
Optimizing K2 Trees: A Case for Validating the Maturity of Network
of Practices

Quan Shi1, Yanghua Xiao 2*, Bessis Nik3*, Yiqi Lu2, Yaoliang Chen2 and Hill Richard3

1 School of Computer Science and Technology, Nantong University, Nantong China
2School of Computer Science, Fudan University, Shanghai, China
3School of Computing and Mathematics, University of Derby, United Kingdom

sq@ntu.edu.cn; shawyh@fudan.edu.cn; n.bessis@derby.ac.uk;

luyiiqi@gmail.com; chenyao2@gmail.com; r.hill@derby.ac.uk

Abstract

Of late there has been considerable interest in the efficient and effective storage of large-scale

network graphs, such as those within the domains of social networks, web and virtual

communities. The representation of these data graphs is a complex and challenging task and arises

as a result of the inherent structural and dynamic properties of a community network, whereby

naturally occurring churn can severely affect the ability to optimize the network structure. Since

the organization of the network will change over time, we consider how an established method for

storing large data graphs (K2 tree) can be augmented and then utilized as an indicator of the

relative maturity of a community network. Within this context, we present an algorithm and a

series of experimental results upon both real and simulated networks, illustrating that the

compression effectiveness reduces as the community network structure becomes more dynamic. It

is for this reason we highlight a notable opportunity to explore the relevance between the K2 tree

optimization factor with the maturity level of the network community concerned.

Keywords K2 tree; storage optimization; DFS code; compression algorithm; network of practices

1. Introduction

The efficient organization and representation of graph data and the corresponding data processing

method is a topical issue for the database research community. In recent years, the exponential rate

of growth and pervasiveness of the Internet has resulted in larger scale data sets, particularly since

the advent of social networking applications. For instance, Facebook has in excess of 484 million

registered users, with each individual having, on average, 120 ‘friends’ [1].

Clearly the volume and complexity of these datasets has much to offer the research community, in

terms of understanding established and emerging developments in data organization and usage. In

contrast with more traditional repositories such as geographical map stores, these large-scale

social networks have the potential to exhibit an increased richness that has not been witnessed

before. Existing research can be divided into two categories. In the first category, the methods

focus upon graph representation on secondary storage devices. For example, Aggarwal et al. [2]

build a connectivity index for massive disk-resident graphs based on a digest graph, which can be

directly loaded into memory. The second category considers graph compression as a means of

reducing storage costs. Both of these approaches tend to explore the property of an adjacency list

* Corresponding author: Dr Yanghua Xiao, School of Computer Science, Fudan University, Email:
shawyh@fudan.edu.cn; Prof Nik Bessis, University of Derby, School of Computing & Maths,
Kedleston Road, Derby, DE22 1GB, United Kingdom, Email: n.bessis@derby.ac.uk, Tel.:
00441332592108, Fax: 00441332597741

mailto:r.hill@derby.ac.uk
mailto:chenyao2@gmail.com
mailto:luyiiqi@gmail.com
mailto:n.bessis@derby.ac.uk
mailto:shawyh@fudan.edu.cn
mailto:sq@ntu.edu.cn
mailto:n.bessis@derby.ac.uk
mailto:shawyh@fudan.edu.cn

or matrix. Amongst them, representative methods include: K2 tree [3]; compression based upon

vertex similarity [4]; ζ-code [5]; use of frequent patterns [6]; compression using graph skeleton by

symmetry [7]; social network compression using shingle ordering [8]; and finally a back-links

schema and hybrid compression method utilizing dynamic arrays [9]. The next section will offer

an introduction to the contextual basis of our work.

2. Contextual basis

2.1. Networks and communities

There has been a considerable amount of research with regard to the concept of Communities of

Practice (CoP). This work takes the perspective that a CoP has a social learning theory dimension

[10] [11] [12] which in effect acknowledges elements of knowledge transformation between

connected nodes on the basis of their shared interest.

