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Abstract

This dissertation thoroughly examines enhancing outlier detection and recon-

struction techniques for Earth Observation (EO) datasets, specifically focusing

on Land Surface Temperature (LST) values. Addressing both outlier detection

and data reconstruction is crucial for EO and LST data analysis because unde-

tected anomalies can distort temperature patterns, and incomplete data reduces

the reliability of environmental assessments.

This research focuses on addressing important difficulties related to the col-

lecting, processing, and analysis of LST data, which is in high demand for envi-

ronmental monitoring and decision-making. In particular, the high variability of

EO data, presence of noise and missing values, and the large volumes of satellite

imagery pose significant challenges requiring robust and scalable methods.

This effort focuses on identifying and setting boundaries for the study area,

particularly the Beijing-Tianjin-Hebei (BTH) region. A high-level research method

is adopted, where image raster data are processed in ArcGIS and then transformed

into tabular format suitable for machine learning, enabling systematic detection

and correction of anomalies.

This thesis presents new techniques for improving the accuracy of temperature

intensity representations and enabling effective statistical learning by processing

image raster data in ArcGIS and converting them into a tabular format suitable

for machine learning analysis. These techniques significantly reduce reconstruc-

tion errors, enhancing both data completeness and usability.

The use of self-supervised learning models, specifically the TabNet regressor, is

a major advancement in improving the forecasting and rectification of anomalies

in LST datasets. Empirical tests show a notable increase in anomaly detection

precision and a reduction in data gaps, indicating a high level of success for these

methods.

The study addresses problems related to the complexity of EO data and the

model’s adaptability to varied datasets and situations. Despite challenges, devel-
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oping and verifying a unique tabular dataset for the study area has been crucial

in establishing a standard for anomaly detection, thus improving the usefulness

and reliability of LST data for environmental research and monitoring. By focus-

ing on present contributions, this dissertation demonstrates how robust outlier

detection and data reconstruction methods can effectively support environmental

monitoring tasks.

The developed techniques have been tested in the EO data context, but will

be applicable to other image-based data with similar underlying characteristics

such as obscured areas. This immediate applicability underscores the real-world

impact and relevance of the contributions within the scope of this thesis.

This dissertation makes a substantial contribution to the subject of big-earth

data analysis by introducing creative methods for identifying outliers and recon-

structing data. These methods enhance the quality and dependability of Land

Surface Temperature datasets and serve as a validated solution for improving

data integrity in current EO applications.
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Chapter 1

Introduction

The challenge of handling and examining vast quantities of data, commonly re-

ferred to as ‘Big Data’, has become increasingly crucial. The field of remote

sensing has undergone rapid growth, establishing itself as a fundamental tool for

comprehending and analysing the Earth’s ever-changing processes.

This research specifically addresses two crucial problems: (a) accurate outlier

detection to identify and separate irregular data points from legitimate obser-

vations, and (b) effective reconstruction of missing values to ensure continuity

and reliability in Earth Observation (EO) and Land Surface Temperature (LST)

datasets [2].

EO datasets, particularly those related to Land Surface Temperature, are highly

dimensional and typically cover extensive geographical regions with significant

variability. Complexity arises from the vast volume of satellite imagery data,

typically involving millions of pixel-based observations daily. Additionally, the

presence of missing data and outliers significantly complicates data analysis, af-

fecting environmental assessments and decision-making processes reliant on ac-

curate LST measurements.

The utilisation and evaluation of land surface temperature (LST) data using re-

mote sensing methods represent a distinct convergence of computer science. and

Geographical Information Systems (GIS). Nevertheless, the process of integrat-

ing these components presents certain difficulties. An important concern in the

analysis of LST data is the existence of outliers, which can greatly skew research

findings and result in inaccurate conclusions. To tackle these issues, it is neces-

sary to employ advanced data processing techniques and algorithms to guarantee
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the precision and dependability of the data. This research focuses on the idea

of outliers, which refers to data points that exhibit considerable deviation from

the usual trend within a dataset [3]. Ensuring the integrity and accuracy of data

is a crucial concern in the context of remote sensing. The identification and

handling of outliers extend beyond simple data cleaning and encompass complex

challenges that require advanced algorithms and analytical methodologies. These

problems are crucial for ensuring the dependability of environmental evaluations

and predictions obtained from remote sensing data. Moreover, this study ex-

plores the concept of outlier reconstruction, which encompasses techniques aimed

at reconstructing abnormalities in the datasets induced by anomalous data. This

aspect highlights the interdisciplinary nature of the work, connecting computer

science approaches with actual applications in Earth observation. The accurate

identification and reconstruction of outliers in remote sensing data is of utmost

importance. These processes are essential for preserving the quality and depend-

ability of the data, which in turn has a substantial impact on the decisions and

policies made using this knowledge. The objective of this thesis is to investi-

gate and propose innovative methods for identifying anomalies in remote sensing

data and then reconstructing them to ensure the reliability and precision of the

dataset. By doing so, this research also enhances the effectiveness of remote sens-

ing to understand and address environmental concerns on Earth by prioritising

these features.

Outliers, missing values, and anomalies are often encountered terms in remote

sensing data analysis, typically used interchangeably, however each possesses dis-

tinct implications within this research environment. An outlier denotes a data

point that markedly diverges from the overall trend [4], typically signifying possi-

ble inaccuracies or excessive fluctuations. Missing values arise when anticipated

data points are absent owing to sensor faults, meteorological obstructions like

clouds, or transmission problems [5]. This study defines anomalies as encompass-

ing both outliers and missing values, signifying any irregularity or contradiction
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within the dataset [6].

1.1 Background

Remote sensing has become an essential tool in various disciplines, such as en-

vironmental studies, oceanography, and surveying. The significance of remote

sensing data in making precise forecasts and analyses is emphasised. Neverthe-

less, this dependency is full of challenges. The presence of errors in geographical

data, which can originate from factors such as attribute definition, data sources,

data modelling, and analysis procedures, is just as significant as the accuracy

of the actual data measurement tools. These flaws might appear as systematic,

random, or significant errors, resulting in data that is incomplete, erroneous,

repetitive, and contradictory. Furthermore, the presence of anomalies arising

from many data sources is a distinct challenge, frequently resulting in the con-

cealment and overwhelming of the data [7]. Atmospheric conditions play a vital

role in the information-capturing abilities of remote sensing instruments. These

instruments help to gather information about the atmosphere, ocean, and land

surface and are the most frequently used way of gathering information. But due

to certain problems with remote sensing instruments and diverse environmental

conditions, the acquired information is incomplete, or we can say it has missing

information in it, which greatly reduces the usability of the data. There are many

types of missing information, broadly classified into these:

• Sensor Failure

• Cloud Obscuration

In the broader context of big data analytics and decision-making, data cleaning

emerges as a major aspect, particularly in the field of remote sensing. Sensor

failures, for example, can lead to missing information and outliers [3], as seen with

some detectors in the MODIS Aqua band 6, which provided malicious readings

[8]. The significance of satellite remote sensing (SRS) is highlighted in studies
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related to weather predictions and the effects of global warming. However, the

acquisition of remote sensing data is prone to limitations caused by weather

conditions, with a substantial portion of the Earth’s surface often covered by

clouds, reducing visibility and data accuracy [9]. In light of these challenges, the

reconstruction of missing data and the removal of outliers have become crucial

aspects of the analysis of Big Earth data, ensuring the reliability and usability of

the data for various applications.

1.2 Motivation

This research is motivated by the critical need to guarantee the precision and

dependability of land surface temperature (LST) data acquired using remote

sensing. The LST data is crucial in various environmental, climatological, and

geographical research. Nevertheless, the integrity and practicality of this data

are frequently undermined by discrepancies, omissions, and anomalies. These

problems can originate from diverse sources, such as sensor faults, meteorological

factors like cloud cover, and the inherent unpredictability of the Earth’s surface.

1.3 Problem Statement

The primary focus of this research is to tackle the presence of outliers and missing

data in Land Surface Temperature (LST) data acquired using remote sensing,

termed anomalies. Anomalies in LST (Land Surface Temperature) data pose a

substantial obstacle since they have the potential to skew the understanding and

examination of this vital environmental data. Outliers can arise from multiple

sources, including sensor inadequacies, climatic variables like cloud cover, and the

fundamental complexity of the Earth’s surface.

Outliers and extreme values, although they are commonly used interchangeably,

have fundamentally different causes and implications. An outlier is commonly

characterised as a data point that exhibits a substantial deviation from the other

4



observations in the collection, potentially suggesting a measurement error or an

uncommon occurrence. On the other hand, extreme numbers are those that, while

uncommon, are still within the realm of possibilities and may indicate inherent

fluctuations in the data. Missing data can arise from several factors, including

weather conditions and equipment malfunction limitations.

1.4 Aim and Scope of the Research

1.4.1 Aim

To propose a novel approach to address the prevailing challenges in enhancing

the detection of outliers and the reconstruction of lost Big Earth data, thereby

contributing to improved accuracy and reliability of Earth observation datasets.

1.4.2 Objectives

1. - Define and delimit the Beijing-Tianjin-Hebei (BTH) study region, ac-

knowledging the challenge of acquiring consistent and high-quality satellite

data over vast and varied regions. - Identify and select an appropriate satel-

lite, recognizing potential discrepancies and gaps in satellite data coverage.

- Systematically collect and preprocess satellite data, specifying the satellite

product and ensuring data integrity and quality.

2. - Develop robust methodologies to accurately detect outliers within Earth

Observation (EO) datasets by processing the collected image raster data

using ArcGIS, thus handling complexities arising from heterogeneity and

dimensionality. - Establish reliable thresholds through extensive experi-

mentation to facilitate clear pixel-to-pixel comparisons and enhance outlier

detection accuracy.

3. - Propose and validate reconstruction methods that address missing data

by emphasizing spatial-temporal correlations and utilizing neighboring pixel
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values. - Provide clear methodological steps and statistical metrics for val-

idating reconstruction accuracy, enhancing the integrity and reliability of

reconstructed data.

4. - Transform high-dimensional satellite raster data into a structured tabular

format suitable for machine learning analysis, overcoming challenges associ-

ated with data complexity and facilitating efficient statistical learning and

visualization.

5. - Employ and evaluate advanced self-supervised learning models, specifically

TabNet, to rigorously validate reconstructed data. - Assess the model’s

performance by comparing predicted values against reconstructed image

values using established metrics like Mean Squared Error (MSE), F1 score,

and Bland-Altman plots, thereby ensuring reliability and accuracy.

1.4.3 Significance of the Research

This thesis represents an important step forward in the processing and analysis

of large-scale Earth data, with the goal of enhancing the quality and usefulness

of Earth observation (EO) datasets. The research addresses significant obstacles

in this domain, providing multiple essential contributions.

The main objective of this research is to develop sophisticated techniques for

identifying outliers in extensive Earth data. Detecting data points that differ

significantly from the average is essential to preserving the accuracy and depend-

ability of Earth observation datasets. Accurate identification of exceptional data

points is crucial for maintaining data integrity, which, in turn, facilitates diverse

scientific studies and applications.

Another notable accomplishment of this research is the restoration of data that

was previously lost or corrupted. The work improves the comprehensiveness

and usefulness of Earth observation data by retrieving missing information. The

restoration is crucial for obtaining a comprehensive understanding of environ-
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mental analysis and guaranteeing that datasets are suitable for various tasks.

The development of a unique tabular dataset specifically designed for the analysis

of large-scale Earth data. This dataset addresses a deficiency in current data

resources and enables the utilisation of deep learning models that are specifically

designed for tabular data in the analysis of Earth data. The presence of such a

dataset is a significant advancement in this field, providing fresh prospects for

research and innovation.

Furthermore, the research indicates significant advancements in identifying and

reconstructing anomalous data points using deep learning techniques. This signi-

fies a substantial enhancement compared to conventional approaches, providing

more resilient and effective solutions. The incorporation of deep learning in this

particular setting presents fresh opportunities for sophisticated data analysis and

processing.

This research has a significant and wide-ranging influence. Effectively tackling

these obstacles not only raises the calibre of Big Earth data but also amplifies its

applicability in several scientific fields. Dependable and precise Earth observa-

tion databases are essential for making well-informed judgements in crucial fields

such as climate studies, urban planning, and environmental conservation. The

research, which concentrates on identifying and restoring anomalies, has the ca-

pacity to significantly contribute to these wider scientific and societal goals. The

results of this thesis, which improve the accuracy and usefulness of data, have

the potential to significantly influence the development of future environmental

policies and initiatives.

1.5 Structure of the Thesis

This thesis is organized into seven main chapters, each contributing a unique

perspective to the intersection of computer science and Earth Observation (EO),

with a focus on remote sensing data analysis, particularly concerning outliers and

missing data. The structure is as follows:
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• Chapter 1: Introduction Provides an overview of the thesis, introducing the

main research topics and setting the context for the study. This chapter

includes the background, motivation, problem statement, and the aims,

objectives, and significance of the research.

• Chapter 2: Background Offers a detailed exploration of remote sensing,

including an overview of the datasets used, the principles of remote sensing

image processing, types of anomalies in datasets, and methods for handling

missing information. This chapter also discusses exploratory data analysis

techniques applied to the datasets.

• Chapter 3: Literature Review Presents a comprehensive review of the exist-

ing literature on anomalies in datasets, spatial data analysis, remote sensing

information systems, and various aspects of data processing and reconstruc-

tion in the field of remote sensing.

• Chapter 4: Research Methodology Describes the overall research design,

including dataset selection, data collection procedures, preprocessing steps,

exploratory data analysis methods, and the evaluation metrics used to assess

both outlier detection and reconstruction models.

• Chapter 5: Outlier Detection and Reconstruction of Lost Land Surface

Temperature Data in Remote Sensing Imagery Introduces and discusses

the proposed models for outlier detection and missing data reconstruction,

along with experimental results validating these models.

• Chapter 6: Outlier Detection and Reconstruction in Big Earth Data Using

Self-Supervised Learning Explores advanced models for data processing,

specifically the use of self-supervised learning techniques (e.g., TabNet) for

outlier detection and data reconstruction in large-scale EO datasets.

• Chapter 7: Discussion, Conclusion and Future Works Provides a thorough

discussion of the results, implications, and significance of the research find-
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ings, along with the challenges encountered and the solutions developed.

Concludes the thesis by summarizing the key findings and contributions of

the research, and outlines potential future directions and areas for further

investigation.
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Chapter 2

Background

2.1 Introduction

In the rapidly evolving field of remote sensing and Earth observation (EO), there

is a growing demand for accurately determining climate variables with detailed

spatial and temporal resolution. This is especially important in regions where

there are not enough meteorological observations available for effective environ-

mental monitoring and modelling. The importance of this requirement is empha-

sised by the constraints of conventional climate reanalysis datasets, which fre-

quently fall short of capturing the subtle fluctuations of climate at smaller scales.

As we explore the domain of massive Earth Observation (EO) data, which is char-

acterised by its substantial volume derived from Earth observations and climate

models, we encounter obstacles that are as vast as the data itself. To address

these difficulties, it is essential to implement creative solutions, particularly by

combining cloud computing and machine intelligence. These technologies provide

scalable and efficient computer resources and advanced analytical capabilities, re-

spectively, which are essential for analysing and helping in outlier detection and

reconstruction of lost big earth data.

2.2 Remote Sensing Image Acquisition

Remote sensing is the process of acquiring data without getting physically in con-

tact with the object. Remote sensing data acquisition involves sensors mounted

on satellites, aircraft, or drones capturing electromagnetic radiation reflected or
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emitted from Earth’s surface [10] as shown in 2.1 . These data are then trans-

mitted through satellite communication channels to ground stations for storage

and archival purposes. Common storage formats include GeoTIFF, HDF, and

netCDF, each selected for specific strengths: GeoTIFF supports geo-referenced

imagery and compatibility with Geographic Information Systems (GIS), HDF is

ideal for complex multi-dimensional data, and netCDF efficiently handles large

arrays of scientific data, especially suited for time-series analysis [11]. Effec-

tive handling of large remote sensing datasets requires extensive preprocessing

to address challenges such as sensor noise, calibration inaccuracies, atmospheric

interference, and data compatibility. These preprocessing steps are crucial for

ensuring the reliability and accuracy of analyses, as neglecting them can lead to

misleading results.

The remote sensing platforms consist of the equipment or vehicles used to capture

data. The sensors mounted have a number of characteristics, including time of

image accusation, distance from the object,interval between accusations of image

location, and range of coverage. The remote sensing platforms have been divided

into three broad categories[12].

• Ground based platform

• Airborne platform

• Satellite Platform

• Static Platform

• Mobile Platform

Satellite-based platforms are mainly used for meteorological data acquisition. The

first successful weather satellite was launched on April 1st, 1961 [13].

Since then, the advancement of satellites and sensors to capture data has opened

new frontiers of research in remote sensing. These advancements are also subject

to some limitations that introduce outliers in remote sensing imagery. Therefore,
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remote sensing imagery goes through a number of different processing steps before

it can be utilised for an actual task. The basic structure of a remote sensing

system is shown in the figure.

Figure 2.1: Basic Structure of Remote Sensing System

2.2.1 Remote Sensing Image Processing

The utilisation of digital image processing in remote sensing is essential for rec-

tifying mistakes and improving image quality. Diverse methodologies are utilised

to mitigate problems including noise, distortion, and clarity, hence enhancing the

interpretability of remote sensing data. The subsequent sections describe essen-

tial image processing techniques employed in this domain, mainly divided into

four categories [14].

