
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Modelling of a self-led critical friend topology in inter-cooperative
grid communities

Nik Bessis a,*, Ye Huang b,c, Peter Norrington a, Antony Brown a, Pierre Kuonen c,
Beat Hirsbrunner b

a Department of Computer Science and Technology, University of Bedfordshire, UK
b Department of Informatics, University of Fribourg, Switzerland
c Department of Information and Communication Technologies, University of Applied Sciences of Western Switzerland, Fribourg, Switzerland

a r t i c l e i n f o

Article history:
Available online 7 July 2010

Keywords:
Grid
Grid scheduling
Critical friend model (CFM)
Self-led critical friend
Inter-cooperative grid

a b s t r a c t

For decades, much work has been done to increase the effectiveness and efficiency of job
sharing amongst available computational resources. Resources can be organized into a
variety of topologies, and recent work has shown that a decentralized distributed resource
topology is a crucial but complicated scenario. This is because decentralized resources are
normally grouped into independent virtual organizations (VOs) and isolated from each
other by VO boundaries.

To convey jobs across gaps between various virtual organizations, a novel resource topol-
ogy called the self-led critical friend model (CFM) is proposed in this work. The CFM deals
with trust credits between resources according to their historical collaboration records.
This trust reveals a feasible, realistic, and transferable correlation to facilitate the resource
selection process for job delegation between arbitrarily connected physical resources. Con-
sequently, the CFM is able to overcome the constraints caused by virtual organization
boundaries.

Besides the theoretical model, a simulation-based implementation is carried out together
with a complementary high-level community-aware scheduling protocol. After evaluating
a number of compositional scenarios and criteria objectives, the observed results show the
benefit of job scheduling across multiple VOs, as well as the capability of the self-led crit-
ical friend model as a novel cross-VO resource topology to represent and interconnect
resources.

Crown Copyright � 2010 Published by Elsevier B.V. All rights reserved.

1. Introduction

Numerous works investigate how to enable effective and efficient job processing within the scope of cluster and single
node [1,2], with some [3–5] starting to exploit the benefits of automatic cooperation amongst multiple nodes (different
meta-schedulers). However, there remains room for improvement to enable automatic and self-manageable job exchange
across different VOs. Indeed, there are many complex and volatile technical, political and personal factors which work
against easy solutions. Thus, adaptive and dynamic solutions are necessary.

The contribution of this paper is the design of a novel model entitled the critical friend model (CFM). The CFM considers
interconnected nodes, whichever VO they may be in, known via historical collaboration records as self-led critical friends

1569-190X/$ - see front matter Crown Copyright � 2010 Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.simpat.2010.06.020

* Corresponding author. Tel.: +44 1582743476.
E-mail addresses: nik.bessis@beds.ac.uk (N. Bessis), ye.huang@unifr.ch (Y. Huang), peter.norrington@beds.ac.uk (P. Norrington), antony.brown@beds.

ac.uk (A. Brown), pierre.kuonen@hefr.ch (P. Kuonen), beat.hirsbrunner@unifr.ch (B. Hirsbrunner).

Simulation Modelling Practice and Theory 19 (2011) 5–16

Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier .com/ locate/s impat

Author's personal copy

(CF). Specifically, a critical friend is a node which has passed a threshold test of competence for service delivery, as deter-
mined by the node seeking the service. Taking a collection of such nodes known to one node, these are that node’s critical
friend community (CFC). The historical records are maintained within a node’s updated Metadata Snapshot. Further defini-
tions and discussions are introduced in the following sections at relevant points. Further more, regarding the CFM is working
on nodes with various local scheduling algorithms and policies, a commentary high-level scheduling algorithm is needed. In
this paper, the CFM is integrated together with a novel algorithm named the community-aware scheduling protocol (CASP)
[6,7]. The CASP relies on a set of messages, i.e., REQUEST, ACCEPT, INFORM, and ASSIGN, to dispatch jobs to available re-
sources within a reachable grid, in order to increase average job success rate, job response time and resource efficiency.

Bessis and Huang presented a vision of resource discovery in a decentralized distributed heterogenous grid environment
for job allocation and scheduling in and across virtual organizations (VO) in [8], introducing the concept of the critical friend
model (CFM) for grid scheduling. In this paper, we provide a graph theoretic foundation for the CFM, and an evaluation of an
implementation of the model under various scenarios.

The remaining of this paper is organized as following, in Section 2, the modeling of self-led critical friend model is intro-
duced. In Section 3, considered criterions and evaluated scenarios are detailed, followed by the relevant discuss on obtained
experimental results in Section 4. Finally, conclusions and future work are given in Section 5.

2. Modelling of self-led critical friend

In describing our model we use standard graph theoretic notation. A graph, G = (V,E) consists of a set of vertices
V = {v1,v2, . . . ,vn} and a set of edges, E = {(v1,v2), (vi,vj), . . . , (vn�1,vn)} representing connections between pairs of vertices vi

and vj. In our case, we will be making reference to a weighted graph G = (V,E,W) where V and E are as defined earlier,
and W is a mapping of a weight wi to each edge ei 2 E. This construct then allows us to define a value ei in the range
[0–1], whereby low trust or distrust leads towards 0, and high trust leads towards 1, that can be used to model the notion
of trust within our graph theoretic framework. Each vertex in the graph represents a node ai, and the edges represent knowl-
edge one node has about another node. At this point we would like to point out that we supplement our graph theoretic
model with a number of additional (non-graph theoretic) concepts. The use of these additional concepts adds to the richness
of model.

