the evolution of prediction accuracy as the number 
of training steps increases. Particularly, the minimum and maximum 
values of velocity magnitude are recorded at 4.61 m/s and 64.6 m/s at 
20k training steps, respectively, corresponding to the train loss and 
validation loss of 0.11 and 0.12. As the training progresses, the velocity 
magnitude demonstrates a discernible improvement and reaches the 
minimum and maximum values of 2.71 m/s and 84.2 m/s at 80k 
training steps with the training loss and validation loss being decreased 
to 0.059 and 0.075. This trend suggests a positive correlation between 
the number of training steps and the accuracy of prediction results while 
being in comparison with CFD simulation results.

4.5. Targeted optimization of TKE and tumble-y

In the context of targeted optimization using the GPR model, the aim 
is to identify the best sets of inputs that can closely match a given list of 
targeted outputs. Compared with traditional iterative methods, this 
approach offers researchers a more efficient and expedited option of 
achieving a product with the desired performance and characteristics in 
ICEs. Specifically, in the case of optimizing TKE and tumble-y, the focus 
is on increasing TKE to enhance the air motion dynamics during the cold 
flow phase of the engine cycle, emphasizing the pre-combustion fea-
tures. TKE has been shown to enhance the swirl and circulation of air, 
promoting better mixing of air and fuel, as highlighted in the literature 
[47,51]. Improved swirl and turbulence during the intake and 
compression stages can create more favourable conditions for flame 
initiation and propagation once combustion begins. For example, 
studies indicate that increased TKE enhances swirl effects, reducing burn 
duration and improving flame stretching, which can contribute to better 

Table 7 
Comparison of CPU time between CFD simulation and ML model.

Module CFD 
simulation

ML 
model

Speedup

Accumulated CPU time over all 
processes (s)

966,185 44,748 21.6

Wall-clock time (hours) 33.5 12.4 2.7

Fig. 17. Analysis of the prediction accuracy against training steps.
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air–fuel mixing and heat release rates [51]. Additionally, the presence of 
swirl at optimal levels minimizes the combustion duration and optimizes 
heat transfer [47]. These findings align with our focus on optimizing 
TKE in the pre-combustion phase to improve mixing and in-cylinder 
flow dynamics. However, it is worth noting that this study focuses 
solely on the cold flow simulations and does not include direct com-
bustion or emissions analysis. As a result, while improved air–fuel 
mixing has been shown in the literature to potentially influence the 
combustion efficiency and emissions, validating these effects would 
require dedicated combustion modelling, which falls outside the scope 
of this work.

Conversely, the optimization process also considers minimizing 
tumble during the cold flow phase. Tumble refers to the rotational 
motion of the air–fuel mixture inside the cylinder, which, when exces-
sive, can lead to increased heat loss and incomplete mixing. By reducing 
tumble, greater control over the air–fuel mixture dynamics can be 
achieved, creating more favourable conditions for combustion initia-
tion. Using the GPR model, engineers can systematically analyse the 
effects of input parameters on both TKE and tumble-y, identifying 
configurations that enhance in-cylinder flow characteristics during the 
intake and compression phases. This targeted optimization minimizes 
the computational costs and provides deeper insights into the complex 
interactions between TKE, tumble and pre-combustion air motion dy-
namics. Regarding the targeted optimization using the GPR model, the 
evaluation of optimization progress is crucial to ensure the attainment of 
desired performance and characteristics. One commonly used approach 
to assess the effectiveness of optimization is to utilise a fitness function, 
such as the Euclidean distance [39,40]. The choice of the Euclidean 
distance as the fitness function in this study is guided by its intuitive 
interpretation, its compatibility with the optimization problem, and its 
widespread applicability in multidimensional regression tasks. The 
Euclidean distance is a well-known metric that measures the straight- 
line distance between two points in a multidimensional space. Its 
continuous and differentiable nature makes it particularly suited for 
optimization problems involving gradient-based approaches, as it fa-
cilitates efficient exploration of the input space. In the context of tar-
geted optimization, the Euclidean distance can be employed as a fitness 
function to evaluate how closely the outputs generated in the GPR model 
match the desired target outputs. By calculating the Euclidean distance 
between the predicted and target outputs, one can quantify the 
discrepancy and assess the optimization progress. A smaller Euclidean 
distance indicates a closer match between the predicted outputs and the 
desired target outputs, signifying higher optimization achievement.

