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Abstract: This study aims to develop an intelligent modeling approach for accurately 31 

predicting compaction characteristics of cohesive soils across compaction energy (CE) levels.  32 

A comprehensive database of 1001 observations falling within the theoretical bounds was 33 

created through experimental investigation encompassing sieve analysis, hydrometer analysis, 34 

liquid limit (wL), plastic limit (wP), specific gravity (Gs), and compaction tests on natural soil 35 

samples and literature review, encompassing diverse cohesive soils, CE levels, and compaction 36 

characteristics. Multiple machine learning techniques, including Extreme Gradient Boosting 37 

(XGBoost), Random Forest (RF), Gene Expression Programming (GEP), Multi Expression 38 

Programming (MEP), Artificial Neural Networks (ANN), and Multiple Linear Regression 39 

(MLR), were applied to develop predictive models. XGBoost demonstrated superior 40 

performance in predicting maximum dry density (γdmax) and optimum moisture content (wopt) 41 

as evaluated by statistical indicators and external validation and compared with existing models 42 

in the literature. The models effectively captured the influence of key parameters, highlighting 43 

the primary role of CE and wL, the secondary role of plastic limit (wP), the tertiary role of 44 

plasticity index (IP) and fines activity (AF), and the quaternary role of soil gradation in 45 

predicting and influencing the compaction characteristics of cohesive soils. This approach 46 

enables accurate global modeling of cohesive soil compaction across varying CE levels, 47 

providing a valuable tool for geotechnical engineers and researchers to determine compaction 48 

characteristics for a known CE level using basic soil properties used for soil classification. 49 
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1. Introduction 59 

Compaction control is a crucial factor that governs the engineering properties of fine-grained 60 

soils also referred to as cohesive soils, across various earthwork projects, including the 61 

construction of foundation structures, roads, compacted clay liners, earthen dams, nuclear 62 

repositories, and embankments, among others (Wang and Yin, 2020; Zhu et al., 2024). To 63 

attain desired engineering characteristics through optimal densification in a project, the soil 64 

density and moisture content are benchmarked against the maximum dry density (γdmax) and 65 

optimum water content (wopt) obtained through a compaction test (Horpibulsuk et al., 2009). 66 

The field compaction parameters are benchmarked against the parameters obtained at specified 67 

CE levels linked with the standard and modified proctor tests to obtain the degree of 68 

compaction (Dc) (Ran et al., 2024).  Thus, compaction parameters are crucial in designing and 69 

commencing the compaction process in earthwork, while simultaneously establishing a 70 

standard for quality control and assurance (QA/QC) during field operations (J. Li et al., 2024; 71 

Ma et al., 2024; Tarantino and De Col, 2008). However, the testing methodologies required to 72 

obtain these parameters are characterized by labor-intensive and tedious procedures, 73 

necessitating a substantial quantity of representative material for the examination, factors 74 

linked to escalating project time and cost (Teramoto et al., 2024; Wang et al., 2020). 75 

Furthermore, this challenge is exacerbated by the adoption of test protocols standardized across 76 

various conceptual compaction energy (CE) levels, i.e., standard or modified, which may or 77 

may not align with actual field conditions (Alzubaidi et al., 2024; Jia et al., 2024). In practical 78 

applications, compaction energy (CE) levels can vary significantly, either adhering to 79 

established conceptual levels or being set at project-specific levels. This variability underscores 80 

the need for efficient methods to determine compaction characteristics across a range of CE 81 

levels. Recent research by Miller and Vahedifard (2024) and Spagnoli and Shimobe (2020) has 82 

highlighted this necessity, emphasizing the importance of adaptable compaction assessment 83 
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techniques. Furthermore, there is a growing demand for methods to accurately determine the 84 

compaction state at arbitrary CE levels in the field. This is crucial for assessing the Dc achieved 85 

under various field conditions, which often differ from laboratory settings. In large-scale 86 

projects, to mitigate errors, field values of compaction characteristics are also increasingly 87 

being evaluated using samples retrieved from different field locations at arbitrary CE levels 88 

during the compaction process (Blanco, 2015). This underscores a need for an expedited 89 

method for the prediction of compaction parameters at arbitrary CE levels to reduce the testing 90 

requirements for QA/QC (Deng et al., 2024; Miller and Vahedifard, 2024).  91 

For quick estimation of compaction characteristics, several researchers have established 92 

methods to determine γdmax and wopt of cohesive soils using Atterberg’s limits, i.e., liquid limit 93 

(wL), plastic limit (wP), and plasticity index (IP) (Al-Khafaji, 1993; Farooq et al., 2016; Ito and 94 

Komine, 2008; Khalid and Rehman, 2018; Sridharan and Nagaraj, 2005; Tilahun et al., 2024; 95 

Wang and Yin, 2020). Most of the past correlations were established for a singular conceptual 96 

CE designated by the ASTM, i.e., standard (592.3 kN-m/m3) or modified (2693.3 kN-m/m3) 97 

or either unspecified CE; thereby, their application for an arbitrary CE or even to the conceptual 98 

CE designated by other standards, e.g., BS which involve a slight variation in CE than ASTM, 99 

is restricted (Blotz et al., 1998; Gurtug and Sridharan, 2004; Prakash et al., 2024). Attempts 100 

have been made to incorporate CE alongside other input parameters to predict the compaction 101 

characteristics of cohesive soils. Nevertheless, some models, e.g., Farooq et al. (2016) have 102 

treated CE as a constant rather than an independent input parameter, thereby compromising 103 

their predictive capability across various CE levels. Meanwhile, certain models developed for 104 

multiple CE levels not only highlight limitations in the range of CE levels in their dataset but 105 

also yield a dataset featuring CE application across inconsistent soil samples, thereby 106 

undermining the actual sensitivity of CE as a parameter within the models (Gurtug and 107 

Sridharan, 2004; Wang and Yin, 2020). Addressing this issue necessitates a dataset 108 
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characterized by not only a broad spectrum of CE levels but also the systematic application of 109 

multiple CE levels to various homogeneous soil samples to broaden the compaction modeling 110 

horizon vis-a-vis CE (Najdi, 2023). Additionally, previous models have often utilized a limited 111 

set of input parameters such as wL and wP for predicting compaction parameters, potentially 112 

neglecting output variability imparted by other influencing factors (Ali et al., 2024; Spagnoli 113 

and Shimobe, 2020). Moreover, in different models, disparities arise in the assigned relative 114 

sensitivity of the input parameters, highlighting the necessity for more expansive incorporation 115 

of diverse parameters within the modeling framework to enhance generalizability. 116 

Nonetheless, for the sake of convenience in prediction, these input parameters should ideally 117 

be derived from simplified procedures. Furthermore, different existing models are typically 118 

applicable only within a limited range of cohesive soil plasticity, owing to their development 119 

based on a restricted dataset (Associates et al., 2016; Wang et al., 2023). Consequently, they 120 

lack the requisite generality to encompass the full spectrum of cohesive soil plasticity from low 121 

to high ranges (Agus et al., 2010; Ito and Komine, 2008). Therefore, it is imperative to devise 122 

global models that are founded upon expansive datasets incorporating a comprehensive array 123 

of plasticity indices, CE levels, grain size distribution parameters, and pertinent compaction 124 

attributes. By explicitly accounting for CE, models can bridge the gap between controlled 125 

laboratory conditions and variable field applications, improving their practical utility and 126 

adaptability to different geotechnical scenarios (Dialmy et al., 2024). This approach enables 127 

more precise predictions of γdmax and wopt across a spectrum of energy levels, contributing to 128 

more efficient compaction processes and enhanced quality control in field applications (Miller 129 

and Vahedifard, 2024). Meanwhile, conventional regression-based modeling strategies used in 130 

existing models often yield diminished predictive efficacy, especially on a large dataset owing 131 

to their incapacity to effectively account for the antagonistic interactions or complex interplay 132 

among multiple parameters, underscoring the need for a more robust modeling framework.  133 
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Machine learning (ML) has emerged as a potent tool for predictive modeling, particularly in 134 

handling large datasets and input parameters (Rehman et al., 2024; Zhang et al., 2021). Various 135 

approaches have been devised, including black box, grey box, and white box techniques, which 136 

have evolved alongside advancements in neural networks, evolutionary, and decision tree-137 

based ML algorithms (Khatti and Grover, 2023; ur Rehman et al., 2022). These ML-based 138 

methodologies have found extensive application in the modeling of geotechnical or geological 139 

databases. However, the inherent high variability within these datasets owing to antagonist 140 

response and complex interplay between different geological properties to define the response 141 

of geomaterials often leads to disparate predictive performances when employing specific ML 142 

techniques (Shi and Wang, 2021). To establish dependable models for geotechnical or 143 

geological databases, it is imperative to employ multiple techniques and robust modeling 144 

procedures to identify the most effective predictive models (Karpatne et al., 2019). 145 

Furthermore, when utilizing ML algorithms, careful consideration must be given to ensuring 146 

that the models adhere to the defined theoretical geotechnical framework. This is particularly 147 

crucial when modeling compaction characteristics, as not only high predictive accuracy is 148 

indispensable as these parameters serve as guidelines for QA/QC, but it also demands accurate 149 

prediction of parameter combinations, such as γdmax and wopt, within the theoretical boundary 150 

of 100% degree of saturation (Sγdmax), aspects often neglected in past models (Spagnoli and 151 

Shimobe, 2020; Tarantino and De Col, 2008; Tatsuoka and Gomes Correia, 2018). These 152 

aspects demand a systematic and extensive database, a robust modeling framework, and critical 153 

evaluation of developed models not only based on conventional key performance indicators 154 

(KPIs) but also against typical and customized external validation indices (EVIs). 155 

Considering the preceding discourse, the current study establishes an extensive database for 156 

modeling the compaction characteristics of soils through a customized testing regimen and 157 

comprehensive literature review. The compilation of this database involves subjecting identical 158 
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soil samples to multiple CEs, ensuring adherence to specified geotechnical theoretical bases to 159 

facilitate effective modeling frameworks. Further, by employing a suite of modeling 160 

techniques, including two variants of decision tree-based ML technique (i.e., Extreme Gradient 161 