2.1. Critical friend trust scores

In order for a critical friend community (CFC) to be formed, a definition is required for how trust values propagate from
one node to another. We begin by defining a trust score between nodes, then refine it to include temporal elements before
settling on a proposed method for determination of critical trusted friends. We then describe how the topology of the CFC
changes under the different policies defined above.

2.1.1. Trust
We define the neighborhood of a node ai as the set of all nodes which it has knowledge of:

NðaiÞ ¼ faj : ðai;ajÞ 2 Eg:

We also define the common neighborhood of two nodes as:

Nðai;akÞ ¼ NðaiÞ \ NðakÞ:

When first discovering another node, we need an initial value of trust to apply to that node. To do this, we ask all our com-
mon neighbors with the new node for their opinion of the node

TSinitialðai;ajÞ ¼
TSdefaultðaiÞ þ

Paj
ak2Nðai ;ajÞðTSðai;akÞTSðak;ajÞÞ
Nðai;ajÞ
�� ��þ 1

:

Here we ask each neighbor who knows them how much they trust aj. Each of these trust scores must be mitigated by how
much we trust the node providing the trust score, so we take the product of our trust in their trust. In terms of the graph, we
are multiplying the weights of the edges along the path between ai and aj. We take the sum of these trust scores of all neigh-
bors of a node ai who currently have knowledge of aj (including the default trust TSdefault(ai)), and then average these over the
number of relevant neighbors (plus 1) to arrive at an overall (average) trust score. This allows us to take account of all rel-
evant judgements when arriving at a decision. This initial weight is then assigned to the new edge from ai ? aj. Similarly, aj

will determine its own trust of ai in the same manner, setting the weight from aj ? ai. Note that in the event that ai has no
links to any nodes who know aj then TSinitial will equal TSdefault. The idea of default trust could be extended to allow nodes to
have different default trust values for different VOs, allowing the node to trust VOs (based on past experiences with nodes
belonging to that VO) and use that trust value as an initial basis for trust with nodes from that VO.

When asking a friend how much to trust another node, we would prefer that they had recent experience of that node.
Knowing the level of service six months ago is obviously of less importance than knowing the level of service yesterday
and so, trust gained recently should be given more weight.

6 N. Bessis et al. / Simulation Modelling Practice and Theory 19 (2011) 5–16

Author's personal copy

We can make a modified version of our trust model that allows trust to decay over the time between interactions. We
define S(ai,aj) as the time since the last interaction between two nodes. We can also define Si as the half-life time of ai, such
that it is the time in which ai’s trust will halve, without any further interactions. Thus we can define the decayed Trust Score
dTS(ai,aj) as:

dTSðai;ajÞ ¼
TSðai;ajÞ
2Sðai ;ajÞ=Si

:

However, each node will want to evaluate the trust of other nodes based upon their own threshold value, rather than that of
the node supplying the TS. Therefore it is useful to define the decayed Trust Score dTS(ai,aj,ak) as:

dTSðai;aj;akÞ ¼
TSðaj;akÞ
2Sðaj ;akÞ=Si

:

Another factor to take into consideration is confidence of Trust. Trust based upon 2–3 interactions would often be judged to
be more questionable to trust based on 200–300 interactions. When forming Trust for the first time, a node should give more
weight to trust judgements that are based on more interactions. Each node ai can track the total number of interactions there
it has had with another node aj as I(ai,aj) and we can define the total interactions for all nodes in their common neighbor-
hood NI(ai,aj) as:

NIðai;ajÞ ¼
X

ak2Nðai ;ajÞ
Iðak;ajÞ:

This allows the calculation of a weighted trust value, incorporating a weighted average of decayed Trust Scores:

wdTSinitialðai;ajÞ ¼
TSdefaultðaiÞ þ

Paj
ak2Nðai ;ajÞwdTSðai;akÞIðak;ajÞdTSðai;ak;ajÞ

NIðai;ajÞ
�� ��þ 1

:

2.1.2. Critical friend trust score
Critical friend trust score (CFTS) includes both the time decay and weighting, plus the ability to have separate trust scores

for different services. We use x to represent the type or category of a particular service. This allows trust to be built up for a
particular node providing a particular service, without having to trust that node for other non-related services

CFTSx;initialðai;ajÞ ¼
TSdefaultðaiÞ þ

Paj
ak2Nðai ;ajÞCFTSxðai;akÞIðak;ajÞdTSxðai;ak;ajÞ

NIðai;ajÞ
�� ��þ 1

:

All of the information required to calculate the CTFS can be contained within the Metadata snapshots maintained by each
node.

2.2. Critical friends

We can define a node’s critical friends as a subset of their neighborhood that have weighted trust scores higher than a
critical threshold Cx,i.