• Pre-processing

• Enhancement

• Transformation

• Classification

The smallest unit is pixel in which images are represented. Remote sensing image

analysis helps to obtain meaningful information from the images. The figure

shows a general procedure for remote sensing image analysis.
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Figure 2.2: Remote Sensing Image Analysis

Image Pre-processing

This is the first and foremost step prior to data analysis [15]. This initial pro-

cessing is carried out to remove any distortions caused by the equipment used

or imaging conditions. It involves radiometric correction,geometric correction,

and atmospheric correction. Radiometric correction smooths the global radiation

reflection in the image. [16] is an example of a radimetric correction strategy for

satellite images. Geometric correction removes the distortion caused by the angle

of the sensor from which the image was taken or the distortion caused by the

earth’s rotation. [17]. A typical example of geometric correction by [18] proposes

a correction function based on orthogonal polynomials. The weather conditions

tend to hinder the clear view of the scene from the satellite, for which atmospheric

correction is necessary. [19] is an example of atmospheric correction in satellite

imagery.
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Image Enhancement

Image enhancing refers to the idea of improving the information content of an

image before getting into processing [20]. Image enhancement can be broadly

classified into two categories [21].

• Spatial enhancement

• Frequency domain enhancement

Spatial domain enhancement works at the pixel level for the enhancement of the

image, while frequency domain enhancement first takes a Fourier transform of

the image and performs enhancement on this transform. After that, the inverse

Fourier transform is used to get the final image. Some of the techniques used for

image enhancement are [22].

• Contrast Enhancement

• Composite Generation

• Digital Filtering

Contrast enhancement stretches the original grey levels of the image for better

visualization. It is also known as contrast stretching. Composite generation com-

bines different bands from the image and also uses contrast stretching to produce

an image for visual analysis. Digital filtering or spatial filtering removes the blur-

ring effect by making edges clearer for a better and crisper image. [23]. Image

restoration is also a form of image enhancement that deals with the reconstruction

or recovery of lost or degraded pixels.

Image Transformation

Image transformation typically uses information from other bands of the same im-

age or multiple images of a similar area acquired at different intervals. It produces

a new image with better information as compared to the original image [14, 24].
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Typically, arithmetic operations, including subtraction, addition, multiplication,

and division, are used in image transformation.[25].

Image Classification

Image classification methods are mainly used in image segmentation and object

detection [26]. Image classification helps understand and differentiate different

types of land cover in a remotely sensed image. The image classification procedure

is divided into two types [27].

• Supervised

• Unsupervised

Classification of pixels based on training data or images so that every pixel is

associated with a certain group based on its spectral characteristics refers to su-

pervised classification. While an unsupervised classifier automatically classifies

a pixel and forms clusters of relevant spectral characteristics, Unsupervised clas-

sification, though not directly applied in this research, refers to grouping pixels

based on spectral similarity without prior training data. It contrasts with the

anomaly detection techniques used herein, which do not aim to classify pixels

but rather identify significant deviations from expected patterns

2.3 Anomalies in Datasets

Over the last few decades, big data has gotten the attention of industry, academia,

government, and other organisations. During the analysis of real-world data, a

common practice is to identify data or instances that are outliers or dissimilar to

the actual data. These are known as anomalies [7]. Normally, anomalies give the

idea of erroneous values in the dataset, but anomalies can introduce two factors

in any dataset, given as [3]:

Outlier: Anomalies frequently introduce outliers, which represent data points

inconsistent with the general behavior or pattern of the dataset. Such
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outliers may arise due to measurement errors, data corruption, or genuine

extreme variations [7].

Novelties: Novelties refer to previously unrecognized patterns or new data char-

acteristics. Novelty detection focuses on recognizing previously unseen pat-

terns, assigning novelty scores and thresholds to distinguish new patterns

from familiar ones [28].

Figure 2.3: Illustration of Anomaly/Outlier

Figure 2.3 explicitly illustrates the concept of anomalies within datasets, focusing

primarily on outliers. The clusters labeled C1 and C2 represent regions with

consistent and typical data observations, showing densely grouped data points.

Points labeled P1, P2, and P3 are depicted as anomalies or outliers because they

significantly deviate from the established normal data patterns of clusters C1 and

C2. Such outliers can negatively impact data quality and analytical accuracy,

making their detection and subsequent handling crucial for robust environmental

monitoring and remote sensing data processing.

2.3.1 Type of Outliers

In general, outliers are divided into three categories, and their detection strategies

varies the same.[29]. A classification of outliers is shown in figure 2.3.
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Point Outliers

Points outliers are considered data points that are far away from the rest of the

data. Consider points P1, P2, or P3 in Figure 1. These are examples of point

outliers.

Contextual Outliers

Contextual outliers are also known as conditional outliers [30]. For example,

a temperature peak of 70 °F would be considered normal in the summer, but it

would be treated as an outlier in the winter. The context in which the outliers are

being identified must be specified beforehand to proceed with outlier detection.

In particular, data instances are divided by two sets of attributes.

1. Contextual attributes. The contextual attribute defines the context for

a data instance. For example, in the case of time series data, time is a

contextual attribute.

2. Behavioural attributes. Behavioural attributes are also known as non-

contextual attributes, which determine the non-contextual characteristics

of a data point.

Collective Outliers

One or more data point gather and form a cluster which is anomalous as compared

to entire dataset, known as collective outliers. The individual data point in that

cluster may not be outlier but due to their occurrence they are treated as collective

outliers.

Figure 2.4: Classification of Outliers
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2.3.2 Anomalies in Spatial Data

Remote sensing has been widely used for the past few decades for environmental,

oceanic, and surveying applications. All the applications are entirely dependent

on remote sensing data, how it is acquired, and how accurately we can make pre-

dictions with this data. Errors in spatial data are as important as actual data,

measurement, and data structure. These errors mainly occur due to attribute

definition, data sources, data modelling, and the analysis process. Spatial data

mainly consists of systematic error, stochastic error, and gross errors, such as

incomplete, inaccurate, redundant, and inconsistent data and anomalies due to

multiple sources of data. Masking and swamping effects are common while de-

tecting outliers. Masking states the occurrence of a second outlier after detection

and removal of the first outlier, and swamping occurs when a correct data point

is considered an outlier due to the actual outlier [31].

2.4 Missing Information in Remote Sensing

Missing information is another huge source of inaccurate or incomplete data in re-

mote sensing, apart from outliers. Atmospheric conditions play a vital role in the

information-capturing abilities of remote sensing instruments. These instruments

help to gather information about the atmosphere, ocean, and land surface and

are the most frequently used way of gathering information. But due to certain

problems with remote sensing instruments and diverse environmental conditions,

the acquired information is incomplete, or we can say it has missing information

in it, which greatly reduces the usability of the data. Various categories of missing

information can be broadly described as follows:

• Sensor Failure

• Cloud Obscuration

18



Sensor Failure

Sensors are crucial in remote sensing and data collection. Missing information

results from the failure of these equipment. 15 out of 20 detectors in MODIS

Aqua Band 6 provide inaccurate data. [32]. [33] is a common instance of data

retrieval failure due to sensor malfunction. Remote sensing utilises two types of

sensors:

• Active Sensors

• Passive Sensors

Active sensors utilise their own source of energy in the form of radiation to il-

luminate the object under observation. They can measure the energy reflected

back from the object. On the other hand, passive sensors use a natural source

of energy in the form of radiation in the form of sunlight to capture objects [34].

Sensor malfunctions lead to the phenomenon of stripping in remote sensing im-

ages. An example of striping in a remote sensing image is shown in figure 3 (a,b)

[35]:

Figure 2.5: Missing Information in Remote Sensing Images

Cloud Obscuration

Data acquisition in passive remote sensing is subject to limitations caused by

weather conditions [9]. Cloud cover obstructs the data acquired in remote sens-

ing imagery, thereby limiting the data’s utility in future applications. At one

point, 35 % of the Earth’s surface is covered by clouds [9] , while for specific

countries like Canada, 50 % to 80 % of its land is covered with clouds in the
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morning [36]. 35% of Landsat ETM+ scenes are affected by cloud cover, result-

ing in a substantial data loss. [37]. As passive sensors are effected by weather

conditions, considering the fact that cloud contamination is inevitable, passive

sensor radiation cannot reach the target object, thus hindering the actual desired

information. An example image showing cloud obscuration is shown in figure 3

(c,d,e) [38]. [39] considered 10 bands from different data sources to detect thin

and thick clouds and proposed a multiscale feature-convolutional neural network.

The MF-CNN is used to learn the global features of input images. The input

images are combination images from the Landsat 8 satellite. Low-level spatial

information and high-level semantic information, which are the essence of MF-

CNN, are better suited to acquiring detailed information about clouds, and thus

cloud detection at the pixel level is performed accurately.

2.4.1 Big Earth Data Processing

The emergence of Big Earth Data has required the creation of sophisticated pro-

cessing systems capable of managing intricate geospatial datasets [40]. ArcGIS

is a prominent platform that facilitates the use of maps and geographic infor-

mation through its complete geographic information system (GIS). This software

application serves the purpose of generating and utilising maps, consolidating ge-

ographical data, examining mapped data, exchanging and uncovering geograph-

ical information, and administering geographical information inside a database.

These systems are designed to handle the challenges posed by big geospatial

data, including the management and analysis of multi-source vector and raster

data [41].

ArcGIS operates by structuring GIS data into layers and visual depictions, using

spatial and statistical techniques to examine and manipulate data, and ultimately

producing intricate visuals citedevelopment-method-of-arcgis-data-processing-tool-

1s1ih78ejd. The process entails the amalgamation of diverse data sources, such as

satellite imaging, aerial pictures, and extensive databases of geographically ref-
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erenced information. The data undergoes processing using advanced algorithms

capable of detecting patterns, recognising trends, and generating prediction mod-

els.

ArcGIS possesses a range of functionalities that surpass mere data visualisation.

It facilitates sophisticated geographic data analysis, empowering users to generate

their own geoprocessing scripts. ArcPy, a Python site package, is a very effective

tool for performing geographic data analysis, data translation, data management,

and map automation [42].

ArcPy offers an efficient method for conducting geographic data analysis, au-

tomating geoprocessing activities, and executing intricate map processes in Ar-

cGIS. ArcPy enables users to manage ArcGIS functions and alter map documents

with Python scripts, facilitating the efficient conversion of large-scale geospatial

data into informative graphics and reports.

The Google Earth Engine (GEE) has become a leading platform for Earth scien-

tific data and analysis, alongside ArcGIS and ArcPy. GEE integrates a vast collec-

tion of satellite imagery and geographic datasets, amounting to many petabytes,

with the ability to perform analysis on a global scale. Google’s cloud architec-

ture enables scientists, academics, and developers to identify alterations, chart

patterns, and measure disparities on the Earth’s surface.

Google Earth Engine efficiently analyses geospatial data on a large scale and of-

fers a collection of algorithms and computational abilities that simplify intricate

raster computations, efficient vector manipulation, and machine learning appli-

cations. Its excellent data visualisation capabilities make it an indispensable tool

for analysing environmental changes and charting global events [43].

The incorporation of these tools—ArcGIS, ArcPy, and GEE—has transformed

the earth observation domain, facilitating the manipulation and examination of

extensive earth data with exceptional precision and effectiveness. Consequently,

they play a crucial role in generating comprehensive and practical visual represen-

tations of the Earth, enhancing our comprehension of the planet’s ever-changing
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systems.

2.5 Impact of Data Quality on Environmental

Decision Making

The quality of data significantly impacts the efficacy of environmental decision-

making processes [44]. High-quality remote sensing data, distinguished by ac-

curacy, completeness, and consistency, immediately enables accurate monitoring,

informed policy development, and efficient resource management. Conversely, ab-

normalities include sensor malfunctions, atmospheric disturbances, absent data,

and cloud cover can significantly undermine data integrity, resulting in erroneous

analysis and consequently misguided choices [45].

In the field of environmental monitoring, reliable Land Surface Temperature

(LST) data is very vital. High-quality LST data permit correct identification

and management of urban heat islands, enhance effective drought evaluations,

and promote informed agriculture practices through precise vegetation moni-

toring [46]. This thesis examines detection and reconstruction approaches that

specifically tackle significant data quality concerns, ultimately improving the de-

pendability of environmental assessments.

The practical benefits of enhanced data quality are apparent in urban planning

and management, where accurate identification of temperature anomalies facili-

tates improved responses to high heat occurrences [47]. In agricultural contexts

[48], precise anomaly-free data allow farmers and agricultural planners to forecast

crop health, optimise irrigation, and efficiently manage potential drought impacts.

Enhanced data quality substantially aids climate modelling and forecasting by di-

minishing uncertainties caused by absent or aberrant data points. The methods

presented in this research, which emphasize robust outlier detection and effective

reconstruction of missing data through advanced computer science techniques,

significantly enhance the quality of remote sensing datasets. Consequently, they
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provide environmental stakeholders and policymakers with dependable informa-

tion, enabling informed, efficient, and timely environmental decisions.

2.6 Summary

This chapter has presented a thorough summary of the present condition of re-

mote sensing and Earth observation (EO), specifically highlighting the difficulties

and approaches involved in determining climatic variables in areas with insuffi-

cient meteorological observations. The analysis of large-scale Earth observation

data, which is characterised by the vast amount of information obtained from

Earth observations and climate models, uncovers substantial challenges that re-

quire creative solutions, particularly the incorporation of cloud computing and

machine intelligence.

The following parts explored remote sensing technologies, classifying platforms as

ground-based, airborne, and satellite platforms, and providing a comprehensive

analysis of the progress and constraints of remote sensing imagery. The signifi-

cance of remote sensing image processing, encompassing pre-processing, enhance-

ment, transformation, and classification, was examined to emphasise the crucial

role of these procedures in enhancing the precision and applicability of remote

sensing data.

The study focused on examining anomalies within datasets, specifically outliers

and novelties, in order to emphasise the difficulties they present in the process

of data analysis. An analysis was conducted on various categories of outliers,

including point, contextual, and collective outliers. Additionally, the study high-

lighted the special challenges associated with anomalies in spatial data, such as

masking and swamping effects.

The chapter also addressed the crucial problem of incomplete data in remote

sensing, mostly attributing it to sensor malfunction and cloud cover. These issues

highlight the intricacy of obtaining precise and comprehensive remote sensing

data, requiring advanced methods for data recovery and correction.
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The discourse on Big Earth Data Processing presented advanced technologies

such as ArcGIS, ArcPy, and Google Earth Engine, which play a crucial role in

handling and examining the extensive and intricate geographic datasets that are

typical of contemporary Earth observation endeavours. These solutions illustrate

the importance of scalable approaches and automated methods in addressing the

challenges posed by data volume, quality, and processing.

Finally, this chapter underscores the significance of modern technical solutions

and rigorous data analysis methods in overcoming the complexities of Earth ob-

servation data. This research significantly enhances the quality and utility of

remote sensing data by improving the detection of outliers as well as reconstruct-

ing missing data. Enhanced accuracy and the absence of anomalies in Land

Surface Temperature data augment the efficacy of urban heat island studies, veg-

etation monitoring, drought evaluation, and precision agricultural applications.

Improved image quality and data integrity immediately facilitate more depend-

able environmental decision-making, paving the way for future investigations into

determining climatic variables and monitoring the environment.
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Chapter 3

Literature Review

3.1 Introduction

This chapter presents a comprehensive review of research relevant to the subject

of outlier detection (OD) and reconstruction of lost big earth data. It carefully

delineates the fundamental information that serves as the basis for the research

described in the subsequent chapters. The review will provide a current and

comprehensive summary of the latest advancements in approaches for OD and

reconstruction of lost big earth data. It will specifically highlight the difficulties

associated with handling extensive and intricate datasets from variable resources.

This investigation will emphasise the unique approaches utilised in this field, iden-

tify current deficiencies, and clarify the underlying causes of these deficiencies in

the existing methodologies. This analysis will also examine the appropriateness

and possible constraints of these technologies in outlier detection and reconstruc-

tion of lost big earth data.

3.2 Anomalies in Datasets

Over the last few decades, big data has gotten the attention of industry, academia,

government, and other organisations. During the analysis of real-world data, a

common practice is to identify data or instances that are outliers or dissimilar to

the actual data. These are known as anomalies [7]. Normally, anomalies give the

idea of erroneous values in the dataset, but anomalies can introduce two factors

in any dataset, given as [3]:
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Outlier: Anomalies introduce outliers in the form of malicious data, which is

inconsistent with respect to the rest of the data [7]. Figure ?? shows that

the clusters C1 and C2 have most of the observations that are consistent,

and the values of P1, P2, and P3 are data points that are located away from

the regions of consistency, and these data points are considered outliers.

Novelties: Previously unrecognised patterns in data are considered novelties. A

novelty score using a threshold is given to the data point. [28]

3.2.1 Type of Outliers

Outliers are data points that deviate significantly from the majority of the data.

Point P1, P2, and P3 in figure 3.1 are examples of outliers.

Point Outliers

Points outliers are considered as data points which are far away from the rest of

the data. Consider point P1, P2 or P3 in figure 2.3, these are example of point

outliers.

Contextual Outliers

Contextual outlier are also known as conditional outlier [30]. For example a

temperature peak of 70F would be considered as normal in summer but it will be

treated as outlier in winter. The context for which the outliers are being identified

must be specified beforehand to proceed with outlier detection. In particular data

instances are divided by two set of attributes.

1. Contextual attributes.The contextual attribute specifies the context in

which a data instance exists. For instance, with time series data, time

functions as a contextual attribute.

2. Behavioral attributes. Behavioural attributes, often referred to as non-

contextual attributes, define the non-contextual properties of a data point.
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Collective Outliers

One or more data points gather and form a cluster that is anomalous as compared

to the entire dataset, known as collective outliers. The individual data points in

that cluster may not be outliers, but due to their occurrence, they are treated as

collective outliers.

Figure 3.1: Classification of Outliers

3.3 Anomalies in Spatial Data

Remote sensing has been widely used for the past few decades for environmental,

oceanic, and surveying applications. All the applications are entirely dependent

on remote sensing data, how it is acquired, and how accurately we can make pre-

dictions with this data. Errors in spatial data are as important as actual data,

measurement, and data structure. These errors mainly occur due to attribute

definition, data sources, data modelling, and the analysis process. Spatial data

mainly consists of systematic error, stochastic error, and gross errors, such as

incomplete, inaccurate, redundant, and inconsistent data and anomalies due to

multiple sources of data. Masking and swamping effects are common while de-

tecting outliers. Masking states the occurrence of a second outlier after detection

and removal of the first outlier, and swamping occurs when a correct data point

is considered an outlier due to the actual outlier [31].
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3.3.1 Spatial Outlier Detection and Removal

A spatial outlier is a spatial data point whose non-spatial attributes are not

consistent with its neighbourhood. The detection of spatial outliers can reveal

interesting information. Spatial outlier detection methods can be classified into

six types, given as follows: [49]

• Statistical methods.