Boosting (XGBoost) and Random Forest (RF)) encompassing enhanced black box technique, 162 

two variants of evolutionary ML technique (i.e., Genetic Expression Programming (GEP) and 163 

Multi Expression Programming (MEP)) encompassing gray box technique, along with two 164 

conventional methods such as Artificial Neural Networks (ANN) featuring standard black box 165 

ML technique and Multi-Linear Regression (MLR) featuring white box technique, a series of 166 

models were developed. These models underwent rigorous statistical assessment utilizing 167 

established KPIs to identify the most robust ones, subsequently validated against independent 168 

datasets using both typical and customized EVIs, and benchmarked against the existing models. 169 

Subsequently, the most optimal model was proposed and scrutinized for its internal modeling 170 

mechanisms, offering insights of interest to researchers and practitioners in the field. By 171 

providing a modeling strategy applicable to any CE level, including specified levels like 172 

standard and modified proctor, the current study presents a more versatile and potentially 173 

global solution for predicting compaction characteristics in place of doing laborious testing, 174 

ultimately benefiting the engineering community in optimizing soil compaction practices 175 

(Najdi, 2023). The predicted γdmax at standard or modified Proctor effort can serve as the 176 

reference for calculating the Dc for typical earthworks while the estimated wopt for the 177 

anticipated field compaction effort can guide moisture conditioning of fill materials (Miller 178 

and Vahedifard, 2024). By predicting local γdmax values across a site, spatial variations in 179 

achievable density can be assessed, allowing for more targeted compaction efforts. 180 

Furthermore, estimated compaction parameters can inform initial earthwork planning and 181 

specifications potentially streamlining the project timeline and reducing preliminary costs.  182 
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2. Database Descriptions and Analysis 183 

The establishment of the database was based on a comprehensive testing regimen and a 184 

systematic review of pertinent literature. The criteria delineating the inclusion of observations 185 

are derived from the specific objectives delineated within the ambit of this study. Each 186 

observation admitted into the modeling database necessitates the application of at least two 187 

distinct CE levels to homogenous soil specimens. Furthermore, to ensure the theoretical 188 

integrity of the modeling data, a criterion is enforced whereby the combination of the γdmax and 189 

wopt is selected such that the Sγdmax does not surpass the theoretical threshold of 100%. 190 

Moreover, to maintain technical coherence within the modeling dataset, cohesive soils are 191 

operationally defined in accordance with ASTM D2487 specifications, which mandate the 192 

fines content (F200) equal to or exceeding 50%. The calculation of CE levels adheres to 193 

prescribed standards, with a concerted effort expended towards encompassing a broad 194 

spectrum of such levels through an exhaustive data search. Additionally, the database is 195 

constructed primarily utilizing natural soil samples, the majority of which exhibit wL and IP 196 

below 100%, although a subset exceeding this threshold is also incorporated to enrich the 197 

modeling horizon. It is imperative to underscore that, for the validation dataset sourced from 198 

literature, a judicious selection process was employed, wherein datasets adhering to both the 199 

aforementioned limits and those deviating from them were considered, thereby facilitating an 200 

assessment of the models' applicability across a wider array of soil compositions and 201 

characteristics. 202 

2.1. Test results data 203 

To construct the database, a comprehensive testing program was developed, involving the 204 

collection of 156 soil samples from diverse locations within the Indus Plain, obtained from 205 

depths ranging between 1-2 meters. This selection aimed to encompass a broad spectrum of 206 

fine-grained soils for analysis. The characterization of these soil samples involved grain size 207 
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distribution analysis conducted through both sieve analysis (ASTM D422) and hydrometer 208 

analysis (ASTM D7928), alongside Atterberg's limit tests adhering to ASTM D4318-95A. The 209 

outcomes of the grain-size distribution analysis revealed that all examined soil samples were 210 

classified as cohesive soils having fines (F200) in a range of 50-100%, with grains such as 211 

gravel, sand, silt, and clay distributed within defined ranges: 0% to 10%, 0% to 50%, 42% to 212 

90%, and 10% to 58%, respectively. Atterberg's limit testing illustrated wL and wP spanning 213 

from 15% to 78% and 9% to 26.6%, respectively, and IP ranging from 1.63% to 60% (Fig. 1). 214 

These parameters collectively facilitated the categorization of soils into distinct subcategories, 215 

delineated as ML, CL-ML, CL, and CH according to ASTM D2487 (Fig. 1). Notably, the ML 216 

subset exhibited wL values ranging from 15% to 29% and IP values from 0% to 5%, whereas 217 

the CL-ML subset demonstrated wL values between 19% and 28%, with IP values ranging from 218 

4% to 7%. The CL subset presented wL and IP ranges of 30% to 48% and 7.7% to 26.5%, 219 

respectively, while the CH subset displayed ranges of 52% to 78% for wL and 27.5% to 60% 220 

for IP. Furthermore, the clay activity (Ac), defined as the ratio of IP to clay fraction, exhibited a 221 

range of 0.16 to 1.3 across all samples. This parameter has been utilized in previous models as 222 

an input; however, its determination necessitates the hydrometer test, a labor-intensive and 223 

time-consuming procedure coupled with Atterberg's limit test. Consequently, in the interest of 224 

modeling simplicity and circumventing reliance on the hydrometer test, the current study 225 

introduces an alternative parameter, namely fines activity (AF), defined as the ratio of IP to the 226 

fraction passing through the F200. This parameter can be swiftly determined via sieve analysis 227 

and Atterberg’s limit test and was observed to range from 0.017 to 0.625 for the tested samples. 228 

Thus, the testing dataset illustrates the collection of a diverse array of cohesive soil samples 229 

for this investigation. 230 

Subsequently, these soil samples underwent soil compaction tests using standard CE of 593 231 

kN-m/m3 as per ASTM D-698 and modified CE of 2700 kN-m/m3 as per ASTM D-1557. The 232 
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relationship between the γd and w was plotted as a compaction curve, from which the γdmax and 233 

wopt were determined as shown in Figure 2. Standard compaction tests, yielded γdmax and wopt 234 

within a range of 13.5 kN/m3 to 19.5 kN/m3 and 10% to 25%, respectively. For CL, ML, CL-235 

ML, and CH soils, γdmax values ranged from 14.3 kN/m3 to 18.8 kN/m3, 15.9 kN/m3 to 19.3 236 

kN/m3, 16.3 kN/m3 to 19.5 kN/m3, and 13.5 kN/m3 to 16.7 kN/m3, respectively. 237 

Correspondingly, wopt values for CL soils ranged from 11% to 21.8%, while for ML, CL-ML, 238 

and CH soils, wopt ranged from 10.5% to 19.9%, 10% to 18.9%, and 14.5% to 25%, respectively 239 

(Fig. 2(a)). Furthermore, modified compaction tests, as illustrated in Figure 2b, yielded 240 

compaction parameters, including γdmax and wopt, which fell within the ranges of 16 kN/m3 to 241 

20.4 kN/m3 and 8.4% to 16.6%, respectively. These parameters were further delineated for 242 

each soil subgroup, with γdmax values ranging from 16.6 kN/m3 to 20.4 kN/m3 for CL, 17.8 243 

kN/m3 to 20 kN/m3 for ML, 18 kN/m3 to 20.4 kN/m3 for CL-ML, and 13.5 kN/m3 to 16.7 kN/m3 244 

for CH. Corresponding wopt values ranged from 9% to 16.6% for CL, 8.4% to 13.5% for ML, 245 

8.4% to 13% for CL-ML, and 12.8% to 16% for CH. Thus, a total of 312 sets of observations 246 

were yielded for the database based on this experimental program. Additionally, specific 247 

gravity (Gs) tests were conducted following ASTM D-854, revealing values ranging from 2.7 248 

to 2.83. The Gs values were subsequently utilized to ascertain the zero air void line and Sγdmax 249 

as follows: 250 

𝑆𝛾𝑑𝑚𝑎𝑥 =
𝛾𝑑𝑚𝑎𝑥

𝐺𝑠∙𝛾𝑤−𝛾𝑑𝑚𝑎𝑥
× (𝑤𝑜𝑝𝑡 ∙ 𝐺𝑠)       (1) 251 

where γw is the unit weight of water. The results indicated that all combinations of γdmax and 252 

wopt exhibited Sγdmax lesser than the theoretical range of 100% saturation and nearly over 80%. 253 

It is important to note that compaction tests, such as the standard and modified Proctor tests, 254 

generally target an optimal saturation range of close to 80%–90% for cohesive soils, with 255 

around 80% often being the minimum for desirable engineering properties (e.g., low 256 
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permeability) (Miller and Vahedifard, 2024; USDA, 2000). However, the actual saturation 257 

range mainly depends on the soil type and CE level. 258 

2.2. Literature-based data 259 

The research methodology encompassed a meticulous review of existing literature 260 

encompassing over 500 publications to select the most suitable one for data extraction. This 261 

process commenced by pinpointing relevant scholarly works using tailored keywords 262 

corresponding to the study's aims, such as maximum dry density, optimum moisture content, 263 

compaction energy, standard and modified tests as well as variations like reduced 264 

modified/standard, plasticity, and grain size distribution, etc. Databases like Web of Science, 265 

Scopus, and Google Scholar were extensively searched to locate pertinent published literature. 266 

Initially, abstracts of the selected studies were screened to determine their relevance, followed 267 

by a comprehensive evaluation vis-a-vis the current study's objectives through in-depth 268 

reading. Additionally, references cited within the searched studies were scrutinized to ensure 269 

any overlooked but relevant literature was included. Finally, as mentioned earlier, the extracted 270 

data underwent thorough scrutiny to identify and remove any outliers that exceeded the 271 

theoretical conditions and other predefined thresholds established for the current study. As a 272 

result, 681 data observations were finalized to be included in the modeling dataset mainly from 273 

a diverse range of literature from 1959-2020 (i.e., (Agus et al., 2010; Aldaood et al., 2015; 274 

Associates et al., 2016; Bello, 2013; Benson and Trast, 1995; Blotz et al., 1998; Daniel and 275 

Trautwein, 1994; Farooq et al., 2023, 2016; Gurtug and Sridharan, 2004; Horpibulsuk et al., 276 