Cx(ai) is defined as the critical trust level for service x, as determined by node i. Any nodes that exceed this trust level will
be considered as critical friends for the purposes of this type of service

CFNxðaiÞ ¼ aj : ðajÞ 2 NðaiÞ;CFTSxðai;ajÞ > Cx;i
� �

:

The overall critical friend neighborhood (CFN) of a node CFN(ai) is an union of all of the service specific CFNs:

CFNðaiÞ ¼ CFN0ðaiÞ [CFN1ðaiÞ [CFN2ðaiÞ � � � [CFNxðaiÞ:

2.3. Self-led critical friend topology growth rules

The self-led critical friend topology, also known as the critical friend community (CFC), can be established and grow
through historical job sharing experience; the CFC can be constructed following these four rules:

i. NONE: The critical friend model is disabled, no critical friend community will be established.
ii. Restrict-CFC: Once a job has been successfully executed on a remote node nj, such job will be sent back to node ni from

which it was delegated. Afterward, node ni will consider remote node nj as a critical friend (CF) node of itself and put
node nj into its critical friend (CF) list

Discoverðai;ajÞ ! NðaiÞ ¼ NðaiÞ þ aj; NðajÞ ¼ NðajÞ þ ai:

N. Bessis et al. / Simulation Modelling Practice and Theory 19 (2011) 5–16 7

Author's personal copy

iii. Optimized-CFC: Once a job has been remotely executed on node nj and sent back to its owner node ni, not only node nj

itself, but also the CF nodes of nj will be considered as critical friends of node ni. Optimized-CFC aims at connecting CF
lists of different nodes together, enlarges the scope of CF list of individual node, and constructs an integrated CFC
finally

Discoverðai;ajÞ ! NðaiÞ ¼ NðaiÞ [CFNðajÞ; NðajÞ ¼ NðajÞ [CFNðaiÞ:

iv. Massive-CFC: One more step is considered based on Optimized-CFC policy. Once a remotely executed job is sent back
from node nj to ni, the network neighbor list of executing node nj, which is collected via the adopted information sys-
tem of nj instead of the participation of CFC and having the same critical friend level as ni, will also be considered as
critical friends of node ni. Massive-CFC tries to utilize any possibility to enlarge the scope of CF list on each node and
establish an integrated CFC which covers as many nodes of the overall grid as possible

Discoverðai;ajÞ ! NðaiÞ ¼ NðaiÞ [NðajÞ; NðajÞ ¼ NðajÞ [NðaiÞ:

It is noteworthy that if all nodes of the CFC agree to share their knowledge obtained via self-adopted Information Systems,
then the Massive-CFC policy turns out to be a flooding like approach and might produce significant network overhead to par-
ticipating nodes. On the other hand, however, regarding the CFM focuses on critical friend correlation maintenance between
individual nodes in a decentralized manner, independent node owners have their freedom to determine the adoption of the
Massive-CFC policy according to its realtime network overhead.

2.4. Self-led critical friend job dispatching rules

When a node needs a job done, it broadcasts a REQUEST message out to nodes in its neighborhood. The node receiving the
REQUEST can either accept the job itself or choose to pass the message to one of its CFs. Which CFs the job can be passed to
depends on the Job Dispatch policy in place.

We define REQUEST(ai,aj, jx) as a REQUEST message being sent from node ai to node aj for job j of type x.
Where a job is not accepted but passed onto one or more other nodes, we define RELAY(ai,aj,ak, jx) as node aj relaying

(passing on) a REQUEST message, that originated from node ai to ak. We note, this is not the same as the concept of job del-
egation, in which node aj would make on behalf of node ai the decision to accept or not the availability of node ak to take the
job. In effect, a RELAY is a REQUEST with a policy restriction

RELAYðai;aj;ak; jxÞ ! REQUESTðaj;ak; jxÞ:

The policy restrictions can be formulated for the situations matching the topology growth rules allowing expansion beyond
the first level of nodes contacted, as in the previous section.

i. Optimized-CFC: Only CFs of aj relevant to the job type are contacted, as being more likely to be able to complete the job

RELAYðai;aj;ak; jxÞ If ðak 2 CFNxðajÞÞ:

ii. Massive-CFC: All CFs of aj are contacted to massively expand the nodes who may do the job.

RELAYðai;aj;ak; jxÞ If ðak 2 CFNðajÞ:

2.5. Self-led critical friend job acceptance rules

Once a node receives a REQUEST it wishes to fulfill, it sends an ACCEPT response back to the initiator node. The initiator
node then evaluates all the ACCEPT responses, based on the suitability of the nodes sending them. Let SUITABILITY(ai,ak, jx) be
the suitability of a node ak, to perform a job j of type x for node ai. This is based on whichever set of criteria the initiator is
most interested in, e.g., the least time to completion or lowest execution cost, or the weighted average if more than one cri-
teria is used, but this is out of the scope of this work. This suitability can be modified by the trust the relaying node has in the
node offering to accept, allowing past experience to allow nodes to give preference to nodes that have proven themselves
reliable, while avoiding those that fail to live up to their claims.

Let TSUITABILITY(ai,ak, jx) be the trusted suitability of a node to perform a job j of type x, defined as:

TSUITABILITYðai;ak; jxÞ ¼ CFTSxðai;akÞSUITABILITYðai;ak; jxÞ:

Here, the initiator can weight the suitability of the ACCEPT responses by the CFTS it has for the responding nodes. Once this is
done, the trusted suitability scores for each ACCEPT message can be compared, and the job will be transferred to the chosen
best one by means of an ASSIGN message. During the Scheduling and Rescheduling Phases, a similar process can take place
with the ACCEPT messages sent back to the originating node.

