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1. Introduction

Variational inequalities originate in the pioneering work of the Italian mathematicians
Kinderlehrer and Stampacchia [1], who in their early-1960s pioneering work studied free
boundary problems arising in elasticity theory and mechanics by using the variational
inequality as an analytic tool. Between 1960 and 1975, many foundational articles appeared
in the literature, highlighting the connection between complementarity problems and vari-
ational inequalities. For a history of the earliest developments on variational inequalities,
readers are referred to [2–6].

Since 1995, numerous publications were devoted to the reformulation of the nonlin-
ear complementarity problem in terms of the algorithms generated through a globally
convergent Newton method. Afterwards, many approximation methods and iterative
schemes were established for finding the solutions of variational inequalities and related
optimization problems (see [7–9] and references therein).

One of the numerical methods for solving variational inequality problems (VIPs) is known
as the viscosity approximation method (which generates sequences that strongly converge to
particular fixed points [10]), which is further expanded in other areas (see, e.g., [11,12] and the
references therein).

In [13,14], the authors presented the strong convergence theorems of the Moudafi’s
viscosity approximation methods for an asymptotically nonexpansive nonself mapping
in CAT(0) spaces. In [15], the authors performed a convergence analysis of a new type of
variational inequality problem (VIP) involving nonself multivalued mappings in CAT(0)
spaces via a proximal multivalued Picard-S iteration.

Recent advancements in the field have catalyzed new perspectives, exemplified by
pseudomonotone mapping in variational inequality problems [16]. These findings under-
score the evolving landscape of variational inequality research.

A metric space (Ω, δ) is called a CAT(0) space (the notion rose to prominence through
Gromov; see, e.g., [17], p. 159) if it is geodesically connected. For a systematic study
regarding these spaces and their essential role in numerous branches of mathematics,
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readers are referred to Bridson and Haefliger [18]. Given a metric space (Ω, δ), a mapping
ℵ : [0, δ(u, v)] → Ω is called geodesic if it connects u ∈ Ω to v ∈ Ω in a way such that
ℵ(0) = u, ℵ(δ(u, v)) = v, and δ(ℵ(ı1),ℵ(ı2)) = |ı1 − ı2| for any ı1, ı2 ∈ [0, δ(u, v)].

Taking any two distinct points u, v ∈ (Ω, δ), a geodesic segment from u to v is an
isometry ℵ : [0, δ(u, v)] → Ω with ℵ(0) = u and ℵ(δ(u, v)) = v.

A metric space (Ω, δ) is called a geodesic metric space if any two points in Ω are
connected by a geodesic segment. If there is only one geodesic segment from u to v for all
u, v ∈ Ω, then the metric space (Ω, δ) is uniquely geodesic, and this geodesic segment is
indicated by [u, v].

Consider the geodesic metric space (Ω, δ). A geodesic triangle has three points
p1, p2, p3 ∈ Ω and three geodesics [p1, p2], [p2, p3], [p3, p1] denoted by
△([p1, p2], [p2, p3], [p3, p1]). For such a triangle, there is a comparison triangle
△(p1, p2, p3) ⊂ R2 such that:

• δ(p1, p2) = δ(p1, p2)
• δ(p2, p3) = δ(p2, p3)
• δ(p3, p1) = δ(p3, p1).

A CAT(κ) space is a metric space Ω that is geodesically connected and has every
geodesic triangle that is at least as ‘thin’ as its comparison triangle in R2. Consider that
(Ω, δ) is a geodesic space. It is a CAT(0) space if for any geodesic triangle △ ⊂ Ω and
o1, o2 ∈ △ we have δ(o1, o2) ≤ δ(o1, o2), where o1, o2 ∈ △.

Consider a CAT(0) space. Take three points l, l1, and l2 enclosed by it. If l0 is the center
of the segment [l1, l2], which is indicated as l1⊕l2

2 , then the CAT(0) inequality implies

δ2
(

l,
l1 ⊕ l2

2

)
= δ2(l, lo) ≤

1
2

δ2(l, l1) +
1
2

δ2(l, l2)−
1
4

δ2(l1, l2).

This is referred to as the (CN) inequality of Bruhat and Tits [19].
The idea of quasilinearization for a CAT(0) space Ω was introduced by Berg and

Nikolaev [20]. They called it a vector after denoting a pair (l, m) ∈ Ω × Ω by
−→
lm. The

quasilinearization map ⟨., .⟩ : (Ω × Ω)× (Ω × Ω) → R is defined by

⟨
−→
cd ,

−→
e f ⟩ = 1

2
(δ2(c, f ) + δ2(d, e)− δ2(c, e)− δ2(d, f )), for all c, d, e, f ∈ Ω.

It can be easily verified that

⟨
−→
cd ,

−→
e f ⟩ = ⟨

−→
e f ,

−→
cd⟩, ⟨

−→
cd ,

−→
e f ⟩ = −⟨

−→
dc ,

−→
e f ⟩;

and

⟨
−→
cd ,

−→
cd⟩ = δ2(c, d), (1)

⟨
−→
cd ,

−→
e f ⟩ = ⟨−→cw,

−→
e f ⟩+ ⟨

−→
wd,

−→
e f ⟩, (2)

for all c, d, e, f , w ∈ Ω.
Complete CAT(0) spaces are often called Hadamard spaces (see [21]). It is well-

known that a normed linear space satisfies the (CN) inequality if and only if it satisfies the
parallelogram identity, i.e., it is a pre-Hilbert space. Hence, it is not so unusual to have an
inner product-like notion in Hadamard spaces.

Remark 1. A geodesically connected metric space is a CAT(0) space if and only if it satisfies the
Cauchy–Schwarz inequality.

In 2010, by using the concept of quasilinearization and by initiating the concept of
pseudometric space, Kakavandi and Amini [22] developed dual space for CAT(0) spaces
and studied its relation with the subdifferential.
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2. Materials and Methods

We now present some key facts about CAT(0) spaces. Throughout this paper,
H denotes a subset of a CAT(0) space Ω, while A and B are operators.

To prove the main results, we first need the following useful lemmas.

Lemma 1 ([21]). Consider a CAT(0) space Ω, p1, p2, z ∈ Ω and s ∈ [0, 1]. Then
(i) δ(sp1 ⊕ (1 − s)p2, z) ≤ sδ(p1, z) + (1 − s)δ(p2, z);
(ii) δ2(sp1 ⊕ (1 − s)p2, z) ≤ sδ2(p1, z) + (1 − s)δ2(p2, z)− s(1 − s)δ2(p1, p2).

Lemma 2 ([23]). Consider a CAT(0) space Ω, p1, p2, z ∈ Ω and s ∈ [0, 1]. Then
(i) δ(sp1 ⊕ (1 − s)p2, γp1 ⊕ (1 − γ)p2) = |s − γ|δ(p1, p2);
(ii) δ(sp1 ⊕ (1 − s)p2, sp1 ⊕ (1 − s)z) ≤ (1 − s)δ(p2, z).

Lemma 3 ([24]). Every bounded sequence in a complete CAT(0) space Ω always has a ∆-convergent
subsequence.

Lemma 4 ([11]). Assume a CAT(0) space Ω. For any l ∈ (0, 1) and ς, ζ ∈ Ω, let

ςl = lς ⊕ (1 − l)ζ.

Then for all u, v ∈ X,

(i) ⟨−→ςlu,−→ςlv⟩ ≤ l⟨−→ςu,−→ςlv⟩+ (1 − l)⟨−→ζu,−→ςlv⟩;
(ii) ⟨−→ςlu,−→ςv⟩ ≤ l⟨−→ςu,−→ςv⟩+ (1 − l)⟨−→ζu,−→ςv⟩ and

⟨−→ςlu,
−→
ζv⟩ ≤ l⟨−→ςu,

−→
ζv⟩+ (1 − l)⟨−→ζu,

−→
ζv⟩.

Lemma 5 ([11]). Assume that Ω is a CAT(0) space. Consider a closed convex subset ∅ ̸= H ⊂ Ω.
Let T : H → Ω be an asymptotically nonexpansive mapping. If ξ℘ ⇀ ξ and δ(ξ℘, T ξ℘) → 0,
then ξ = T ξ.

3. Π-Duality Mapping and Some Crucial Lemmas

In this section, we define Π-duality mapping and present some lemmas used for
proving our main results. According to [12], we define the following concepts in the setting
of CAT(0) space.

Assume a CAT(0) space Ω and Π : Ω∗ → H.

