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AN EQUIVALENT PROPERTY OF A HILBERT-TYPE
INTEGRAL INEQUALITY AND ITS APPLICATIONS

B. Yang, D. Andrica, O. Bagdasar, and M. Th. Rassias*

Making use of complex analytic techniques as well as methods involving
weight functions, we study a few equivalent conditions of a Hilbert-type inte-
gral inequality with nonhomogeneous kernel and parameters. In the form of
applications we deduce a few equivalent conditions of a Hilbert-type integral
inequality with homogeneous kernel, and we additionally consider operator
expressions.

1. INTRODUCTION

In 1925, Hardy [6] proved the following result, which is now very well known
as the classical Hardy-Hilbert integral inequality. This states that for positive real
numbers p, g with p > 1, % + % =1, and functions f(z),g(y) > 0, with

O</ fP(x)dr < co and O</ 94 (y)dy < oo,
0 0

we have

(1) /Ooo /OOO dedy < ﬁ </O°° fP(ac)dx) v

o0 a
q
( / g (y)dy> ;
0
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where the constant factor -

sin(7/p)
is the best possible.
For p = ¢ = 2, (1) yields the well known Hilbert integral inequality. Both (1),
as well as Hilbert’s integral inequality play an important role in analysis and its
applications (cf. [7], [16]).
In 1934, Hardy et al. established the following extension of (1):
If k1(x,y) is a nonnegative homogeneous function of degree —1, and one defines

k, = / k1 (u, 1)u_%du € Ry :=(0,00),
0

then we have the following Hardy-Hilbert-type integral inequality:

/OOC /Ooo ki(z, y) f(2)g(y)dedy < ky (/OOO f”(fc)dw>; (/OOO gq(y)dy); ,

where the constant factor k, is the best possible (cf. [7], Theorem 319).
Additionally, the following Hilbert-type integral inequality with nonhomoge-

neous kernel holds true:
If h(u) > 0,¢(c fo Ju®tdu € Ry, then

/ / () (2)g(y)dwdy
3) < ¢>( )(/0 (s )dw); (/Owgq(wdy)}’,

where the constant factor ¢ (%) is the best possible (cf. [7], Theorem 350).

In 1998, by introducing an independent parameter A > 0, Yang established
an extension of Hilbert’s integral inequality, namely the following (cf. [19], [20] ):

[ [ 1o |
(@ < 5(33) (/ :v“f2(x)dz/omy1 Pldy)

where the constant factor B (3, 3 ) is the best possible (B(u, v) is the beta function).
In 2004, by introducing two pairs of conjugate exponents (p,q) and (r,s),

Yang [21] proved the following extension of (1):

fA>0pr>1, %—i— % = % + % =1, and f(z),g(y) > 0, satisfy

A

0</ xpu*%)*lfp(x)dx<oo and 0</ Y11= =14 (y)dy < oo,
0 0
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then we have

// acMrA ey

C e S e

where the constant factor -

Asin(w/r)
is the best possible. For A = 1,r = ¢, s = p, (5) reduces to (1).

In 2005 the paper [22] also provided an extension of (1) and (4) with the
kernel +y)} and two pairs of conjugate exponents. Krni¢ et al. [1], [2], [3], [8],

[10], [11], [14], [18], [30], proved some extensions and particular cases of (1), (2)
and (3) with parameters. In 2009, Yang established an extension of (2) and (5),
namely the following (cf. [23], [24]):
If \y + X2 = XA € R, kx(z,y) is a nonnegative homogeneous function of degree —A\,
satisfying

k)\(UILUy) = uf/\kA(x,y) (U,I, y > 0)7

and

k(A1) = / ka(u, uM " du € Ry,
0

then we have

/OOO /OOO (@, ) £ (2)g(y)dady

© < k) [/Oooxﬂ“ﬂlfp(x)dz];[/om 103 -1ga(y)ay|

1

where the constant factor k(1) is the best possible.
For A\=1, )\ = %, Ay = %, (6) reduces to (2), while for A > 0, Ay = 2, Ay =
Ex(z,y) = ﬁ, (6) reduces to (5).

Additionally, the following extension of (3) was proved:

/ / (zy) f(x)g(y)dxdy
) < o) [ [ lfp<x>dx]‘l’ [ [ oy "

where the constant factor ¢(o) is the best possible (cf. [25]).