8 N. Bessis et al. / Simulation Modelling Practice and Theory 19 (2011) 5–16

Author's personal copy

3. Evaluation

Evaluation of the modelling of the self-led critical friend is discussed in this section. Especially, imposed scheduling effec-
tiveness and efficiency benefits are examined both in an isolated-VO environment and a crossed-VO situation. A fair number
of scenarios have been considered to evaluate a variety of behaviors. More specifically, the objectives of the experiment are
introduced in Section 3.1, followed by the utilized models in Section 3.2 and adopted simulator and configuration in Sec-
tion 3.3. Lastly, the scenarios evaluated are discussed in Section 3.4.

3.1. Objectives

The reference experiment is to evaluate the effectiveness and efficiency of the self-led critical friend model during coop-
eration with other complementary scheduling strategies and facilities, particularly the community-aware scheduling proto-
col (CASP). A fair number of criteria are considered during the evaluation as presented below:

(A) REQUEST: The community-aware scheduling protocol (CASP) replies in its Job Submission Phase to deliver local received
jobs to reachable remote resources of the grid by means of REQUEST messages. In other words, the number of gener-
ated REQUEST messages refers to the scope of the reachable grid, which is a crucial target of the self-led critical friend
model.
Assuming there are in total m nodes in the grid, each node i has generated Msgi(request) messages during its lifecycle,
then the total number of generated REQUEST messages of the overall grid can be calculated by:

REQUESTtotal ¼
Xm

i¼1

MsgiðrequestÞ:

(B) ACCEPT-R: The CASP requests node which is capable of handling incoming job delegation requests to response by
means of the ACCEPT messages. In this case, more ACCEPT messages stand for better effectiveness imposed by the
self-led critical friend model.
Similarly as above, each node i has generated Msgi(accept) messages during its lifecycle to answer incoming job del-
egation requests, then the total number of generated ACCEPT messages of the overall grid can be obtained by:

ACCEPTðRÞtotal ¼
Xm

i¼1

MsgiðacceptÞ:

(C) ASSIGN-R: With regard to the CASP, when a candidate remote node is selected for a corresponding to-delegate job,
such a job will be transferred to the remote node by means of a ASSIGN message.
If each node i has sent Msgi(assign) jobs to remote nodes, the total number of generated ASSIGN messages of the entire
grid is:

ASSIGNðRÞtotal ¼
Xm

i¼1

MsgiðassignÞ:

(D) RJC: The rate of successfully executed jobs of the overall community (RJC) is adopted to prove the functional effective-
ness brought by the design of job sharing within an interoperable grid community. The RJC is supposed to be maxi-
mized because it presents the capability and effectiveness of delivering jobs to appropriate nodes of the grid
community, instead of suspending them because no proper resources can be discovered in time.
Assuming there are in total m nodes in the grid community, wherein k nodes have local job submission input jobi(sub-
mitted). Once the simulation is finished, successfully executed jobs on each node is jobi(exed). Then the RJC can be
obtained by:

RJC ¼
Pm

i¼1jobiðexedÞ
Pk

i¼1jobiðsubmittedÞ
:

(E) CE: The community efficiency (CE) refers to average usage of all resources of the entire grid community. Regarding
jobs submitted to specific node can be easily scheduled and delegated to any remote node of the grid, the resource
usage efficiency should be considered within the scope of grid, instead of the individual node.
Together there are m nodes existing in the grid. Each node ni has CPUi processing elements (PEs), and has been kept
running for Makespani seconds till the end of the simulation. Meanwhile, each node has successfully executed p jobs,
each job jobj needs to run tj seconds on cpuj PEs. Consequently, the Community Efficiency is calculated by:

CE ¼
Pm

i¼1

Pp
j¼1cpuj � tjPm

i¼1CPUi �Makespani

:

N. Bessis et al. / Simulation Modelling Practice and Theory 19 (2011) 5–16 9

Author's personal copy

(F) Network-Coverage: In our simulation, each node of the grid employs an information system (IS) for remote resource
discovery and monitoring. Discovered remote node information is cached within each individual node and kept up-
to-date. In other words, each node recognizes the existence of several remote nodes of the grid. The number of known
remote nodes relies on the adopted Information System, and will affect the behavior of grid scheduling.
Assuming there are in total m nodes in the grid. Node ni knows Pknown(i) remote nodes due to the adopted IS, thus
Ri(network) refers to the rate of known remote nodes for each individual node ni according to the adopted information
system. Network-Coverage can be calculated by:

Coverageavg�network ¼
Pm

i¼1RiðnetworkÞ
m

; RiðnetworkÞ ¼ PknownðiÞ
m

:

(G) CFC-Coverage: Similarly to the Network-Coverage, each node also has some knowledge of remote nodes due to partic-
ipation of self-led critical friend topology, which also affects grid scheduling behavior on each node.
Assuming there are in total m nodes in the grid. Node ni knows Qknown(i) remote nodes due to the self-led critical friend
topology, thus Ri(cfc) refers to the rate of known remote nodes on each individual node ni, then:

Coverageavg�cfc ¼
Pm

i¼1RiðcfcÞ
m

; RiðcfcÞ ¼ Q knownðiÞ
m

:

3.2. Simulation models

Though no doubt grid systems vary widely depending on the usage scenarios. However, one typical example of a com-
putational grid is still the execution of computationally intensive batch jobs on collaborative computers. Some models re-
trieved from this scenario are utilized in our experiment, and represented thus:

3.2.1. Job model
The job concerns computationally intensive batch jobs submitted by users continuously through time. In our case, each

submitted job is comprised of several parameters, e.g., requested run time, requested number of PEs, and requested type of
operating system. Both sequential and parallel jobs are supported as long as the execution can be restricted within one single
machine with enough processing elements. Job migration and preemption are not considered at present.