• Distance-based methods

• Density-based methods

• Depth-based methods

• Clustering

• Neural network

• Support vector machine

Statistical methods identify outliers by differentiating between actual data and

ideal data. [50, 51] It follows the idea that the dataset under consideration follows

a certain distribution. But as the model depends on a statistical model, it is

difficult to build a model specifically suitable for the data, and if a data point

does not satisfy the model criteria, it will be considered an outlier. [52] [53]..

In distance-based outlier detection methods, if a data point is separated from most

of the data points, it will be an outlier. [54] [55] [56]. One simple approach is the

K nearest neighbour algorithm. It assumes that an instance of a consistent data

point can be found in the neighbourhood. [57]. Distance-based approaches are

better in terms of understanding and implementation as compared to statistical

approaches. A variant of the distance-based approach based on pruning claims

that its complexity approaches linearity in practice. [58]
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The density-based outlier follows the idea of degree of isolation. A simple point

density is calculated, and if its value exceeds a certain threshold, the point is

considered an outlier. [59] [52].

Depth-based outlier detection methods follow the concept of computation geom-

etry. [60] These methods compute different k-d convex hulls. These algorithms

lack extensibility; as the amount of data increases, their performance decreases

significantly.

Cluster-based approaches form clusters of the data, and a data point that does

not belong to any cluster is considered an outlier. Cluster-based approaches form

clusters instead of detecting outliers, which is one of their limitations [61] [62].

The approaches discussed before do not consider the implicit relationship be-

tween data points. Neural networks utilise their learning abilities to establish

this relationship between attributes of the dataset. [63].

Support vector machines have developed applications in various fields. It was

initially used for binary classification, but it has been extended to apply to multi-

class classification. A hyperplan is formulated, which separates the outlier from

consistent data. [64] [63].

The six classifications of outlier detection methods presented before have their

own pros and cons, which makes them suitable for one scenario but lowers per-

formance in another [65].

Outlier detection is involved in every aspect of today’s research, where data is con-

sidered an important point of decision-making. Data with spatiotemporal char-

acteristics provides new aspects of studying human mobility patterns. Therefore,

location-based services (LBS) are providing new ways to analyse the spatiotem-

poral construction of urban areas. This study [66] gives the idea of a trajectory

data cleaning method for electric bicycles. This is a three-step procedure, as

given below:

1. Endpoint classification from continuous and raw data from GPS

2. Remove incomplete trajectories
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3. Extraction of Origin-Destination Pair

PAIRS (Physical Analytic Integrated Repository and Services)[67] is another al-

gorithm of outlier detection for the purpose of data cleansing. It is a platform that

enables high-resolution monitoring for agriculture as well as weather forecasting

by utilising machine learning to enhance renewable energy forecasting. This plat-

form enables the processing of petabytes, irrespective of traditional databases

with limited processing abilities when data exceeds a limit. Another tool used

for geospatial big data analytics is Spatial Hadoop and Apache Spark, which are

built on top of Hadoop and the Apache Spark platform and provide big data

analytics for spatial data. [68]. They provide a base for building spatial appli-

cations for the visualisation and processing of spatial data. Outlier removal is

not limited to raw data alone. Remote sensing images are also pruned to out-

liers. This is an important aspect of spatial data cleaning, where outliers occur

in the form of clouds, cloud shadows, and haze in remote sensing images. The

optical characteristics of an image play an important role in satellite imagery for

weather prediction. A fast algorithm is demonstrated [69] that efficiently removes

the atmospheric effects on the image. Parallel implementation of the algorithms

makes them perform much more efficiently. The image is processed in parts with

a parallel implementation of the algorithm.

Different case studies are done in terms of outlier detection with the sole purpose

of purifying data for better processing and application. A case study involving

cryospheric regions of Nepal was performed by [70]. Aerosols play a vital role in

climate prediction, research, and the amount of uncertainty they bring to atmo-

spheric processes. The uncertainty due to aerosols and atmospheric processes is

one of the huge gaps in current weather forecasting capabilities. An empirical

model has been developed for AOD estimation over cryospheric regions of Nepal.

The results are corrected using the average regression slope from the MODIS

(Moderate Resolution Imaging Spectroradiometer). Similar to this, another case

study of outlier detection for insect count data used a variogram model to describe
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the spatial continuity of the data. These models are heavily affected by outliers.

The model presented detects outliers in isolated and patchy spatial distributions

of insect count data and is removed by neighbouring median filters. [71]

A geostatistical method involving outlier detection is used in the quality analysis

of underground water. [72] studied two methods, including point kriging and

IRF-k (intrinsic random function of order k). Both of these methods proved well

in detecting outliers for the concentration of chloride and testing the hardness of

water. Aerosol optical depth products are widely used in climate studies. [73]

utilises the maximum likelihood method to fuse data from multiple AOD prod-

ucts. Outliers in this case are removed using a threshold in a 50 x 50 window

to improve the quality of the fused data. Identification or detection of spatio-

temporal outliers will help us understand the unexpected and interesting patterns

in the data. [52] has presented an algorithm to identify outliers based on the de-

gree of outlying. The algorithm improves performance by detecting true outliers

by considering the spatial properties of the objects.

Spatial outlier detection in wireless sensor networks (WSNs) can be used to ensure

the quality and accuracy of data before it is fed to the decision-making system.

Traditional spatial local outlier measures (SLOM) and spatial local outlier factors

(SLOF) were used to detect outliers. Citation 8009844 introduced a novel spatial

local outlying value (SLOV) factor. The algorithm presented is able to detect

outliers without any parameters, as compared to SLOM and SLOF, which require

high user dependency.

Isolated and assembled outliers are present in multidimensional spatial series

data. A self-organising map (SOM) neural network algorithm is presented for

the spatial series dataset [63]. First, clustering is performed based on the SOM

neural network, and then an outlier detection strategy is defined based on the

topological distribution of neurons. The algorithm utilises a two-step procedure

that first uses clustering to classify the input dataset and then uses a detection

strategy to detect outliers. This SOM-based algorithm has proven to be efficient
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for multidimensional spatial series data.

The iterative r and iterative z algorithms are based on clustering techniques. Both

algorithms detect outliers and normalise the data. The K nearest neighbour al-

gorithm is used in both of the algorithms. The neighbourhood function g and

comparison function h are the essence behind these algorithms. The neighbour-

hood function g is evaluated at a spatial point x and is considered the average

of all k nearest neighbours of x, while the comparison function h(x) is considered

the ratio of f(x) and g(x), where f(x) is an attribute function of x. The value of

h(x) decides, being very large or small, whether the given point x is an outlier or

not[74].

Classical outlier detection considers global outliers. Local outlier detection is a

complex process. The spatial local outlier measure (SLOM) algorithm is used to

detect spatial local outliers [75]. SLOM utilises attribute partition and considers

self co-relation and heterogeneity in spatial data. But the limitation with SLOM

is that the computation of the fluctuation factor is limited, which sometimes

causes degradation. The pros and cons of SLOF and SLOM algorithms led to the

development of new algorithms using spatial outlying degree factor (SODF) [76].

Which utilises self co-rrelation from SLOM and spatial neighbourhood concepts

from SLOF to reduce the computational complexity and produce better results.

3.3.2 Suitability of Outlier Detection Techniques for Spatial-

Temporal Data

The effectiveness of outlier detection techniques for spatial-temporal datasets

largely relies on their ability to adeptly manage both spatial correlations and tem-

poral fluctuations. Conventional statistical methods, like Moran’s I and Geary’s

C, proficiently quantify spatial autocorrelation by assessing the extent to which

data points demonstrate similarity or dissimilarity in regard to spatial proximity

[77]. These methods are beneficial for detecting local spatial clusters or isolated

outliers by evaluating variations in spatial patterns. Nonetheless, their princi-
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pal shortcoming resides in their inability to account for temporal dynamics, as

they often evaluate data as static snapshots [78]. Consequently, when addressing

time-series data or dynamic phenomena captured via satellite photography, their

efficacy significantly declines.

Distance-based techniques, such as k-nearest neighbours (k-NN), provide clear

and direct approaches for detecting geographical outliers by analysing the proxim-

ity of each data point to its neighbours. Spatially separated places, with distances

that substantially above conventional neighbourhood thresholds, are designated

as anomalies. Although these methods consistently identify discrete spatial ab-

normalities, they naturally neglect the temporal continuity of spatial events. As a

result, individuals may incorrectly interpret transient variations in environmental

conditions or typical temporal oscillations as anomalies [79, 78]. This limitation

renders them less appropriate for ongoing, long-term remote sensing data analysis,

where temporal correlations critically affect the accuracy of anomaly detection.

Density-based clustering methods, particularly DBSCAN (Density-Based Spatial

Clustering of Applications with Noise), proficiently locate outliers by recognizing

clusters in high-density areas and designating isolated data points as anomalies

[80]. These approaches offer resilience to noise and irregular cluster configura-

tions, especially beneficial for heterogeneous geographical information. Density-

based approaches exhibit significant sensitivity to parameter selection, including

neighbourhood radius (epsilon) and the minimal number of points necessary for

cluster formation. In dynamic spatial-temporal situations, these parameters may

fluctuate over time, necessitating meticulous and ongoing calibration . This sen-

sitivity presents considerable practical difficulties, especially when utilized with

large remote sensing datasets marked by intricate and changing environmental

circumstances [81].

Recent advancements in machine learning and deep learning techniques, such

as neural networks, isolated forests, convolutional neural networks (CNN), and

autoencoders, have exhibited formidable proficiency in concurrently modeling in-
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tricate spatial-temporal connections [82]. Neural networks, particularly recurrent

neural networks (RNN) and Long Short-Term Memory (LSTM) networks, are

proficient in recognizing temporal patterns and forecasting anticipated behaviors,

hence effectively detecting anomalies [83]. Isolation forests offer computational

efficiency and scalability for anomaly identification, making them appropriate

for extensive datasets. Deep learning architectures such as CNNs and autoen-

coders proficiently utilize spatial and temporal connections by obtaining hierar-

chical and latent representations from the input. These sophisticated models can

autonomously adjust to diverse data patterns without costly manual parame-

ter adjustments, markedly improving anomaly detection precision and resilience.

However, its intricacy frequently necessitates considerable processing resources

and vast labeled training datasets, presenting practical constraints in real-world

remote sensing applications [84].

Considering these strengths and limitations, methodologies that incorporate spatial-

temporal dimensions exhibit enhanced efficacy in addressing the complexities as-

sociated with remote sensing datasets, including intricate environmental intercon-

nections and dynamic temporal patterns. Although statistical, distance-based,

and density-based methods provide significant insights, their intrinsic constraints

in temporal modeling underscore the benefits of utilizing modern machine learn-

ing and deep learning techniques. Thus, the selection of outlier detection methods

for spatial-temporal data must emphasize techniques that can effectively identify

intricate interactions across space and time, while balancing computational effi-

ciency with detection robustness to meet the practical requirements of modern

remote sensing analyses.

3.4 Quantitative Remote Sensing

Satellite remote sensing (SRS) is vital for weather predictions and the examina-

tion of the impacts of global warming. It provides key data for climate change re-

search and Numerical Weather Prediction (NWP) models [85] [86] [87]. Satellites

34



such as INSAT, IRS, and others provide significant data on many environmental

factors like sea surface temperature (SST), cloud motion vectors, and vegetation

development. This data helps in monitoring changes connected to climate. The

progress in satellite technology, including the use of distributed remote sensing

satellite systems and image fusion techniques, enables more effective and precise

gathering of remote sensing data. This, in turn, enhances weather analysis and as-

sessments of climate change. The correlation between ground surface temperature

(GST) and satellite-based land surface temperature (LST) has been investigated,

demonstrating the possibility of connecting these variables to enhance compre-

hension and utilisation in many disciplines [3]. The progress in algorithms for

estimating land surface temperature (LST) using thermal infrared (TIR) has re-

sulted in the creation of LST products of excellent quality. These products are

valuable for studying surface evapotranspiration, estimating soil moisture, and

investigating climatic change [88]. Furthermore, the comprehensive analysis of

TIR LST satellite data applications emphasises the growing significance of satel-

lites such as MODIS in the surveillance of LST for various research objectives

[89]. Satellite remote sensing offers unique insights into weather patterns and the

dynamics of land surface temperature, thereby improving our capacity to predict

and comprehend environmental processes.

Satellite remote sensing (SRS) is an important aspect of the study of weather

predictions and the effects of global warming[90]. Remote sensing data provides

land surface properties and variables, which are important for understanding

the earth system. Quantitative remote sensing involves the extraction of many

different parameters[91].

3.4.1 Errors in Quantitative Remote Sensing

Quantitative remote sensing errors originate from multiple factors, such as to-

pography influences, atmospheric circumstances, sensor constraints, and data

processing methodologies. The topography has a considerable effect on the re-
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flectance that sensors monitor. To account for this, digital elevation models

(DEMs) are used to compensate for the effects of topography. Nevertheless,

global digital elevation models (DEMs) frequently underestimate the cosine of

the sun angle and inadequately depict shadows, resulting in mistakes in areas

with mountains [92, 93]. Furthermore, the process of obtaining information about

aerosol and surface properties is filled with uncertainties caused by both random

and systematic errors. These errors are assessed in real-time using algorithms

such as GRASP [94]. The presence of errors can also be attributed to the repre-

sentativeness error produced by scale transformation (REST), which is inherent

in data assimilation processes that involve many sources and scales of data [95].

The measurement of precipitation events is made more complex by temporal and

geographical sample mistakes. These errors are more pronounced on land, par-

ticularly in hilly areas, compared to oceans [93]. The geolocation calibration of

CubeSats introduces positional inaccuracies, which in turn cause further inter-

polation mistakes. These flaws may be accurately modelled analytically in order

to assess their impact on remote sensing products [96]. Furthermore, the trans-

mission of inaccuracies in data via analytical processes can result in substantial

uncertainty in measurements of vegetation productivity. This highlights the need

for reliable anomaly detection techniques to identify and rectify outliers before

the data is widely utilised [97]. In order to enhance the precision and dependabil-

ity of remote sensing data, it is essential to comprehend and address these many

sources of mistake.

Satellite remote sensing is the only suitable option to obtain land surface proper-

ties effectively [98]. Currently, MODIS is considered the most trusted satellite for

providing data for land surface variables by supporting 44 different products [99].

The information retrieved or observed from satellites is subject to errors caused

by sensor malfunctions or efficient retrieval algorithms. Even the accuracy of the

MODIS is different at the global level as compared to the local or regional level

[100].
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3.4.2 Remote Sensing Information Reconstruction

Reconstructing remote sensing information is a crucial procedure for overcoming

the difficulties caused by incomplete or degraded satellite data resulting from

variables such as noise, dead pixels, cloud cover, and low resolution. Several

sophisticated methods have been devised to address these problems. At present,

based on the classification proposed by [36, 9, 101] the algorithms used for missing

information reconstruction are mainly classified into four categories:

• Spatial-based methods

• Spectral-based methods

• Temporal-based methods

• Hybrid methods

These methods are discussed in detail in the upcoming sections.

Spatial Based Methods

Early approaches primarily relied on spatial reconstruction methods, leveraging

the spatial continuity and autocorrelation of remote sensing data. Image in-

painting is a fundamental technique in spatial-based methods, representing the

traditional methods used for image restoration in remote sensing and computer

vision. Image in-painting is based on the idea that areas with missing data share

similarities in geographical aspects with their surrounding environment, using

this likeness to fill in the gaps in information [102]. Spatial methods do not

require additional imagery to assist in the reconstruction process, unlike other

techniques [103]. They carefully examine how local and global data in the image

interact, using this connection to smoothly incorporate missing content. Spa-

tial approaches are more effective in revitalising places with limited data gaps.

These models are limited by their dependence on a small amount of reference

material, making them less capable of reconstructing big or complex landscapes.
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Spatial approaches are effective for filling tiny gaps but less reliable for recreating

complicated terrains due to the uncertainty in predicting geographical features.

A generative adversarial network (GAN) has been used recently for image in-

painting. Due to its instability in training and producing results that are far

from reality, a deep convolutional generative adversarial network (DCGAN) [104]

was used to perform image inpainting for sea surface occlusion due to clouds. A

two-stage procedure that first involves training DCGAN to generate close-to-real

SST images. Second, the encoding of the corrupted image is formed using the

inpainting loss function, and this encoding is passed to DCGAN to produce the

missing content [105]. Although GAN-based inpainting improves detail realism,

the training instability and high computational overhead pose serious barriers

for consistent deployment in operational EO pipelines. Additionally, their depen-

dence on large training datasets and parameter sensitivity reduces generalizability

across scenes with different land cover types.

Spatial methods have also been termed self-complementation methods [106]. Spa-

tial methods can be further categorised into four types:

• Interpolation methods

• Propagated diffusion methods

• Variation-based methods

• Exemplar-based methods

• Learning-based methods

Most image-painting algorithms are used in digital image processing and can

be used with remote sensing images as well. [107, 108, 109, 110] Interpolation

methods are the most basic algorithms in spatial-based methods. Interpolation

methods share a general rule of weighted averages of sample values, as given in

equation 3.1.
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Î(x0) =
N∑
i=1

wiI(xi) (3.1)

Px0 is the point of interest, and Î(x0) is the estimated value of the point of

interest. I(xi) is the observed value, wi is the weight of the sample values Pxi,

and N is the number of sampled points used for interpolation. [36]. Typical

examples of interpolation methods are [111] and [112]. Both methods utilise the

Kriging algorithm to interpolate the missing pixels. Interpolation methods are

not suitable for complex ground features because the spatial information of the

remote sensing image is not fully utilised to fill the gap. [113, 107, 114, 115, 116]

are examples of image inpainting algorithms based on interpolation. The basic

idea of [117] is to input the missing area to the algorithm, and it fills the missing

information starting from the edges and moving inwards, but with [113], the area

that needs to be filled is selected by the user, and the algorithm then determines

which area in the image to be used to fill the gap.