• A mapping P : Ω → H having the following property is known as sunny if

P(sς ⊕ (1 − s)Pς) = Pς, ς ∈ Ω, s ≥ 0,

whenever sς ⊕ (1 − s)Pς ∈ Ω.

Example 1. Consider the mapping P : R → R defined by P(ξ) = ξ where ξ ∈ R. For any ξ ∈ R
and s ≥ 0

P [sξ + (1 − s)(ξ)] = sξ + (1 − s)ξ = ξ = P(ξ)

• A mapping j : Ω → Ω∗ is called the duality mapping with regard to Π if for any
s, v ∈ Ω

⟨−→sv ,
−−−−−−−→
Πj(t)Πj(z)⟩ = δ(s, v)δ(Πj(t), Πj(z)).
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Example 2. Consider Ω = R with the usual Euclidean distance δ(ξ, η) = |ξ − η|. We need to
find a mapping j : R → R such that ⟨−→sv ,

−−−−−−−→
Πj(t)Πj(z)⟩ = δ(s, v)δ(Πj(t), Πj(z)). First, let us

consider the mapping j(ξ) = −ξ with Πj(ξ) = −ξ. By quasilinearization, one obtains

⟨−→sv ,
−−−−−−→
(−t)(−z)⟩ =

1
2
[δ2(s,−z) + δ2(v,−t)− δ2(s,−t)− δ2(v,−z)]

=
1
2
[(s + z)2 + (v + t)2 − (s + t)2 − (v + z)2]

=
1
2
[2sz + 2vt − 2st − 2vz]

= sz + vt − st − vz

= |s − v|.|t − z|
= δ(s, v)δ(t, z)

= δ(s, v)δ(Πj(t), Πj(z))

• A mapping j : Ω → Ω∗ is called the normalized duality mapping (abbreviated as
ND-map) with respect to Π if

⟨−→sv ,
−−−−−−−→
Πj(s)Πj(v)⟩ = δ2(s, v) = δ2(Πj(s), Πj(v)).

• An operator A : H → Ω is called accretive if

⟨−−−→AςAζ,
−−−−−−−→
Πj(ς)Πj(ζ)⟩ ≥ 0 for all ς, ζ ∈ H.

where Πj is the ND-map on Ω.

• For α > 0, an operator A : H → Ω is called α-inverse strongly accretive (abbreviated
as α-ISA) if

⟨−−−→AςAζ,
−−−−−−−→
Πj(ς)Πj(ζ)⟩ ≥ αδ2(Aς,Aζ) for all ς, ζ ∈ H.

Example 3. Let Ω = R and H = {ξ ∈ R : 0 < ξ < 1}. Define the functions Πj(ξ) = cos(ξ)
2

and A(ξ) = 1
2 log(1 + ξ2). Let ς = 0.1 and ζ = 0.3. Then Πj(0.1) = 0.49999923845

and Πj(0.3) = 0.499993146. Furthermore, A(0.1) = 0.0021606 and A(0.3) = 0.01871324.
This implies

⟨−−−→AςAζ,
−−−−−−−→
Πj(ς)Πj(ζ)⟩

=
1
2
(δ2(Aς, Πj(ζ)) + δ2(Aζ, Πj(ς))− δ2(Aς, Πj(ς))− δ2(Aζ, Πj(ζ)))

= 0.0026 ≥ 0.

That implies that A is accretive. By taking α = 0.1, we obtain that A is an α-ISA operator.

Let C be a subset of a Banach space S . The usual VIP in a Banach space S is to find
i ∈ C ⊂ S if there exists J : S → 2S

∗
an ND-map on S and j(ξ − i) ∈ J(ξ − i) such that

⟨Ai, j(ξ − i)⟩ ≥ 0, ∀ξ ∈ C.

In 2010, a structure was proposed by Yao et al. [25] to find (ς, ζ) ∈ C × C such that{
⟨Aζ + ς − ζ, j(ξ − ς)⟩ ≥ 0, ∀ξ ∈ C,
⟨Bς + ζ − ς, j(ξ − ζ)⟩ ≥ 0, ∀ξ ∈ C,
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which is known as the generalized variational inequality system (abbreviated as GVIS)
in Banach spaces. Wang and Pan et al. [12] formulated the theorem regarding the strong
convergence of the subsequent iterative scheme:

wn = PH(I − µB)ξn,
zn = PH(I − λA)(tξn + (1 − t)wn),
un = ϖnξn + (1 − ϖn)zn,
ξn+1 = ℵn f (ξn) +ℜnξn + γnT nun,

for the following problem about the GVIS:{
⟨(I − λA)(tξ† + (1 − t)ι†)− ξ†, j(ξ − ξ†)⟩ ≤ 0, ∀ξ ∈ C,
⟨(I − µB)ξ† − ι†, j(ξ − ι†)⟩ ≤ 0, ∀ξ ∈ C.

The motivation for this work is driven by the natural progression from linear to
nonlinear settings, the broad applicability and theoretical richness of CAT(0) spaces, and
the practical need for efficient algorithms in complex, real-world scenarios. This research
aims to fill the gap by providing a robust algorithm that can tackle variational inequality
problems within the flexible and encompassing framework of CAT(0) spaces. While
significant progress has been made in solving variational inequality problems in linear and
Euclidean spaces, many real-world problems inherently exhibit nonlinear characteristics.
CAT(0) spaces, which generalize Euclidean spaces to a broader class of geodesic metric
spaces, provide a rich and flexible framework for addressing such nonlinear problems.
Extending the theory of VIPs to CAT(0) spaces can lead to new insights and theoretical
advancements in the study of variational inequalities.

Inspired and convinced by researchers’ findings, we implemented the subsequent
iterative approach within a CAT(0) space to demonstrate strong convergence:

wn = PH[(1 − µ)I ⊕ µB]ξn,
zn = PH[(1 − λ)I ⊕ λA][tξn ⊕ (1 − t)wn],
un = ϖnξn ⊕ (1 − ϖn)zn,
ξn+1 = ℵn f (ξn)⊕ (1 − ℵn)[

ℜn
1−ℵn

ξn ⊕ (1 − ℜn
1−ℵn

)T nun],

(3)

where {ℵn}, {ℜn}, {γn}, {ϖn} ⊂ (0, 1). The sequence {ξn} defined by (3) satisfies the
conditions ℵn + ℜn + γn = 1, limn→∞ ℵn = 0, kn − 1 = ϵℵn, and 0 < ϵ < 1 − ρ.
Also, the conditions limn→∞ ℜn = 0, limn→∞ ℵn+1 = 0, limn→∞ ℜn+1 = 0, as well as
0 < lim infn→∞ ℜn ≤ lim supn→∞ ℜn < 1, limn→∞ |ϖn+1 − 2ϖn+1ϖn + ϖn| = 0 for the
following GVIS in CAT(0) spaces: ⟨(

−−−−−−−−−−−−−−−−−−−−−−−−−→
[(1 − λ)I ⊕ λA][τξ† ⊕ (1 − τ)η†])ξ†,

−−−−−−−−→
Πj(ξ)Πj(ξ†)⟩ ≤ 0,

⟨
−−−−−−−−−−−→
[(1 − µ)I ⊕ µB]ξ†,

−−−−−−−−→
Πj(ξ)Πj(η†)⟩ ≤ 0.

The lemmas below also are used for proving our main result.

Lemma 6. Assume j is the ND-map on a CAT(0) space Ω. Let P : Ω → H be a retract and
assume a point z ∈ H that satisfies δ(z, ξ) = inf{δ(η, ξ); η ∈ H} and ⟨−→ηz,

−−−−−−−→
Πj(z)Πj(ξ)⟩ ≥ 0 for

all η ∈ H. Then next declarations are identical:

(a) δ2(Pξ,Pη) ≤ ⟨−→ξη,
−−−−−−−−−−→
Πj(Pξ)Πj(Pη)⟩;

(b) ⟨−−→ξPξ,
−−−−−−−−−→
Πj(η)Πj(Pξ)⟩ ≤ 0;

(c) P is sunny and nonexpansive.
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Proof. (a) ⇒ (b). Suppose that δ2(Pξ,Pη) ≤ ⟨−→ξη,
−−−−−−−−−−→
Πj(Pξ)Πj(Pη)⟩ holds. Let ξ ∈ Ω.