3.2.2. Machine model
Machines considered in this simulation refer to the massive parallel processor systems (MPPs), which are commonly

comprised of several processing elements (PEs) connected by fast interconnections. Each processing element is a single pro-
cessing system with local CPU and memory, and is able to process jobs exclusively. All processing elements of the same MPP
are using the same operating system.

3.2.3. Node model
Nodes of this simulation contribute their computational resources and share received local submitted jobs with other

nodes of the same grid. Each node consists of one or several machines and is managed by a single high-level grid scheduler.
Each node has its own resource management system or middleware, as well as specific local policies. The resources between
different nodes are heterogeneous.

3.3. Simulator and configuration

A grid simulator named MaGate simulator [9] is adopted to evaluate the aforementioned introduced objectives.
The MaGate simulator is implemented on GridSim [10] and Alea [11], it supports the modelling of a variety of essential

grid components, such as grid jobs with various parameters, heterogeneous grid resources, and grid users. A grid scheduler
named MaGate scheduler [12] is implemented by default within the MaGate simulator, which is capable of sharing received
jobs with other remote resources to increase the effectiveness and efficiency of the overall grid. In addition, novel grid sched-
uling algorithms, such as community-aware scheduling protocol (CASP), are also supported to help the job dispatching with-
in the scope of the reachable grid. Lastly, to support scheduling activities, the MaGate simulator relies on a grid overlay
simulator named the Solenopsis [13] to simulate the adopted grid information system (IS).

Both job and machine parameters adopted in the simulation are either constants, or randomly generated according to an
uniform distribution. The scale of the grid is setup based on known real grids [14,15] to the best of our knowledge. More
details about the configuration can be found in Table 1.

To obtain stable values, each scenario result was averaged from two repeated iterations. The experiments are performed
upon an Intel Core Duo 2.53 GHz machine, with 4 GB RAM. The scale of input jobs is limited in order to execute all scenarios
and obtain first results within a reasonable time.

10 N. Bessis et al. / Simulation Modelling Practice and Theory 19 (2011) 5–16

Author's personal copy

3.4. Evaluation scenarios

Variety of parameters and policies, including topology establishing and job dispatching rules, can affect behaviors of the
self-led critical friend model. In this simulation, four types of policy are considered, and as a result, evaluated scenarios are a
composition of selected policies from the following types:

3.4.1. CASP policies
The community-aware scheduling protocol (CASP) dedicates to enable job sharing within the scope of the overall grid.

Especially, during its Job Submission Phase, each node can apply its own policy to determine whether a remote job should
be accepted for local execution. Various policies can be adopted here but here we only consider an extremely strict one,
namely the CASP Strict Dispatching Policy.

In terms of CASP, nodes receiving jobs from local users are defined as initiator nodes. Once a remote node, also known as
responder node, receives a job delegation request from an initiator node, the responder node firstly checks whether the require-
ment of such a remote job can be fulfilled by local resources. If so, the responder node needs also to ensure available re-
sources, such as free processing elements, can be obtained instantly. If both requirement can be satisfied, the responder
node will generate an ACCEPT message and send it back to the initiator node. In case no candidate remote nodes can be dis-
covered during the Job Submission Phase, submitted jobs will be suspended and discarded by corresponding initiator nodes.

The philosophy of CASP Strict Dispatching policy is supposed to lead to well controlled job slowdown because only nodes
with expected and instantly available PEs are selected for job sharing. On the other hand, many jobs might be suspended and
discarded because no free nodes can be discovered at the moment of job arrival through the adopted information system (IS),
the obtained RJC and community efficiency (CE) could be therefore low.

3.4.2. Self-led critical friend VO isolation policies
To evaluate the performance difference between grid being separated into several isolated-VOs and grid with crossed-VO

boundaries, two VO isolation policies are counted.
i isolated-VO: nodes of the overall grid exist in separated virtual organizations (VOs). The boundaries between VOs cannot

be crossed while an isolated-VO policy is applied; thus all generated job delegation requests and responses according to
the community-aware scheduling protocol can only be transferred within each individual VO despite the same informa-
tion system (IS) being adopted. In addition, in terms of the self-led critical friend model, only nodes of the same VO can
be discovered and considered as critical friend nodes of another grid node.
More specifically, as depicted in Table 1, in total 75 grid nodes are grouped into three VOs. Both VO1 and VO2 have 30
nodes, while VO3 has the remaining 15 nodes. Two nodes of VO1 and VO2 have local job submission input, and one node
of VO3 has local job input. With regards to the launched isolated-VO policy, all locally submitted jobs can only be shared
by nodes of the same VO, therefore the overall grid is actually isolated into three small cliques, even though they are
physically connected.

ii. crossed-VO: In contrast to the isolated-VO policy, when a crossed-VO policy is activated, nodes from diverse VOs can inter-
act and share jobs, in which case they are considered as critical friends each other; consequently, a well constructed self-
led critical friend model based topology, also defined as critical friend community (CFC), can behave as glue to connect
isolated virtual organizations together.