The Monolith AI platform provides several fitness functions, 
including Euclidean distance, Manhattan distance, Collinearity coeffi-
cient, and Amplitude correlation coefficient. Among these, the 
Euclidean distance was chosen in this study for several reasons. The 
Euclidean distance offers a clear and straightforward interpretation of 
optimization quality. A smaller Euclidean distance directly indicates a 
closer match between predicted outputs and target outputs, providing 
an easy-to-understand measure of success. The nature of the optimiza-
tion problem in this study involves continuous, multidimensional data. 
The Euclidean distance is well-suited for capturing relationships and 

dependencies within such spaces, making it effective for evaluating 
optimization progress. Due to its differentiable nature, the Euclidean 
distance integrates seamlessly with gradient-based optimization algo-
rithms, enabling efficient and effective exploration of the input param-
eter space. While other metrics like the Manhattan distance measure the 
sum of absolute differences between points, the Euclidean distance 
considers the square root of the sum of squared differences. This makes 
the Euclidean distance more sensitive to large discrepancies, which is 
beneficial when precise matching of outputs to targets is critical. The 
Manhattan distance could be advantageous in scenarios where de-
viations along individual dimensions are of equal importance, as it 
weights all deviations linearly. However, in this study the squared 
weighting in the Euclidean distance aligns better with the goal of 
reducing large discrepancies, which are often more impactful in engine 
optimization.

The recommended designs in Table 8 and Fig. 18 demonstrate the 
remarkable capabilities of utilizing the GPR model combined with the 
targeted optimization to enhance the engine performance. These designs 
have been carefully selected to increase TKE and decrease tumble-y, 
aiming to improve the fuel efficiency and achieve a more efficient en-
gine performance. At a crank angle of 342 degrees, it exhibits a TKE 
value of 396.56 J/kg, indicating a high level of turbulence. This robust 
turbulence promotes an optimal fuel–air mixing, resulting in improved 
fuel efficiency. Moreover, the negative tumble-y value of − 0.15352237 
signifies a reduction in rotational motion, leading to enhanced com-
bustion completeness. These combined factors along with a temperature 
of 846.42 K and a pressure of 1.52 bar create an optimal combustion 
environment that can significantly enhance the engine performance. 
Similarly, the second recommended design shows a TKE value of 366.77 
J/kg at a crank angle of 314 degrees. With a negative tumble-y value of 
− 0.15348984, this design further reduces the rotational motion and 
promotes a more efficient fuel–air mixing. The temperature of 549.59 K 
and pressure of 2.81 bar support the overall combustion process, leading 
to improved engine performance. These recommended designs consis-
tently demonstrate the ability of the GPR model and targeted optimi-
zation to identify design configurations that increase TKE and decrease 
tumble-y. The optimized parameters, including temperature, pressure, 
and tumble-y, work synergistically to create an ideal combustion envi-
ronment. By maximizing the turbulence and minimizing the rotational 
motion, these designs effectively enhance the fuel–air mixing and 
combustion efficiency, hoping a return of decreased fuel consumption 
and lower emissions. It is also important to highlight that although the 
numerical findings in Table 8 offer convincing indications of the optimal 
design configurations, additional experimental validation is essential to 
verify their real-world significance. Thorough testing and analysis are 
crucial to fully assess the potential of these optimized designs in prac-
tical engine applications such as different engine configurations.

Testing physical engines under varying conditions incurs significant 
cost, time, and resources. In such scenarios, the presented research 
demonstrates how ML models coupled with CFD simulations can bridge 
this gap to grant access to the engineers by unveiling hidden patterns or 
unseen data. The use of trained ML models enables the derivation of the 
inter-relating of the most important parameters, such as TKE, tumble, 

Table 8 
Comparison of performance metrics for recommended engine designs using GPR model.

Design Crank Angle (deg) CT-X CM (kg) EPT (K) IPT (K) Temp. (K) CP (bar) CS TKE (J/kg) CT-Y

# 1 342.37 0.27090 2.08E-05 905.19 328.47 846.42 1.52 0.2440 396.56 − 0.15352237
# 2 314.93 0.32768 3.76E-05 921.30 314.11 549.59 2.81 0.2769 366.77 − 0.15348984
# 3 384.50 0.14556 0.000131 910.69 314.78 467.96 1.83 0.2785 357.92 − 0.15348984
# 4 327.69 0.05168 9.89E-05 944.48 323.23 627.34 2.17 0.2659 355.00 − 0.15348993
# 5 322.98 0.47194 9.41E-05 793.61 312.24 413.63 2.90 0.2782 350.09 − 0.15348984
# 6 501.18 − 0.17476 0.000106 833.36 306.95 407.49 0.34 0.2806 347.11 − 0.15348984
# 7 360.95 0.03740 0.000126 864.46 305.23 480.32 1.51 0.2938 331.78 − 0.15349085
# 8 579.61 − 0.23877 0.000215 823.58 298.64 398.81 0.66 0.2981 325.89 − 0.15349335
# 9 367.63 0.13691 6.60E-05 920.50 331.82 449.82 1.94 0.2790 322.15 − 0.15348984

A. Shateri et al.                                                                                                                                                                                                                                 Fuel 389 (2025) 134590 