2009, 2008; Hussain, 2017; Ito and Komine, 2008; McRae, 1959; Mehmood et al., 2011; Miller 277 

et al., 2002; Osinubi and Nwaiwu, 2005; Osinubi et al., 2006; Osinubi and Bello, 2011; Perez 278 

N et al., 2013; Prasanna et al., 2020; Sabat, 2015; SAPEI et al., 1996; Sengupta et al., 2017; 279 

Sridharan and Gurtug, 2004; Taha and Kabir, 2005; Tinjum et al., 1997; Tripathy et al., 2005; 280 

Woon-Hyung Kim and Daniel, 1992; Yilmaz et al., 2016; Yogeshraj Urs and Prasanna, 2023; 281 
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Yusoff et al., 2017) ). Atterberg's limit testing illustrated wL and wP ranging from 15.3% to 282 

608% and 6% to 48.3%, and IP spanning from 1.6% to 570.1% (Fig. 1). The soil classification 283 

was ranged in CL, ML, CH, MH and CL-ML in these samples as per ASTM D2487. 284 

Meanwhile, Sand and F200 were observed to be in the range of 0% to 50% and 50% to 100%, 285 

respectively, with AF spanned from 0.001 to 11.4. Meanwhile, vast CE levels were procured in 286 

the dataset from literature ranging from 202 kN-m/m3 to 10832.1 kN-m/m3. Meanwhile, the 287 

γdmax and wopt were in the range of 10.9 % to 22.5 % and 5.2% to 45%, respectively, with no 288 

datapoint exceeding theoretical Sγdmax over 100%.  The description of the modeling dataset by 289 

amalgamating the testing dataset and the aforementioned literature dataset is presented in Table 290 

1 and Figure 3. Moreover, within the context of literature, 139 datasets were obtained that met 291 

all the specified selection criteria for this study, with the exception of having undergone at least 292 

two distinct CE levels on identical samples and some observations having F200 less than 50%. 293 

These data points were excluded from the modeling database used for both the model training 294 

and testing processes. However, they were reserved for the external validation of the models 295 

due to their ability to provide a diverse validation horizon. The compilation of this dataset 296 

primarily originated from studies spanning the years 1993 to 2022 (e.g., (Akcanca and Aytekin, 297 

2012; Al-Hussaini, 2017; Al-Khafaji, 1993; Burton et al., 2015; Clariá and Rinaldi, 2007; 298 

Daniel and Wu, 1993; Delage et al., 2011; Duong et al., 2014; Fox et al., 2014; Günaydın, 299 

2009; Inci et al., 2003; Khalid et al., 2019; Kiliç et al., 2016; Lim and Miller, 2004; Othman 300 

and Benson, 2011; Rehman et al., 2017; Sawangsuriya et al., 2009; Shafiee, 2008; Shelley and 301 

Daniel, 1993; Taïbi et al., 2008; Vassallo et al., 2007; Vega and McCartney, 2015; Wang et 302 

al., 2017; Yang et al., 2022; Zhang et al., 2015). A detailed statistical description of the 303 

validation database sourced from the literature is presented in Table 1. 304 

2.3. Data and input analyses 305 
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The database comprising 1001 observations was established through the amalgamation of 306 

testing data and literature-based data for model testing and training, encompassing a wide range 307 

of soil classification and compaction-related parameters (Fig. 3). The selection of input 308 

parameters was conducted based on theoretical relevance, ease of testing and statistical 309 

significance. Initially, four sets of input parameters were identified in the database for the input 310 

analysis based on theoretical relevance including Atterberg's limits (wL, wP, and IP), grain size 311 

(Sand fraction (Sand), F200, Ac, Silt, Clay, and AF), physical property (Gs) and compaction (CE). 312 

The wL can be obtained through standard tests outlined in ASTM D4318-95A, specifically 313 

through Method A, i.e., Casagrande apparatus or Method B, i.e., fall cone apparatus. Similarly, 314 

the wP can be determined through plastic limit test following the ASTM D4318-95A, also 315 

allowing for the calculation of the IP as the difference between wL and wP. The Sand and F200 316 

can be assessed through sieve analysis testing in accordance with ASTM D6913. Additionally, 317 

the AF is calculated by dividing the IP by F200. For CE, the standard laboratory formula is given 318 

by CE =
Number of blows×Number of layers×Weight of hamer×Hieght of drop

Volume of mold
, as specified in ASTM 319 

D697 and ASTM D1557 and for field a different formula can be employed 𝐶E =320 

Drawbar pull× Number of passes×Number of lifts for 0.31 m depth

Drawbar width
 as per Johnson and Sallberg (1960). 321 

Thus, the selection of these parameters limits the testing requirements for obtaining input 322 

parameters to only sieve analysis and Atterberg limit tests, since CE does not require additional 323 

testing and can be calculated using formulas based on the specific compaction task. Further, 324 

these parameters, being essential to soil classification, offer engineers an initial, interpretable 325 

insight into soil properties, which is critical for envisaging the engineering behavior of soils. 326 

Parameters such as Silt, Clay, and Ac which require hydrometer analysis and Gs, were not 327 

further considered, as their incorporation would necessitate testing in excess of the basic 328 

requirements of USCS and AASHTO soil classification systems for model input despite their 329 

potential relevance to compaction characteristics. However, considering the theoretical 330 
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relevance of Gs for soil compaction, it was indirectly used to determine Sγdmax, which is included 331 

to evaluate the theoretical validity of the compaction parameters and various EVIs.  332 

The statistical examination of the dataset utilized for model training and testing has revealed 333 

considerable variability across all pertinent input parameters, namely wL, wP, IP, Sand, F200, AF, 334 

and CE, as delineated in Table 1 and Figure 4. Kernel Density Estimation (KDE) plots illustrate 335 

the probability density (Pd) distribution, portraying a consistent trend of Pd elevation from low 336 

to high plasticity ranges, which are representative of prevalent natural cohesive soils 337 

worldwide. Furthermore, a congruent trend in Pd is observed across parameters wL, AF, and IP. 338 

Sand and F200 parameters also demonstrate notable variability, with heightened Pd evident at 339 

both lower and higher value ranges for sand, and predominantly at higher values for F200. CE 340 

exhibits considerable variance, characterized by two instances of elevated Pd levels. 341 

Conversely, output parameters, γdmax and wopt, demonstrate extensive variance within defined 342 

theoretical bounds, with heightened Pd occurring at central values for both. Subsequent analysis 343 

employing excess kurtosis indicates that all input and output parameters exhibit Leptokurtic 344 

distributions, except for sand and F200, which manifest slightly Platykurtic distributions (Table 345 

1). Moreover, skewness analysis reveals right-skewed distributions for all parameters, except 346 

for F200 and γdmax, which exhibit slight left-skewedness. This analysis underscores a high degree 347 

of symmetry in the distribution patterns of input and output parameters, albeit with minor 348 

exceptions. 349 

Furthermore, a meticulous correlation analysis was conducted, involving the generation of both 350 

correlational and Pearson correlation coefficient (PC) matrices to scrutinize the 351 

interrelationships among the input and output variables, as illustrated in Figure 5. This 352 

comprehensive examination unveiled that no individual input parameter exhibits a significantly 353 

elevated or negligible correlation i.e., PC<0.1, as quantified by the PC, with the output 354 

parameter. This observation suggests that no single parameter singularly possesses the capacity 355 
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to yield a substantial correlation with the output parameter, indicating the presence of a 356 

multifaceted relationship. Moreover, the assessment of correlations among the input variables 357 

revealed moderate to low PC values, indicative of a diminished likelihood of multicollinearity 358 

among the input parameters. Notably, γdmax and wopt demonstrated a significantly high PC and 359 

a linear relationship, underscoring a discernible synchronization between these parameters, 360 

thereby reflecting the coherence and reliance of the dataset. Based on these insights, it was 361 

ascertained that all input parameters designated for inclusion exhibited reasonable statistical 362 

robustness. Additionally, in the context of ML-based modeling, the analysis of input 363 

parameters necessitates consideration vis-a-vis the number of data points, as a larger dataset 364 

provides a broader modeling horizon, while a greater number of statistically suitable input 365 

parameters contributes to enhanced predictive accuracy. However, a balanced ratio of at least 366 

5 data points per input parameter is deemed desirable (ur Rehman et al., 2022); for the present 367 

dataset, this ratio stands at 143, exceeding the prescribed threshold value. 368 

3. Modeling and Evaluation Methods  369 

Figure 6 presents the overall methodology of the current study. Drawing upon input analysis 370 

that accounts for both physical and statistical significance, the input parameters employed 371 

comprise sieve analysis, Atterberg's limits, and compaction-based parameters. The output 372 

parameters can be expounded with input parameters as follows. 373 

𝛾𝑑𝑚𝑎𝑥 = 𝑓(𝑤𝐿 , 𝑤𝑃, 𝐼𝑃 , Sand, 𝐹200, 𝐴𝐹 , CE)      (2) 374 

𝑤𝑜𝑝𝑡 = 𝑓(𝑤𝐿 , 𝑤𝑃, 𝐼𝑃, Sand, 𝐹200, 𝐴𝐹 , CE)      (3) 375 

Furthermore, in order to construct machine learning (ML) based models, the database 376 

underwent partitioning into training and testing sets at a ratio of 70% to 30%. Additionally, an 377 

independent dataset constituting approximately 14% of the total data was reserved for external 378 

validation, distinct from the modeling process. A comprehensive array of ML methodologies 379 

was employed, encompassing three variants of black-box techniques, including the enhanced 380 
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decision tree-based modeling approaches including Boosting Programming (i.e., XGBoost) 381 

and RF, alongside a conventional feed-forward ANN. Grey-box techniques were represented 382 

by two variants: Genetic Programming (i.e., GEP) and Evolutionary Programming (i.e., MEP). 383 

In addition, multiple linear regression (MLR) which is a white-box technique, was included as 384 

a baseline for comparison with other techniques.  385 

Figures 7-10 present the algorithm architecture of different ML algorithms designed for this 386 

study. Extreme Gradient Boosting (XGBoost) is an advanced decision tree-based machine 387 

learning algorithm known for its efficiency and effectiveness in solving supervised learning 388 

problems to develop predictive models (Fig. 7). By utilizing a gradient-boosting framework, 389 