For 0 = %, (7) reduces to (3). Some equivalent inequalities of (6) and (7) were
constructed in [24]. In 2013, Yang [25] also studied the equivalence of (6) and (7)
by adding a condition h(u) = kx(u,1). In 2017, Hong [9] studied an equivalent

@[>
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condition for (6) involving certain parameters, and some further related results
were established in [4], [5], [15], [29], [28].

In the present paper, making use of complex analytic techniques as well as
methods involving weight functions, we study a few equivalent conditions of a
Hilbert-type integral inequality with the nonhomogeneous kernel

1
[Teci [(@y)? + ]
and a best possible constant factor. In the form of applications we deduce a few

equivalent conditions of a Hilbert-type integral inequality with homogeneous kernel.
We also consider some operator expressions.

(Ck > 0)

2. SOME LEMMAS

Lemma 1. (c¢f. [26]) If C is the set of complex numbers and Coo = CU {00},
zr € C\{z | Re(z2) >0, Im(z)=0} (k=1,2,...,n)

are different points, the function f(2) is analytic in Coo except for z; (i =1,2,...,n),
and z = 00 is a zero point of f(z) whose order is not less than 1, then for o € R,
we have

/Ooo f(x)z* tdae = % ZR@(S)[f(z)z“_l, 2k,
k=1

where 0 < Im(lnz) = argz < 2w. In particular, if zi, (k=1,...,n) are all poles of
order 1, setting

or(2) = (2 — 2) f(2) (pr(2x) # 0),
then

(8) / " p@)ald =

™

D (=21 on(z)-

sin T
k=1

Example 2. For se N={1,2,...} and 0 < c¢; <--- <¢s, 0< 0 <s\e >0, we
set 1
hu) = —e———— . (u>0),
W L ey 7Y
and
k=cr+(k—1e (k=1,...,9).

By (8), for zx = —¢i, we derive that

o0 1

ks = . ——_
@ = | moere
1 /°° 1 ey
— ——u> du
Ao iz (u+ck)
T > N

_ k

Asin 52 kzzl [Ti=1020) (@ = @)
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Setting 1 = s\ — o(> 0), we obtain that
~ 1 [ 1 o
0 < ks(o :f/ —_———ux " 'du
() Ao Tler(ut )
1 [ 1 o
—/ ————usdu
Ao (utea)s
1 [ 1 .
= —d
)xc‘f//\/o RS
1 (a o

[WZZRA SYbY

IA

><oo,

and by Levi’s theorem (cf. [12]), it follows that

o to—1 00 po—1
k(o) = —————dt = lim ———dt
o Ilizi(t* +cr) esot Joo Thoq (8 +¢)
s g1
~ T N c)\
(9) = lim ky(0) = ——— 3 k eRy.
ot Asin 5 £~ L5y (5 — cn)

In particular:
(i) for s = 1, we obtain

1 [ yle/N-1 0
k1(a):X/ o du = WX e (za)
0 1 Ay sin (%2)

(ii) for s = 2, we get that

o0 1
k = oL dt
2(7) / P TP T )

™ 01%_1—02%_1

T 5
Asin T a—a

(iii) for ¢s = -+ = ¢1 in (9), we have

o ol s o u
k(o) := dt = B(—-,~]).
(U) /0 (tk + Cl)s Acllj./)\ (}\a )\)

Ifp>1,+4+L1=15eN 0<e¢; <--<e¢,,0<0 < s\ o1 €R, then for
n € N, we define the following two expressions:

e 1
1 1 1
10 1 ::/ {/ < Q:U+P"—1d$}y‘71_fm_1dy,
(10) VT U Tl o

Lo 1 . .
11 I ::/ {/ - x”vnldx} Y7 e ldy.
(n ? 0 1 T [(@9)? + el
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Setting u = zy in (10) and (11), by Fubini’s theorem (cf. [12]), we obtain

oo Y ot —1 )
[ () e
+/looy(01 o) / muaﬁ-ﬁ—ldudy
— /looy(dla)ildy/o mua—kﬁ_ldu

1 o—o—1
v [ e () G
= /Oly(‘””l U Wu(’_;ﬂ_ldu]dy
= /Oly(glg)JrTlleyL mugfﬁfldu
L R

1 e}
oyl 1 -
(13) +/ ylr=o+n 1dy/ S du.
0 1 Taey (0 + )

In what follows we suppose that p > 1,2+ ¢ =1,s e N,0 < ¢; < --- <c,
o, >0,04+pu=s\ 01 €R.