The scan-line corrector-off problem is common in Landsat imagery, which causes

information gaps caused by missing pixels due to sensor failure. Missing pixels

make up 22% of the data [118]. Neighbourhood similar interpolator (NSPI) was

developed by [119] to fill the information gaps due to missing pixels in Landsat

ETM+ SLC imagery. It is a three step procedure. The first difference of similar

pixels is determined between the target and input image using the radiometric

difference. Second, NSPI selects a certain sample size, which makes the esti-

mation of pixels statistically reliable. Third, a spectral similarity approach is

applied to identify pixels that belong to similar land cover features. The chosen

pixel replaces the target pixel. Similar to this functional concurrent linear model

(FCLM), it is proposed to fill the SLC-off Landsat 7 information gaps [120].

Propagated diffusion methods are another type of spatial-based method that

follows the idea of image inpainting. Diffusion methods start filling the edges

with information and propagate inward until the gap is filled. This is performed

using partial differential equations; therefore, these methods are also known as
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partial differential equation (PDE) methods, for example, [121, 122]. Diffusion-

based methods use isotropic and anisotropic partial differential equation models.

[123] and [124] are examples of isotropic and anisotropic diffusion-based models

for image inpainting. Diffusion models are not suitable when the missing area is

large, as they end up causing blurring.

Variational-based image inpainting algorithms focus on maintaining the geomet-

rical integrity of the image by filling in small, missing areas in the image. It

considers the image to be composed of objects and shapes, with sharp edges and

objects being considered smooth on their own. Due to this limitation, variational-

based methods are only suitable for small inpainting or retouching problems [125].

Image regularisation is used to formulate variational-based inpainting problems.

There are four types of image regularisation algorithms mainly in use, named as

follows:

• ℓ2 Norm Regularisation

• Variation (TV) Regularisation

• ℓ1 - ell2 Norm Regularisation

• Nonlocal Regularisation

Laplacian regularisation is representative of ℓ2 norm regularization. Its goal is

to apply smoothness to the image by minimising the high-frequency components

of the image. Therefore, Laplacian models are suitable for flat surfaces or low-

resolution images because their performance degrades with detailed areas of in-

formation reconstruction and results in blurring [126]. One of the other regulari-

sation techniques is Gauss-Markov regularisation [127].

Variation TV regularisation is suitable where sharp edges are to be recovered.

However, if the missing area is larger than the object, its performance degrades.

TV regularisation is used to smooth the remote sensing image by using tensor

ring completion. For example, [128] used total variation tensor ring completion

for missing information reconstruction in remote sensing images.
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ℓ2 regularisation was only suitable for images with flat regions, but as an image

is a combination of flat and detailed regions, ℓ1 and ℓ2 are combined to form ℓ1

- ell2ℓ2 norm regularization. They update the cost function in the manner given

in 2. [129]

Costfunction = loss(say, binarycrossentropy) + regularisationterm (3.2)

ℓ1 and ℓ2 differ in regularisation terms. The ℓ1 regularisation term is given as

CostFunction = Loss+
λ

2m
×
∑
||w|| (3.3)

and the ℓ2 regularisation term is given as

CostFunction = Loss+
λ

2m
×
∑
||w||2 (3.4)

All the regularisation methods discussed before perform local regularisation by

using local information to reconstruct the image. Nonlocal regularisation is an-

other technique that uses information about the complete image and tries to fill

up the missing area. [130, 131, 132, 133] are some nonlocal image regularisa-

tion techniques. But nonlocal regularisation is still subject to blurring when the

missing area is large, complex terrain.

Exemplar-based methods follow a greedy strategy to recover the missing area.

These methods fill the missing pixel by copying another pixel that is most similar

to it, so they use a pixel-by-pixel approach to fill the missing area. Exemplary

methods mainly preserve the texture information of the digital image. Criminisi

proposed an exemplar-based image inpainting algorithm that can remove objects

from the image and recover the texture of the actual image behind it, as shown

in the figure 3.2. [134]

More relevantly, several other methods have been studied and proposed follow-

ing the idea of image inpainting. Some of them are cokriging interpolation
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Figure 3.2: Exemplar-based Region Filling and Object Removal

[135], structure-preserving global optimisation [136] compressed sensing [137]

and sparse dictionary learning [138].

While spatial methods are intuitive and require minimal auxiliary data, they

are inherently limited in scenarios with extensive or irregular missing regions.

Their reliance on local neighborhood information makes them unsuitable for re-

constructing structurally complex scenes or capturing large-scale spatial varia-

tions. Moreover, methods like interpolation and variation-based regularization

suffer from blurring and oversmoothing when applied to highly textured regions

or large gaps.

Spectral Based Methods

Intermediate advancements in remote sensing technology introduced spectral re-

construction methods, exploiting spectral band correlations for improved recon-

struction accuracy. The information from one band can be used to reconstruct the

information that is missing, which allows spatial-based algorithms to circumvent

the problem of a lack of prior information. When hyper-spectral or multi-spectral

images are lacking information, they both feature bands that have complete in-

formation as well as bands that contain missing information. Therefore, the goal

is to use the bands that contain complete information to reconstruct missing

information by building a correlation between the bands. Different names for

spectrum methods include multi-spectral complementation methods and spectral
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approaches. [106].

Due to a sensor fault in band 6, for instance, Aqua MODIS’s imagery is char-

acterised by various patterns of black strips that appear repeatedly. There was

an initial suggestion made by [32] regarding the solution to this problem. With

coefficients of 0.9821 and 0.9777, Aqua MODIS bands 6 and 7 are associated with

one another, according to the fundamental concept that underpinned this. It is

therefore possible to retrieve information that is lost from band 6 by using band

7, which is highly linked. Through the utilisation of quadratic polynomials, the

following polynomials were discovered by [32]:

K6(r) = 1.6032(K7(r))3 − 1.9458(K7(r))2 + 1.7948K7(r) + 0.012396 (3.5)

or

K6(r) = −0.70472(K7(x))2 + 1.5369K7(x) + 0.025409 (3.6)

where K6(r) and K7(r) are top of atmosphere (TOA) coefficients. But the coeffi-

cient of correlation for the bands is subject to the terrain and subject to change for

different scenes. These coefficients presented by [32] are for snow-covered terrain

and work best in this particular scenario. Following the difference in coefficient

between scene types,

[139] developed a class local fitting (WCLF) algorithm that first classifies the

image based on scene type, then recovers missing pixels based on scene type, and

after the recovery, outliers are removed by a smoothing procedure. This method

is strongly dependent on the classification procedure, specifically for pixels at the

joints of different scene types.

[140] recovered the missing band 6 information by using a two-step procedure:

first, histogram matching is used to rectify the information errors in working

detectors, and second, local least squares fitting is used to fill in the missing

information from faulty detectors. Although this method introduces distortion
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in the image, unlike the method proposed by [32], it is not dependent on scene

type to process the missing information.

There are seven spectral bands, and the methods discussed so far only discuss

the utilisation of band 7 information to reconstruct missing information in band

6. [141] proposed a way to utilise the information of other bands as well as

reconstruct the information. Based on the correlation between working detection

of different bands, [142] presented the M-estimator multiregression method to

recover the missing information in band 6.

A multi-scale segmentation approach was used by [143] to fill the gaps.

Spectral methods are better at information recovery as compared to spatial meth-

ods, and the results are closer to the actual scenario. Spectral methods can remove

thin clouds and haze efficiently, but if clouds are thick, which causes all the bands

to be contaminated, spectral methods lose accuracy because information in ev-

ery band is affected to some extent [106]. Spectral methods offer the advantage

of internal redundancy by utilizing band correlation, particularly in multispec-

tral or hyperspectral images. However, their effectiveness deteriorates when all

spectral bands are affected simultaneously—such as under dense cloud cover or

sensor-wide anomalies. Moreover, many methods (e.g., polynomial regression

or spectral fitting) are scene-specific and require frequent recalibration, limiting

scalability. Some methods, like band 6 reconstruction using band 7, perform well

under specific terrain types (e.g., snow cover) but generalize poorly to heteroge-

neous scenes. Scene dependence significantly limits their utility in global-scale

environmental applications.

Temporal Based Methods

Temporal reconstruction methods became prominent with continuous accumula-

tion of satellite data, enabling the effective reconstruction of missing data by ex-

ploiting historical patterns and temporal dynamics The dense cloud cover causes

all of the spectral bands to be contaminated and to have missing information

44



in them. Additionally, the malfunctioning sensors can result in missing infor-

mation in all of the bands for a certain spectral band. Because of this, spectral

approaches are rendered ineffective because they are founded on spectral corre-

lation, which is lost once all of the bands have information that is missing. The

temporal-based approaches come into play at this point in the process. Due to

the fact that the clouds are constantly moving, it is possible to collect data for

the same location at a different time interval. The determination of the time

interval is a challenging aspect of this method. If the time interval is large, it

will be influenced by changes in the land cover, but if the land cover is minimal,

it will have clouds that overlap in two different time slots. Significant efforts

have been made by researchers in the field of temporal-based approaches. For

instance, [144] described a method that utilised local linear histogram matching

(LLHM). This method necessitated the utilisation of high-quality data in order

to operate properly, but ultimately yielded unsatisfactory outcomes when ap-

plied to heterogeneous landscapes. Algorithms were proposed by [145, 146, 147]

in order to enhance the radiometric consistency of multi-temporal pictures for

heterogeneous land. Temporal approaches leverage historical observations to re-

store missing values, making them powerful in dynamic environments. However,

their reliability hinges on temporal consistency. In rapidly evolving landscapes

or those with frequent land use change, these models often introduce bias or fail

to capture abrupt shifts.

Temporal-based models are also known as auxiliary-sensor-complementation-based

approaches. Temporal methods are divided into the following categories:

• Temporal replacement methods

• Temporal filter methods

• Temporal learning models

Temporal replacement methods are also referred to as mosaicing by [148]. The ba-

sic idea behind temporal-based methods is to simply replace the missing area with
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another complete image at some other time. [149, 150, 151] are some temporal re-

placement methods. The idea of temporal replacement leads to a multi-temporal

cloud removal strategy. Multi-temporal cloud removal (MCR) is used for radio-

metric correction before using clear reference images to reconstruct the missing

values in the image. The method not only removes clouds but also gets rid of

cloud shadows to produce a clear image [152]. Temporal replacement can be per-

formed in two different ways: direct replacement and indirect replacement. Direct

replacement selects the replacement patch by using the optimal value in the time

series, while indirect replacement first reduces the temporal difference and then

replaces the missing information following the direct replacement procedure [153].

Many cloud removal approaches use a reference or auxiliary image to reconstruct

the missing information gap. [106] proposed a different approach to produce con-

tinuous cloud-free images based on spatial temporal weighted regression (STWR).

The spatial-temporal weighted regression model uses pixel information from both

the self-target and reference images.

Multi-temporal cloud removal and information reconstruction techniques also fol-

low the idea of temporal replacement or patch-based information reconstruction.

[154] showed an information cloning technique to remove clouds and recover lost

data. The method considers the fact that land cover change is insignificant over

a short period of time. The cloning algorithms reconstruct the information gap

using cloud-free regions from different multi-temporal images. Global optimi-

sation is done after cloning to ensure radiometric consistency. The problem of

radiometric inconsistency has been critical for information reconstruction algo-

rithms following multi-temporal or patch-based approaches. [155] attained con-

sistent brightness by using the mean, standard deviation, and linear transform of

brightness values for reference and the target image. Considering the radiometric

difference between the reference and target image, [101] used the digital number

value of the target image and reference image and performed linear regression

modelling (LRM) to propose a multi-temporal cloud removal algorithm. The
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result shows good spectral compatibility and radiometric consistency between

reference and target images. Similar to this, [9] also focused on the radiometric

consistency between the target and reference image and proposed a seam de-

termination technique to determine good boundary conditions and a clustering

algorithm to cluster the contaminated image patch with similar cloud-free patches

to clone the information by maintaining consistent temporal intensity. The per-

formance of this method, just like other multi-temporal-based methods, degrades

as land cover changes significantly over a period of time.

Time series data is subject to fluctuations and thus contains noise. Temporal filter

methods are used to remove the noise in one-dimensional time series data. [156]

is a typical example of a temporal filter-based method. Temporal learning models

focus on establishing a relationship between erroneous data and consistent data in

the temporal domain. [157, 158] are examples of temporal learning-based models.

Dictionary learning is another aspect of image restoration. Dictionary learning is

used in sparse reconstruction techniques for signal restoration. These methods use

a small set of data to form a dictionary and try to search for the dataset that best

recovers the signal. Dictionary learning has a number of applications, including

the extraction and classification of image features ([159]), image denoising [160]

and face recognition [161].

The satellite image time series comprises a set of images obtained from different

satellites or sensors over a similar area at different time slots. Clouds are a major

source of obscuration in these images. As discussed earlier, spatial, temporal,

and hybrid methods have been widely used to remove the clouds and reconstruct

the underlying image scene. Dictionary learning has also established its roots in

the cloud obscuration problem in terms of sparse reconstruction. A two-step pro-

cedure based on sparse reconstruction starts with masking the clouds and their

shadows first and then forms a dictionary of cloud-free pixels from the time series

image. The dictionary is used in the reconstruction of the cloud-contaminated

pixels [162]. In the brief overview presented in [36] sparse reconstruction tech-
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niques perform better as compared to spatial or temporal-based techniques. [163]

established a variant of dictionary learning for recovering missing information

in remote sensing images and presented two multi-temporal dictionary learning

algorithms utilising KSVD (K-Singular Value Decomposition) and Bayesian dic-

tionary learning. KSVD uses temporal transformation to establish the temporal

correlation, while the Bayesian framework adaptively forms the temporal corre-

lation based on weights. [164] is an improved version of this method in which

dictionary learning group (DGL) is formed by low-resolution (LR) and synthetic

aperture radar images (SAR), which are used as auxiliary images. The non-local

similarity between cloud-contaminated patches in HR, LR, and SAR images is de-

termined, which plays a key role in reconstructing the cloud-contaminated patches

in HR images. Multi-temporal dictionary learning (MDL) makes two dictionaries

of the target image and the reference image. The removal of clouds takes place

by combining the coefficients of reconstruction obtained from two dictionaries.

Results show that MDL gives better performance as compared to MNSPI [165].

[138, 153] are some of the typical sparse reconstruction techniques. Similarly,

interpolation, matrix completion, and robust matrix completion have been used

as reconstruction models for remote sensing data recovery. [166] used a variation

of robust matrix completion with a two-step procedure that first detects the cloud,

generates a mask to remove the cloud, and then reconstructs the underlying image

using the Augmented Lagrange method. It uses a sequence of non-cloudy images

for the reconstruction of lost data.

Techniques like temporal replacement are simple and computationally efficient,

but they often result in radiometric inconsistencies. While filtering models reduce

temporal noise, they may suppress relevant temporal signals, leading to the loss

of significant changes in EO data. Advanced methods, such as multi-temporal

dictionary learning and patch-based reconstruction, demonstrate improved ac-

curacy, yet they require large, well-aligned datasets and intensive preprocessing.

Their reliance on temporal continuity limits their effectiveness in regions with
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sparse observations or frequent occlusions.

Spatial-Temporal-Spectral Based Methods

Contemporary hybrid approaches have emerged to overcome limitations inherent

to individual spatial, spectral, or temporal techniques. These advanced methods

integrate multiple dimensions, combining the advantages of each to improve ac-

curacy and robustness The performance of temporal methods is superior to that

of all other approaches; nevertheless, temporal methods are also inferior because

of the restrictions placed on the amount of land cover change. Exploring tem-

poral techniques for filling in missing data shows notable progress in managing

time-series data, especially in scenarios with intricate variables like land subsi-

dence, which are influenced by several circumstances. Utilising a multi-factorial

approach with principal component analysis (PCA) highlights the need of pin-

pointing and prioritising the most impactful elements to enhance reconstruction

precision [167]. This method excels in simplifying intricate, multidimensional

data into primary components that encapsulate the highest variation, therefore

improving the predictability and comprehensibility of the reconstruction process

.

The systematic theory that utilises spatiotemporal memory using artificial neural

networks is a significant advancement in temporal data reconstruction methods.

By guaranteeing Lipschitz continuity [168], this method ensures the stability of

the reconstruction process and offers a more dependable and resilient framework

for managing data with temporal dependencies. Ensuring the integrity and conti-

nuity of data points is especially important in time-series data for precise analysis

and forecasting.

Temporal polynomial interpolation methods [169], particularly quadratic inter-

polation, provide a straightforward yet efficient option for filling in missing data.

Their superior performance compared to previous polynomial methods in terms of

accuracy demonstrates the promise of mathematical interpolation techniques in
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situations with randomly missing data points. This method is advantageous due

to its simplicity and the few assumptions it necessitates regarding the underlying

data distribution, rendering it extensively adaptable across diverse industries.

Introducing attention-based architectures [170] for spatial and temporal informa-

tion reconstruction is a major advancement in addressing missing data in spa-

tiotemporal graphs. By utilising a spatiotemporal propagation architecture, these

techniques may efficiently capture spatial and temporal relationships, resulting

in more precise imputation outcomes. This method is especially important in

the age of big data, because datasets are not just extensive but also intricate,

encompassing complex connections between spatial and temporal aspects.

Despite progress, there is an increasing demand for hybrid methods that may

integrate the advantages of many approaches to overcome the inherent limits of

individual methods. Hybrid approaches can combine the detailed factor analysis

of PCA, the predictive capabilities of neural networks, the simplicity of polyno-

mial interpolation, and the nuanced knowledge of spatial-temporal correlations

provided by attention-based architectures. Integrated techniques could provide

more flexibility, adaptability, and accuracy when reconstructing missing data in

various applications and datasets.