XGBoost sequentially combines weak learners, typically decision trees, to form a strong 390 

ensemble model, making it a superior variant compared to other decision tree-based techniques 391 

(Chen and Seo, 2023). It incorporates regularization methods like Lasso (L1) and Ridge (L2), 392 

which help prevent overfitting and enhance generalization by applying penalties to the 393 

coefficients' magnitudes. Additionally, XGBoost is optimized for high performance, offering 394 

parallel and distributed computing capabilities that enable fast training on large datasets and 395 

help capture complex data patterns. It also provides customizable parameters and feature 396 

importance scores, making it a flexible and interpretable choice for various domains, especially 397 

geotechnical databases. The XGboost algorithm developed for the current study can be 398 

mathematically expounded as follows. 399 

 𝑂𝑖 = ∑ 𝐿(𝑦ᵢ, ŷᵢ)
𝑛

𝑖=1
+ ∑ 𝛺(𝑓ₖ)

𝐾

𝑘=1
       (4) 400 

𝛺(𝑓ₖ) = 𝛾𝑇 + 𝐿1 + 𝐿2        (5) 401 

where Oᵢ is the objective, Ω(fₖ) is the regularization function, L(yᵢ, ŷᵢ) is the loss function, with 402 

n representing the number of training samples, K is the number of trees and γT defines the 403 

thickness of the decision tree. Random Forest (RF) is another powerful ensemble learning 404 
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algorithm that constructs multiple decision trees during training, each trained on a random 405 

subset of the data and features using a bagging technique (Fig. 8). Similar to XGBoost, RF 406 

offers insights into feature importance and robustness against overfitting through the 407 

aggregation of predictions. However, unlike XGBoost, which uses gradient boosting and 408 

regularization, RF relies on the diversity of decision trees and bagging to achieve predictive 409 

power. Gene Expression Programming (GEP) is a gray-box machine learning method inspired 410 

by genetic evolution, utilizing regression and neural techniques to solve complex problems. It 411 

iteratively adjusts parameters to optimize performance and employs expression trees to 412 

represent nonlinear entities (Fig. 9). GEP has shown promising results in handling complex 413 

geotechnical data, making it a suitable choice for the current modeling study. Multi-Expression 414 

Programming (MEP), another evolutionary modeling approach, uses fixed-length binary 415 

strings to encode multiple computer programs within a single chromosome. MEP applies a 416 

fitness evaluation process to generate the most optimal solution through recombination and 417 

mutation of chromosomes (Fig. 10). Artificial Neural Networks (ANN) are black-box models 418 

where data flows through interconnected nodes across layers, learning complex patterns from 419 

input data via activation functions applied to the weighted sum of inputs. A feed-forward ANN 420 

model is utilized in this study to test various black-box methods on the geotechnical dataset. 421 

Meanwhile, Multiple Linear Regression (MLR) is a widely used statistical method that models 422 

the relationship between a dependent variable and multiple independent variables; it estimates 423 

the coefficients that best fit the data. 424 

 This selection facilitated a comprehensive exploration of ML modeling paradigms on the 425 

established geotechnical database for compaction modeling. Multiple models were iteratively 426 

developed through algorithmic refinement and parameter optimization across the spectrum of 427 

employed techniques. The models exhibiting superior statistical performance were identified 428 

through a meticulous evaluation process. The most refined models derived from each ML 429 



 18 

technique further underwent meticulous examination and comparison, predicated upon a 430 

variety of absolute and relative statistical KPIs. The ML-based model's performance underwent 431 

evaluation through distinct categories of key performance indices (KPIs). This includes error 432 

indices such as root mean squared error (RMSE), relative root mean square error value 433 

(RRMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). 434 

Additionally, correlation and effeciency indices, comprising Nash-Sutcliffe efficiency 435 

coefficient (NSE), Kling-Gupta efficiency coefficient (KGE), correlation coefficient (R²), 436 

residual sum of square (RSS), norm of residual (NR) and adjusted correlation coefficient (adj 437 

R²), and PC were analyzed as per ur Rehman et al., (2022). These indices have been chosen to 438 

encompass relative and absolute statistical perspectives, facilitating a comprehensive model 439 

performance analysis.  Additionally, variance analysis (ANOVA) was performed on the 440 

developed models to assess their statistical integrity including F-value and prob>F. 441 

Subsequently, the performance of these optimized models, as determined by the designated 442 

criteria, was compared with that of existing models in the literature, utilizing the modeling 443 

dataset. Additionally, both the optimized and the literature-based models underwent further 444 

validation procedures utilizing an independent validation dataset, and their performance was 445 

assessed using standard and customized EVIs. To further validate the credibility of the 446 

proposed model, an additional dataset comprising 139 observations sourced from existing 447 

literature was utilized. This dataset served to assess the predictive efficacy of the proposed 448 

model, comparing its performance with that of established models documented in prior 449 

literature some of which even used this validation dataset in their modeling process. Various 450 

standard EVIs, including the coefficient of determination (R), the correlation coefficient (Rm), 451 

and the slopes of regression lines (k and k'), along with their corresponding indices (R0 and 452 

R0'), were methodically assessed in this comparative analysis as per Rehman et al., (2024). 453 

Additionally, customized EVIs were developed to assess the compaction characteristics, 454 
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including Normalized Absolute Percentage Error (NAPE) and Outlier Sγdmax (Sγdmax(ol)). NAPE 455 

is defined mathematically as follows: 456 

NAPE = |
𝐸𝑖−𝑀𝑖

((𝐸𝑖+𝑀𝑖)/2)
| × 100        (6) 457 

NAPE was further customized for the wopt and γdmax in accordance with AS 1289.5.1.1 and AS 458 

1289.5.2.1 standards, which stipulate that NAPE should not exceed 20% and 4% for the former 459 

and latter, respectively, for more than 5% of prediction samples in a validation dataset, with 460 

certain exceptions in high plastic clays (Spagnoli and Shimobe, 2020). Furthermore, Sγdmax(ol) 461 

is defined when Eq. 1 for any model prediction for the combination of wopt and γdmax yields a 462 

value exceeding 100% or less than 0 (Tarantino and De Col, 2008). This ensures the theoretical 463 

validity of the developed model by verifying its adherence to the theoretical bounds of the soil 464 

saturation state. Sγdmax(ol) and the outlier NAPE (NAPEol) for wopt and γdmax can be defined as 465 

follows: 466 

NAPE𝑜𝑙 =
𝑘𝑁𝐴𝑃𝐸(𝑜𝑙)

𝑛
× 100        (7) 467 

Sγdmax(ol) =
𝑘𝑆𝛾𝑑𝑚𝑎𝑥(𝑜𝑙)

𝑛
× 100       (8) 468 

where k(ol) denotes the count of outliers for each index, taking into account the pertinent 469 

theoretical bounds. 470 

Finally, the most sophisticated model was proposed, marking the culmination of a rigorous 471 

process in selecting the optimal ML-based models for this study. Furthermore, the modeling 472 

mechanism of the proposed model was subjected to thorough analysis through Shapley additive 473 

explanations (SHAP) analysis on the modeling dataset and parametric and sensitivity 474 

evaluations on the assumed ranged dataset. 475 
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4. Results and Discussion 476 

4.1. Model Development 477 

4.1.1. XGBoost model 478 

An extensive XGBoost modeling approach was utilized to construct a robust predictive model 479 

for predicting γdmax and wopt parameters. Model training procedures were conducted to attain 480 

optimal settings that yield high predictive accuracy while mitigating model complexity. By 481 

meticulously fine-tuning the model parameters and iteratively refining the algorithmic settings, 482 

a level of predictive accuracy was achieved that closely mirrors experimental values. This 483 

optimization process was achieved by establishing specific thresholds for model complexity 484 

parameters and varying algorithmic parameters within these bounds. Optimal settings were 485 

determined wherein the number of trees was limited to 100, each with a depth of 6, and a 486 

learning rate of 0.30 was employed. Additionally, the fraction of features and regularization 487 

constant were constrained to 1.00. Through iterative refinement, the best-performing model 488 

was identified based on these algorithmic constraints. The optimal model for γdmax showed a 489 

high level of accuracy in the prediction aligning with experimental observations (Fig. 11a). 490 

Both training and testing data points and trend lines exhibited minimal deviation from the ideal 491 

45-degree line remaining within the 5% reference error band with R2 of 0.99 and 0.99, 492 

respectively (Table 2), indicative of strong model performance. Similarly, the predictive 493 

accuracy of wopt was demonstrated through XGBoost modeling, with the predicted values 494 

closely matching experimental observations mainly remaining within the 5% reference error 495 

band of the 45-degree line with R2 of 0.98 and 0.98 for testing and training databases, 496 

respectively (Fig. 12a). Notably, trend lines for both predicted and experimental data points 497 

remained consistent with the 45-degree line, further affirming the model's reliability. The close 498 

alignment between the trend lines of testing and training datasets for both models and the 45-499 

degree line suggests that the model generalizes well to unseen data and model is interpretable 500 
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and aligns well with domain knowledge. This also indicates that the model has learned the 501 

underlying patterns in the data without overfitting the training set. These findings and statistical 502 

KPIs as manifested in Table 2 underscore the high predictive accuracy and interpretability 503 

afforded by the developed XGBoost models in predicting γdmax and wopt parameters. XGBoost 504 

model is highly applicable when prediction accuracy of compaction characteristicscs is critical, 505 

and the data shows complex, non-linear relationships. 506 

4.1.2. RF model 507 

An RF modeling approach was undertaken to develop models for γdmax and wopt, involving 508 

meticulous fine-tuning of model parameters and iterative refinement of algorithmic settings. 509 

Through this process, optimal models were obtained based on their predictive performance and 510 

complexity considerations. Notably, the optimal model for γdmax exhibits minimal deviations 511 

between predicted and experimental values, as evidenced by their proximity to the 45-degree 512 

line within 5% reference error band across both testing and training datasets with R2 of 0.93 513 

and 0.83, respectively. Additionally, while slight deviations are observed at extreme values, 514 

the trend lines for both datasets largely align with the 45-degree line (Fig. 11b). Similarly, the 515 

optimal RF model for wopt demonstrates a comparable performance, with minimal deviation 516 

between predicted and experimental values across testing and training datasets yielding R2 of 517 