Replacing η by η = Pη in (a), we have

δ2(Pξ,P2η) ≤ ⟨−−→ξPη,
−−−−−−−−−−−→
Πj(Pξ)Πj(P2η)⟩

δ2(Pξ, η) ≤ ⟨−−→ξPη,
−−−−−−−−−→
Πj(Pξ)Πj(η)⟩.

By Equation (2)

⟨−−→ξPξ,
−−−−−−−−−→
Πj(Pξ)Πj(η)⟩ = ⟨

−−−→
ξP(η),

−−−−−−−−−→
Πj(Pξ)Πj(η)⟩ − ⟨

−−−→
P(ξ)η,

−−−−−−−−−→
Πj(Pξ)Πj(η)⟩

≥ δ2(P(ξ), η)− δ2(P(ξ), η)

≥ 0.

By the property of quasilinearization, we obtain

⟨−−→ξPξ,
−−−−−−−−−→
Πj(η)Πj(Pξ)⟩ ≤ 0.

(b) ⇒ (a). Let ξ, η ∈ Ω. Then Pξ,Pη ∈ H, we have

⟨−−→ξPξ,
−−−−−−−−−−→
Πj(Pη)Πj(Pξ)⟩ ≤ 0 and ⟨−−→ηPη,

−−−−−−−−−−→
Πj(Pξ)Πj(Pη)⟩ ≤ 0.

δ2(Pξ,Pη) = ⟨−−−→PξPη,
−−−−−−−−−−→
Πj(Pξ)Πj(Pη)⟩

= ⟨−−→Pξξ,
−−−−−−−−−−→
Πj(Pξ)Πj(Pη)⟩+ ⟨−−→ξPη,

−−−−−−−−−−→
Πj(Pξ)Πj(Pη)⟩

≤ ⟨−−→ξPη,
−−−−−−−−−−→
Πj(Pξ)Πj(Pη)⟩

= ⟨−→ξη,
−−−−−−−−−−→
Πj(Pξ)Πj(Pη)⟩+ ⟨−−→ηPη,

−−−−−−−−−−→
Πj(Pξ)Πj(Pη)⟩

≤ ⟨−→ξη,
−−−−−−−−−−→
Πj(Pξ)Πj(Pη)⟩.

(b) ⇒ (c). Suppose P is a retraction such that ⟨−−→ξPξ,
−−−−−−−−−→
Πj(η)Πj(Pξ)⟩ ≤ 0; we have to

show that P is sunny and nonexpansive.
Claim I. For ξ, γ ∈ Ω, from (b), we obtain

⟨−−→ξPξ,
−−−−−−−−−−→
Πj(Pξ)Πj(Pγ)⟩ ≥ 0 and ⟨−−→γPγ,

−−−−−−−−−−→
Πj(Pγ)Πj(Pξ)⟩ ≥ 0.

Hence,

δ2(Pξ,Pγ) = ⟨−−−→PξPγ,
−−−−−−−−−−→
Πj(Pξ)Πj(Pγ)⟩

= ⟨−−→Pξξ,
−−−−−−−−−−→
Πj(Pξ)Πj(Pγ)⟩+ ⟨−→ξγ,

−−−−−−−−−−→
Πj(Pξ)Πj(Pγ)⟩

+⟨−−→γPγ,
−−−−−−−−−−→
Πj(Pξ)Πj(Pγ)⟩

≤ ⟨−→ξγ,
−−−−−−−−−−→
Πj(Pξ)Πj(Pγ)⟩.

So, P is nonexpansive.
Claim II. For ξ ∈ Ω, set ξt = tξ ⊕ (1 − t)Pξ for all t > 0. Because Ω is convex, it follows
that ξt ∈ Ω for all t ∈ [0, 1]. Hence

⟨−−→ξPξ,
−−−−−−−−−−→
Πj(Pξ)Πj(Pξt)⟩ ≥ 0 and ⟨−−−→ξtPξt,

−−−−−−−−−−→
Πj(Pξt)Πj(Pξ)⟩ ≥ 0.
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Because

⟨−−→ξtPξ,
−−−−−−−−−−→
Πj(Pξ)Πj(Pξt)⟩ = δ(ξt,Pξ)δ(Πj(Pξ), Πj(Pξt))

= δ(tξ ⊕ (1 − t)Pξ,Pξ)δ(Πj(Pξ), Πj(Pξt))

≤ [tδ(ξ,Pξ) + (1 − t)δ(Pξ,Pξ)]δ(Πj(Pξ), Πj(Pξt))

= tδ(ξ,Pξ)δ(Πj(Pξ), Πj(Pξt))

= t⟨−−→ξPξ,
−−−−−−−−−−→
Πj(Pξ)Πj(Pξt)⟩ ≥ 0,

so we have
⟨−−→ξtPξ,

−−−−−−−−−−→
Πj(Pξ)Πj(Pξt)⟩ ≥ 0.

Now,

δ2(Pξ,Pξt) = ⟨−−−−→PξPξt,
−−−−−−−−−−→
Πj(Pξ)Πj(Pξt)⟩

= ⟨−−→Pξξt,
−−−−−−−−−−→
Πj(Pξ)Πj(Pξt)⟩+ ⟨−−−→ξtPξt,

−−−−−−−−−−→
Πj(Pξ)Πj(Pξt)⟩

= −⟨−−→ξtPξ,
−−−−−−−−−−→
Πj(Pξ)Πj(Pξt)⟩+ ⟨−−−→ξtPξt,

−−−−−−−−−−→
Πj(Pξ)Πj(Pξt)⟩

≤ 0.

Thus, Pξ = Pξt. Therefore, P is sunny.
(c) ⇒ (b). Suppose the retraction P is both sunny and nonexpansive. Let ξ ∈ Ω and

Pξ ∈ H and put Pξ = z. M = {tξ ⊕ (1 − t)z : t ≥ 0} is convex. If v ∈ M, then

δ(y, z) = δ(Py,Pv) ≤ δ(y, v).

By our assumption, we obtain

⟨−−→ξPξ,
−−−−−−−−−→
Πj(η)Πj(Pξ)⟩ ≤ 0,

which ends the proof.

Lemma 7. Assume Ω is a CAT(0) space. Consider any two bounded sequences {y℘} and {x℘} in
Ω and let {β℘} ∈ [0, 1] be a sequence with 0 < lim inf℘→∞ υ℘ ≤ lim sup℘→∞ β℘ < 1. Let

lim inf
℘→∞

|δ(ϖ℘+ȷ, ϱ℘)− (1 + υ℘ + υ℘+1 + . . . + υ℘+ȷ−1)q| = 0, (4)

hold for all ȷ ∈ N. If x℘+1 = (1 − β℘)x℘ ⊕ β℘p℘ for all ℘ ≥ 0 and lim sup℘→∞(δ(p℘+1, p℘)−
δ(x℘+1, x℘)) ≤ 0, then lim℘→∞ δ(p℘, x℘) = 0.

Proof. We put g = lim inf℘ υ℘ > 0, M = 2 sup{δ(ϱ℘, x℘),℘ ∈ N} < ∞, and
q = lim sup℘ δ(σ℘, ϱ℘) < ∞. We assume q > 0. Then fix k ∈ N with (1 + ka)q > M.
By Equation (4), we have

lim inf
℘→∞

|δ(ϖ℘+ȷ, ϱ℘)− (1 + υ℘ + υ℘+1 + . . . + υ℘+ȷ+1)q| = 0.

Thus, there exists a subsequence {℘ℓ} of a sequence {℘} in N such that

lim inf
ℓ→∞

|δ(ϖ℘ℓ+ȷ, ϱ℘ℓ
)− (1 + υ℘ℓ

+ υ℘ℓ+1 + . . . + υ℘ℓ+ȷ+1)q| = 0.

The limit δ(ϖ℘ℓ+ȷ, ϱ℘ℓ
) exists, and the limits of {υ℘+ı} exist for all ı ∈ {0, 1, . . . , ȷ − 1}.

Put βı = limℓ υ℘ℓ+ı for ı ∈ {0, 1, . . . , ȷ−1}. It is obvious that βı ≥ g for all ı ∈ {0, 1, . . . , ȷ − 1}.
We have
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M < (1 + kg)q

= (1 + β0 + β1 + . . . + β℘−1)d

= lim
ℓ→∞

(1 + υ℘ℓ
+ υ℘ℓ+1 + . . . + υ℘ℓ+ȷ−1)q

= lim
ℓ→∞

δ(ϖ℘ℓ+ȷ, ϱ℘ℓ
)

≤ lim sup
℘→∞

δ(ϖ℘+ȷ, ϱ℘)

≤ M.