Lemma 3. If there em'sts a constant M, such that for any nonnegative measurable

functions f(x) and g(y) in (0, oo) the following inequality
z)g y)
I = / / dxdy
Hk [(@y)? + e
PR 1
w o= | [Ceeenpea) | [T
0 0

holds true, then we have o1 = o. In this case, it follows that M > ks(o).
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Proof. jal (n € N), we set two functions
0,0<x<1 aitam—1 <
— ’ — Y N ) <y < 1
fn(x) = { xcrfp%lfl’ r>1 gn(y) = { 0, y>1

Hence, we obtain that

o = L/ #“”*ﬁmuwﬂp{/ y 1=t (y)dy |
0 0
s3] L % 1 %
= (/ x_n_ldac> (/ yn_ldy) =n.
1 0

By (13) and (14), we have

1 u . 1
““”+‘4d]w’mdu
t/[/ Y T (@ o)

(15) < L= / / H“ (y) edy < MJz =

Since (o1 — ) + = < 0, it follows that for any u € (0,1),

0

Wl >0, we(0,1),

By (15), in view of
1
[Thes (u* + k)
we deduce that co < Mn < oo, Which is a contradiction.
— (n € N), we set

~ otpm—1 0, 0<y<xl1
P s 0< <1 ~ ) Yy
fn(x) = { . = ) gn(y) = { o1 —-—

0, z>1 y Ty > 1

Hence, we derive that

5o {/chp(l_a)_lfg(x)dm]p |:/°° g(l—g1)—1~ 3 (y )dy:|
0 0
1 % e} %
= " d “ildy ) =n.
(=) ([t a) =

By (12) and (14), we have

T oo wld / —u”+ﬁ Ydu
/ Y Hk 1 (Ut +ck)

n(y) v
(16) / / Hk} " Ck]dxdy <MJy, =
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Since (01 —0) — % > 0, it follows that
/OO («71—0)—i—1d _
y n " dy = oo.
1

By (16), in view of

a1
uw ety > 0,

[
0 HZ:1(U/\ + k)
we have oo < Mn < oo, which is a contradiction.

Hence, we conclude that o1 = 0.
For o1 = o, we reduce (12) and then apply (16) as follows:

Ly 1{/0311dt/1 1 ool
—I — y My | = ——u e du
n n L 0 [leey (u* +ck)

oo e} 1 1 L_l
Sl S,
1 u [Teey (u? +cr)

1
-1 oo uo—ﬁ—l

/1 w’tom . J
= —du + ——du
0 HZ:l(U’)\ + k) 1 HZ:1(UA + k)

< lML:M.
n

Since the sequence

e .
HZ:1(“A+C%€) n=1 . HZ:1(“)‘+01€) n=1

is nonnegative and increasing in (0, 1) (resp. (1,00)), by Levi’s theorem (cf. [12]),
we deduce that

1
1 ,
k = lim ——————u” "o ld
=
& 1 S
—|—/ lim ————————u’ " "du
1 n=oe [Ty (uh +cp)

<M < .

ot lay o o an Ly,
= lim / < Y +/ < X
n=oo | Jo szl(u + cx) 1 szl(u +cr)

This completes the proof of the lemma. O
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3. MAIN RESULTS

Theorem 4. The following conditions are equivalent:
(i) There exists a constant M, such that for any f(x) > 0, satisfying

0< / 2PA=) =1 P () dx < oo,
0
we have the following inequality:
® e [T @ P
J = / yPor—t [/ - dz| dy
{ 0 o [le=i[(@y)* +

(17) < M [/O a;p(l—@—lfp(x)dx} ’ ;

(ii) there exists a constant M, such that for any f(z),g(y) > 0, satisfying
0< / 2PA=) =1 fP(g)da < oo,
0

and -
0< / y?1 =o)L gd(y)dy < oo,
0

we have the following Hilbert-type integral inequality with nonhomogeneous kernel:

Y Al e f(x)g(y) .
I = / / T () + ) ™

(18) <M Uooo””p“‘“)‘lfwdfr [/ T yra=e-1gaiay|

0

(iii) o1 = o.
If Condition (iii) is satisfied, then M > ks(o) and the constant factor M = kq(o)
in (17) and (18) is the best possible.