The spatiotemporal fusion-based techniques utilises data fusion from many sources

to address this problem. The study by [171] utilised two reference photographs

that were taken close in time to the target hazy image, instead of only one. This

idea prevents errors resulting from temporal methods induced by substantial land

cover changes. This method employs a residual correction procedure to enhance

spectral similarity between the restored area and the unaffected cloud-free zone.

The spatial, temporal, and spectral (STS) techniques outlined earlier each have

unique strengths and weaknesses. STS approaches are developed by combining

various strategies to recover lost data more effectively and accurately. The STS

model, created by [35], is a comprehensive model that employs a deep convolu-

tional neural network. The model tackles deadline issues in MODIS Band 6 and
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fixes the corrector-off problem in Landsat Enhanced Thematic Mapper Imaging.

It can remove thick clouds and shadows by using multiple data sources. This

method links incomplete data with complete data by using auxiliary data in a

deep Convolutional Neural Network (CNN). The model uses a residual output to

analyse the relationship between different auxiliary data. These techniques are

also known as hybrid methods [36]. Hybrid methods combining spatial, temporal,

and spectral information address the weaknesses of individual domains and pro-

vide state-of-the-art results in reconstruction tasks. However, their complexity is

non-trivial—requiring substantial computing resources, advanced model design,

and large auxiliary datasets. Deep learning-based hybrid models, like CNNs and

attention-based architectures, offer strong performance but often at the cost of

interpretability and reproducibility. Many are trained on custom datasets and

lack generalization across different environmental conditions.

[172] presented an adaptive weighted tensor completion method for missing data

reconstruction in remote sensing using data from spatial, temporal, and spectral

dimensions. The idea behind this is to compute the weights by considering the

information from the spatial, spectral, and temporal domains. Compared to

using threshold weights for tensor completion [173], the adaptive method has

better performance and accuracy for recovering missing information. Similarly,

[153] also presented a spatial-temporal method using group sparse information

that utilises correlation between local and nonlocal regions by extending single

patch matching to multi-patch matching. This method utilises spatial as well

as temporal correlations to minimise the difference between target and auxiliary

images before searching the matching patch. [36] categorised hybrid methods into

two categories:

• Spatio-temporal methods

• Spectral-temporal methods

Spatio-temporal methods utilise the best of spatial and temporal methods for

the completion of missing information. [174, 112, 33] are typical examples of
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spatio-temporal methods. Similarly, as spectral and temporal correlations cannot

give effective results on their own, joint spectral-temporal methods are used.

[175] is a typical example of the joint spectral-temporal method. Following the

spatial-temporal characteristics, a four-step procedure for predicting the missing

values was proposed [176]. The first algorithm selects the neighbourhood pixel,

considering spatial-temporal characteristics, in the form of a submit. From these

subsets, the ranking of the sub-images is done based on the similarity score.

From the subset of images, an estimate for the quantile is completed, followed by

quantile regression that regresses all the predicted values on the associate image

ranks. [174] presented an improved Markov Random Field technique to remove

clouds and reconstruct the missing information by constructing an optimal offset

map and selecting the most appropriate pixel from the reference map. STMRF

(Spatial-Temporal Markov Random Field) models a complex global relationship

using the local neighbourhood pixel approach. The STMRF optimal offset map

is generated using the following equation:.

M(K) =
∑
p∈ω

Md(K(p)) + α
∑
p∈ω

Mt(K(p), K(p′)) + β
∑

(p,p”)∈N

Ms(K(p), K(p”))

(3.7)

Here, ω is the missing region. P (x,y) represents a pixel in the target image,

which is cloud-contaminated in this case. P’ is a pixel of the reference image in

a similar position as p, and N represents a spatially connected neighbourhood

system. P” is a 4-connected neighbour of pixel p.

The composite image method can be used for temporal high-resolution images

such as AVHRR (Advanced Very High Resolution Radiometer) and MODIS

(Moderate Resolution Imaging Spectroradiometer) to fill the missing informa-

tion gap. But due to noise in the composite image, the normalised difference

vegetation index (NDVI) is used to remove the noise and obtain relatively better-

quality composite images [177]. This way of obtaining composite images has
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been utilised to get 8-d or 16-d NDVI products with high-resolution images. But

we need multiple observations with clouds or any other form of noise and one

clear image of that particular scene to get a noise-free composite image, which is

difficult in rainy or cloudy regions. Which causes a certain level of noise to be

present in the 18-d and 16-d composite images. To remove this noise, previously

available mathematical models such as Fourier and Gaussian models can be used.

The missing values can be obtained by estimation using predicted values of the

model, which results in a cloud-free image [178, 179].

Spectral-temporal methods follow the idea of the mosaicing effect to reconstruct

the missing information due to cloud or cloud shadows. The mosaicing method

follows the idea that a similar region may be captured at some other time that

will not be contaminated with clouds. But due to temporal differences, radio-

metric differences may occur, which can introduce salt and pepper noise into

the resulting image. Therefore, radiometric normalisation may be used to avoid

the noise by removing the radiometric difference [180, 181]. To better overcome

the noisy effect, a spectral-temporal patch-based technique is utilised to recon-

struct the missing data in the time series image and avoid the noisy effects as

well by preserving the textual information from a clear spectral-temporal patch

from adjacent images. [182] followed a three-step procedure to obtain the cloud-

and noise-free result. First, the pixels are separated based on their spectral and

temporal properties to create a spectral-temporal patch. Next, the reference

spectral-temporal patch is used to reconstruct missing information. Finally, con-

textual information is taken from the reference temporal image and added to the

missing area to create a cloudy and noise-free image.

Multi-spectral and multi-temporal remote sensing data should be used together to

reconstruct the missing information. One of the examples is the tempo-spectral

angle model. It measures the similarity of pixels using temporal and spectral

dimensions. Missing pixels are then replaced by temporal-spectral angle mapping

53



(TSAM). The The temporal and spectral angles of mapping are given as follows:

TSAM =
1

2H
×

H∑
j=1

× arccos

{ ∑M
i=1 ri, jsi, j√∑M

i=1 r
2
i,j

√∑M
i=1 s

2
i,j

}

+
1

2M
×

M∑
i=1

× arccos

{ ∑H
j=1 ri,jsi,j√∑H

j=1 r
2
i,j

√∑H
j=1 s

2
i,j

} (3.8)

where ri,j ∈ RMXH and si,j ∈ SMXH and R and S are two pixels which are

defined using spectral and temporal perspective, and both of these pixels have

H temporal images and M spectral bands. The flow chart of TSAM is shown in

figure 3.3 [183].

Figure 3.3: Flowchart of multi-temporal similar replacement-based TSAM

The neighbourhood-similar-pixel approach has been previously used to solve the

Scan Line Corrector (SLC)-off problem in remote sensing imagery [119]. The sim-

ilar NSPI approach has been modified to develop a hybrid thick cloud removal

algorithm. The MNSPI uses one cloud-free image and one cloudy image, tries

to find the similarity of cloud-free pixels first, and computes the weight of each

similar pixel. After that, it predicts spectro-temporal and spectro-spatial infor-

mation. Based on pixel distance from the cloud centre, it uses spectro-temporal

information if the pixel is near the centre of the cloud and spectro-spatial infor-

mation if the pixel to be replaced is near the edges and far from the centre of the
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cloud [184].

Utilising spatial and temporal information at the same time to recover lost data

has been popular among researchers. An extensive amount of research has been

done in order to remove clouds and reconstruct the missing information in remote

sensing imagery. Mostly, the images are of low resolution. A similar problem is

also persistent in high-resolution images. [103] used adjacent temporal images

as complementary information to create a mosaicing effect for removing clouds

and recovering lost data for high-resolution images. A cloud mask is generated,

and its boundaries are improved for effective recovery of missing data. Finally,

missing information is reconstructed starting from the outer edge of the cloud

and gradually moving to the centre point of the cloudy pixel. The radiometric

difference is critical in high-resolution imagery, so After completely filling the

information gap, a residual correction based on global optimisation is performed

to reduce the radiometric difference between the recovered and cloud-free regions.

There are two conditions for the reconstruction of LST data [185].

• Clear Sky

• Cloudy Sky

Reconstructing missing LST data for clear sky conditions may lead to an overes-

timation relative to the reconstructed data in cloudy conditions [186]. Despite

limitations, there remains a significant research gap to generate high-quality re-

constructed land surface temperature data. The author suggested a resilient gap

filling technique by combining MODIS and VIIRS LST data in [187]. The method

suggests utilising a selection of photos to fill in missing data in a target image

while the sky is clear.

Hybrid or combined spatial-temporal-spectral methods represent the most re-

cent and advanced class of reconstruction techniques. These methods integrate

the strengths of individual spatial, temporal, and spectral approaches to achieve

comprehensive data recovery and superior accuracy. Purely spatial methods, such
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as interpolation and kriging, rely extensively on spatial correlations and continu-

ity, providing excellent results in uniform areas but struggling in heterogeneous

or dynamic environments. Similarly, purely spectral methods leverage spectral

band correlations effectively but are susceptible to contamination when correlated

bands are simultaneously affected. Temporal methods, including time-series fore-

casting and filtering approaches, efficiently handle predictable temporal changes

but often neglect detailed spatial variability.

Recognizing these limitations, combined methods explicitly incorporate multi-

ple dimensions to overcome the deficiencies inherent to individual approaches.

Spatial-temporal-spectral methods often utilize advanced machine learning and

deep learning models, such as multidimensional convolutional neural networks

(CNNs), adaptive weighted tensor factorization, and transformer-based deep learn-

ing models. For example, CNN-based methods efficiently capture spatial depen-

dencies while integrating spectral and temporal information to improve recon-

struction performance. Tensor-based methods explicitly model multidimensional

correlations, achieving high accuracy but often at the cost of increased computa-

tional complexity.

Despite their clear advantages, combined methods can be computationally in-

tensive, requiring significant computing resources and careful parameter tuning.

Therefore, practical application often demands a balance between reconstruction

accuracy, computational efficiency, and dataset characteristics. Critical evalua-

tion of these hybrid methods indicates their substantial potential in addressing

complex, large-scale remote sensing data challenges, justifying their adoption for

sophisticated remote sensing analyses

3.5 Conclusion

The review shows that there’s a clear gap between traditional methods’ efficiency

and modern methods’ scalability and robustness. The limitations in generaliza-

tion, complexity, or computational cost across existing techniques call for models
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that can dynamically adapt to diverse spatial-temporal patterns while remaining

efficient and interpretable. This forms the basis for adopting TabNet, a deep

learning model specifically optimized for tabular, structured, and sparse data. It

allows for learning complex spatial-temporal features through an attention-based

architecture with reduced training costs. Complemented by a lightweight out-

lier detection strategy (OSR), the proposed approach balances performance and

scalability, offering a feasible solution for operational EO systems.

The examined methods encompass a variety of statistical, machine learning, and

deep learning techniques utilizing image based dataset. It is essential to compre-

hend the relative performance of different strategies utilized by these methods.

The table (3.1) and 3.2 provides a concise summary of the outlier detection and

data reconstruction techniques.

Table 3.1: Comparison of Outlier Detection Techniques

Method Advantages Disadvantages
Statistical [50, 52, 53] - Mathematically robust - Assumes specific distri-

butions
Distance-Based [54, 55, 57, 58] - Simple and intuitive - Struggles with varying

densities
Density-Based [59, 52] - Identifies complex pat-

terns
- Computationally com-
plex

Depth-Based [60, 188] - No specific model as-
sumption

- Computationally inten-
sive

Clustering [61, 63, 74] - Summarizes data well - Optimal cluster number
is subjective

Neural Networks [63, 168] - Models complex rela-
tionships

- Needs large data; risk of
overfitting

SVM [64, 63] - Good for lin-
ear/nonlinear data

- Complex ker-
nel/parameter tuning
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Table 3.2: Comparison of Data Reconstruction Techniques

Method Advantages Disadvantages
Image Inpainting [107, 109, 110] - High detail preservation - Not for large areas or

complex scenes
Interpolation [112, 111, 117] - Applicable for small

gaps
- Less effective for com-
plex terrains

Spectral Correlation [142, 139, 143] - Utilizes band correla-
tions

- Limited by band con-
tamination

Temporal Replacement [148, 149] - Uses clear observations
over time

- Affected by rapid
changes

Temporal Filtering [156, 158] - Improves signal clarity - May remove important
variations

Dictionary Learning [162, 153] - Captures complex pat-
terns

- Requires significant re-
sources

Spatio-Temporal Fusion [174, 112] - Integrates multiple data
sources

- Complex and resource-
intensive

Cloud Removal [70, 39] - Targets cloud cover ef-
fectively

- May introduce artifacts

Exemplar-Based [134, 136] - Preserves texture and
structure

- Can create repetitive
patterns

Propagated Diffusion [123, 124] - Preserves edges and de-
tails

- Risk of blurring in large
gaps

Variation-Based [128, 129] - Maintains image in-
tegrity

- Limited for large miss-
ing areas

Learning-Based [138] - Learns spatial relation-
ships

- Requires extensive
training data

Spectral-Temporal [181, 182] - Uses spectral and tem-
poral info

- Less effective with cloud
cover

Adaptive Weighted Tensor [153, 106] - Incorporates multi-
dimensional info

- High complexity and
demands

Hybrid Methods [167, 168] - Comprehensive recov-
ery

- Requires advanced
modeling
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Chapter 4

Research Methodology

4.1 Introduction

This chapter outlines the comprehensive methodological framework adopted to

address the dual challenge of outlier detection and the reconstruction of miss-

ing Land Surface Temperature (LST) data in remote sensing imagery. Given the

growing reliance on high-resolution satellite observations for environmental analy-

sis, ensuring the accuracy and completeness of such data is critical. This research

adopts a two-pronged strategy combining traditional rule-based approaches with

modern self-supervised learning methods to address these challenges effectively.

In the first part of this methodology, a temporal-spatial algorithm named Out-

lier Search and Replace (OSR) is proposed. This method uses Dynamic Time

Warping (DTW) to detect inconsistencies across time-series satellite images and

leverages spatial context for robust reconstruction of anomalous or missing values.

In the second part, the methodology transitions to a deep learning-based frame-

work using TabNet, a self-supervised model specifically designed for structured

tabular data. To enable this, raster-based satellite imagery is transformed into a

structured tabular format comprising spatial coordinates and LST values. Tab-

Net is then trained to learn latent spatial-temporal patterns for reconstructing

missing values using masked self-supervised learning.

Together, these complementary approaches provide a complete and scalable so-

lution for improving data quality in Earth observation datasets. The evaluation

is based on both traditional statistical metrics (e.g., MSE, RMSE) and visual

agreement techniques (e.g., Bland–Altman plots) to ensure practical and scien-
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tific reliability.

4.2 Dataset Overview

The research focuses on the Beijing-Tianjin-Hebei region for data collection,

which is a highly urbanised area located in the northern part of China. This

area includes the capital city of the nation, Beijing, the harbour city of Tianjin,

and the neighbouring province of Hebei. The region consists of 11 local adminis-

trative units covering Beijing, Tianjin, and Hebei Province, encompassing a total

area of approximately 216,000 km². The Beijing-Tianjin-Hebei region is located

between 36◦03′N to 42◦32′N latitude and 113◦30′E to 119◦15′E longitude. 4.1

Figure 4.1: Study Area of Beijing-Tianjin-Hebei region

The Beijing-Tianjin-Hebei (BTH) region exhibits a varied geographical composi-

tion, encompassing highly crowded urban hubs such as Beijing and Tianjin, un-

dulating terrains, fertile agricultural plains, and industrial zones. The presence of

several elements contributes to the complexity and versatility of this field, specif-

ically when studying the temperature of the Earth’s surface. [189]. Hence the

selection of the Beijing-Tianjin-Hebei region is motivated by its complex urban-

rural transitions, high variability in LST, and frequent cloud coverage, offering a
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suitable testbed for evaluating outlier detection and reconstruction techniques.

4.3 Exploratory Data Analysis

4.3.1 Spatial and temporal trends

Scatter plots were created for the first six months of 2017 (see Figure 4.2). These

scatter plots helped explain the land surface temperature’s spatial and tempo-

ral trends. Each study subplot shows data for a month, from January to June

2017. The subplots show land surface temperature dispersion using a colour

map. The gradual shift in land surface temperature (LST) readings during the

chosen months shows seasonality in this analysis’s scatter plots. With seasonality

and time-series analysis to observe persistent annual trends, land surface temper-

ature’s geographical and temporal behaviour can be better understood. This

tabular method is notable given the paper’s focus on structuring image-centric

Earth observation data.

Figure 4.2: Scatter Plots of LST from January 2017 to June 201

4.3.2 Outliers in the Data

A box plot was created to analyse the distribution of land surface temperature

(LST) values within the dataset. A box plot is a standardised method for vi-
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sually representing the distribution of data using a summary of five values: the

minimum, the first quartile (Q1), the median, the third quartile (Q3), and the

maximum. (Figure 4.3)

Figure 4.3: Box Plot of Land Surface Temperature (LST) with Outliers and
Median Values

• Central Tendency and Variability: The median LST, depicted as the hori-

zontal line inside the box, represents the centre inclination of the data. The

interquartile range (IQR), represented by the box, offers information on the

dispersion of the LST values and covers the range from the first quartile

(Q1) to the third quartile (Q3).

• Outliers Identification: Outliers refer to individual data points that fall

outside the range defined by the whiskers, which are extended to 1.5 times

the Interquartile Range (IQR) from the quartiles. The spots, represented

as dots outside the whiskers, indicate LST values that are much lower or

higher than the rest of the range.

• Seasonal Median Indicators: The seasonal median indicators display the

median values of land surface temperature (LST) for each season, namely
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winter, spring, summer, and autumn. These values are shown by red dashed

lines overlaid on the graph. These lines facilitate a comparative investiga-

tion of how median temperatures fluctuate throughout the seasons.