Table 1
Simulation configuration of the experiment.

Simulation configuration

Number of nodes of the overall grid 75
Number of nodes having local job input 5
Number of existing virtual organizations 3
Number of nodes per virtual organization [15,30]
Number of jobs submitted to each node (node having local job input) 1500
Job arrival time [0–24 h]
Average job estimated execution time 1000 s
Average job estimated MIPS 1000
Number of PEs required by each individual job [1–5]
Number of MPP machine per MaGate node 1
Number of PEs per machine [64–128]
Average MIPS of each PE 1000
Types of operating system required by job [Linux,Win,Mac]
Types of machine operating system [Linux,Win,Mac]

N. Bessis et al. / Simulation Modelling Practice and Theory 19 (2011) 5–16 11

Author's personal copy

3.4.3. Self-led critical friend topology growth policies
As discussed in subsection 2.3, the self-led critical friend topology, also known as the critical friend community (CFC), can

be established and enlarged through historical job sharing experience. Such CFC construction rules will be evaluated in this
section.

3.4.4. Self-led critical friend job dispatching/acceptance policies
Once the self-led critical friend model (CFM) is enabled and critical friend community (CFC) is established due to the

aforementioned topology policies, jobs can be transferred within both network formed by adopted information system
and the CFC. The community-aware scheduling protocol is launched firstly to assign a job to an appropriate node within
the Job Submission Phase; in case no ACCEPT messages sent by appropriate nodes are obtained, the CFM will be invoked
to try another job delivery possibility. More specifically, the following four policies are considered in this experiment:

i. NONE: The CFM job dispatching is disabled. No matter whether the CFC has been established or not, jobs dispatched
failed from the CASP Job Submission Phase will be suspended till the end of the simulation.

ii. Restrict-Dispatch: During the CASP Job Submission Phase, if an incoming job delegation REQUEST message from node ni

cannot be satisfied by the hosting node nj, instead of simply ignoring such a message, the CFM dispatching process on
node nj will be launched. Node nj firstly checks whether node ni is considered as a critical friend (CF) to itself; if so,
node nj then tries to find an appropriate remote node (e.g., node nk) from its CF list and sends an ACCEPT message
under the name of nk as the replacement of itself to the initiator node ni. In this case, two CF nodes (ni,nk) are con-
nected due to their mutual critical friend node nj.

iii. Tolerant-Dispatch: The Tolerant-Dispatch policy follows a similar workflow as the Restrict-Dispatch policy. The difference
is that instead of checking whether initiator node ni is a known critical friend of its own, node nj launches the CFM job
dispatching process for all incoming job delegation REQUEST messages which cannot be satisfied by local resources.
Thus the CF nodes of node nj are ‘‘recommended” to other remote initiator nodes. In the case that ‘‘recommended” CF
nodes of nj are selected by REQUEST initiator nodes and finally successfully execute delegated jobs, the CFC surround-
ing node nj will be enlarged.

3.4.5. List of scenarios
The above policies are introduced in terms of CASP strategy, self-led critical friend topology policies, and job dispatching/

acceptance rules. The experimental scenarios are then organized as combination of these policies. To be specific, all seven
self-led critical friend related scenarios listed in Table 2 are evaluated under two self-led critical friend VO isolation policies
(isolated-VO and crossed-VO), respectively, thus in total 14 scenarios are evaluated.

4. Results

Based on the above scenarios, objectives introduced in Section 3.1, including rate of successfully executed jobs of the
overall community (RJC), community efficiency (CE), network coverage, critical friend community (CFC) coverage and CASP
message processing, are evaluated within the adopted simulation platform [9]. Results discussion is provided as below to
reveal the effectiveness and efficiency impacted by applying the self-led critical friend model (CFM) into the reality of decen-
tralized distributed computing.

4.1. RJC/community efficiency and network/CFC coverage

As shown in Fig. 1, grids with the same node topology but different VO isolation policies lead to different job sharing and
resource execution efficiency.

At first, when an isolated-VO grid is deployed, if the self-led critical friend model (CFM) is disabled (scenario:NONE), the
achieved RJC is 33.02%, and the overall averaged resource usage efficiency (CE) is 13.09%. Afterwards, the CFM is activated
with both Restrict-CFC and Optimized-CFC topology growth policies, as well as all available CFM job dispatching policies;

Table 2
Evaluated self-led critical friend model scenarios.

Evaluated scenarios

ID Scenario composition
NONE NONE
R-D Restrict-CFC; restrict-dispatch
R-T Restrict-CFC; tolerant-dispatch
O-R Optimized-CFC; restrict-dispatch
O-T Optimized-CFC; tolerant-dispatch
M-R Massive-CFC; restrict-dispatch
M-T Massive-CFC; tolerant-dispatch

12 N. Bessis et al. / Simulation Modelling Practice and Theory 19 (2011) 5–16

Author's personal copy

however, the obtained RJC and CE are not impressively improved. It is mainly because the resulting network and CFC cov-
erage are both kept in a quite low level which is no more than 1.5%.