Proof. (i) = (ii). By Holder’s inequality (cf. [13]), we have
e [T @) |
fe [ et 0w o
J = q(l1—o1)—1 g d]
[ /0 y 9°(y)dy

Then by (17), we derive (18).
(#4) = (791). By Lemma 1, we have o1 = 0.

Q=

(19)

IN
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(73i) = (4). Setting u = xy for y > 0, we obtain the following weight function

w(o,y = ya/ - 2V
) o Iaeil(@y) + c
> 1
20 ’—U/U_ldu — ks o).
. /0 [T—y (v + cx) (0)
By Holder’s weighed inequality and (20), we have
P
f(x dx}
{ [— l“y) + ¢ (z)
(e=1)/p (6—1)/q p
Y T
- - |d
{ Hk 1 -Ty) +Ck} [x(al)/qf(x):| |:y(f71)/17:| x}
yo—l
P
: / +ck] xlo— 1)p/qf (z)dx
201 p/a
X 5 d
{/ [T J(xy)A o] el x}
p=1 o—1
_ 1 y .
= |:yq(0 1)+1:| / HZ 1[(xy))\+ck] x(U—l)p/qf (x)dx
o—1
(21) - yPo— 1 / Hk . xy) +Ck] (o— 1)p/qf ( )

If (21) assumes the form of equality for some y € (0,00), then (cf. [13]) there
exist constants A and B, such that they are not both zero, and

o—1 ‘,E(rfl

Y fr(a) =

pe=syyrt a.e. in R,.

y(a_l)Q/P

We suppose that A # 0 (otherwise B = A = 0). Then it follows that
B
gPA=) =1 P () = yq(lfg)ﬁ a.e. in Ry,
which contradicts the fact that

0< / 2PA= =L fP(2)dx < oo.
0

Hence, (21) assumes the form of strict inequality.
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For o1 = o, by Fubini’s theorem, we have

{/ L T, (o) + ] 2o G )‘M‘”}p
e V(TR <Gyjﬂ;1>dy]fm(x)d$}

= ()| [ et r’

= k(o) UOOO xp(l_”)_lfp(x)dx]

Setting M > ks(o), then (17) follows.

Therefore, the conditions (i), (ii) and (iii) are equivalent.

When Condition (iii) is satisfied, if there exists a constant M < ks(o), such
that (18) is valid, then by Lemma 3, we have M > k¢(c). By this contradiction
it follows that the constant factor M = ks(o) in (18) is the best possible. The
constant factor M = k(o) in (17) is still the best possible. Otherwise, by (19) (for
o1 = o), we would conclude that the constant factor M = k(o) in (18) is not the

-

-a\»—-

J <

-a\»—-
3=

= (kS(U

best possible. O]

Setting y = 3, G(Y) = Y**"2g(3),u1 = sA — o1 in Theorem 4, then
replacing Y (respectively G(Y)) by (respectlvely g(y)), we deduce the following
result.

Corollary 5. The following conditions are equivalent:
(i) There exists a constant M, such that for any f(x) > 0, satisfying

0< / P71 P () dx < oo,
0

we have the following integral inequality:

e [ ] o)

(22) < M {/00 xp(l_")_lfp(a:)dx} ’ ;
0

(ii) There exists a constant M, such that for any f(z),g(y) > 0, satisfying
(oo}
0< / 2PA=) =1 fP(2)da < oo,
0

and -
0< / y 1= =1 g4 (y)dy < oo,
0
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we have the following Hilbert-type integral inequality with homogeneous kernel:

<[ f(x)g(y)
/o / [Tt + )

(23) < M {/OO xp(la)lfp(:l:)dx} {/Oo yQ(lfm)*lgq(y)dy ! :
0 0

(i1i) p1 = p.
If Condition (iii) holds, then we have M > kg(o), and the constant factor
M = ks(o) in (22) and (23) is the best possible.