0.95 and 0.92, respectively, and trend lines consistent with the 45-degree line (Fig. 12b). These 518 

analyses and statistical KPIs of the developed models in Table 2 highlight a good performance 519 

of the optimal RF models for γdmax and wopt . The RF model's performance also suggests a good 520 

balance between accuracy and generalizability for the prediction of γdmax and wopt . Its ensemble 521 

nature allows it to capture non-linear relationships while maintaining robustness against 522 

overfitting. This makes the RF model particularly suitable for scenarios where both predictive 523 

power and model generalizability are desired. 524 
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4.1.3. GEP model 525 

A wide-ranging GEP modeling methodology was employed to optimize genetic operators, 526 

constants, and general parameters. This optimization procedure was facilitated through a 527 

stepwise GEP modeling strategy, iteratively transitioning from simpler to more complex 528 

algorithmic parameters to enhance predictive performance. The attainment of the optimal 529 

model configuration necessitated meticulous adjustment of mutation, inversion, genetic 530 

recombination, uniform recombination, and constant fine-tuning rates, resulting in respective 531 

values of 0.00138, 0.00546, 0.000277, 0.00755, and 0.00206. Upon thorough evaluation, the 532 

optimal GEP model for predicting γdmax exhibited a moderate degree of dispersion between 533 

predicted and experimental values across both testing and training datasets centered around the 534 

45-degree line with R2 of 0.77 and 0.71, respectively. It is noteworthy that the trend lines for 535 

both datasets displayed deviations, characterized by underestimation at higher values and 536 

overestimation at lower values (Fig. 11c). A similar trend was observed in the estimation of 537 

wopt with R2 of 0.78 and 0.71 for training and testing datasets, respectively (Fig. 12c). These 538 

observations and statistical KPIs (Table 2) suggest that the GEP models predict γdmax and wopt, 539 

reasonably aligning with experimental observations while manifesting a moderate degree of 540 

discrepancies. The performance of the GEP model indicates its potential for capturing the 541 

underlying patterns in the data. However, the observed deviations in γdmax and wopt predictions 542 

suggest that the model may be struggling to fully represent the complexity of the relationships 543 

between variables in the current dataset. This model could be particularly useful in situations 544 

where a balance between interpretability and predictive power is required, and insights into the 545 

data structure are needed, especially when a more flexible model is desired, albeit with some 546 

limitations in accuracy. 547 
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4.1.4. MEP model 548 

MEP modeling was employed to achieve optimal models for γdmax and wopt by varying the 549 

algorithmic parameters and applying multiple evolutionary iterations. The configuration of the 550 

MEP algorithm involved the establishment of two subpopulations, each composed of 1000 551 

iterations. It implemented a crossover probability of 0.9 and incorporated a tournament size of 552 

2. Based on the statistical KPIs, the best-performing MEP models for γdmax and wopt were 553 

finalized. The optimal MEP model predictions for γdmax showed a considerable level of 554 

scatteredness in comparison to experimental values for both testing and training datasets 555 

around the 45-degree line, with R2 values of 0.65 and 0.61, respectively (Fig. 11d). The trend 556 

lines of both testing and training datasets underscore considerable underestimation at higher 557 

values and overestimation at lower values. A similar trend was observed for the wopt prediction 558 

by the optimal MEP model, with slightly improved R2 values of 0.71 and 0.66, respectively, 559 

for the training and testing datasets (Fig. 12d). These analyses and statistical KPIs of both 560 

optimal MEP models for γdmax and wopt  (Table 2) demonstrate considerably low prediction 561 

accuracy, generalizability, and interpretability. However, this model offers simplicity, ease of 562 

interpretation, and an evolutionary prediction stream, its applicability may be limited to 563 

scenarios where slightly less accurate estimates of γdmax and wopt  are sufficient. 564 

4.1.5. ANN model 565 

The feedforward ANN model was constructed with a variable number of neurons ranging from 566 

10 to 100 per hidden layer. The selection of this range aimed to strike a balance between model 567 

complexity and efficacy, as excessively high neuron counts tend to yield intricate and 568 

burdensome models. Optimal performance was attained when employing 100 neurons, coupled 569 

with an α-value of 10-4. The ANN model developed for predicting γdmax exhibited a discernible 570 

discrepancy between predicted and experimental values, as evidenced by respective R2 values 571 

of 0.70 for both the training and testing datasets (Fig. 11e). Notably, trend line analysis revealed 572 
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a tendency towards overestimation at lower values and underestimation at higher values. A 573 

similar pattern was observed in the prediction of wopt by the optimal ANN model, yielding R2 574 

values of 0.71 and 0.66 for the training and testing datasets, respectively (Fig. 12e). These 575 

analyses, along with statistical KPIs presented in Table 2, collectively suggest that the 576 

feedforward ANN models exhibit relatively low accuracy, generalizability, and 577 

interpretability, particularly concerning predictions of γdmax and wopt. The model's performance 578 

and its tendency to overestimate at lower values and underestimate at higher values suggest 579 

that it may be particularly useful in mid-range predictions of γdmax and wopt. In practical 580 

applications, this ANN model could be employed in preliminary soil compaction assessments 581 

or as part of a larger ensemble of models to provide a comprehensive view of soil behavior. 582 

4.1.6. MLR model 583 

MLR was also utilized in this study, as it stands as the most prevalent technique in the existing 584 

literature for developing predictive models concerning γdmax and wopt. However, the MLR 585 

approach yielded models displaying substantial deviations in the prediction of γdmax, as 586 

indicated by relatively low R2 values of 0.55 and 0.54 for the training and testing datasets, 587 

respectively (Fig. 11f). Notably, both the training and testing dataset trend lines exhibited 588 

significant overestimation and underestimation in comparison to the 45-degree line at low and 589 

high values. A parallel pattern emerged in the prediction of wopt using MLR, albeit with 590 

marginally enhanced R2 values of 0.63 and 0.71 for the training and testing datasets, 591 

respectively (Fig. 12f). These analyses, in conjunction with statistical KPIs (Table 2), 592 

collectively underscore the limited accuracy and generalizability exhibited by MLR models in 593 

predicting γdmax and wopt. This suggests that while MLR is simple and interpretable, its 594 

applicability in the current context is limited. The model's performance could potentially be 595 

improved through feature engineering but more complex ML models are better suited for this 596 

particular problem. 597 
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4.2. Performance analysis 598 

4.2.1. Performance analysis of developed models 599 

The performance of the best models from all the applied ML techniques was evaluated to 600 

identify the most suitable models for further analysis, based on the statistical KPIs presented 601 

in Figure 13 and Table 2. Regarding correlation and efficiency indices (i.e., R², PC, adj R², 602 

KGE, and NSE), the model performance showed a significant improvement in the order of 603 

MLR, MEP, ANN, GEP, RF, and XGBoost for both γdmax and wopt. All models exhibited better 604 

performance on the training dataset compared to the testing dataset for both categories of 605 

models. XGBoost demonstrated the smallest reduction in performance from the training to the 606 

testing dataset for both γdmax and wopt, followed by ANN, MLR, RF, GEP, and MEP for γdmax 607 

(Fig. 13a), and RF, GEP, MEP, and ANN for wopt (Fig. 13b). These correlation and efficiency 608 

indices clearly indicate that the XGBoost model outperforms other models (Table 2), as all 609 

these indices are close to unity, demonstrating high prediction accuracy (Figure 13). The RF 610 

model also performed excellently in terms of correlation and efficiency indices. However, all 611 

other models showed values below 0.9 for these indices. These results highlight that black-box 612 

decision-tree-based ML techniques effectively approximate predicted values to experimental 613 

values in the current geotechnical database (Shi and Wang, 2021). 614 

The performance analysis was further conducted using multiple error indices (i.e., MAE, 615 

MAPE, MSE, RMSE, and NRMSE), covering both absolute and relative statistical 616 

perspectives. The models' performance was consistent with the results from correlation and 617 

efficiency indices for both testing and training datasets for γdmax and wopt (Table 2 and Fig. 13). 618 

The models' performance improved in terms of error indices in the order of MLR, MEP, ANN, 619 

GEP, RF, and XGBoost for both γdmax and wopt. The XGBoost model outperformed all the 620 

models, yielding error indices close to zero (Table 2 and Figure 13). The RF model also showed 621 

relatively low error indices compared to other models except XGBoost. Higher error indices 622 
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were observed for GEP, MEP, ANN, and MLR. Furthermore, XGBoost exhibited 623 

exceptionally low NR and RSS, with RF showing the second-best performance, while other 624 

models showed high values indicating larger residuals in predictions. These analyses 625 

emphasize the extremely low prediction error by XGBoost and the reasonable performance of 626 

RF on the current database. Nevertheless, all models demonstrated satisfactory performance, 627 

as evidenced by high F-values and low Prob>F in the ANOVA, with XGBoost showing the 628 

highest F-value followed by RF. Based on the comprehensive performance across all statistical 629 

KPIs, XGBoost exhibited exceptionally high prediction accuracy outperforming all the models. 630 

At the same time, the RF model also showed reasonable performance compared to other models 631 

except XGBoost for both γdmax and wopt. Thus, XGBoost and RF models are shortlisted for 632 

further evaluation. 633 

4.2.2. Performance analysis of shortlisted and existing models 634 

The performance of existing models in the extant literature (e.g., (Al-Khafaji, 1993; Blotz et 635 

al., 1998; Farooq et al., 2016; Günaydın, 2009; Gurtug and Sridharan, 2004; Ito and Komine, 636 

2008; Sridharan and Nagaraj, 2005; Wang and Yin, 2020)) for predicting γdmax and wopt, either 637 

with CE as an input parameter or without specifying bounds for any particular CE level, was 638 

evaluated using the current training and testing datasets used for the model development to 639 

compare with the proposed ML models, i.e., XGBoost and RF, developed in this study. All 640 

existing models exhibited substantial deviations between predicted and experimental γdmax and 641 

wopt values from the 45-degree line, with these deviations significantly exceeding the reference 642 