Once the Massive-CFC topology growth policy is applied, each grid node can visit the neighborhood knowledge of its own
critical friend nodes, wherein remote node information is collected both from information system (IS) and CFC; this enables
the possibility of enlarging each node’s knowledge of remote nodes. As a result, both the RJC and average community effi-
ciency are almost doubled compared to previous adopted CFM topology growth policies. In addition, the coverage of network
and CFC are also impressively increased.

It is also noteworthy that the curve of network coverage matches the increase of RJC exactly, which means that when the
scale of reachable grid/VO is limited, the community job sharing efficiency is closely related to the knowledge of the neigh-
borhood network of each participating node.

Secondly, when a crossed-VO grid is deployed, if the CFM is disabled, although nodes from diverse VOs still have the
opportunity to discover and interact with each other due to the adopted information system, the observed RJC and commu-
nity efficiency are only slightly improved by 5% and 1%, respectively.

Afterwards, when the Restrict-CFC topology growth policy is applied, both the CFM Restrict-Dispatch policy (scenario: R-D)
and the Tolerant-Dispatch policy (scenario: R-T) have similar impact with regards to the improvement of resulting RJC and
community efficiency by 15% and 8%, respectively. Because the CFC coverage of each node is still kept at a quite similar

Fig. 1. RJC and community efficiency vs. network and CFC coverage on isolated-VOs and crossed-VOs.

N. Bessis et al. / Simulation Modelling Practice and Theory 19 (2011) 5–16 13

Author's personal copy

and low level scale (less than 1.06%), each participating node does not have much information in terms of remote critical
friend nodes, therefore the improvement of RJC and community efficiency is still limited.

Once the CFM topology growth policy Massive-CFC is applied, adopted CFM job dispatching polices, such as scenario M-R
and M-T, are able to lead to better RJC and community efficiency up to 99% and 42%, respectively. This is because size of the
self-led critical friend topology, also known as critical friend community (CFC), is expanded, then more remote nodes are
available for jobs needing to be executed remotely.

In short, Fig. 1 illustrates that no matter the adopted topology growth and job dispatching/acceptance polices, a crossed-VO
grid can generally lead to better job sharing and resource usage efficiency compared to an isolated-VO grid. Further more, an
aggressive topology growth policy, e.g., Massive-CFC, turns out to have higher priority compared to the impact of job dispatching
policies. At last, the CFM Restrict-Dispatch policy upon a Massive-CFC crossed-VO grid (scenario:M-R) leads to the best RJC and
community efficiency in our simulation.

4.2. CASP REQUEST series messages vs. RJC

As mentioned before, the self-led critical friend model is now working together with a high-level heuristic called the com-
munity-aware scheduling protocol (CASP) [6,7]. The CASP consists of two phases, namely the Job Submission Phase and
Dynamic Rescheduling Phase. The Job Submission Phase plays an important role while trying to dispatch locally submitted jobs

Fig. 2. CASP REQUEST series messages vs. RJC on isolated-VOs and crossed-VOs.

14 N. Bessis et al. / Simulation Modelling Practice and Theory 19 (2011) 5–16

Author's personal copy

to appropriate nodes of the reachable grid by means of generated REQUEST messages. Remote nodes receiving such REQUEST
messages and competent in job executing are supposed to response by sending ACCEPT messages back. Finally, candidate
nodes are selected and corresponding jobs will be transferred through the newly created ASSIGN messages.

As shown in Fig. 3, in both an isolated-VO grid and a crossed-VO grid, the number of generated REQUEST messages corre-
sponds to the monitored job sharing effectiveness (RJC) very well, which means that a large number of REQUEST messages
can help to find proper nodes for job delegations and consequently increase the success rate of executing such jobs on reach-
able resources. Additionally, the number of generated REQUEST messages in a crossed-VO grid is much more than the number
generated in an isolated-VO grid, and the obtained RJC in a crossed-VO grid is therefore better. This result again confirms the
action of the self-led critical friend model in maximizing the effectiveness and efficiency of job sharing amongst decentral-
ized distributed nodes.

4.3. CASP REQUEST series messages vs. network and CFC coverage

Besides the discuss in Section 4.2, a further analysis is given here to check the impact of grid with crossed-VO boundaries.
As depicted in Fig. 2, when an isolated-VO grid is deployed, the curve of the individual node’s network coverage matches

the number of generated REQUEST messages; when a crossed-VO grid is deployed, the curve of generated REQUEST messages
matches CFC coverage better compared to the network coverages. This means that when VO boundaries of a grid are crossed,

Fig. 3. CASP REQUEST series messages vs. network and CFC coverage on isolated-VOs and crossed-VOs.

N. Bessis et al. / Simulation Modelling Practice and Theory 19 (2011) 5–16 15

Author's personal copy

both the CASP protocol and the CFM model can be enhanced, but not the traditional grid information system (IS). This phe-
nomenon demonstrates action differences between conventional grid information systems (ISs) and the proposed self-led
critical friend topology.

5. Conclusion and future work

To increase job scheduling effectiveness and efficiency, a novel resource topology named the self-led critical friend model
(CFM) is introduced in this paper. Unlike other conventional scheduling approaches which emphasize discovering free re-
source ‘‘slots” from known resources, the CFM focuses on bridging gaps between variety of grid virtual organizations
(VOs) which are normally generated due to various technique and political issues, and interconnects nodes from such inde-
pendent VOs together to construct a bigger and trust based resource pool.