• Symmetry and Skewness: The box’s symmetry and the positioning of the

median suggest a distribution of LST values that is relatively symmetric.

The existence of outliers at both extremes indicates that although the data

is generally centred, there are particular cases where the LST (Land Surface

Temperature) drastically deviates from the central values that are being

addressed in this research.

4.3.3 Seasonal LST Distribution

The density plot, as shown in Figure 4.4, clearly exhibits a seasonal distribution

of LST values, providing a precise representation of the probability density of

temperatures. Every season, including winter, spring, summer, and autumn,

is associated with a distinct colour, enabling a quick visual assessment of their

distinctive temperature patterns.

Figure 4.4: Density Plot of Land Surface Temperature (LST) by Season

It is observed that:
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• The LST readings during the summer season display a distribution charac-

terized by a higher average temperature, as anticipated given the warmer

weather during this time of year.

• The winter season exhibits a distribution characterized by lower Land Sur-

face Temperature (LST) values, which correspond to the colder environment

during this time of year.

• Spring and autumn exhibit transitional patterns that connect the temper-

ature disparity between the harsh seasons of winter and summer.

4.4 Evaluation Metrics

This section outlines the evaluation framework employed to examine the effi-

cacy of the suggested models for outlier detection and reconstruction of lost big

earth data. The proposed methodology features a two-stage structure, wherein

the Outlier Search and Replace (OSR) algorithm conducts both outlier detection

and reconstruction, while the TabNet model emphasises learning-based recon-

struction from tabular data; consequently, different sets of metrics are employed

to represent their specific objectives.

4.4.1 OSR Evaluation Metrics

The OSR algorithm performs two sequential tasks: (a) detection of outlying data

points in satellite imagery using temporal-spatial comparisons, and (b) recon-

struction of those detected outliers based on local neighborhood information.

A. Outlier Detection

The accuracy of outlier detection is evaluated using standard classification met-

rics:

• Precision
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Measures the proportion of correctly identified outliers among all detected

outliers.

Precision =
TP

TP + FP

• Recall

Measures the proportion of actual outliers that were correctly identified.

Recall =
TP

TP + FN

• F1 Score

Provides a balanced measure that considers both precision and recall.

F1 =
2× Precision× Recall

Precision + Recall

These metrics are computed over different experimental setups, including vary-

ing window sizes and simulated outlier densities, to evaluate the sensitivity and

generalization of the OSR detection mechanism.

B. Reconstruction Evaluation (within OSR)

For pixels identified as outliers, OSR reconstructs their values using spatial and

temporal context. The reconstruction quality is assessed using:

• Mean Squared Error (MSE)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

• Bland–Altman Plot

A graphical method to analyze the agreement between reconstructed and

true values. It helps visualize systematic deviations or bias in reconstructed

pixel values.
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These evaluation tools help assess both numerical accuracy and statistical agree-

ment, which are essential in remote sensing tasks where minor temperature devi-

ations may have critical implications.

4.4.2 TabNet Evaluation Metrics

The TabNet model reconstructs missing values in tabular LST datasets derived

from raster sources. It is trained to learn latent spatial-temporal patterns that

support accurate prediction of missing data points. The following evaluation

metrics are used to assess its performance:

• Mean Squared Error (MSE)

Measures the average of the squared differences between predicted and ac-

tual LST values.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

Lower MSE values indicate better prediction performance.

• Root Mean Squared Error (RMSE)

Provides an interpretable error in the same unit as the target variable

(Kelvin), offering insight into typical prediction deviations.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

• Bland–Altman Plot

The Bland–Altman (BA) plot visually compares predicted LST values with

actual values, plotting the mean of each pair against their difference. This

method helps assess the level of agreement and any systematic bias. A

good reconstruction model should show differences clustered around zero

with narrow limits of agreement.

These metrics are applied across varying levels of missingness in the input data,
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allowing evaluation of TabNet’s robustness and generalization under different

reconstruction challenges.

4.5 Conclusion

This chapter presented the dual-methodological design adopted in this study, of-

fering both rule-based and machine learning-driven strategies for handling outliers

in LST datasets. The OSR algorithm, grounded in temporal distance metrics and

local spatial correction, provided an interpretable and robust approach for out-

lier detection and reconstruction in raster imagery. It was tested under multiple

experimental scenarios, confirming its reliability across varying window sizes and

anomaly densities.

In parallel, the TabNet model was introduced as a deep learning alternative capa-

ble of learning spatial-temporal patterns directly from structured tabular data de-

rived from MODIS LST products. Through careful preprocessing and dataset re-

structuring, the model was trained using a masked self-supervised learning strat-

egy, achieving low reconstruction errors and narrow agreement in Bland–Altman

evaluations.

The integration of both techniques not only enabled comprehensive outlier detec-

tion and reconstructin but also validated the effectiveness of the tabular dataset

structure itself. This methodological foundation forms the basis for subsequent

results and discussions and supports the thesis’s overarching aim of enhancing

EO data reliability through hybrid, scalable solutions.
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Chapter 5

Outlier Detection and Reconstruc-

tion of Lost Land Surface Temper-

ature data in Remote Sensing im-

agery

5.1 Introduction

This chapter focuses on a crucial component of environmental monitoring: the

precise measurement and analysis of the temperature of the Earth’s surface. The

terrestrial surface temperature data holds great importance in multiple environ-

mental domains, particularly in agriculture, where it acts as a crucial indicator of

atmospheric conditions. The collection of this data heavily relies on remote sens-

ing instruments, which, despite being widely used, frequently face issues such as

missing data and outliers. The main causes of these problems can be traced to the

inherent limitations of remote sensing technologies and the unpredictable changes

in meteorological conditions. In order to overcome these challenges, this chapter

presents and investigates the Outlier-Search-and-Replace (OSR) algorithm. This

novel approach is characterised by its utilisation of spatial and temporal data,

allowing for the effective identification and reconstruction of absent data points

in land surface temperature datasets. The OSR method plays a crucial role in

improving the accuracy and comprehensiveness of temperature data, leading to

enhanced quality in environmental evaluations and decision-making. The efficacy
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of the OSR method is showcased by its utilisation on a dataset of land surface

temperatures obtained by the Moderate Resolution Imaging Spectroradiometer

(MODIS) in January 2018. This case study demonstrates the algorithm’s ability

to locate and fill in missing data, highlighting its practical importance in envi-

ronmental research. The knowledge acquired from this chapter is crucial for the

overarching goals of this thesis, which aim to enhance the techniques for outlier

detection and reconstruction of lost big earth data.

5.2 Proposed Model

Pseudo-code for the proposed model for outlier detection and reconstruction of

missing data is shown in 1 and 2 respectively. Section 5.2.1 and 5.2.2 explains the

working of both parts of algorithm respectively. The following section presents

a detailed evaluation of the OSR algorithm under different experimental settings

to validate its effectiveness in both outlier detection and data reconstruction.

5.2.1 Outlier Detection

The process involves identifying a Region of Interest (ROI) with dimensions

M × N . Within this ROI, the missing data are anticipated to be found and

subsequently reconstructed. A similar region of interest (ROI), which will be

indicated as ROIw, will be chosen for each of the input photos in this early stage.

Selecting the corresponding ROIw refers to extracting a spatial window of fixed

sizeM×N centered at the same pixel coordinates across each image Ii in the tem-

poral sequence. This ensures that temporal comparisons using DTW are made

between aligned regions across time, allowing consistent pixel-level tracking. The

position of this ROI can either be moved across the image (in a sliding window

fashion) or fixed based on a region of interest selected by the user.

Figure 5.1 illustrates the temporal mosaic created by stacking spatially aligned

ROIs across multiple days. Within this mosaic, the value of each pixel loca-
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Figure 5.1: Mosaic image constructed by stacking M ×N windowed views of
Input Images

tion P (j, k) can be tracked as a sequence through time. Dynamic Time Warping

(DTW) is applied to compare such sequences between two consecutive slices (e.g.,

Ii and Ii+1) at the same pixel location using equation 5.1. Unlike Euclidean dis-

tance, which assumes linear alignment, DTW flexibly aligns sequences that may

be non-uniform due to sensor noise or environmental fluctuations, thus making

it particularly effective in detecting subtle dissimilarities caused by outliers or

missing data. This ability to measure non-linear temporal dissimilarity ensures

robust detection even when values shift slightly in time, which is common in

satellite-based measurements.

Cd, Dd = DTW (IiP (j,k), Ii+1P (j,k), ) (5.1)

The pixel value at location j, k in each succeeding day’s input image area of

interest ROIw is denoted by the expression P (j, k) respectively. In addition to

storing the coordinates of each pixel that is being compared, the Dd variable

stores the distance values that exist between the pixels of each subsequent image

slice. In addition to the spatial information of data from the same satellite as

well as numerous satellites, there is a high connection between the temporal LST

values of the same area in consecutive days. This correlation is also present

between the LST values of several satellites. When the pixel values are accurate,
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a linear distance curve is generated; however, anytime there is a missing value

in the image, the distance value is extremely high, which indicates that there

is an abnormality. The following section will recreate these values after they

have been detected and located as outliers based on a threshold value denoted

by the capital letter Dd. At the moment, the threshold value, denoted by Th,

is being determined through experimentation by virtue of a comparison between

real pixels and known outliers.

Algorithm 1 Outlier Detection using DTW

Require: A set of images I = {I1, I2, . . . , In}, Region of Interest (ROI) size
M ×N , Threshold Th

Ensure: Set of detected outlier coordinates Cdo

1: Define ROIw of size M ×N within each image in I
2: Initialize set of outlier coordinates Cdo ← ∅
3: for each image slice Ii in I do
4: Select the corresponding ROIw in Ii
5: Form a mosaic of temporal information using ROIw from all I
6: end for
7: for each pixel P (j, k) in ROIw do
8: Calculate DTW distance between P (j, k) in Ii and Ii+1 using:

Cd, Dd = DTW (IiP (j,k)
, I(i+1)P (j,k)

)

9: if Dd > Th then
10: Mark P (j, k) as an outlier
11: Add P (j, k) to Cdo

12: end if
13: end for
14: return Cdo

5.2.2 Missing Data Reconstruction

Following the identification of the specific coordinates of outlier values, which are

labeled as Cdo , the reconstruction process begins.

In order to restore these anomalies, the algorithm must first go through a process

that is extremely precise. During this step, an exhaustive search is conducted

throughout all the distance values of Ddo in temporal slices contained within the

selected image mosaic, with a particular focus on the coordinates of the outliers
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Cdo . By isolating a pixel value that displays the least amount of variance in terms

of distance from the norm, the goal is to ensure that the pixel value is compatible

with the data context that is surrounding it. The equation 5.2 that governs this

selection procedure is as follows:

Dd = Min(CD, DD ) for 1 ≦ R ≦ N (5.2)

CD in 5.2 gives the location of the pixel PCD
with the lowest distance Dd between

pixel of image slices in mosaic at location similar to outlier Cdo . The pixel PCD

is taken as a reference pixel to reconstruct the outlier. Now a 3X3 window Wo is

taken around the location of the outlier, and the reference pixel PCD
is compared

using 5.2 with the neighbouring pixels of the outlying value in Wo. The pixel that

is at the lowest distance from the reference pixel is copied at the outlier location.

This algorithm is similar to the spatial reconstruction of missing values, but in

this case, temporal information is also being utilised to identify the outliers.

Algorithm 2 Reconstruction of Outliers using Spatial Neighborhood

Require: Set of outlier coordinates Cdo, Temporal slices I = {I1, I2, . . . , In}
Ensure: Reconstructed image data
1: for each outlier coordinate Cdo in Cdo do
2: Find pixel PCD

with minimum DTW distance in temporal slices:
3: Dd = min({CD, DD}) for 1 ≤ r ≤ N
4: Set reference pixel Pref = PCD

5: end for
6: for each outlier coordinate in Cdo do
7: Create a 3× 3 window Wo around the outlier location
8: for each pixel P ′ in Wo do
9: Calculate distance to Pref

10: if distance < min distance then
11: Set min distance = distance
12: Set replacement pixel = P ′

13: end if
14: end for
15: Replace the outlier pixel in Cdo with replacement pixel
16: end for
17: return the reconstructed image data
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5.3 Experimental Results

This section presents the experimental evaluation of the OSR algorithm. The

dataset used is obtained from the Moderate Resolution Imaging Spectroradiome-

ter (MODIS), focusing on the Beijing-Tianjin-Hebei (BTH) region, as previously

introduced in Section 4.2.

To simulate missing or anomalous data, random outliers were introduced into

fixed-size input windows M × N . The effectiveness of the algorithm is assessed

by comparing the reconstructed images to the original, uncorrupted ones.

Figure 5.2 illustrates sequential LST images captured over four consecutive

days. These temporally aligned images form a mosaic that serves as the input for

OSR, enabling pixel-wise temporal comparisons. The temporal behavior of each

pixel location is analyzed using DTW to identify outliers and reconstruct missing

values.

Figure 5.2: Sequential Daily MODIS Images Across a Four-Day Period

Three evaluation scenarios were explored to analyze the effect of varying

conditions:

• Scenario 1: Different window sizes with varying numbers of random out-

liers.

• Scenario 2: Different window sizes with a fixed number (30) of random

outliers.

• Scenario 3: Fixed window size (10 × 10) with an increasing number of

outliers.

For each scenario, two performance aspects are analyzed:
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1. Outlier detection accuracy — evaluated using precision, recall, and F1

score.

2. Reconstruction quality — measured using Mean Squared Error (MSE).

5.3.1 Outlier Detection Evaluation

Table 5.1 shows the results for Scenario 1. The 10× 10 window provides the best

balance, achieving the highest F1 score. Smaller windows struggled to identify

patterns due to limited spatial context, while larger windows suffered from over-

smoothing.

Table 5.1: Scenario 1 — Varying Window Sizes and Outlier Counts

Window Size Outliers Precision Recall F1 Score

4×4 5 0.333 0.200 0.250
6×6 10 0.000 0.000 0.000
8×8 15 0.778 0.467 0.583
10×10 32 0.857 0.750 0.800
15×15 62 0.808 0.339 0.478

Table 5.2 evaluates detection when a fixed number of outliers (30) is injected.

The 10× 10 configuration again performs best across all metrics.

Table 5.2: Scenario 2 — Fixed 30 Outliers with Varying Window Sizes

Window Size Precision Recall F1 Score

4×4 0.400 0.267 0.320
6×6 0.480 0.433 0.455
8×8 0.667 0.700 0.684
10×10 0.857 0.767 0.810
15×15 0.722 0.567 0.635

Table 5.3 presents the results for Scenario 3, showing how detection accuracy

evolves as the number of outliers increases for a fixed 10 × 10 window. While

precision remains stable, recall slightly drops, reflecting the increasing challenge

in detecting more anomalies.
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Table 5.3: Scenario 3 — Increasing Outliers with Fixed 10× 10 Window

Outliers Injected Precision Recall F1 Score

5 0.833 0.800 0.816
10 0.875 0.800 0.836
15 0.857 0.733 0.790
20 0.857 0.750 0.800
25 0.857 0.720 0.782
30 0.857 0.767 0.810
35 0.840 0.743 0.788
40 0.833 0.725 0.776
45 0.820 0.689 0.748
50 0.810 0.660 0.727

5.3.2 Reconstruction Evaluation

Following the identification of outliers, the OSR algorithm proceeds with recon-

struction by leveraging spatial and temporal cues around the detected coordi-

nates. The accuracy of reconstruction is evaluated using the Mean Squared Error

(MSE), representing the average squared difference between original and recon-

structed LST values.

The reconstruction is tested across the same three scenarios described earlier:

• Scenario 1: Different window sizes and different numbers of outliers.

• Scenario 2: Fixed number of outliers (30) with different window sizes.

• Scenario 3: Increasing outlier count with fixed 10× 10 window.

Scenario 1: The results in Table 5.4 show that 10×10 again provides the lowest

MSE (2.25 K2), confirming its effectiveness for both detection and reconstruction.

Table 5.4: Scenario 1 — Different Window Sizes with Varying Outlier Counts

Window Size MSE (K2)

4×4 9.30
6×6 11.90
8×8 6.76
10×10 2.25
15×15 4.84
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Scenario 2: When 30 random outliers are introduced across different window

sizes (Table 5.5), the 10×10 window again exhibits the best reconstruction accu-

racy. This consistency highlights the robustness of the window size across varying

conditions.

Table 5.5: Scenario 2 — Fixed 30 Outliers with Different Window Sizes

Window Size MSE (K2)

4×4 5.95
6×6 4.83
8×8 3.80
10×10 2.25
15×15 3.46

Scenario 3: Table 5.6 shows reconstruction performance when the number of

injected outliers increases gradually while keeping the window size fixed at 10×10.

The MSE increases steadily, reflecting a logical performance degradation as more

outliers make reconstruction increasingly difficult.

Table 5.6: Scenario 3 — Fixed 10×10 Window with Increasing Number of Outliers

Outliers Injected MSE (K2)

5 2.20
10 2.50
15 2.90
20 3.10
25 3.80
30 4.00
35 4.30
40 4.60
45 5.00
50 5.30

Visual Example: A side-by-side image comparison is presented in Figure 5.3,

showing artificially introduced outliers (top row) and the corresponding recon-

structed results (bottom row).

As the visual comparison and MSE values indicate, the 10 × 10 configuration

consistently outperforms other window sizes, striking the best trade-off between
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Figure 5.3: Outlier and Reconstructed Image Pair

context and localization. Too small windows (e.g., 4 × 4) lack sufficient spatial

information, whereas overly large windows (e.g., 15× 15) dilute important local

variations, increasing reconstruction error.

5.3.3 Bland–Altman Plot Across Scenarios

To further assess the accuracy of the OSR reconstruction, Bland–Altman (BA)

plots are used. These plots compare the difference between original and recon-

structed Land Surface Temperature (LST) values against their average, providing

insight into bias, spread, and consistency.

BA plots are generated for all three experimental scenarios. In each case, the

performance of different window sizes is visualized, while the 10×10 configuration

is highlighted due to its consistent performance across all metrics.