This is a contradiction. Therefore, q = 0.

Lemma 8. Assume Ω is a CAT(0) space. Consider a closed convex subset ∅ ̸= H ⊂ Ω. If the
operator A : H → Ω is α-ISA, then we have

δ2([(1 − λ)I ⊕ λA]ξ, [(1 − λ)I ⊕ λA]η) ≤ δ2(ξ, η)− 2λ2⟨−−→Aξξ,
−−→Aηη⟩

+λ2[δ2(Aη, η) + δ2(Aξ, ξ)],

where λ > 0. If 2⟨−−→Aξξ,
−−→Aηη⟩ ≥ δ2(Aη, η) + δ2(Aξ, ξ), then (1 − λ)I ⊕ λA is nonexpansive.

Proof. Let

δ2(u(ξ), u(η)) = δ2([(1 − λ)I ⊕ λA]ξ, [(1 − λ)I ⊕ λA]η)

= δ2([(1 − λ)I ⊕ λA]ξ, u(η))

≤ λδ2(Aξ, u(η)) + (1 − λ)δ2(ξ, , u(η))− λ(1 − λ)δ2(Aξ, ξ)

= λδ2(u(η),Aξ) + (1 − λ)δ2(u(η), ξ)− λ(1 − λ)δ2(Aξ, ξ).

Now,

δ2(u(η),Aξ) = δ2([(1 − λ)I ⊕ λA]η,Aξ)

≤ λδ2(Aη,Aξ) + (1 − λ)δ2(η,Aξ)− λ(1 − λ)δ2(Aη, η).

Furthermore, we have

δ2(u(η), ξ) = δ2([(1 − λ)I ⊕ λA]η, ξ)

≤ λδ2(Aη, ξ) + (1 − λ)δ2(η, ξ)− λ(1 − λ)δ2(Aη, η),

so,

δ2(u(ξ), u(η)) ≤ λ[λδ2(Aη,Aξ) + (1 − λ)δ2(η,Aξ)− λ(1 − λ)δ2(Aη, η)]

+(1 − λ)[λδ2(Aη, ξ) + (1 − λ)δ2(η, ξ)− λ(1 − λ)δ2(Aη, η)]

−λ(1 − λ)δ2(Aξ, ξ)

≤ δ2(η, ξ) + λ2[δ2(Aη,Aξ)− δ2(η,Aξ) + δ2(Aη, η)

+δ2(η, ξ)− δ2(Aη, ξ) + δ2(Aξ, ξ)] + λ[δ2(η,Aξ)

−δ2(Aη, η)− 2δ2(η, ξ) + δ2(Aη, ξ)− δ2(Aξ, ξ)]

≤ δ2(η, ξ) + λ[δ2(η, ξ) + δ2(Aξ, ξ)− δ2(Aη, η)

+δ2(Aη, ξ)− 2δ2(η, ξ)− δ2(Aξ, ξ)]

+λ2[−2⟨−−→Aξξ,
−−→Aηη⟩+ δ2(Aη, η) + δ2(Aξ, ξ)]

≤ δ2(η, ξ)− 2λ2⟨−−→Aξξ,
−−→Aηη⟩+ λ2[δ2(Aη, η) + δ2(Aξ, ξ)].
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The proof is complete.

Lemma 9. Assume Ω is a real CAT(0) space. Consider a closed convex subset ∅ ̸= H ⊂ Ω.
Assume F(T ) ̸= ∅ with T : H → H is a nonexpansive mapping. Let f : H → H be a contractive
mapping. Define a sequence ξs as follows: ξs = s f (ξs)⊕ (1− s)T ξs, s ∈ (0, 1). Then ξs converges
strongly to a point in F(T ). Assume

LIMδ( f (i), ξ)δ(Πj(ξn), Πj(p)) ≤ 0,

and
⟨((1 − λ)I ⊕ λ f )ξs,

−−−−−−−−−−→
Πj(P( f ))Πj(p)⟩ ≤ 0, ∀p ∈ F(T ).

Suppose S : ∏c → F(T ) is defined as S( f ) = lims→0 ξs, f ∈ ∏c, then P( f ) clarifies the
following inequality:

⟨((1 − λ)I ⊕ λ f )S( f ),
−−−−−−−−−→
Πj(P( f )Πj(p)⟩ ≤ 0, ∀p ∈ F(T ).

Proof. We first show that {ξs} is bounded.

δ(ξs, ι) = δ(s f (ξs)⊕ (1 − s)T ξs, ι)

≤ sδ( f (ξs), ι) + (1 − s)δ(T ξs, ι)

≤ δ( f (ξs), ι)

≤ δ( f (ξs), f (ι)) + δ( f (ι), ι)

≤ αδ(ξs, ι) + δ( f (ι), ι)

≤ 1
1 − α

δ( f (ι), ι).

Next, assume s → 0. Set ξn = ξsn and define τ : C → R as

τ(ξ) = LIMδ2(ξn, ξ), ξ ∈ C,

where LIM is a Banach limit. Take

W = {ξ ∈ C : τ(ξ) = min
ξ∈C

LIMδ2(ξn, ξ)}

τ(T ξ) = LIMδ2(ξn, T ξ) ≤ LIMδ2(ξn, T ξ) = τ(ξ).

Since a CAT(0) space has a fixed-point property for nonexpansive mapping T , we
consider a point i. Since i is a minimizer of τ over C, it follows that for s ∈ (0, 1) and ξ ∈ C,

0 ≤ τ(sξ ⊕ (1 − s)i)− τ(i)
s

= LIM
δ2(ξn, sξ ⊕ (1 − s)i)− δ2(ξn, i)

s
.

Let s → 0, then we obtain

LIM⟨sξ ⊕ (1 − s)i,
−−−−−−−−→
Πj(ξn)Πj(p)⟩ ≤ 0

LIM⟨−→ξi ,
−−−−−−−−→
Πj(ξn)Πj(p)⟩ ≤ 0.
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Since

δ2(ξs, i) = δ2(s f (ξs)⊕ (1 − s)T ξs, i)

= δ(s f (ξs)⊕ (1 − s)T ξs, i)δ(Πj(ξs), Πj(i))

≤ {sδ( f (ξs), i) + (1 − s)δ(T ξs, i)}δ(Πj(ξs), Πj(i))

= ⟨
−−−→
f (ξs)i,

−−−−−−−−→
Πj(ξs)Πj(i))⟩+ (1 − s)δ2(ξs, i)

≤ ⟨
−−−→
f (ξs)i,

−−−−−−−−→
Πj(ξs)Πj(i))⟩

= ⟨
−−−→
f (ξs)ξ,

−−−−−−−−→
Πj(ξs)Πj(i))⟩+ ⟨−→ξi ,

−−−−−−−−→
Πj(ξs)Πj(i))⟩.

We obtain

LIMδ2(ξs, i) ≤ LIM⟨
−−−→
f (ξs)ξ,

−−−−−−−−→
Πj(ξs)Πj(i))⟩

+LIM⟨−→ξi ,
−−−−−−−−→
Πj(ξs)Πj(i))⟩

≤ LIM⟨
−−−→
f (ξn)ξ,

−−−−−−−−−→
Πj(ξn)Πj(p))⟩

= LIMδ( f (ξn, ξ)δ(Πj(ξn), Πj(p)).

Specially,

LIMδ2(ξs, i) ≤ {LIMδ( f (ξn, f (i)) + LIMδ( f (i), ξ)}δ(Πj(ξn), Πj(p))

≤ αLIMδ2(ξs, i).

Hence
LIMδ2(ξs, i) = 0.

Define S( f ) = lims→0 ξs, f ∈ ∏c. Since

⟨((1 − λ)I ⊕ λ f )ξs,
−−−−−−−−−→
Πj(P( f )Πj(p)⟩ ≤ 0, ∀p ∈ F(T ).

Letting s → 0, we have

⟨((1 − λ)I ⊕ λ f )S( f ),
−−−−−−−−−→
Πj(P( f )Πj(p)⟩ ≤ 0, ∀p ∈ F(T ).

Lemma 10. Assume Ω is a CAT(0) space. Consider closed convex subset ∅ ̸= H ⊂ Ω. Suppose
two nonlinear mappings A,B : H → Ω. Presume a sunny nonexpansive retraction PH. Then for
all λ, µ, t ∈ [0, 1], the subsequent statements are equivalent:

(a) (ξ†, η†) ∈ H×H is a solution of problem ⟨(
−−−−−−−−−−−−−−−−−−−−−−−−→
[(1 − λ)I ⊕ λA][tξ† ⊕ (1 − t)η†])ξ†,

−−−−−→
ΠjξΠjξ†⟩ ≤ 0,

⟨
−−−−−−−−−−−→
[(1 − µ)I ⊕ µB]ξ†,

−−−−−→
ΠjξΠjη†⟩ ≤ 0.