The self-led critical friend model (CFM) is comprised of a set of systematic components, including critical friend, critical
friend trust scores, topology growth policies, job dispatching and acceptance rules, in order to describe the correlation between
nodes which already have historical job sharing records, as well as a trust based approach to evaluate such correlation. In
addition, regarding the CFM is working on nodes despite adopted local scheduling algorithms, a high-level community-
aware scheduling protocol is integrated to facilitate the cross-node job scheduling process without interfering participating
nodes’s control on physical machines and preferred local policies.

Following previous works [16], in order to reveal the practical impact brought by enabling job sharing between nodes
from multiple independent VOs, a fair amount of scenarios have been evaluated in simulation. The observed results demon-
strate that many important criteria, such as rate of averaged successfully executed jobs, average resource utilization effi-
ciency, individual node’s knowledge on neighboring nodes and critical friends, can be impressively improved as long as
the boundaries amongst different VOs are crossed.

Regarding the future work, an in-depth research will be carried out to find an more CFM based scheduling polices to
achieve an optimal balance between efficiency and security. In addition, realistic workload archives are scheduled in future
evaluation to examine the behavior of CFM under load of real grid systems. Finally, more scenarios are to be constructed to
adapt the self-led critical friend model to extensive fields, such as the cloud computing.

Acknowledgements

This research is financially supported by the EU Marie Curie Knowledge Transfer Programme and Swiss Hasler Foundation
in the framework of the ‘‘ManCom Initiative”, Project No. 2122.

References

[1] K. Krauter, R. Buyya, M. Maheswaran, A taxonomy and survey of grid resource management systems for distributed computing, Software: Practice and
Experience 32 (2) (2002) 135–164.

[2] J. Schopf, Ten actions when super scheduling: a grid scheduling architecture, in: Workshop on Scheduling Architecture, Global Grid Forum, Tokyo,
2003, pp. 15–24.

[3] V. Yarmolenko, R. Sakellariou, Towards increased expressiveness in service level agreements, Concurrency and Computation: Practice and Experience
19 (14) (2007) 1975–1990.

[4] O. Waldrich, P. Wieder, W. Ziegler, A meta-scheduling service for co-allocating arbitrary types of resources, Lecture Notes in Computer Science 3911
(2006) 782.

[5] E. Huedo, R. Montero, I. Llorente, The GridWay framework for adaptive scheduling and execution on grids, Scalable Computing: Practice and
Experience 6 (3) (2005) 1–8.

[6] Y. Huang, A. Brocco, N. Bessis, P. Kuonen, B. Hirsbrunner, Community-aware scheduling protocol for grids, in: 2010 24th IEEE International Conference
on Advanced Information Networking and Applications, IEEE, 2010, pp. 334–341.

[7] A. Brocco, A. Malatras, Y. Huang, B. Hirsbrunner, ARiA: a protocol for dynamic fully distributed grid meta-scheduling, in: 30th International Conference
on Distributed Computing Systems, ICDCS 2010, IEEE, Genoa, Italy, in press.

[8] Y. Huang, N. Bessis, A. Brocco, P. Kuonen, M. Courant, B. Hirsbrunner, Using metadata snapshots for extending ant-based resource discovery service in
inter-cooperative grid communities, in: International Conference on Evolving Internet, INTERNET 2009, IEEE Computer Society, Cannes, French Riviera,
France, 2009, pp. 89–94.

[9] Y. Huang, A. Brocco, M. Courant, B. Hirsbrunner, P. Kuonen, MaGate simulator: a simulation environment for a decentralized grid scheduler, in:
Proceedings of the Eighth International Symposium on Advanced Parallel Processing Technologies, Springer, 2009, p. 287.

[10] R. Buyya, M. Murshed, GridSim: a toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing,
Concurrency and Computation: Practice and Experience 14 (13–15) (2002) 1175–1220.

[11] D. Klusacek, L. Matyska, H. Rudova, Alea-grid scheduling simulation environment, Lecture Notes in Computer Science 4967 (2008) 1029.
[12] Y. Huang, A. Brocco, M. Courant, B. Hirsbrunner, P. Kuonen, MaGate: an interoperable, decentralized and modular high-level grid scheduler,

International Journal of Distributed Systems and Technologies 1 (3) (2010).
[13] A. Brocco, B. Hirsbrunner, M. Courant, Solenopsis: a framework for the development of ant algorithms, in: IEEE Swarm Intelligence Symposium, 2007,

pp. 316–323.
[14] GridWorkloadsArchive. <http://gwa.ewi.tudelft.nl/pmwiki/>.
[15] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, D. Epema, The grid workloads archive, Future Generation Computer Systems 24 (7) (2008)

672–686.
[16] Y. Huang, N. Bessis, A. Brocco, S. Sotiriadis, M. Courant, P. Kuonen, B. Hirsbrunner, Towards an integrated vision across inter-cooperative grid virtual

organizations, in: Future Generation Information Technology, FGIT 2009, LNCS, Springer, Jeju Island, Korea, 2009, pp. 120–128.

16 N. Bessis et al. / Simulation Modelling Practice and Theory 19 (2011) 5–16