Scenario 1: Varying Window Sizes with Varying Outlier Counts Fig-

ure 5.4 shows the BA plot for the first scenario. The 10× 10 configuration yields

the narrowest limits of agreement and the smallest mean difference, aligning with

its lowest MSE in Table 5.4. The spread for other window sizes is wider, indicating

less reliable reconstruction.

Scenario 2: Fixed 30 Outliers with Varying Window Sizes In Figure 5.5,

the 10 × 10 window again demonstrates stable reconstruction, with differences

tightly clustered around the zero line and narrower agreement bounds compared

77



Figure 5.4: Bland–Altman Plot for Scenario 1: Varying window sizes and outlier
counts. 10× 10 window exhibits minimal bias and narrow agreement range.

to other windows. This aligns with the lowest MSE reported in Table 5.5.

Figure 5.5: Bland–Altman Plot for Scenario 2: Fixed 30 outliers. 10×10 window
shows superior consistency and reduced bias.

Scenario 3: Fixed 10× 10 Window with Increasing Outliers Figure 5.6

visualizes how reconstruction error grows as more outliers are introduced. The

spread in differences increases with higher outlier counts, confirming the trend

in Table 5.6. This supports the sensitivity of the algorithm to the number of

anomalies in the ROI.
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Figure 5.6: Bland–Altman Plot for Scenario 3: Fixed 10 × 10 window with in-
creasing outlier count. Spread increases with more outliers, reducing accuracy.

Overall, these plots offer visual confirmation of the numerical results and provide

an intuitive understanding of the OSR algorithm’s reconstruction reliability under

various conditions. The 10 × 10 window size consistently yields the most stable

and least biased reconstructions.

5.4 Conclusion

This chapter presented the Outlier Search and Replace (OSR) algorithm for de-

tecting and reconstructing missing or anomalous values in Land Surface Temper-

ature (LST) imagery obtained through remote sensing. The algorithm leverages

both spatial and temporal dependencies to locate abnormal patterns across im-

age sequences and then reconstructs them using neighborhood-based correction

informed by dynamic time-based comparisons.

To evaluate the performance of the proposed algorithm, three experimental sce-

narios were tested: (i) varying window sizes with varying outlier counts, (ii) fixed

outlier count across varying window sizes, and (iii) increasing outlier counts with

a fixed 10×10 window. Each scenario was designed to assess how different factors

influence the precision and reliability of both detection and reconstruction stages.

In the outlier detection phase, results consistently showed that the 10×10 window
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size offers the best balance between precision and recall, with the highest F1 score

across all scenarios. Smaller window sizes lacked sufficient spatial context, while

larger windows led to over-smoothing and reduced sensitivity.

For reconstruction, the algorithm was evaluated using Mean Squared Error (MSE)

and Bland–Altman plots. In all three scenarios, the 10×10 window configuration

yielded the lowest MSE and the most stable reconstruction behavior, with narrow

limits of agreement and low bias. The degradation in accuracy as the number

of outliers increased further confirmed the algorithm’s sensitivity to anomaly

density, emphasizing the need for optimal window tuning.

These results demonstrate the robustness of the OSR method under diverse condi-

tions, and validate its effectiveness for practical applications where data quality

is impacted by sensor noise or atmospheric disruptions. This lays the founda-

tion for more scalable approaches, which are explored in the next chapter using

learning-based models for advanced reconstruction across broader datasets.
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Chapter 6

Outlier Detection and Reconstruc-

tion in Big Earth Data Using Tab-

ular Self-Supervised Learning

6.1 Introduction

Satellite-based remote sensing offers large-scale and frequent observations of land

surface temperature (LST), a critical environmental variable for understanding

climate behavior, vegetation health, and hydrological processes [190]. However,

the inherent limitations of satellite instruments, such as cloud contamination,

sensor noise, and missing acquisitions, often result in incomplete or corrupted

datasets [37, 40].

While traditional anomaly detection and reconstruction methods (e.g., the OSR

algorithm from Chapter 5) have shown strong performance in spatially local and

temporally short contexts [101], their effectiveness diminishes when faced with

widespread or complex data gaps.

To address this challenge, this chapter explores a deep learning-based solution

leveraging the TabNet architecture. TabNet is a recent innovation designed specif-

ically for tabular data [191]. Its ability to perform sparse feature selection using

attention-based decision steps enables it to learn meaningful patterns from large

geospatial datasets without requiring intensive feature engineering. Unlike stan-

dard fully-connected networks, TabNet preserves interpretability and is naturally

suited to structured environmental data.
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This chapter investigates how TabNet can be self-supervised to reconstruct miss-

ing LST values across large spatiotemporal domains. We focus on building a

tabular representation of the MODIS LST product for the Beijing-Tianjin-Hebei

region and training TabNet to learn the underlying temperature patterns from

partial observations. This approach complements the OSR algorithm by provid-

ing a more scalable, learning-driven reconstruction method suitable for long-range

data completion.

6.2 Data Collection and Processing

6.2.1 Data Collection

The Land Surface Temperature (LST) dataset used in this chapter was col-

lected from the MODIS (Moderate Resolution Imaging Spectroradiometer) satel-

lite product for the Beijing-Tianjin-Hebei (BTH) region. MODIS LST prod-

ucts provide global coverage with a spatial resolution of 1 km and temporal

frequency of four observations per day (day/night for both Terra and Aqua satel-

lites), making them well-suited for time-series temperature reconstruction tasks

https://ladsweb.modaps.eosdis.nasa.gov accessed on 10 June 2023. Each MODIS

granule was clipped to the BTH region and stored as georeferenced raster im-

agery. The dataset was obtained during a period of three years, specifically from

January 1, 2017, to December 31, 2019. In instances where data is not obtainable

for a certain time period, said period is duly recorded within a compilation of

time periods characterized by the absence of data.

6.2.2 Data Processing

The data preprocessing pipeline, shown in Figure ??, includes five key steps: pro-

jection, gap detection, value assignment, unit conversion, and tabular restructur-

ing.
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Figure 6.1: Data Collection & Processing

The first two steps—geo-referencing/projection and gap detection—were adopted

directly from standard MODIS processing guidelines [192].

The next three steps were developed as part of this research to make the data

suitable for deep learning-based modeling:

- **Value Assignment:** All missing values were temporarily replaced with zeros

to maintain tensor shape during training. While zero-filling is simplistic, it was

used in conjunction with a masking layer in TabNet to prevent the model from

learning from placeholders.

- **Temperature Conversion:** LST values, originally in Celsius, were rescaled

to Kelvin units for consistency with geoscientific standards and to ensure non-

negativity of temperature inputs.

- **Tabular Restructuring:** The most significant processing step involved trans-

forming raster images into tabular format. Each row represents a unique pixel,

with columns for spatial coordinates, and LST value. This flattening allows Tab-

Net to process the data as structured sequences with partial observations.

While some operations (e.g., zero-filling and Kelvin scaling) are standard prepro-

cessing tasks, the design and implementation of the tabular transformation—particularly
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the alignment of spatial-temporal features across images—form a key technical

contribution of this chapter.

This processed data enables pixel-level learning in a self-supervised manner, where

the model is trained to predict masked LST values from their spatial and temporal

context without requiring external labels.

6.3 Experimental Results

The dataset captures essential geographical and meteorological parameters rele-

vant for the study of land surface temperature. It consists of four key parameters.

Table ?? shows the glimpse data and parameters.

Table 6.1: Tabular LST data of BTH Region

Latitude Longitude LST* (K) Digital Number (DN)

114.5487 42.1265 0 NULL
114.4229 40.81495 302 15093
114.2343 40.80597 305 15263
114.2702 40.80597 303 15167

The Beijing-Tianjin-Hebei dataset records latitude and longitude in degrees for

precise geographic identification. Land Surface Temperature (LST) readings in

Kelvin are essential for local climate analysis, vegetative health studies, and heat

stress assessment in urban and rural locations. A Digital Number (DN) values are

compressed LST values that can be translated to Kelvin using a scaling factor

of 0.02. This conversion approach optimises data efficiency and allows more

extensive analytics.

6.3.1 Exploratory Data Analysis of Generated Dataset

The accuracy and reliability of the unique tabular dataset is confirmed through a

thorough investigation and rigorous analysis. Subsequent sections will establish

this argument with the help of different analysis.
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6.3.2 Temporal Trend Analysis

The organised tabular format of the dataset for thorough and systematic com-

putations of seasonal temperature fluctuations, which played a vital role in ver-

ifying the dataset’s precision and dependability. Figures 6.2 and 6.4 present a

comprehensive analysis of the temporal fluctuations in Land Surface Tempera-

ture (LST) throughout a wide geographic region of Beijing-Tianjin-Hebei region

situated within China, covering the period from January 2017 to end of 2019.

Figure 6.2 depicts the average Land Surface Temperature (LST) on a daily basis,

while Figure 6.4 provides a supplementary perspective by showing the weekly

averages. Both representations consist of data points that represent the aver-

age temperature values derived from a large number of XY coordinate positions.

The daily time series graph (Figure 6.2) displays the rapid changes in tempera-

Figure 6.2: Daily LST Average Trend

ture, providing a detailed view of the day-to-day variations. This high-resolution

representation enables the examination of brief irregularities and severe weather

occurrences that might be concealed in data that is more consolidated. The

weekly average graph (Figure 6.4) mitigates the daily fluctuations to provide a

more distinct depiction of the long-term trends and patterns. Both graphs display
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a prominent cyclical pattern that aligns with the seasonal variations in temper-

ature. The peaks, which usually occur in the middle of the year, indicate the

summer season, while the troughs at the end and beginning of the year indicate

the winter season.

The plots display inter-annual changes, indicating a constant seasonal effect but

also slight year-to-year differences in temperature. These variations may arise

from natural climate oscillations, such as El Niño or La Niña phenomena [193,

194], or human-induced factors, such as alterations in land use or urbanisation

[195].

Figure 6.3 shows daily average LST from 2017 to 2019, overlaid with periods of

El Niño (in red) and La Niña (in blue) based on NOAA’s ENSO classification. As

evident, the early 2017 La Niña phase corresponds to a cooler period, while the El

Niño event between late 2018 and mid-2019 shows higher LST values, suggesting

a potential linkage between ENSO phases and LST fluctuations [196].

Figure 6.3: Daily average Land Surface Temperature (LST) with El Niño (red)
and La Niña (blue)

The scatter of daily data points in Figure 6.2 emphasises the fluctuation in Land

Surface Temperature (LST) that may result from daily temperature changes, lo-

calised micro-environments, or discrepancies in data collection. Meanwhile, the

more streamlined weekly graph depicted in Figure 6.4 may help emphasise over-

arching patterns and changes that could suggest alterations in climatic patterns

or the effectiveness of long-term environmental initiatives.
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The dataset’s robustness and the data collection process are emphasised by the

consistent seasonal trends shown in both panels. Nevertheless, the existence of

exceptional data points and yearly variations emphasised by the daily graph are

the outliers which are essentially addressed in this research.

Figure 6.4: Weekly Average LST Trend

The findings shown in Figure 6.6, illustrates the average fluctuations in Land

Surface Temperature (LST) on both a monthly and quarterly basis. The graph

effectively demonstrates a coherent trend in Land Surface Temperature (LST)

over the duration of the three-year investigation.

Figure 6.5: Trend of Average Land Surface Temperature
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6.3.3 Seasonal Trend Analysis

The seasonal average Land Surface Temperature (LST) trends, as depicted in

Figure 6.6 and seasonal mean and median values are shown in table 6.2.The

results from a thorough investigation and provide a clear representation of the

temperature changes across the seasons.

Figure 6.6: Seasonal Average LST Trend Analysis

Table 6.2: Seasonal Average Temperatures

No. Season Mean (K) Median (K)

1 Winter 275.44 276.00
2 Spring 297.77 299.00
3 Summer 305.02 305.00
4 Autumn 291.88 292.00

• Winter: The dataset precisely reflects the anticipated decrease in average

Land Surface Temperature (LST) to 275.44°K, which corresponds to the re-

duced amount of sunlight throughout the winter season. The median value

corresponds to the mean, confirming the dataset’s coherence its reliability

in depicting winter temperatures.(Table 6.2)

• Spring: The dataset clearly shows a significant rise in average Land Surface

Temperature (LST) to 297.77°K during the spring season, indicating a shift
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towards higher temperatures. The dataset’s ability to accurately record the

beginning of higher temperatures is confirmed by the slightly higher median

value, which is consistent with expected seasonal warming. (Table 6.2)

• Summer: The highest average Land Surface Temperature (LST) of 305.02°K

exactly matches the usual conditions throughout summer, providing more

evidence of the dataset’s accuracy. The precision of the median value at

305.0°K demonstrates the dataset’s resilience in continuously capturing the

highest point of seasonal warmth. (Table 6.2)

• Autumn: The dataset accurately documents a decline in average Land Sur-

face Temperature (LST) to 291.88°K, in line with the anticipated cooling

over the fall season. The close proximity of the median to the mean con-

firms the dataset’s trustworthiness in accurately following the progressive

decrease in seasonal temperatures. (Table 6.2)

6.4 Proposed Model

TabNet, introduced in 2019 by [191], represents a significant advancement in the

field of deep neural networks (DNN) for handling tabular data.

The application of TabNet as self-supervised learning (SSL) model offers a new

and promising approach in the field of large-scale Earth data processing . This

research relies on TabNet regressor, a transformer-based model that is widely

recognised for its exceptional performance in handling tabular data. TabNet’s

distinctive features render it very suitable for addressing the specific issues posed

by the dataset employed in this work. The use of TabNet is motivated by its

ability to handle missing values in tabular form without requiring heavy prepro-

cessing or imputation. Unlike conventional dense neural networks or tree-based

models, TabNet’s sparse feature selection ensures that only the most informa-

tive features are considered during training. This is highly beneficial for LST

datasets, where missing data is widespread and patterns are often nonlinear and
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region-specific. Moreover, its built-in interpretability supports transparency in

environmental modeling, which is critical in scientific and policy applications.

To simulate missing data scenarios and assess model performance, a self-supervised

learning approach is adopted. In this approach, random subsets of the data are

masked during training, and the model learns to reconstruct the missing values.

This strategy helps the model generalize better for real-world missing data and

aligns with the problem context defined in previous chapters.

The following are the primary characteristics of TabNet that have been utilised:

• Direct Input of Raw Data: TabNet performs well in directly handling

unprocessed tabular data, reducing the requirement for substantial prepa-

ration. This capacity is essential for managing the varied and unprocessed

attributes of the Earth data in our dataset.

• Sequential Attention Mechanism: TabNet utilises a hierarchical struc-

ture of attention modules, which take feature samples as input and selec-

tively focus on a subset of features at each stage using a trainable mask

represented by a matrix M ∈ Rn×d . This method is crucial for the model’s

capacity to focus exclusively on essential characteristics, hence improving

both accuracy and efficiency.

• Feature Selection and Transformation: The model employs a mask,

generated using an attentive transformer, to perform gentle feature selec-

tion at each iteration, taking into account the utilisation of features in prior

iterations. The masked features are efficiently encoded by undergoing trans-

formation through fully connected (FC) layers, batch normalisation (BN),

and gated linear units (GLUs.

• Self-Supervised Learning for Anomaly Detection: By undergoing

training to forecast added anomalies and missing data, the model acquires

a more profound comprehension of dataset patterns and irregularities. The
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SSL technique is exceptionally efficient at identifying outliers and recon-

structing data in large tabular dataset.

The sequential attention mechanism and sparse feature selection capabilities of

TabNet are crucial for effectively managing the intricacies of Earth data analysis.

Following several iterations of feature masking and transformation, the ultimate

encoding is employed to achieve precise prediction in subsequent tasks, while back

propagation fine-tunes the network’s weights.

6.4.1 TabNet Architecture

TabNet is an interpretable deep learning architecture specifically designed for

tabular data [191]. It combines the power of gradient boosting-like feature se-

lection with the flexibility of deep neural networks. Unlike traditional dense

networks that use all features uniformly, TabNet employs sequential attention

mechanisms that enable the model to focus only on the most relevant features at

each decision step. This allows it to learn sparse and diverse feature masks over

time, improving both efficiency and interpretability. The architecture consists of

a shared feature transformer followed by multiple decision steps. Each decision

step contains an attentive transformer that learns a mask over input features and

a feature transformer block that processes selected features to make partial pre-

dictions. These partial predictions are then aggregated across decision steps to

produce the final output. A key advantage of TabNet is its built-in interpretabil-

ity. The learned feature masks allow practitioners to inspect which input features

contribute most to the prediction. Additionally, TabNet supports self-supervised

learning by masking inputs and reconstructing them, making it suitable for tasks

like missing data reconstruction, as demonstrated in this chapter. Compared

to conventional fully connected networks or tree-based ensembles, TabNet main-

tains end-to-end differentiability and requires minimal preprocessing, which is

ideal for structured environmental datasets such as LST values, where patterns

vary temporally and spatially.
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Figure 6.7: : TabNet encoder architecture

The TabNet encoder comprises multiple sequential steps, each containing three

main components:

• Feature Transformer: This comprises of a sequence of fully connected

(FC) layers, batch normalisation (BN), and a Gated Linear Unit (GLU).

The feature transformer encodes the features and divides the output into

two components: one component directly feeds into the decision-making

process, while the other is forwarded to the next stage. This finally links

to a residual connection, incorporating normalisation with a value of
√
0.5.

Refer to Figure 6.12 for a concise visual representation. The selection of

this specific normalisation method is based on the fact that it decreases the

variability in the network. Once the features are successfully encoded using

the feature transformer, the output is divided into two embeddings. The

first embedding, diϵR
N×Md , directly influences the decision-making process.

The second embedding, aiϵR
N×Ma , is passed on to the subsequent phase.

The hyperparameters Md and Ma can be adjusted.