(b) Assume a mapping ψ : H → H defined as

ψ(ξ) = PH[(1 − λ)I ⊕ λA][tξ ⊕ (1 − t)PH[(1 − µ)I ⊕ µB]ξ].

then assume the fixed point of ψ is ξ†, that is, ξ† = ψξ†, where ξ† = PH[(1 − λ)I ⊕
λA][tξ† ⊕ (1 − t)η†], η† = PH[(1 − µ)I ⊕ µB]ξ†. Assume that A,B : H → Ω are α-ISA
and β-ISA operators, respectively. Then ψ is nonexpansive if 0 < λ < 2α

c , 0 < µ < 2β
c .
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Proof. Utilizing Lemma (6), we have that the above problem is equivalent to{
ξ† = PH[(1 − λ)I ⊕ λA][tξ† ⊕ (1 − t)η†],
η† = PH[(1 − µ)I ⊕ µB]ξ†.

which represents the solution to the problem. Hence, ψ(ξ†) = ξ†. For any ξ, η ∈ H, we find

δ(ψ(ξ), ψ(η)) = δ(PH[(1 − λ)I ⊕ λB][tξ ⊕ (1 − t)PH[(1 − µ)I ⊕ µB]ξ],
PH[(1 − λ)I ⊕ λA][tξ ⊕ (1 − t)PH[(1 − µ)I ⊕ µB]ξ])

≤ δ([(1 − λ)I ⊕ λA][tξ ⊕ (1 − t)PH[(1 − µ)I ⊕ µB]ξ],
[(1 − λ)I ⊕ λA][tη ⊕ (1 − t)PH[(1 − µ)I ⊕ µB]η])

≤ δ([tξ ⊕ (1 − t)PH[(1 − µ)I ⊕ µB]ξ]
, [tη ⊕ (1 − t)PH[(1 − µ)I ⊕ µB]η])

≤ tδ(ξ, tη ⊕ (1 − t)PH[(1 − µ)I ⊕ µB]η) + (1 − t)

δ(PH[(1 − µ)I ⊕ µB]ξ, tη ⊕ (1 − t)PH[(1 − µ)I ⊕ µB]η)
≤ t[tδ(ξ, η) + (1 − t)δ(ξ, η)] + (1 − t)[tδ(ξ, η) + (1 − t)δ(ξ, η)]

≤ δ(ξ, η).

4. Main Results

Theorem 1. Assume Ω is a CAT(0) space. Let ∅ ̸= H ⊂ Ω be a closed convex subset. Suppose a
retraction PH : Ω → H is both sunny and nonexpansive and take T : H → H as an asymptotically
nonexpansive mapping. Furthermore, A,B : H → Ω are α-ISA and β-ISA operators, respectively.
Let f : H → H be a contraction with a coefficient ρ ∈ (0, 1). Define ψ in the following manner:

ψ(ξ) = PH[(1 − λ)I ⊕ λA][tξ ⊕ (1 − t)PH[(1 − µ)I ⊕ µB]ξ].

Assume that Φ = F(T )
⋂

F(ψ) ̸= ∅.

(i) Assume there exists a strictly increasing, convex, and continuous function g : [0, 2π] → R;
then,

⟨−→ςζ ,
−−−−−−−→
Πj(ρ)Πj(γ)⟩ ≤ 1

2
[δ2(ς, ζ) + δ2(ρ, γ)− g(δ(ς, ζ) + δ(ρ, γ))]

or,

⟨−→ςζ ,
−−−−−−−→
Πj(ρ)Πj(γ)⟩ ≤ 1

2
[δ2(ς, ζ) + δ2(ρ, γ)− g(δ(ς, ρ) + δ(ζ, γ))].

(ii) 0 ≤ t < 1, 2⟨−−→Aξξ,
−−→Aηη⟩ ≥ δ2(Aη, η) + δ2(Aξ, ξ).

Then sequence {ξn} converges strongly to ξ† ∈ Φ, which is also the solution of the variational
inequality problem

⟨((1 − λ)I ⊕ λ f )ξ†,
−−−−−−−−→
Πj(ξ†)Πj(p)⟩ ≤ 0 for all p ∈ Φ.

Proof. Let ξ† ∈ Φ. By Lemma 10, we obtain ξ† = PH((1 − λ)I ⊕ λA)[tξ† ⊕ (1 − t)η†],
η† = PH((1 − µB)I ⊕ µB)ξ†. It follows from Equation (3) that

δ(un, ξ†) = δ(ϖnξn ⊕ (1 − ϖn)zn, ξ†)

≤ ϖnδ(ξn, ξ†) + (1 − ϖn)δ(zn, ξ†)

= ϖnδ(ξn, ξ†) + (1 − ϖn)δ(PH((1 − λ)I ⊕ λA))(tξn ⊕ (1 − t)wn), ξ†)

= ϖnδ(ξn, ξ†) + (1 − ϖn)δ(ψ(ξn), ξ†)

= ϖnδ(ξn, ξ†) + (1 − ϖn)δ(ξn, ξ†)

= [ϖn + (1 − ϖn)]δ(ξn, ξ†)

= δ(ξn, ξ†).
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Then we compute:

δ(ξn+1, ξ†) = δ(ℵn f (ξn)⊕ (1 − ℵn)(
ℜn

1 − ℵn
⊕ (1 − ℜn

1 − ℵn
)T nun, ξ†)

≤ ℵnδ( f (ξn), ξ†) + (1 − ℵn)δ(
ℜn

1 − ℵn
ξn ⊕ (1 − ℜn

1 − ℵn
)T nun, ξ†)

≤ ℵnδ( f (ξn), ξ†) + (1 − ℵn)
ℜn

1 − ℵn
δ(ξn, ξ†)

+(1 − ℵn)(1 −
ℜn

1 − ℵn
)δ(T nun, ξ†)

≤ ℵnδ( f (ξn), ξ†) +ℜnδ(ξn, ξ†) + (1 − ℵn −ℜn)knδ(un, ξ†)

≤ ℵnδ( f (ξn), ξ†) +ℜnδ(ξn, ξ†) + γnknδ(ξn, ξ†)

≤ ℵn[δ( f (ξn), f (ξ†)) + δ( f (ξ†), ξ†)] +ℜnδ(ξn, ξ†) + γnknδ(ξn, ξ†)

≤ ℵnρδ(ξn, ξ†) + ℵnδ( f (ξ†), ξ†) +ℜnδ(ξn, ξ†) + γnknδ(ξn, ξ†)

= [ℵnρ +ℜn + γnkn]δ(ξn, ξ†) + ℵnδ( f (ξ†), ξ†)

≤ [1 − (1 − ρ − ϵ)ℵn]δ(ξn, ξ†) + ℵnδ( f (ξ†), ξ†)

≤ max{δ(ξn, ξ†),
1

1 − ρ − ϵ
δ( f (ξ†), ξ†)},

which ensures the boundedness of the sequence ξn and, in continuation, of the sequences
zn, un, f (ξn), and T nun.

From (3) and Lemma (10), it is apparent that

δ(zn+1, zn) = δ(PH[(1 − λ)I ⊕ λA](tξn+1 ⊕ (1 − t)wn+1),

PH[(1 − λ)I ⊕ λA](tξn ⊕ (1 − t)wn))

= δ(PH[(1 − λ)I ⊕ λA](tξn+1 ⊕PH[(1 − µ)I ⊕ µB]ξn+1,

PH[(1 − λ)I ⊕ λA](tξn ⊕ (1 − t)PH[(1 − µ)I ⊕ µB]ξn)

= δ(ψ(ξn+1), ψ(ξn))

≤ δ(ξn+1, ξn),

then

δ(un+1, un) = δ(ϖn+1ξn+1 ⊕ (1 − ϖn+1)zn+1, ϖnξn ⊕ (1 − ϖn)zn)

≤ ϖn+1δ(ξn+1, ϖnξn ⊕ (1 − ϖn)zn)

+(1 − ϖn+1)δ(zn+1, ϖnξn ⊕ (1 − ϖn)zn)

≤ ϖn+1[ϖnδ(ξn+1, ξn) + (1 − ϖn)δ(ξn+1, zn)]

+(1 − ϖn+1)[ϖnδ(zn+1, ξn) + (1 − ϖn)δ(zn+1, zn)]

≤ ϖn+1[ϖnδ(ξn+1, ξn) + (1 − ϖn)δ(ξn+1, ξn) + (1 − ϖn)δ(ξn, zn)]

+(1 − ϖn+1)[ϖnδ(zn+1, zn) + ϖnδ(zn, ξn) + (1 − ϖn)δ(ξn+1, ξn)]

≤ δ(ξn+1, ξn) + [ϖn+1 − 2ϖnϖn+1 + ϖn]δ(ξn, zn).