±5% error band, indicating inferior performance compared to XGBoost and RF (Figs. 12a, b; 643 

13 a, b; 14a; 15a). This finding suggests that the applicability of existing models is limited to 644 

certain thresholds but to a larger spectrum of cohesive soils and CE levels. Furthermore, 645 

performance comparisons based on correlation indices (R² and PC) and error indices (MAE, 646 

RMSE) revealed suboptimal performance of all the existing models and excellent performance 647 



 27 

of the proposed models for predicting γdmax and wopt, when combining the training and testing 648 

datasets used previously (Figs. 14b, c; 15b, c). XGBoost outperformed all other models based 649 

on this big data showing a wider application range. The Taylor diagram analysis further 650 

confirms that XGBoost predicts γdmax and wopt with the least deviation and the highest 651 

correlation strength, followed by RF (Fig. 16). In contrast, all existing models demonstrated a 652 

larger deviation from experimental values in their predictions, with a standard deviation 653 

exceeding 2 (Fig. 16). This indicates a low fidelity of these models in predicting accurate 654 

results. The superior performance of XGBoost and RF in comparison to existing models 655 

underscores their robustness and reliability in capturing the underlying patterns in this big 656 

dataset, as evidenced by their proximity to the experimental values on the Taylor diagram. It 657 

is noteworthy that while all MLR-based models demonstrated a high degree of deviation, the 658 

MEP-based model by Wang and Yin (2020) outperformed the other existing models but still 659 

exhibited inferior performance to the MEP model developed in the current study demonstrating 660 

the effectiveness of training the model on a big database (Figs. 14 and 15 and Table 2). The 661 

superior performance of XGBoost and RF compared to existing models can be attributed to 662 

their training on a larger dataset encompassing a broad spectrum of soil plasticity, 663 

classification, and CE levels (Chen and Seo, 2023). It is also important to note that the part of 664 

the database used in this performance analysis also serves as a parent database, necessitating 665 

further verification of these models as presented in the following section.  666 

4.3. External validation  667 

The shortlisted models, namely XGBoost and RF, along with existing models from the current 668 

literature, were validated using an independent dataset of 139 observations obtained from 669 

previous studies. This dataset, which spans a wide range of statistical input and output 670 

parameters (Table 1), was not used in the model testing and training phases, thus termed as an 671 

independent dataset. It was observed that XGBoost predicted the γdmax and wopt values within a 672 
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±5% reference error band, whereas all other models exhibited greater deviations (Fig. 17). 673 

Taylor diagram analysis further confirmed these findings, indicating that XGBoost predicted 674 

γdmax and wopt values closest to the experimental results, followed by the RF and the MEP model 675 

by Wang and Yin (2020) (Fig. 18). Most existing models showed significant deviations in γdmax 676 

and wopt, highlighting their lower fidelity in prediction accuracy. The external validation was 677 

extended to assess the models' ability to yield a combination of γdmax and wopt that breaches the 678 

threshold Sγdmax value, i.e., higher than 100% or equal to or lower than 0%. It was observed that 679 

all models tended to produce some Sγdmax values outside theoretical bounds at certain instances, 680 

except for XGBoost, which consistently predicted γdmax and wopt values close to the 681 

experimental data without breaching theoretical limits (Fig. 19). This indicates that other 682 

models are prone to unacceptable results, while XGBoost effectively captures minimal 683 

prediction error and remains within the desired bounds of 70% < Sγdmax < 100% as of 684 

experimental values (Fig. 19). This performance is mainly attributed to the screened database 685 

used for model development, which excluded observations yielding unacceptable Sγdmax 686 

combined with the sophisticated training ability of XGBoost demonstrated on the current 687 

database to maintain minimal error indices and close proximity with experimental values.  688 

Further external validation was conducted by assessing the performance of the models on the 689 

independent dataset using standard Evaluation Indices (EVIs) (i.e., R, Rm, k, k', R0, and R0') 690 

and customized EVIs (NAPEol and Sγdmax(ol)) for γdmax and wopt, as presented in Tables 3 and 4, 691 

respectively. The results indicate that XGBoost maintains all the EVIs within desirable ranges 692 

set to demonstrate high prediction accuracies, whereas the other models struggle to do so, 693 

failing in some or all EVIs. This demonstrates the superior prediction accuracy of XGBoost 694 

and its robust capability to perform global predictions of cohesive soil compaction within 695 

acceptable limits. In contrast, the other models exhibit certain limitations, failing to 696 

consistently achieve desirable EVI metrics. These findings highlight the efficacy of XGBoost 697 
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in modeling complex soil compaction parameters, reinforcing its potential for broader 698 

applications in geotechnical engineering. The comprehensive evaluation underscores the 699 

model's ability to generalize well across diverse datasets, thus providing reliable predictions. 700 

This superior performance can be attributed to the advanced algorithmic structure of XGBoost, 701 

which effectively captures nonlinear relationships and interactions within the data coupled with 702 

training on a big and systematic dataset, resulting in higher fidelity and precision (Chen and 703 

Seo, 2023; Shi and Wang, 2021). Consequently, XGBoost stands out as a reliable tool for 704 

predicting γdmax and wopt, offering significant improvements over traditional and other ML 705 

models in this domain. 706 

4.4. Model explanation and modeling mechanism analysis 707 

4.4.1. Proposed model explanation 708 

The XGBoost model is a black box, making it difficult to interpret it in terms of mathematical 709 

formulations for predictions. To improve interpretability, SHAP analysis was used, based on 710 

modeling data used in this study. SHAP assigns rank values to input features for individual 711 

predictions, offering insight into how input features, i.e., Atterberg’s limit, gradation 712 

parameters and compaction effort affect predictions of γdmax and wopt. (X. Li et al., 2024). The 713 

SHAP summary plots for the prediction of the XGBoost model proposed for γdmax and wopt in 714 

this study are presented in Figures 20 (a) and (b), respectively. In SHAP summary plots, the 715 

horizontal axis represents SHAP values, which indicate the extent to which each input feature 716 

pushes the prediction higher (positive SHAP values) or lower (negative SHAP values). Each 717 

row corresponds to an input feature, and each dot represents a SHAP value for a particular 718 

observation. The color gradient from blue (low feature values) to red (high feature values) 719 

shows how the magnitude of each input feature’s value affects the model's output.  720 
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The CE feature has a particularly strong impact on γdmax and wopt. Low values significantly 721 

reduce the prediction of γdmax and increase the prediction of wopt, as indicated by a cluster of 722 

blue dots with negative and positive SHAP values, respectively. Conversely, high values of CE 723 

push the prediction upward and downward for γdmax and wopt, respectively, indicating that this 724 

feature is a key driver for increasing γdmax and decreasing wopt. wL also shows a substantial 725 

influence on both γdmax and wopt.  High values of wL increase the prediction of γdmax and low 726 

values decrease it; meanwhile, a reverse response was observed for wopt. This feature has a 727 

relatively wide distribution for both γdmax and wopt, indicating interactions with other features 728 

or nonlinear effects. wP displays a balanced spread around zero for both γdmax and wopt, with 729 

high values associated with a slight increase in γdmax and low values linked to a decrease in 730 

the prediction of γdmax; meanwhile, a reverse trend was observed for wopt. This distribution 731 

pattern suggests that wP has a moderate but consistent effect on both γdmax and wopt since 732 

clustering is closer to zero SHAP value as compared CE and wL. Moreover, CE has a consistent 733 

impact on both γdmax and wopt. In contrast, wL and wP have slightly varying degrees of impact 734 

on γdmax and wopt, with a stronger influence on wopt than on γdmax. IP has a also mixed influence 735 

on compaction characteristics, with high values leaning toward increasing γdmax, while low 736 

values slightly decrease; a reverse trend was observed for wopt. However, the distribution 737 

pattern of IP shows an interaction with other features and more clustering close to zero showing 738 

less impact than CE, wL and wP. AF, on the other hand, shows a less pronounced impact for 739 

both γdmax and wopt; the values cluster around zero, meaning it slightly affects the predictions.  740 

The Sand and F200 features also show a los impact on γdmax and wopt , as most SHAP values are 741 

concentrated near zero, indicating these features have little effect on the models’ output in 742 

comparison to CE, wL, wP, and IP. Moreover, the occasional and frequent occurrence of red and 743 

blue dots across negative and positive SHAP values for input features suggests that the impact 744 

of each feature is influenced by its interactions with other features for different instances in 745 
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predicting γdmax and wopt, thereby helping to bridge gaps in prediction and enhance prediction 746 

accuracy.  747 

Overall, wL and CE stand out as the most influential features playing a primary role in 748 

predicting γdmax and wopt. wP has a secondary role, with moderate effects that mirror wL’s trend 749 

in predicting compaction parameters. IP and AF, have a tertiary and F200, and Sand exhibits a 750 

quaternary role. This shows that the proposed XGBoost aligns with geotechnical principles, as 751 

increased CE allows particles to rearrange efficiently at lower moisture levels and decrease the 752 

void spaces significantly resulting in high γdmax. wL shows a strong positive correlation with 753 

γdmax and wopt, reflecting that soils with higher wL require more water for optimal compaction 754 

due to their greater water-holding capacity and undergo less densification while wP and IP also 755 

mirror this impact in a comparatively less pronounced manner. The small impact of F200 and 756 