The emergence of Web technologies has concentrated the study of CoP from various technological

based developments, including web and virtual communities, online communities and social

networks. For brevity we shall use the term ‘Network of Practice’ (NoP) [13] to refer to the overall

set of informal, emergent social networks that facilitate learning and knowledge sharing between

individuals conducting practice-related tasks. [12] describes the life-cycle of a CoP as an informal

learning and development process encompassing three key stages. We will use the three key stages

to annotate user activity and participation within any network of practice (NoP).

During the first stage, a NoP is in its infancy and comprises a scattered set of individuals across a

particular network space, that have intent to gain awareness of their space. This is characterized by

behavior that promotes and accelerates the process of familiarization between different parties, for

instance by flooding the community network space with message requests for information.

Following on and as a result of stage one interaction, an individual and collective awareness

emerges that facilitates an active environment. Individual networked nodes will exhibit more bi-

directional communication, with less emphasis upon the broadcasting of messages to the masses.

This is where the network space exhibits evidence of user participation and thus, individuals

working towards the fulfillment of their goals.

Finally, the individuals demonstrate more fruitful communicative relationships, and commonality

between clusters of activity becomes more apparent suggesting the emergence of a particular

expertise. The predominant behavior in the network at this stage is that of relationship

maintenance; rather than relationship propagation, there is little need to broadcast requests.

Lately, there is an increased interest in understanding what constitutes ‘success’ in a NoP. Most

studies describe success of communities from the perspective of the information system success

models. [10] points out that the main concern with this model is that it does not consider the social

relationships among members nor the structure of the networked community. For this reason, [10]

[11] suggest a new approach based on social network analysis (SNA). Following their work, we

are particularly interested in understanding the maturity of a NoP which in effect reflects its

relative success.

Specifically, the ability to make an assessment of the maturity of a CoP presents an opportunity for

emerging systems to develop more sophisticated behaviors, such as self-awareness. Within this

context, we are interested in the development of an optimized K2 tree method that can be utilized

to demonstrate the maturity of a NoP. The remainder of this article describes how we have

augmented the simple K2 tree approach in order that more complex, community network graphs

can be compressed effectively for storage, as well as providing an indication as to the relative

maturity of that network. First, we introduce the K2 approach.

2.2. K2 tree approach

If a real-world network is represented as a data graph, it will typically demonstrate empty regions.

A K2 tree compresses a large number of these zero value regions in an adjacency matrix, in order

that a reduced number of K2 tree nodes will result, thus demonstrating effective compression.

However, a simple K2 tree is still too abstract for the effective representation of the structural

characteristics of real-world networks. In terms of compression efficiency, there is still

considerable potential to improve upon a simple K2 tree. Firstly, many real networks have an

evident hierarchy of communities. Nodes inside one community are highly interconnected with

other nodes, while links between different communities are relatively sparse.

If it were possible to sort the nodes of a graph, based upon the similarity of their respective

indices, then the corresponding adjacency matrix would reflect a concentration of the potential

values, in this case either containing values of ‘one’ or ‘zero’. It follows that this concentration of

values within the matrix would significantly improve the resulting compression effectiveness.

However, there are two fundamental issues with this approach. Firstly, a simple K2 tree cannot

represent the complex network structure of a community. Secondly, the established K2

compression method relies upon a fixed value for K; should the structure of the community alter,

and therefore the distribution of values in the adjacency matrix change, the calculated value for K

would now be inappropriate resulting in sub-optimal compression.

This presents a challenge that forms the basis of this research, in which we not only explore the

optimization of the K2 method in order maximize graph compression for storage, but we also take

account of the need to represent the maturity of more complex, dynamic community network

structures such as a NoP.

2.2.1. Basic concepts

We consider an undirected graph as an exemplar by which we can discuss the challenges of

optimization using a K2 tree. The proposed algorithm can also be extended to solve the difficulties

of representation and storage of graphs with multi-edges and self-loops. This section gives some

basic concepts and the formal definitions used in this paper, such as the undirected graph and a K2

tree.

Definition 1: Undirected graph. An undirected graph is a tuple G = (V, E), where V is the set of

vertices in graph G and E⊆V×V is the edge set.