Set
ξn+1 = ℜnξn ⊕ (1 −ℜn)pn for all n ≥ 0.

Now,

δ(ξn+1, ξn+2) = δ(ℜnξn ⊕ (1 −ℜn)pn,ℜn+1ξn+1 ⊕ (1 −ℜn+1)pn+1)

≤ ℜnδ(ξn,ℜn+1ξn+1 ⊕ (1 −ℜn+1)pn+1)

+(1 −ℜn)δ(pn,ℜn+1ξn+1 ⊕ (1 −ℜn+1)pn+1),
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which implies

δ(ξn+1, ξn+2) ≤ ℜnℜn+1δ(ξn, ξn+1) +ℜn(1 −ℜn+1)δ(ξn, pn+1)

+ℜn+1(1 −ℜn)δ(pn, ξn+1)

+(1 −ℜn)(1 −ℜn+1)δ(pn, pn+1). (5)

Furthermore,

δ(ξn+1, ξn+2) = δ(ℵn f (ξn)⊕ (1 − ℵn)[
ℜn

1 − ℵn
ξn ⊕ (1 − ℜn

1 − ℵn
)T nun],

ℵn+1 f (ξn+1)⊕ (1 − ℵn+1)[
ℜn+1

1 − ℵn+1
ξn+1

⊕(1 − ℜn+1

1 − ℵn+1
)T n+1un+1])

≤ ℵnℵn+1ρδ(ξn, ξn+1) + ℵnℜn+1δ( f (ξn), ξn+1)

+ℵnγn+1δ( f (ξn), T n+1un+1) +ℜnℵn+1δ(ξn, f (ξn+1))

+ℜnℜn+1δ(ξn, ξn+1) +ℜnγn+1δ(ξn, T n+1un+1)

+γnℵn+1δ(T nun, f (ξn+1)) + γnℜn+1δ(T nun, ξn+1)

+γnγn+1kn+1δ(ξn+1, ξn)

+γnγn+1kn+1[ϖn+1 − 2ϖnϖn+1 + ϖn]δ(ξn, zn). (6)

From (5) and (6) we have

0 ≤ ℵnℵn+1ρδ(ξn, ξn+1) + ℵnℜn+1δ( f (ξn), ξn+1)

+ℵnγn+1δ( f (ξn), T n+1un+1) +ℜnℵn+1δ(ξn, f (ξn+1))

+ℜnℜn+1δ(ξn, ξn+1) +ℜnγn+1δ(ξn, T n+1un+1)

+γnℵn+1δ(T nun, f (ξn+1)) + γnℜn+1δ(T nun, ξn+1)

+γnγn+1kn+1δ(ξn+1, ξn) + γnγn+1kn+1[ϖn+1 − 2ϖnϖn+1 + ϖn]δ(ξn, zn)

−ℜnℜn+1δ(ξn, ξn+1)−ℜn(1 −ℜn+1)δ(ξn, pn+1)

−ℜn+1(1 −ℜn)δ(pn, ξn+1)− (1 −ℜn)(1 −ℜn+1)δ(pn, pn+1),

which implies

(1 −ℜn)(1 −ℜn+1)δ(pn, pn+1) ≤ ℵnℵn+1ρδ(ξn, ξn+1) + ℵnℜn+1M + ℵnγn+1M

+ℜnℵn+1M +ℜnγn+1M + γnℵn+1M

+γnℜn+1M + γnγn+1kn+1δ(ξn, ξn+1)

+γnγn+1kn+1[ϖn+1 − 2ϖnϖn+1 + ϖn]M.

We obtain

δ(pn, pn+1) ≤ [
ℵnℵn+1ρ + γnγn+1kn+1

(1 −ℜn)(1 −ℜn+1)
]δ(ξn, ξn+1) +

ℵnℜn+1

(1 −ℜn)(1 −ℜn+1)
M

+
ℵnγn+1

(1 −ℜn)(1 −ℜn+1)
M +

ℜnℵn+1

(1 −ℜn)(1 −ℜn+1)
M

+
ℜnγn+1

(1 −ℜn)(1 −ℜn+1)
M +

γnℵn+1

(1 −ℜn)(1 −ℜn+1)
M

+
γnℜn+1

(1 −ℜn)(1 −ℜn+1)
M

+
γnγn+1kn+1[ϖn+1 − 2ϖnϖn+1 + ϖn]

(1 −ℜn)(1 −ℜn+1)
M

= [
(1 −ℜn − γn)ℵn+1ρ + γnγn+1kn+1

(1 −ℜn)(1 −ℜn+1)
]δ(ξn, ξn+1)

+
ℵnℜn+1

(1 −ℜn)(1 −ℜn+1)
M +

ℵnγn+1

(1 −ℜn)(1 −ℜn+1)
M

+
ℜnℵn+1

(1 −ℜn)(1 −ℜn+1)
M +

ℜnγn+1

(1 −ℜn)(1 −ℜn+1)
M

+
γnℵn+1

(1 −ℜn)(1 −ℜn+1)
M +

γnℜn+1

(1 −ℜn)(1 −ℜn+1)
M

+
γnγn+1kn+1[ϖn+1 − 2ϖnϖn+1 + ϖn]

(1 −ℜn)(1 −ℜn+1)
M,
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where M > 0 is a constant. By (i), (ii), we can find

lim sup
n→∞

(δ(pn, pn+1)− δ(ξn, ξn+1)) ≤ 0.

Applying Lemma (7), we have

lim sup
n→∞

δ(pn, ξn) = 0.

We know that
δ(pn, ξn) =

1
1 −ℜn

δ(ξn+1, ξn),

and we obtain
lim

n→∞
δ(ξn+1, ξn) = 0. (7)

Next, we show that limn→∞ δ(ξn, ψ(ξn)) = 0 and limn→∞ δ(ξn, T (ξn)) = 0.
Applying Lemma 6 and by (3) to find

δ2(wn, η†) = δ2(PH[(1 − µ)I ⊕ µB]ξn,PH[(1 − µ)I ⊕ µB]ξ†)

≤ ⟨
−−−−−−−−−−−−−−−−−−−−−−−−→
[(1 − µ)I ⊕ µB]ξn[(1 − µ)I ⊕ µB]ξ†,

−−−−−−−−→
Πj(wn)Πj(η†⟩

= δ([(1 − µ)I ⊕ µB]ξn, [(1 − µ)I ⊕ µB]ξ†)δ(Πj(wn), Πj(η†))

≤ δ(ξn, ξ†)δ(Πj(wn), Πj(η†)

= ⟨
−−→
ξnξ†,

−−−−−−−−−→
Πj(wn)Πj(η†)⟩

≤ 1
2
[δ2(ξn, ξ†) + δ2(wn, η†)− g(δ(ξn, ξ†) + δ(wn, η†))].

Hence, we have

δ2(wn, η†) ≤ δ2(ξn, ξ†)− g(δ(ξn, ξ†) + δ(wn, η†)).