Remark 6. On the other hand, setting y = %, GY)= YS)‘*Qg(%), 01 = SA— 1,
in Corollary 5, then replacing Y (resp. G(Y")) by y (resp. g(y)), we deduce Theorem
4. Hence, Theorem 4 and Corollary 5 are equivalent.

4. OPERATOR EXPRESSIONS

We set the following functions:
(p(;(;) = xp(l—o)—17w(y) .= yq(l—a)—17 ¢(y) — yq(l—u)—l’ wherefrom,

YUP(y) =y e P (y) = PR (2, y € RY).

Define the following real normed linear spaces:

Lo(Ry) = {frllfllp,w = (/Ooosa<x>f<x>|pdx);’<oo},
Liy(Ry) = {g:ngnq,w = (/Oww<y>|g<y>|wy);<oo},
Loo(Ry) = {91||9||q,¢ = (/Ow¢<y>g<y>|wy)é<oo},

Lyyir(Ry) = {h:nhp,wlp=(/0°°w1-p<y>h<y>|pdy)”<oo},

Logr-»(Ry) = {h: 1Bllp,g1-» = (/0 ¢1_p(y)|h(y)|pdy)p < OO}~

(a) In view of Theorem 4 (setting o1 = o), for f € L, ,(R4), setting

e 1
ha(y) == / T Ty ey @ 0 € R,

by (17), we have

(24) Vsl = ( / w1p<y>hﬁ’<y>dy) " < M| flyy < oo
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Definition 7. Define a Hilbert-type integral operator with nonhomogeneous kernel
TW : L, »(Ry) = Ly y1-»(Ry) as follows: For any f € Ly, ,(Ry), there exists a
unique representation T f = hy € Ly, y1-»(Ry), satisfying TY f(y) = hi(y), for
any y € R;.

In view of (24), it follows that

T fllp,gr-r = Il ]

ppl—p < MHf”ZMD’

and then the operator T() is bounded satisfying

71 1—p
HT(I)” _ sup ” fHPﬂ/’ < M.

el o®y)  Nfllpe T

If we define the formal inner product of 7™ f and ¢ as follows:

(Tmﬁg*zéw{ﬂwrm4fg$+wu“}g@”%

then we can rewrite Theorem 4 as follows:

Theorem 8. The following conditions are equivalent:

(i) There exists a constant M, such that for any f(xz) > 0, f € Ly, ,(R4),
| fllp.e > 0, we have the following inequality:

HT(l)prﬂ/)l—p < M| fllp.e;

(it) there exists a constant M, such that for any f(x),g(y) > 0, f € L, ,(R4),
g€ LyuRy), |If |, > 0, we have the following inequality:

(T(l)ﬁ 9) < M| fllpllgllg,p-

We still have | TV || = k(o) < M.

PP Hg

(b) In view of Corollary 5 (with p1 = p), for f € L, ,(R;), setting

O
“@”*A T + )

defined for every y € Ry, by (22) we have

(25) nmme=(A &Pm@@w@p<Mumw<w

Definition 9. Define a Hilbert-type integral operator with the homogeneous kernel
T® : L, »(Ry) — Ly s1-»(Ry) as follows: For any f € L, ,(R), there ezists a
unique representation T® f = hy € L, y1-»(Ry), satisfying T® f(y) = ha(y), for
any y € R;.
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In view of (25), it follows that

1T fllpsr—> = [h2llpgr—r < M| fllpes

and then the operator 7 is bounded satisfying

7 ~p
@)= sy e oy
f(F0)eL, o (R) ||f||p750

If we define the formal inner product of T3 f and ¢ as follows:

@r v [T f(z) .
(T®f,9) -7/0 [/O Hizl(ﬂc“eryA)d 9(y)dy,

then we can rewrite Corollary 5 as below:

Corollary 10. The following conditions are equivalent:

(i) There exists a constant M, such that for any f(xz) > 0, f € Ly, ,(R4),
| fllpe > 0, we have the following inequality:

IT® £llpgr-r < M| fllp.;

(it) there exists a constant M, such that for any f(x),g(y) > 0, f € L, ,(R4),
9 € Lqo(Ry), || fllp.es19llq.0 > 0, we have the following inequality:

(T f,9) < MlIf lpeolg

We still have |[T®|| = ky(o) < M.

q,¢-

Remark 11. Theorem 8 and Corollary 10 are equivalent.
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