Sand suggests that grain size distribution shows low influence over compaction characteristics 757 

compared to Atterberg’s limit and CE for cohesive soils but their impact somewhat influences 758 

the impact of other peoperties. 759 

4.4.2. Parametric analysis  760 

A parametric analysis was conducted by maintaining all parameters at their minimum values 761 

and varying individual input parameters to observe the impact on the model's performance, as 762 

illustrated in Figure 21. This analysis revealed that in the XGBoost model, the wopt increases 763 

while the γdmax decreases with increases in wL, wP, and IP, with wL exerting the most significant 764 

influence among them. Specifically, the impact of wL is pronounced at approximately 100%, 765 

after which its influence becomes negligible. The variables Sand and F200 demonstrated inverse 766 

effects relative to each other and slightly impacted compaction parameters. This effect was 767 

significant only when Sand was below 50% and F200 exceeded 50%, highlighting that the 768 

model accounts for the impact within the fine-grained soil boundary defined by ASTM D2487, 769 
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given the data limitations for cohesive soils. Furthermore, the CE increased γdmax and decreased 770 

wopt, consistent with basic soil mechanics principles. However, this impact was significant only 771 

for CE values below 5000 kN-m/m³, after which it became less significant. The variable AF 772 

exhibited a slight impact on γdmax and wopt, primarily at lower values. The XGBoost model 773 

consistently performed without anomalies, whereas the RF model exhibited some 774 

irregularities. For instance, with CE values, the RF model showed a decrease in wopt up to 2500 775 

kN-m/m³, followed by an increase up to 5000 kN-m/m³. Similar irregularities were observed 776 

for F200 and Sand in the RF model. These irregularities can be regarded as the reason for the 777 

inferior performance of RF than XGBoost. 778 

Additionally, the model's efficacy was evaluated by examining the combination of predicted 779 

γdmax and wopt to assess its impact on Sγdmax, by varying Gs within the theoretical bounds of 2.65 780 

and 2.9 for cohesive soils (Fig. 22). The XGBoost model consistently yielded theoretically 781 

valid results, did not produce a combination that resulted in Sγdmax exceeding 100% for any 782 

instance. In contrast, the RF model frequently produced Sγdmax values surpassing 100%. This 783 

demonstrates the robust underlying modeling mechanism of the XGBoost model, enabling it 784 

to accurately predict γdmax and wopt while adhering to theoretical constraints.  785 

4.4.3. Sensitivity analysis  786 

The sensitivity analysis using the assumed database used in parametric analysis revealed that 787 

in the XGBoost model, all input parameters possess a certain Si, validating the input analysis 788 

conducted for this study (Figure 23). Notably, wL and CE emerged as the most sensitive 789 

parameters for γdmax and wopt, similar to the SHAP analysis. Consequently, the XGBoost 790 

model is suitable for application across a range of cohesive soil classifications and varying CE 791 

levels, accommodating a wide range of variations in these two most significant input features. 792 

The Si for the XGBoost model varied in the order of wL, CE, wP, IP, AF, Sand and F200 for γdmax, 793 

and CE, wL, wP, IP, AF, F200, and Sand for wopt (Fig. 22). This indicates a robust modeling process 794 
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employed by the XGBoost algorithm, which mathematically bounds different parameters with 795 

distinct schemes for γdmax and wopt, thereby accurately predicting these values. 796 

5. Practical Application 797 

The proposed method in this study for predicting γdmax and wopt at arbitrary CE levels has 798 

significant implications for field applications in geotechnical engineering and construction 799 

projects. In large-scale earthwork operations, where soil properties can vary considerably 800 

across the site, this method offers a more efficient alternative to traditional laboratory and field 801 

testing for each location. By utilizing readily available soil parameters such as wL and wP, field 802 

engineers can quickly estimate location-specific compaction characteristics, potentially 803 

reducing the time and cost associated with extensive laboratory testing. This approach is 804 

particularly valuable in projects where discrepancies between laboratory-derived and field-805 

observed compaction parameters are common. Furthermore, the method allows for a more 806 

nuanced approach to compaction control by enabling the redefinition of the compaction degree 807 

based on site-specific predicted γdmax values that account for variable field CE levels. This 808 

redefinition could lead to a more accurate assessment of compaction adequacy across 809 

heterogeneous sites, potentially optimizing compaction efforts and improving quality control 810 

processes. Moreover, the ability to estimate compaction parameters at arbitrary CE levels also 811 

opens up possibilities for adaptive compaction strategies, where equipment settings and pass 812 

numbers can be adjusted in real time based on local soil conditions and predicted optimal 813 

compaction parameters (Miller and Vahedifard, 2024). A particularly significant application 814 

of this method is in achieving efficient compaction by adjusting the water content of fill 815 

material to match the wopt at the field CE level. The proposed method allows for the prediction 816 

of wopt corresponding to the estimated field CE, enabling more precise moisture content 817 

adjustments. This capability can lead to optimized compaction efforts and improved soil 818 

performance. However, it's important to note that to fully leverage this advantage, it is 819 
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necessary to develop reliable means of evaluating the field CE level, albeit different methods 820 

are available in literature as proposed by Johnson and Sallberg, (1960). Additionally, this 821 

method could facilitate the development of more sophisticated specifications for earthwork 822 

projects, allowing for variable compaction requirements that are tailored to specific areas 823 

within a site based on their unique soil properties and the estimated field CE level. Such an 824 

approach could result in more efficient use of resources, improved overall compaction quality, 825 

and potentially reduced construction time and costs. However, implementation of this method 826 

in field practice would require careful calibration and validation against traditional methods 827 

which can be done in future research. Also, the proposed XGBoost model exposes the complex 828 

feedback loops that govern soil compaction. For instance, the model shows that increasing CE 829 

boosts γdmax by facilitating particle rearrangement and reducing void spaces at lower moisture 830 

levels. Meanwhile, the parametric study also uncovers a threshold effect, where CE becomes 831 

less effective beyond a certain point. Similarly, while soils with higher wL require more 832 

moisture to achieve optimal compaction, their increased water-holding capacity paradoxically 833 

limits their ability to densify effectively. The model trained on a global dataset also provides 834 

insights into the categorization of soil properties to influence the compaction characteristics of 835 

the cohesive soil useful for controlling compaction in fields based on soil properties. 836 

6. Conclusions, 837 

The current study provides a comprehensive approach for the global modeling of compaction 838 

parameters at arbitrary CE levels using an extensive database established through testing and 839 

literature surveys. The following are the main findings of this study. 840 

 Different ML techniques showed inconsistent performance with the current database. 841 

The optimal XGBoost model had the lowest prediction deviation for γdmax and wopt, 842 

followed by the RF model. In contrast, GEP, MEP, ANN, and MLR models had higher 843 

deviations. Statistical KPIs confirmed these results, reflecting the complexity of the 844 
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geotechnical data and the varying effectiveness of different modeling techniques. This 845 

suggests that no single ML method universally performs best for geotechnical 846 

databases, and tailored performance analysis may be needed for different datasets. 847 

 The XGBoost model outperformed existing models and RF in predicting γdmax and wopt, 848 

both using the established database and an independent dataset, meeting all evaluation 849 

criteria. Its superior performance highlights the effectiveness of training on a 850 

comprehensive database and XGBoost's robust framework, resulting in minimal 851 

prediction error within theoretical bounds. Predicted γdmax and wopt values for Sγdmax 852 

remained consistently within 100% across different CE levels, while other models 853 

exceeded this threshold, indicating the need for careful consideration when using them.  854 

 By combining SHAP analysis with real modeling data, the XGBoost model reveals how 855 

CE, soil plasticity and gradation influence γdmax and wopt. The analysis emphasizes the 856 

primary roles of CE and wL, with CE increasing γdmax and decreasing wopt, and wL having 857 

the opposite effect. wP play a secondary role in prediction, with moderate impacts that 858 

align with the trends of wL. IP and AF play a tertiary role, and F200 and Sand show a small 859 

impact, confirming their quaternary role in prediction. Meanwhile, all these parameters 860 

combined result in high prediction accuracy, helping to fill the gaps in the predictions. 861 

The model shows insignificant irregularities from these trends during parametric 862 

analysis across a wide range of input feature values. Sensitivity analysis further 863 

confirms the model’s adaptability across various soil plasticity ranges and CE levels. 864 

The current modeling approach allows engineers to focus on the most influential factors 865 

and thresholds, effectively optimizing compaction for cohesive soils. 866 

The proposed method for predicting γdmax and wopt at varying CE levels offers a promising 867 

solution to enhance field compaction practices, especially in large-scale projects, by providing 868 

a more efficient alternative to traditional, labor-intensive measurement techniques. Predicting 869 
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compaction parameters at arbitrary CE levels is particularly useful in the field, as it allows for 870 

more flexible and accurate adjustments to compaction efforts based on site-specific conditions. 871 

This approach, based on readily available soil properties, could improve compaction quality, 872 

optimize resource usage, and offer a more accurate assessment of compaction in heterogeneous 873 

field conditions. Meanwhile, future work should focus on developing reliable methods for 874 

estimating field CE, validating this modeling approach in the field, and expanding it to different 875 

soil types, i.e., granular soils. 876 
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Fig. 1: Soil classification data orientation on A-line plasticity chart 
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Fig. 2: Relationship between γd and w of tested samples (a) standard compaction tests; (b) 

modified compaction tests 
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Fig. 3: Modeling data orientation 
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Fig. 4: Violin plots of the established database for modeling 

 

 

 

 

 

 

 

 

 



        

Fig. 5: Correlational and Pearsons correlation coefficient matrices of input and output 

parameters 
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Fig. 6: Methodology of the current study 

 



 

Fig. 7: XGBoost algorithm architecture 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 8: RF algorithm architecture 

 

 

 

 

 



 

Fig. 9: GEP algorithm architecture 

 

 

 

 

 

 

 

 

 

 



 

Fig. 10: MEP algorithm architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 11: γdmax model training and testing (a) XGBoost; (b) RF; (c) GEP; (d) MEP; (e) ANN; 

(f) MLR 
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Fig. 12: wopt model training and testing (a) XGBoost; (b) RF; (c) GEP; (d) MEP; (e) ANN; 

(f) MLR 
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Fig. 13: Performance comparison of developed models (a) for γdmax; (b) for wopt 
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Fig. 14: Performance comparison of shortlisted models with existing models for γdmax (a) 

scatter plot; (b) correlation indices; (c) error indices 
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Fig. 15: Performance comparison of shortlisted models with existing models for wopt (a) 

scatter plot; (b) correlation indices; (c) error indices 
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Fig. 16: Performance comparison of shortlisted models with the existing models through the 

Taylor diagram a) for γdmax; (b) for wopt 
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Fig. 17: External validation of shortlised models and comparison with existing models (a) for 