Further, we estimate

δ2(zn, ξ†) = δ2(PH((1 − λ)I ⊕ λA)(tξn ⊕ (1 − t)wn)

,PH((1 − λ)I ⊕ λA)(tξ† ⊕ (1 − t)η†))

≤ ⟨
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[(1 − λ)I ⊕ λA][tξn ⊕ (1 − t)wn][(1 − λ)I ⊕ λA][(tξ† ⊕ (1 − t)η†]

,
−−−−−−−−−→
Πj(zn)Πj(ξ†)⟩

= δ([(1 − λ)I ⊕ λA][tξn ⊕ (1 − t)wn]

, [(1 − λ)I ⊕ λA][tξ† ⊕ (1 − t)η†])δ(Πj(zn), Πj(ξ†))

≤ δ(tξn ⊕ (1 − t)wn, tξ† ⊕ (1 − t)η†)δ(Πj(zn), Πj(ξ†))

≤ {t[δ(ξn, tξ† ⊕ (1 − t)η†)] + (1 − t)[δ(wn, tξ† ⊕ (1 − t)η†)]}
δ(Πj(zn), Πj(ξ†))

≤ {t[tδ(ξn, ξ†) + (1 − t)δ(ξn, η†)]

+(1 − t)[tδ(wn, ξ†) + (1 − t)δ(wn, η†)]}δ(Πj(zn), Πj(ξ†))
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δ2(zn, ξ†) ≤ {t[tδ(ξn, ξ†) + (1 − t)δ(ξn, ξ†) + (1 − t)δ(ξ†, η†)]

+(1 − t)[tδ(wn, η†) + tδ(η†, ξ†)

+(1 − t)δ(wn, η†)]}δ(Πj(zn), Πj(ξ†))

= {tδ(ξn, ξ†) + 2t(1 − t)δ(ξ†, η†)

+(1 − t)δ(wn, η†)}δ(Πj(zn), Πj(ξ†))

= tδ(ξn, ξ†)δ(Πj(zn), Πj(ξ†))

+2t(1 − t)δ(ξ†, η†)δ(Πj(zn), Πj(ξ†))

+(1 − t)δ(wn, η†)δ(Πj(zn), Πj(ξ†))

= t⟨
−−→
ξnξ†,

−−−−−−−−−→
Πj(zn)Πj(ξ†)⟩

+2t(1 − t)⟨
−−→
ξ†η†,

−−−−−−−−−→
Πj(zn)Πj(ξ†)⟩

+(1 − t)t⟨
−−→
wnη†,

−−−−−−−−−→
Πj(zn)Πj(ξ†)⟩

≤ t
2
[δ2(ξn, ξ†) + δ2(zn, ξ†)− g(δ(ξn, zn)]

+
2t(1 − t)

2
[δ2(ξ†, η†) + δ2(zn, ξ†)− g(δ(ξ†, η†) + δ(zn, ξ†))]

+
1 − t

2
[δ2(wn, η†) + δ2(zn, ξ†)− g(δ(wn, η†) + δ(zn, wn))]

≤ t
2
[δ2(ξn, ξ†) + δ2(zn, ξ†)− g(δ(ξn, zn)]

+
2t(1 − t)

2
[δ2(ξ†, η†) + δ2(zn, ξ†)− g(δ(ξ†, η†) + δ(zn, η†))]

+
1 − t

2
[δ2(ξn, η†)− g(δ(ξn, ξ†) + δ(wn, η†))

+δ2(zn, ξ†)− g(δ(wn, η†) + δ(zn, wn))],

which implies

δ2(zn, ξ†) ≤ 1
2

δ2(ξn, ξ†) + t(1 − t)δ2(zn, ξ†)− t
2

g(δ(ξn, zn)

+t(1 − t)δ2(ξ†, η†)− t(1 − t)g(δ(ξ†, η†) + δ(zn, ξ†))

− 1 − t
2

g(δ(ξn, ξ†) + δ(wn, η†))

− 1 − t
2

g(δ(wn, η†) + δ(zn, wn)),

noting that 0 ≤ t < 1, so

δ2(zn, ξ†) ≤ 1
2

δ2(ξn, ξ†)− t(1 − t)g(δ(ξ†, η†) + δ(zn, ξ†))

−1 − t
2

g(δ(ξn, ξ†) + δ(wn, η†))

−1 − t
2

g(δ(wn, η†) + δ(zn, wn)),

then

δ2(un, ξ†) = δ2(ϖnξn ⊕ (1 − ϖn)zn, ξ†)

≤ ϖnδ2(ξn, ξ†) + (1 − ϖn)[
1
2

δ2(ξn, ξ†)− t(1 − t)g(δ(ξ†, η†) + δ(zn, ξ†))

−1 − t
2

g(δ(ξn, ξ†) + δ(wn, η†))− 1 − t
2

g(δ(wn, η†) + δ(zn, wn))]

≤ 1
2
(1 + ϖn)δ

2(ξn, ξ†)− t(1 − t)(1 − ϖn)g(δ(ξ†, η†) + δ(zn, ξ†))

−(1 − ϖn)
1 − t

2
g(δ(ξn, ξ†) + δ(wn, η†))

−(1 − ϖn)
1 − t

2
g(δ(wn, η†) + δ(zn, wn))

−ϖn(1 − ϖn)δ
2(zn, ξn).
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We know that

δ2(ξn+1, ξ†) = δ2(ℵn f (ξn)⊕ (1 − ℵn)[
ℜn

1 − ℵn
ξn ⊕ (1 − ℜn

1 − ℵn
)T nun], ξ†)

≤ ℵnδ2( f (ξn), ξ†) + (1 − ℵn)δ
2(

ℜn

1 − ℵn
ξn ⊕ (1 − ℜn

1 − ℵn
)T nun, ξ†)

−ℵn(1 − ℵn)δ
2( f (ξn),

ℜn

1 − ℵn
ξn ⊕ (1 − ℜn

1 − ℵn
)T nun)

≤ ℵnδ2( f (ξn), ξ†) +ℜnδ2(ξn, ξ†) + γnδ2(T nun, ξ†)

− ℜnγn

1 − ℵn
δ2(T nun, ξ†)

−ℵn(1 − ℵn)δ
2( f (ξn),

ℜn

1 − ℵn
ξn ⊕ (1 − ℜn

1 − ℵn
)T nun)

≤ ℵnδ2( f (ξn), ξ†) +ℜnδ2(ξn, ξ†) + γnk2
nδ2(un, ξ†)

− ℜnγn

1 − ℵn
δ2(T nun, ξn)

−ℵn(1 − ℵn)δ
2( f (ξn),

ℜn

1 − ℵn
ξn ⊕ (1 − ℜn

1 − ℵn
)T nun)

≤ ℵnδ2( f (ξn), ξ†) +ℜnδ2(ξn, ξ†) + γnk2
n[

1
2
(1 + ϖn)δ

2(ξn, ξ†)

−t(1 − t)(1 − ϖn)g(δ(ξ†, η†) + δ(zn, ξ†))

−(1 − ϖn)
1 − t

2
g(δ(ξn, ξ†) + δ(wn, η†))

−(1 − ϖn)
1 − t

2
g(δ(wn, η†) + δ(zn, wn))

−ϖn(1 − ϖn)δ
2(zn, ξn)]−

ℜnγn

1 − ℵn
δ2(T nun, ξn)

−ℵn(1 − ℵn)δ
2( f (ξn),

ℜn

1 − ℵn
ξn ⊕ (1 − ℜn

1 − ℵn
)T nun),

which implies that

γnk2
nt(1 − t)(1 − ϖn)g(δ(ξ†, η†) + δ(zn, ξ†))

+ γnk2
n(1 − ϖn)

1 − t
2

g(δ(ξn, ξ†) + δ(wn, η†))

+ γnk2
n(1 − ϖn)

1 − t
2

g(δ(wn, η†) + δ(zn, wn))

≤ ℵnδ2( f (ξn), ξ†) +ℜnδ2(ξn, ξ†) + γnk2
n

1
2
(1 + ϖn)δ

2(ξn, ξ†)

− ℜnγn

1 − ℵn
δ2(T nun, ξn)ℵn(1 − ℵn)δ

2( f (ξn),
ℜn

1 − ℵn
ξn ⊕ (1 − ℜn

1 − ℵn
)T nun).

It follows from (7) and conditions (3),

lim
n→∞

(δ(ξ†, η†) + δ(zn, ξ†)) = 0;

lim
n→∞

(δ(ξn, ξ†) + δ(wn, η†)) = 0;

lim
n→∞

(δ(wn, η†) + δ(zn, wn)) = 0.

So,

δ(ξn, zn) ≤ δ(ξn, ξ†) + δ(ξ†, η†) + δ(wn, η†) + δ(zn, wn))

→ 0.
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We can obtain
δ(ξn, zn) = δ(ξn, ψ(ξn)) → 0, n → ∞. (8)

Moreover, we have

δ(ξn+1, T nun) = δ(ℵn f (ξn)⊕ (1 − ℵn)[
ℜn

1 − ℵn
ξn ⊕ (1 − ℜn

1 − ℵn
)T nun], T nun)

≤ ℵnδ( f (ξn), T nun) +ℜnδ(ξn, T nun) + γnδ(T nun, T nun)

≤ ℵnδ( f (ξn), T nun) +ℜnδ(ξn, ξn+1) +ℜnδ(ξn+1, T nun),

which implies that

(1 −ℜn)δ(ξn+1, T nun) ≤ ℜnδ(ξn, ξn+1) + ℵnδ( f (ξn), T nun).