• Feature Selection: An acquirable mask is employed to choose prominent

characteristics at every stage. The mask is applied by performing element-

wise multiplication on the tabular data. The computation involves utilising
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an attentive transformer that merges the processed characteristics from the

preceding stage with a prior, and subsequently undergoes a function known

as sparsemax as shown in equation 6.1. The prior is a quantification of the

extent to which a specific feature has been utilised in preceding stages, with

a gamma parameter (γ) regulating the focus on various features.

Mi = sparsemax(Pi−1 · hi(ai−1)) (6.1)

where hi is a trainable function, a fully-connected network in this case.

The prior Pi is a measure of how much a particular feature has been used

in equation 6.2

Pi =
i∏

j=1

(γ −Mj) (6.2)

Given an initial value of P0 = 1MXN , we have a grid of size N ×M . Given

that all elements in M are inside the range of zero and one, if γ is equal to

1, the subtraction of the mask will result in certain features approaching

zero, thereby excluding them from the decision-making process. However,

when γ is significantly larger than 1, eliminating M will result in comparable

values in the previous, so promoting a more evenly distributed focus on the

various features. This elucidates the rationale behind the definition.

• Decision Making: Similar to a decision tree, decision embeddings from

each step are passed through a ReLU activation function, aggregated, and

then passed through a fully connected layer to make the final decision.

(Equation 6.3)

y = FC

(
Nsteps∑
i=1

ReLU(di)

)
(6.3)

• Decoder:The decoder architecture is specifically tailored to enhance SSL

(Self-Supervised Learning) inside the framework of TabNet. The purpose

of this decoder is to restore the missing columns in tabular data. The

technique entails generating a feature mask, denoted as matrix S, which is
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Figure 6.8: Feature and Attentive Transformer

composed of binary elements. Each element is randomly selected from a

Bernoulli distribution. During training, the encoder handles the partially

masked data, (1−S)⊗D, whereD represents the original data. The decoder

thereafter endeavours to restore the absent characteristics (those that were

concealed in the input). The purpose of this reconstruction task is to allow

the encoder to acquire meaningful data representations without depending

on labelled data. Following the pre-training step with SSL, the encoder

can undergo additional refinement through supervised training techniques,

enabling it to adapt to specific tasks by utilising labelled data.

Figure 6.9 shows the application of self supervised learning on the dataset.

6.5 Experiment & Results

This section will describes the performance of TabNet. To maintain the accuracy

of model performance measures, an 80/20 split of the dataset was employed—80%
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Figure 6.9: Self Supervised Learning on Tabular LST Data

of the data was used for training, and 20% was reserved for testing. Within

the training data, 10-fold cross-validation was applied to ensure that the model’s

learning was generalisable and not biased towards specific subsets. This approach

allowed the model to be trained and validated across different partitions of the

data, thereby reducing overfitting and improving robustness. The final evaluation

metrics, including Mean Squared Error (MSE), were computed on the indepen-

dent test set after cross-validation, providing a reliable assessment of the model’s

generalisation performance.

Quantitative Evaluation

The accuracy of predictions is of the utmost significance in regression tasks.

Quantifying the variance between predictions and actual data is crucial. The
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evaluation of our TabNet regression model, which was assigned the task of pre-

dicting Land Surface Temperature (LST), principally relied on the Mean Squared

Error (MSE) statistic. Mean Squared Error (MSE) is especially suitable for re-

gression problems because it applies a greater penalty to larger errors by squaring

the error numbers. This effectively emphasises major differences between the an-

ticipated and actual values.

• Mean Squared Error (MSE):The Mean Squared Error (MSE) is a statistical

measure that quantifies the average of the squared differences between the

estimated values and the actual value. Mathematically, the expression is:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (6.4)

where Yi represents the genuine LST values and Ŷi represents the estimated

LST values.The anticipated LST values are represented by i, and n rep-

resents the number of observations.A smaller Mean Squared Error (MSE)

score signifies a stronger alignment between the model and the data, indi-

cating a greater level of predictive accuracy for the model. Conversely, a

greater Mean Squared Error (MSE) number may indicate a model that does

not fit the data well, maybe due to underfitting or the presence of outliers

that greatly affect the error.

The model obtained a Mean Squared Error (MSE) of 0.3881 on the validation set

and an MSE of 0.1506 on the test set. These numbers provide the mean squared

deviations between the expected and actual LST values in each corresponding

dataset. The test set exhibits a reduced Mean Squared Error (MSE) value of

0.1506, in contrast to the validation set’s MSE value of 0.3881. This discrepancy

suggests that the model possesses robustness and the capacity to effectively gen-

eralise to unseen data. A smaller mean squared error (MSE) indicates that the

model’s predictions are, on average, more accurate and closer to the actual land

surface temperature (LST) readings.
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In order to provide a more concrete framework, we can transform these Mean

Squared Error (MSE) data into Root Mean Squared Error (RMSE) values, which

are measured in the same units as the Land Surface Temperature (LST). The

root mean square error (RMSE) for the validation set is roughly 0.623, whereas

for the test set, it is approximately 0.388. The root mean square error (RMSE) of

0.388 on the test set indicates that the model’s predictions, on average, deviate

by 0.388 degrees from the true LST values.

Visual Evalution

Figure 6.10 and 6.11 shows a scatter plot illustrating prediction error and the

relationship between the observed LST values and the estimated LST values re-

spectively. The proximity of the points to the diagonal directly correlates with

the level of accuracy in the predictions. The plot demonstrates a robust corre-

lation between the predicted and actual values, with the majority of data points

closely adhering to the diagonal line.

Figure 6.10: Prediction Error Plot: Actual vs. Predicted LST Values

The residual plot (Figure 6.12) visually represents the discrepancies between

the projected Land Surface Temperature (LST) values generated by our Tab-
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Figure 6.11: Actual vs. Predicted LST Values

Net model and the actual LST values, which are referred to as residuals. This

plot plays a crucial role in assessing the model’s ability to predict outcomes for

various ranges of actual LST values.

Analysis of Residual Distribution

Every point on the figure 6.12 shows a residual value for a corresponding real

land surface temperature (LST) measurement. The residuals are graphed on the

y-axis, where a residual value of zero represents an accurate forecast. Optimally,

the residuals need to have a symmetrical distribution around the horizontal axis

at zero, not showing any noticable patterns or trends. The residual plot shows

the following attributes:

• Central Tendency: The majority of the residuals concentrate near the hor-

izontal line at zero, indicating that the model predictions are normally

precise, without any noticeable systematic bias.

• Variance: The dispersion of the differences between observed and predicted

values remains constant throughout the whole range of actual Land Sur-
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Figure 6.12: Residuals of Predictions (Sampled)

face Temperature (LST) values, suggesting homoscedasticity. The uniform

distribution of this spread is preferable, as it indicates that the model’s

predicted performance remains consistent across various LST values.

• Anamoly: There are distinct anomalies, especially for higher recorded LST

values. These cases, in which the model’s predictions diverge more notice-

ably from the actual values, necessitate additional analysis to comprehend

the underlying factors.

• Pattern Analysis: No clear patterns emerge from the residual plot, sug-

gesting that the model does not exhibit systematic errors across the range

of predictions. However, the slight increase in the spread of residuals at

the higher end of the LST values could indicate a potential decrease in

prediction accuracy for higher temperatures.

6.5.1 Bland–Altman Plot Evaluation for TabNet

To further assess the reconstruction accuracy of the TabNet model, a Bland–Altman

(BA) plot was generated by comparing predicted LST values against the original
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values for the test dataset. The BA plot provides insight into the agreement

between predicted and true temperatures beyond standard error metrics.

Figure 6.13: Bland–Altman plot of TabNet predictions vs. true LST values on
the test dataset.

As illustrated in Figure 6.13, the mean difference between predicted and true

LST values is close to zero, with most residuals falling well within the ±1.96

standard deviation bounds. This indicates minimal systematic bias and a strong

agreement between TabNet predictions and ground truth. The majority of data

points lie within ±0.8 K of error, corroborating the low MSE observed (0.1506

for test data and 0.3881 for validation).

Comparison with OSR: The OSR-based Bland–Altman plots, while effective,

exhibited wider limits of agreement across all reconstruction scenarios. This

implies greater variability in reconstruction accuracy, especially under increasing

numbers of outliers. In contrast, TabNet consistently demonstrated narrower

limits and residual clustering, highlighting its robustness and scalability as a

deep learning-based solution for LST reconstruction.
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6.5.2 Comparison Between TabNet and OSR Reconstruc-

tion Results

To ensure fair evaluation of reconstruction performance, both statistical and vi-

sual measures are considered. The OSR method, relying on localized spatial-

temporal context, achieved aminimum MSE of 2.25 K2 using a 10×10 window

configuration (Chapter 5). This corresponds to an average error of approximately

1.5 K when root mean squared error (RMSE) is considered.

In comparison, the TabNet model yielded an MSE of 0.3881 under normalized

conditions. However, as shown in the residual distribution (Figure 6.12), the

actual prediction errors predominantly fall within the range of ±2 K, confirming

that TabNet maintains comparable or superior reconstruction accuracy even in

raw Kelvin values.

This validates TabNet as a robust deep learning-based alternative for large-scale

LST reconstruction, especially where global patterns and contextual learning can

enhance the performance over localized methods such as OSR.

6.6 Conclusion

This study aimed to tackle the difficulties related to outlier detection and the

restoration of lost LST data, which are crucial concerns in environmental mon-

itoring and climate studies. In order to accomplish this, a customised tabular

dataset was created, containing information on latitude, longitude, and land sur-

face temperature (LST) values and digital number (DN). The simplified tabular

dataset allowed for a targeted analysis of Land Surface Temperature (LST) and

offered a strong structure for detecting any irregularities in the data. This pre-

processing step aligns with the broader objectives of this thesis, particularly in

constructing a clean and analyzable version of MODIS LST data for model input.

By utilising the characteristics of the TabNet regressor, our model was effectively

trained to accurately forecast LST values and identify and correct anomalies and
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missing values in the dataset. The effectiveness of the model was quantitatively

confirmed by calculating the Mean Squared Error (MSE) values. The MSE was

found to be 0.3881 for the validation set and a significantly lower value of 0.1506

for the test set. These statistics demonstrate the model’s accuracy and its capac-

ity to be used as a tool for improving the reliability of LST datasets. Furthermore,

a comparison with the OSR algorithm (Chapter 5) confirmed that TabNet offers

comparable or even superior performance under larger-scale conditions, with root

mean squared errors falling in the ±2K range.

In addition to our quantitative assessment, the residual plot offered a visual rep-

resentation of how well the model performed. It showed that the residuals were

tightly clustered around zero, which confirmed the accuracy of the model. The

study primarily focused on outliers, which were identified by the dispersion of

residuals at specific places. These patterns align with observed anomalies across

time, and their correspondence to known climate events (such as El Niño/La

Niña) was briefly discussed, reinforcing the importance of accurate anomaly track-

ing.

The importance of this work lies in the following contributions:

• Utilization of a Self-Supervised Learning model (TabNet Regressor) in out-

lier detection and reconstruction of lost LST data in tabular form, which

validates the dataset itself presented in section 6.2.

• A systematic framework for accurately predicting Land Surface Tempera-

ture (LST) values using only geographical coordinates and temporal con-

text.

• A strong mechanism for improving the quality of LST datasets by identi-

fying and correcting abnormal data entries, as well as predicting missing

values using scalable machine learning techniques.
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Chapter 7

Discussion, Conclusion and Future

Works

7.1 Discussion

The foundation of this research is based on significant progress in outlier detection

and data reconstruction methods for LST datasets. This study has significantly

enhanced the accuracy of predicting Earth observation values, particularly land

surface temperature (LST) values, and correcting anomalies in Earth observa-

tion (EO) datasets by utilising both traditional spatial-temporal techniques and

advanced self-supervised learning models.

One of the key contributions of this thesis is the development of the OSR (Outlier

Search and Replace) algorithm, which utilises Dynamic Time Warping (DTW)

to detect temporal inconsistencies in satellite imagery and reconstruct outlying

data points using a local spatial neighbourhood. The algorithm was carefully

evaluated across different scenarios, and consistently demonstrated strong detec-

tion accuracy (F1 score of 0.81) and reconstruction quality with a minimum MSE

of 2.25 K2 for the optimal 10× 10 window configuration. This rule-based, inter-

pretable method provided a practical baseline and showed robustness in local

reconstruction tasks.

An essential component of this study has been the development and verification

of a tabular dataset specifically for the Beijing-Tianjin-Hebei region. This un-

dertaking was not simply a task of creating a dataset but also a crucial step in

constructing a better organised and resilient framework for identifying anoma-
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lies. The dataset played a crucial role in facilitating targeted analysis, hence

improving the general dependability and accuracy of LST datasets. Importantly,

this dataset was derived from real-world MODIS LST observations, not synthetic

data, adding credibility to the model evaluations and outcomes. The process of

validating this dataset greatly enhanced its usefulness and reliability as a valuable

resource for future Earth observation investigations.

This research has made a notable accomplishment by applying advanced machine

learning algorithms, with a special focus on the importance of self-supervised

learning. This novel methodology has created new avenues for handling the in-

tricacies linked to large-scale Earth data in tabular form. The efficacy of these

sophisticated methods in managing the variety and complexity of remote sens-

ing datasets showcases their capacity to transform the domain of big-earth data

processing.

Moreover, the comparative evaluation between OSR and TabNet reconstructions

has provided insight into the relative advantages of rule-based and learning-based

methods. While OSR demonstrated robustness in spatial context reconstruction

with a minimum MSE of 2.25 K2, TabNet achieved a lower MSE of 0.1506 on

the test set, showing higher accuracy for absolute pixel value prediction and

greater scalability. The complementary strengths of both methods highlight a

valuable methodological spectrum for addressing missing LST data in remote

sensing applications.

7.2 Challenges and Limitations

During this research, one of the most difficult problems was dealing with the

intricate and extensive amount of Earth Observation data. The complex and

diverse characteristics of remote sensing data required the creation of advanced

and subtle models that can effectively handle and analyse large quantities of

information with precision. This intricacy posed a substantial obstacle to the

progress of EO data analysis methodologies.
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In the OSR algorithm, parameter selection—especially the threshold used for

DTW-based outlier detection—posed a sensitivity challenge. The performance

was highly dependent on this value, requiring empirical tuning to achieve reliable

detection outcomes. Furthermore, OSR reconstruction relied on spatial similarity

within a fixed window, which may not generalise well in areas with high spatial

heterogeneity.

Another aspect that requires additional investigation is the extent to which the

generated models may be applied to other situations or contexts. Although these

models have shown impressive levels of accuracy and efficacy in analysing LST

data, their suitability for analysing other forms of Earth observation datasets has

yet to be thoroughly evaluated. The issue of how these models can be modified or

expanded to include new types of EO data is a critical concern for future studies,

prompting a more comprehensive exploration of the flexibility and adaptability

of these approaches.

Additionally, the lack of in-situ validation data limited our ability to quantify

model accuracy against ground-truth temperature observations. While residual

analysis and image-based comparisons were used as indirect indicators, incorpo-

rating real-world measurements would strengthen future evaluations.

7.3 Conclusion

This thesis focuses on improving outlier detection and reconstruction methods

in Earth Observation (EO) datasets, with a specific emphasis on land surface

temperature (LST). It makes a substantial contribution to the field of big-earth

data analysis and application. The research has established unique approaches

and procedures that have shown the potential to greatly improve the quality and

reliability of EO data analysis.

The creation and verification of a specialised tabular dataset for the Beijing-

Tianjin-Hebei region exemplify the actual implementation of these approaches.

This dataset not only enabled comprehensive analysis but also defined a standard
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for identifying anomalies, thereby improving the reliability and practicality of

LST datasets.

Two complementary methods were proposed and evaluated: the rule-based OSR

algorithm and the learning-based TabNet model. OSR employed a temporal

distance metric (DTW) for anomaly detection, followed by local spatial recon-

struction. This method demonstrated high detection precision and strong recon-

struction fidelity in low-outlier-density scenarios.

Moreover, the utilisation of sophisticated machine learning methodologies, partic-

ularly self-supervised learning models such as the TabNet regressor, has created

fresh opportunities in the analysis and understanding of large-scale Earth data.

These strategies have demonstrated their importance in handling the intricacies

inherent in remote sensing datasets, providing a more refined and precise way to

analyse environmental data.

Although there were accomplishments, this research faced difficulties, specifically

in handling the intricacy of EO data and the applicability of the created models.

Nevertheless, these challenges have yielded useful insights and established the

foundation for further investigation in this domain. The integration of OSR and

TabNet not only validated the underlying tabular dataset but also showcased a

dual-path approach—one interpretable and rule-based, the other data-driven and

scalable—for addressing missing and anomalous data in LST observations. The

contributions made in this study—ranging from algorithm development, dataset

construction, to deep learning model application—advance current knowledge in

remote sensing-based anomaly detection and LST reconstruction.

7.4 Future Works

The research conducted has laid the groundwork for numerous future under-

takings in the discipline. Subsequent research should prioritise evaluating the

applicability of the proposed models to diverse Earth observation datasets. It

will be essential to investigate the flexibility of these models in relation to various
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environmental conditions and types of satellite data from multiple sources.

For OSR, future enhancements may include adaptive thresholding strategies or

integration of multi-band spectral similarity in outlier detection, which would im-

prove robustness across heterogeneous terrains. In addition, OSR could benefit

from integration with learning-based modules to allow context-aware reconstruc-

tion.

For example, the incorporation of EO data with other sources, such as ground-

based sensors and other satellites, has the potential to enhance our comprehen-

sion of environmental phenomena by providing a more comprehensive perspective.

There is potential for future fine-tuning and augmentation of the machine learn-

ing techniques employed in this investigation. Integrating progress in artificial

intelligence and machine learning has the potential to result in more refined and

precise models for analysing EO data.

A potential future study could investigate the use of these techniques in real-

time data processing and anomaly detection. This would have substantial conse-

quences for prompt and efficient environmental monitoring and disaster response.

Furthermore, efforts should also be made to validate LST predictions against real-

world measurements, thereby bridging the gap between satellite observations and

ground-truth data.
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