γdmax; (b) for wopt 
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Fig. 18: External validation of shortlisted models and comparison with existing models 

through the Taylor diagram (a) for γdmax; (b) for wopt  
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Fig. 19: External theoretical validation of shortlisted models and comparison with existing 

models through Sγdmax analysis 
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Fig. 20: XGBoost model explanation with SHAP analysis (a) for γdmax; (b) for wopt  
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Fig. 21: Parametric analysis of XGBoost model and comparison with RF 
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Fig. 22: Parametric analysis of XGBoost model and comparison with RF to analyze 

theoretical validation using Sγdmax  
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Fig. 23: Sensitivity analysis of input parameters for proposed models 
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Table 1: Overview of the dataset used for modeling and validation  

    wL wP IP Sand F200 CE AF wopt γd  Sγdmax 

    % % % % % kN-m/m3 - % kN/m3 % 

M
o

d
el

 T
ra

in
in

g
 a

n
d
 T

es
ti

n
g

 D
at

a 

(T
es

ti
n

g
 a

n
d

 l
it

er
at

u
re

) 

Maximum 608.0 48.3 570.1 50.0 100.0 10832.1 11.4 45.0 22.5 97.1 

Minimum 15.0 6.1 1.6 0.0 50.0 202.0 0.001 5.2 10.9 50.2 

Count 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 

Mean 53.5 20.5 32.9 14.8 83.9 1614.5 0.4 16.1 17.5 76.1 

Median 32.0 20.0 14.0 10.0 89.0 594.0 0.2 14.8 17.6 75.0 

Standard Deviation 82.2 7.2 78.9 13.6 14.4 1280.6 1.2 5.7 1.8 8.5 

Variance 6758.1 52.2 6227.8 184.9 206.4 1639813.7 1.5 32.4 3.2 72.0 

Range 592.7 42.2 568.5 50.0 50.0 10630.1 11.4 39.8 11.6 49.5 

Excess kurtosis 28.6 2.0 30.2 -0.4 -0.6 11.6 43.4 3.2 0.9 0.0 

Skewness 5.2 1.0 5.4 0.9 -0.8 2.0 6.3 1.6 -0.8 0.1 

E
x

te
rn

al
 V

al
id

at
io

n
 D

at
a 

(L
it

er
at

u
re

) 

Maximum 550 48.3 480 83.5 100.0 2693.0 29.1 43.7 37 98.9 

Minimum 23.0 12.0 3.4 0.0 16.5 551.0 0.03 12.1 12.3 70.0 

Count 139 139 139 139 139 139 139 139 139 139 

Mean 153.1 24.6 128.5 19.7 80.0 882.2 2.2 20.3 16.4 83.2 

Median 49.4 23.0 26.0 13.0 87.0 593.0 0.3 18.6 16.8 83.9 

Standard Deviation 196.8 7.2 192.2 19.7 20.0 726.4 4.2 5.4 2.0 6.0 

Variance 38733.3 51.4 36945.8 388.6 399.3 527597.7 17.7 28.9 4.0 35.7 

Range 527.0 36.3 476.7 83.5 83.5 2100 29.0 31.6 24.7 29.9 

Excess kurtosis 0.3 0.3 0.3 0.8 0.6 2.9 13.4 4.3 21.1 0.3 

Skewness 1.4 0.8 1.4 1.2 -1.2 2.2 3.1 1.8 -3.4 0.0 
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Table 2: Evaluation of developed models based on KPIs 

Modeling KPI 
XGBoost RF GEP MEP ANN MLR 

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing 

γdmax 

(kN/m3) 

R² 0.99 0.99 0.93 0.83 0.77 0.71 0.65 0.60 0.70 0.70 0.55 0.54 

Adj R² 0.99 0.97 0.93 0.83 0.77 0.70 0.65 0.60 0.70 0.70 0.55 0.55 

MSE 0.01 0.02 0.30 0.35 0.70 0.74 1.20 1.23 1.13 1.10 1.72 1.70 

RMSE 0.091 0.15 0.483 0.510 0.822 0.910 0.961 0.970 0.887 0.860 0.990 0.980 

NRMSE 0.0001 0.0003 0.0007 0.0016 0.0012 0.0010 0.0014 0.0031 0.0013 0.0027 0.0015 0.0031 

MAE 0.05 0.08 0.357 0.4 0.74 0.75 0.8 0.94 0.76 0.75 0.98 0.97 

MAPE 0.003 0.04 0.022 0.027 0.03 0.034 0.048 0.048 0.046 0.028 0.06 0.048 

NSE 0.99 0.97 0.9 0.81 0.76 0.7 0.64 0.6 0.68 0.68 0.52 0.5 

KGE 0.99 0.97 0.93 0.89 0.85 0.77 0.67 0.6 0.69 0.69 0.5 0.5 

PC 0.99 0.98 0.96 0.91 0.88 0.84 0.80 0.77 0.84 0.84 0.74 0.74 

NR 2.4 0.5 12.7 7.9 18.9 14.8 25.2 10.6 23.2 10.4 25.6 40.5 

RSS 5.6 0.3 160.4 63.2 359.1 219.5 634.5 113.0 540.2 109.0 655.3 1636.7 

F-value 316697 284159 8499 1538 1749 635 1213 461 1639 734 847 711 

Prob>F 0 0 0 0 0 0 0 0 0 0 0 0 

wopt  

(%) 

R² 0.98 0.98 0.95 0.92 0.78 0.71 0.71 0.66 0.77 0.66 0.63 0.71 

Adj R² 0.98 0.97 0.95 0.92 0.78 0.71 0.71 0.66 0.77 0.66 0.63 0.71 

MSE 0.01 0.04 2.10 2.20 8.10 9.50 9.45 12.10 8.97 12.30 14.50 9.44 

RMSE 0.36 0.4 1.29 1.35 2.27 2.60 2.69 2.70 2.57 2.70 3.03 2.58 

NRMSE 0.0005 0.0006 0.0019 0.0043 0.0033 0.0083 0.0039 0.0087 0.0037 0.0087 0.0044 0.0083 

MAE 0.002 0.01 0.70 0.98 2.00 2.40 2.44 2.50 2.10 2.30 2.90 2.00 

MAPE 0.01 0.002 0.06 0.07 0.11 0.13 0.13 0.14 0.125 0.15 0.18 0.14 

NSE 0.99 0.97 0.94 0.92 0.77 0.7 0.7 0.6 0.75 0.6 0.55 0.62 

KGE 0.99 0.97 0.95 0.93 0.85 0.79 0.74 0.66 0.76 0.65 0.64 0.67 

PC 0.99 0.98 0.97 0.96 0.87 0.84 0.84 0.81 0.88 0.81 0.79 0.84 

NR 9.42 0.95 33.90 15.57 53.73 40.11 70.42 31.80 67.38 31.11 79.41 67.33 

RSS 88.77 0.90 1149.32 242.56 2887.06 1608.69 4959.37 1011.00 4540.05 967.60 6305.85 4533.24 

F-value 205364 1218313 13080 3426 1731 580 1657 590 2317 593 1156 1697 

Prob>F 0 0 0 0 0 0 0 0 0 0 0 0 



Table 3: External validation analysis of proposed and existing models for γdmax (kN/m3) 

Dataset 
Statistical Parameters   

R2 Rm R0
2 R0

'2 k k' MAE NAPEol Sγdmax(ol) 

Desirable 

range 
>0.9 >0.5 around 1 around 1 0.85-1.15 0.85-1.15 <3 <5 0 

A 0.91 0.65 0.99 0.99 0.99 0.84 0.30 4.3 0.0 

B 0.84 0.51 0.99 0.99 0.98 0.80 0.40 10.1 0.7 

C 0.29 0.06 0.90 0.90 0.82 0.10 3.86 37.4 8.6 

D 0.21 0.04 0.90 0.90 0.20 2.32 15.54 56.7 84.9 

E 0.59 0.26 0.94 0.94 0.94 0.85 1.23 51.1 0.0 

F 0.51 0.19 0.93 0.93 1.00 0.69 0.81 28.1 30.2 

G 0.21 0.04 0.90 0.90 0.39 1.53 11.11 35.6 25.8 

H 0.23 0.04 0.90 0.90 1.71 1.17 12.57 94.9 100 

I 0.77 0.42 0.98 0.98 0.98 0.93 0.70 25.9 3.6 

A=XGBoost; B= RF; C= Al-Khafaji (1993); D= Boltz et al. (1998); E=Gurtug and Sridharan (2004); F= Sridharan and Nagaraj (2005); G= Günaydin (2009); H: 

Farooq et al. (2016); I: Wang and Yin (2020) 

 

 

 

 

 

 

 

 

 

 



Table 4: External validation analysis of proposed and existing models for wopt (%) 

Dataset 
Statistical Parameters   

R2 Rm R0
2 R0

'2 k k' MAE NAPEol Sγdmax(ol) 

Desirable 

range 
>0.9 >0.5 around 1 around 1 0.85-1.15 0.85-1.15 <3 <5 0 

A 0.92 0.70 0.99 0.99 1.00 0.85 1.2 3.1 0.0 

B 0.88 0.60 0.99 0.99 1.00 0.87 1.5 5.0 0.7 

C 0.11 0.01 0.9 0.9 1.75 8.88 18.0 44.0 8.6 

D 0.08 0.01 0.8 0.8 3.03 117.72 71.4 97.3 84.9 

E 0.45 0.15 0.9 0.9 1.01 1.81 3.4 31.6 0.0 

F 0.37 0.10 0.9 0.9 1.09 1.95 4.0 30.9 30.2 

G 0.37 0.10 0.9 0.9 1.00 2.51 3.9 35.9 25.8 

H 0.45 0.15 0.9 0.9 1.30 0.33 6.8 58.7 NA 
I 0.08 0.01 0.9 0.9 1.68 5.56 16.5 30.9 100 

J 0.86 0.50 0.98 0.98 0.97 0.69 1.6 6.0 3.6 

A=XGBoost; B= RF; C= Al-Khafaji (1993); D= Boltz et al. (1998); E=Gurtug and Sridharan (2004); F= Sridharan and Nagaraj (2005); G= Günaydin (2009); H: Ito and 

Komine (2020); I: Farooq et al. (2016); J: Wang and Yin (2020) 

 

 

 

 

 

 

 