Therefore

δ(ξn+1, T nun) ≤
ℜn

(1 −ℜn)
δ(ξn, ξn+1) +

ℵn

(1 −ℜn)
δ( f (ξn), T nun).

From conditions (i), (ii), and (7), we find

δ(ξn+1, T nun) → 0, (n → ∞). (9)

We obtain

δ(ξn, T nξn) ≤ δ(ξn, ξn+1) + δ(ξn+1, T nun) + δ(T nun, T nξn)

≤ δ(ξn, ξn+1) + δ(ξn+1, T nun) + knδ(un, ξn)

≤ δ(ξn, ξn+1) + δ(ξn+1, T nun) + kn(1 − ϖn)δ(zn, ξn).

By (7)–(9), we have
δ(ξn, T nξn) → 0, (n → ∞). (10)

Since T is an asymptotically nonexpansive mapping, we have

δ(ξn, T ξn) ≤ δ(ξn, ξn+1) + δ(ξn+1, T n+1ξn+1) + δ(T n+1ξn+1, T n+1ξn)

+δ(T n+1ξn, T ξn)

≤ δ(ξn, ξn+1) + δ(ξn+1, T n+1ξn+1) + kn+1δ(ξn+1, ξn) + k1δ(T nξn, ξn)

≤ (1 + kn+1)δ(ξn, ξn+1) + δ(ξn+1, T n+1ξn+1) + k1δ(T nξn, ξn).

By (7) and (9), we have
δ(ξn, T ξn) → 0, n → ∞. (11)

As {ξn} is bounded, we can therefore find a subsequence {ξni} of {ξn} which △-
converges to Υ. By the virtue of Lemma (10), ψ is nonexpansive. Now, Υ ∈ F(ψ) from (8)
and Lemma (5), which further infers Υ ∈ F(T ) by using (11) and Lemma (5). Consequently,
Υ ∈ Ω. Now Lemma (9) concludes the next statement:

⟨((1 − λ)I ⊕ λ f )ξ†,
−−−−−−−−→
Πj(ξ†)Πj(p)⟩.
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Finally, we observe

δ2(ξn+1, ξ†) = ⟨
−−−−→
ξn+1ξ†,

−−−−−−−−−−→
Πj(ξn+1)Πj(ξ†)⟩

= δ(ξn+1, ξ†)δ(Πj(ξn+1), Πj(ξ†))

= {δ(ℵn f (ξn)⊕ (1 − ℵn)(
ℜn

1 − ℵn
ξn ⊕ (1 − ℜn

1 − ℵn
)T nun), ξ†)}

δ(Πj(ξn+1), Πj(ξ†))

≤ {ℵnδ( f (ξn), ξ†) + (1 − ℵn)δ(
ℜn

1 − ℵn
ξn ⊕ (1 − ℜn

1 − ℵn
)T nun, ξ†)}

δ(Πj(ξn+1), Πj(ξ†))

≤ {ℵnδ( f (ξn), ξ†) +ℜnδ(ξn, ξ†) + γnδ(T nun, ξ†)}
δ(Πj(ξn+1), Πj(ξ†))

≤ {ℵnδ( f (ξn), ξ†) +ℜnδ(ξn, ξ†) + γnδ(T nun, ξ†)}
δ(Πj(ξn+1), Πj(ξ†))

≤ {ℵnδ( f (ξn), f (ξ†)) + ℵnδ( f (ξ†), ξ†) +ℜnδ(ξn, ξ†) + γnknδ(un, ξ†)}
δ(Πj(ξn+1), Πj(ξ†))

≤ {ℵnδ( f (ξn), f (ξ†)) + ℵnδ( f (ξ†), ξ†) +ℜnδ(ξn, ξ†) + γnknδ(ξn, ξ†)}
δ(Πj(ξn+1), Πj(ξ†))

= {[ℵnρ +ℜn + γnkn]δ(ξn, ξ†) + ℵnδ( f (ξ†), ξ†)}δ(Πj(ξn+1), Πj(ξ†))

= [ℵnρ +ℜn + γnkn]δ(ξn, ξ†)δ(Πj(ξn+1), Πj(ξ†))

+ℵnδ( f (ξ†), ξ†)δ(Πj(ξn+1), Πj(ξ†))

≤ 1
2
[ℵnρ +ℜn + γnkn][δ

2(ξn, ξ†) + δ2(Πj(ξn+1), Πj(ξ†))]

+ℵn⟨
−−−−→
f (ξ†)ξ†,

−−−−−−−−−−→
Πj(ξn+1)Πj(ξ†)⟩

=
ℵnρ +ℜn + γnkn

2
[δ2(ξn, ξ†) + δ2(ξn+1, ξ†)]

+ℵn⟨
−−−−→
f (ξ†)ξ†,

−−−−−−−−−−→
Πj(ξn+1)Πj(ξ†)⟩,

which implies

δ2(ξn+1, ξ†) ≤ 2ℵn

2 − ℵnρ −ℜn − γnkn
⟨
−−−−→
f (ξ†)ξ†,

−−−−−−−−−−→
Πj(ξn+1)Πj(ξ†)⟩

+
ℵnρ +ℜn + γnkn

2 − ℵnρ −ℜn − γnkn
δ2(ξn, ξ†)

=
2ℵn

2 − ℵnρ −ℜn − γnkn
⟨
−−−−→
f (ξ†)ξ†,

−−−−−−−−−−→
Πj(ξn+1)Πj(ξ†)⟩

+[1 − 2(1 − ℵnρ −ℜn − γnkn)

2 − ℵnρ −ℜn − γnkn
]δ2(ξn, ξ†)

≤ 2ℵn

2 − ℵnρ −ℜn − γnkn
⟨
−−−−→
f (ξ†)ξ†,

−−−−−−−−−−→
Πj(ξn+1)Πδ(ξ†)⟩

+[1 − 2ℵn(1 − ρ − ϵ)

2 − ℵnρ −ℜn − γnkn
]δ2(ξn, ξ†).
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We have bn = 2ℵn(1−ρ−ϵ)
2−ℵnρ−ℜn−γnkn

and σn = ⟨
−−−−→
f (ξ†)ξ† ,

−−−−−−−−−−→
Πj(ξn+1)Πj(ξ†)⟩
1−ρ−ϵ , then by condition (i),

we have

∞

∑
n=0

bn =
∞

∑
n=0

2ℵn(1 − ρ − ϵ)

2 − ℵnρ −ℜn − γnkn
≥

∞

∑
n=0

ℵn(1 − ρ − ϵ) = +∞.

lim
n→∞

sup σn = lim
n→∞

sup
⟨
−−−−→
f (ξ†)ξ†,

−−−−−−−−−−→
Πj(ξn+1)Πj(ξ†)⟩

1 − ρ − ϵ
≤ 0.

Thus, we have limn→∞ δ(ξn, ξ†) = 0. The proof is now complete.

5. Numerical Simulations

In this segment, we furnish a numerical illustration to substantiate the credibility and
practicality of our suggested algorithm.

Example 4. In R2, we define the functions

A(ξ, η) =

(
1
2

η log(1 + ξ2),−1
2

ξ log(1 − η2)

)
B(ξ, η) =

(
1
2

η sin(ξ + η),−1
2

ξ sin(ξ + η)

)
,

where ξ ∈ R. Let kn = 1+ 1
12n , ℵn = 1

3n , ℜn = 1
2 −

1
3n , and γn = 1− 1

3n for all n ∈ N. Then we
take t = 0.25, µ = 3, λ = 2 and T and f be defined by T (ξ, η) = (ξ2, 0), f (ξ, η) = (0.25ξ, 0).
Then, starting with ξ1 = (0.1, 0.2) in (3), we obtain the following numerical results, as shown in
Figures 1 and 2.
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Figure 1. Real coordinate iteration.
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Figure 2. Exponential coordinate iteration.
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6. Conclusions

We first introduced duality mapping and some concepts related to it in a CAT(0) space.
We proved some lemmas in a CAT(0) space which are essential for our main result. We
considered the problem of the convergence of an iterative algorithm for a system of general
variational inequalities and a nonexpansive mapping. Strong convergence theorems are
established in the framework of CAT(0) spaces.
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