19 



pressure, and temperature, for gaining detailed insight into in-cylinder 
flow dynamics during an engine cycle at cold flow. The insights allow 
the user to create adaptable initial and boundary conditions (IC/BC) 
while avoiding iterative simulations and time-consuming real-life 
testing.The ability of ML models to predict outcomes under various 
input configurations allows engineers to optimize the in-cylinder flow 
processes for different operating conditions without running multiple 
simulations. For example, TKE varied along the intake and compression 
phases can have its swirl or circulation modified by changing the dy-
namics. Improved TKE results in considerable improvement in air and 
fuel mixing-sketching favourable scenarios for initiating the combustion 
process by improving the conditions at the time of spark propagation or 
ignition. Similarly, minimizing excessive tumble intensity through ML- 
guided optimization can provide better control over air–fuel motion, 
reducing undesirable effects such as heat losses and incomplete mixing. 
Moreover, the ML-based methodology developed in this study offers 
practical benefits beyond optimizing in-cylinder air motion. It enables: 

1) ML reduces the computational burden associated with iterative 
simulations, allowing engineers to efficiently explore a wide range of 
design configurations and operational conditions.

2) By accessing the hidden layers of trained ML models, engineers can 
predict the outcomes of varying conditions, such as different IC/BC 
setups, without the need for physical testing.

3) The integration of CFD and ML methodologies is easily scalable to 
other engine geometries and operating conditions, making it a ver-
satile tool for the automotive and energy industries.

The implications of these advancements extend to both research and 
industrial settings. Researchers can use ML to simulate challenging 
scenarios, such as extreme pressure and temperature conditions, which 
are difficult to replicate experimentally. The manufacturers will accel-
erate their work of making cleaner and more efficient engines with the 
help of designs guided by ML. Furthermore, the approach presented in 
this study aligns with ongoing efforts to meet increasingly stringent 
regulatory standards for emissions and fuel efficiency, providing a cost- 
effective alternative to traditional experimental testing. This, therefore, 
provides an efficient, scalable, and cost-effective solution to some of the 
optimization challenges in engines and points toward the transformative 
potential that could be obtained with the integration of ML and CFD in 
developing high-performance engine systems.

5. Conclusion

This study has demonstrated the transformative potential of inte-
grating machine learning (ML) with computational fluid dynamics 
(CFD) to optimize the internal combustion engines. By leveraging ML 
models such as Random Forest Regression (RFR), Gaussian Process 
Regression (GPR) and Neural Networks (NN), the research provides 
significant insights into predicting critical engine parameters. The GPR 
model emerged as the optimal choice due to its superior accuracy and 
reduced uncertainty, as indicated by metrics such as Mean Absolute 
Error (MAE), Mean Squared Error (MSE), Pearson Coefficient (PC), and 
R-squared (R2). These results underscore the reliability of GPR in pre-
dicting engine dynamics, such as turbulence kinetic energy (TKE) and 
tumble-y, which play pivotal roles in enhancing fuel–air mixing and pre- 
combustion air motion. The research highlights the remarkable 
computational efficiency achieved through ML integration. Compared 
with traditional CFD solvers, the ML approach resulted in a 21.6x 
speedup, reducing the computational burden significantly while main-
taining accuracy. The results also illustrate the ability of ML models to 
predict the surface field phenomena, such as velocity distributions, with 
comparable fidelity to CFD simulations. This capability is particularly 
valuable in reducing the need for costly and time-intensive physical 
testing, providing engineers access to hidden patterns and insights into 
in-cylinder flow dynamics. By predicting outcomes under various input 
configurations, the trained ML models enable the optimization of initial 
and boundary conditions (IC/BC) without iterative simulations, signif-
icantly accelerating the design process. The study further emphasizes 
the practical implications of optimizing TKE and tumble-y during the 
cold flow phase. For example, increasing TKE improves swirl and cir-
culation, leading to better mixing of air and fuel, thereby creating 
favourable conditions for efficient combustion initiation. Similarly, 
minimizing excessive tumble intensity through ML-guided optimization 
allows better control over air–fuel motion, reducing undesirable effects 
such as heat loss and incomplete mixing. These findings demonstrate the 
capability of ML-driven optimization to improve thermal efficiency and 
lay the groundwork for sustainable and efficient engine designs.

While the research demonstrates clear advantages, limitations such 
as the reliance on specific input parameters and simulation data are 
acknowledged. Future studies could overcome these obstacles by 
incorporating more diverse datasets, exploring the impact of varying 
operating conditions, and integrating hybrid models that combine the 
physics-based approaches with data-driven ML techniques. Such ad-
vancements would further enhance the robustness and scalability of ML- 

Fig. 18. Parallel coordinates graph for recommended designs (red lines) and other designs (grey lines).
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CFD frameworks for broader applications in the automotive and energy 
industries. This study provides a scalable, cost-effective and efficient 
solution for engine optimization challenges. By bridging the gap be-
tween traditional CFD simulations and experimental testing, it offers a 
promising pathway for achieving cleaner and more efficient engines, 
aligning with global sustainability goals and regulatory standards.
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