For graph G, its corresponding adjacency matrix A is a N×N matrix where N is the vertex number

of graph G and aij=1 iff (vi,vj)∈E, otherwise aij=0. Figures 1(a) and 1(b) gives an example of the

graph and its corresponding adjacency matrix.

Definition 2: K2 Tree. An adjacency matrix can be represented by an unbalanced K2-dimension

tree, called a K2 tree. For a K2 tree, in addition to the leaf nodes used to represent the adjacency

matrix, the other nodes can be represented by 0 for a leaf node and 1 for an internal node. The

lowest level in the tree is the root, followed by the second level (K2 children of root), each of

which is either 0 or 1. In a K2 tree, every internal node has K2 children.

Given an adjacency matrix, the construction of a K2 tree is similar to that of QuadTree [14]. First

the adjacency matrix is divided equally into parts, that is, divide the original matrix into K2 K×K

sub-matrices. These K2 sub-matrices correspond to the K2 children of the root of K2 tree. If a sub-

matrix has a value of 1, the value of the child node is also 1, otherwise it is assigned a 0. It follows

that, a node of value 0 means that the elements in a sub-matrix it represents are all 0, which as a

consequence, makes this a leaf node. For those nodes of value 1, we recursively divide the sub-

matrix it represents into K2 parts until all of the values of a sub-matrix are equal to 0, or a sub-

matrix which consists of only one element is reached.

For a K2 tree, a large K value leads to a tree with relatively small number of layers but a large

spread of leaf nodes. Figures 1(c) and 1(d) show the K2 tree when the K value is 2 and 4.
1

5 3

8
2

4 6

7

1 1 1
1
1

1

1

1 1 1
1

1 1
1 1

1 1 1
1 1

1

(a) Sample graph and (b) related adjacency matrix

1 1 1 1

1 1 0

0 1 1 0 1 0 0 1

1

1 0 0 1

1 1 1 0

1 0 0 1 1 0 0 1

1 1 1 0

0 1 1 0 0 1 1 0

0 1 01

0 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0

(c) K2 tree when K=2

0 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0

1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0

(d) K2 tree when K=4

Fig.1 A sample graph and its K2 trees

3. Optimization of K2 tree

In this section, we present various optimization techniques for K2 tree.

3.1. DFS Code with heuristic rule

For sparse networks that exhibit a community structure, there must exist some specific node

orders which make the elements of value 1 in the corresponding adjacency matrix relatively

concentrated in some sub-matrices, rather than randomly appearing in the adjacency matrix.

Therefore, by finding an effective node encoding and reordering schema the number of internal

nodes in K2 Tree can be suitably reduced.

For a graph with N vertices, there are N! possible node orders in total, each corresponding to a

unique K2 tree. It is clear that a different node order leads to different K2 tree size. As shown in

Figure 2, after reordering the nodes in the graph of Figure 1(a), the K2 tree (K=2) obtained has 4

nodes less than the original. Amongst all possible orders of nodes, the one leading to K2 tree with

minimum tree node number is the optimal node order. Finding the optimal node order is

intractable. Even when K=2, this optimal node ordering problem can be reduced to a minimum

bisection problem, which has been proved to be NP-hard [15]. When K is dynamic, the problem

becomes more complex. Therefore we need to use heuristic rules to find the approximate optimal

solution. This article uses depth first search (DFS) with heuristic rules to encode the vertices in a

graph, and then takes the DFS order as approximate for the optimal node order.

1

3 2

4
5

6 8

7

1 1 1 1
1
1
1
1

1
1 1

1
1 1 1

1 1
1 1
1 1 1

1 1 1 1

1 1 1

0 1 1 0 1 1 1 0

1

1 1 1 0 0 1 1 0

1 0 0 0

1 0 0 0 1 0 0 0

1 0 0 0

0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0

1 1 11

(a) Reordered Graph (b) Corresponding adjacency matrix (c) K2 tree when K = 2

Fig.2 Reordered Graph and its corresponding K2 tree

The optimal node order should be used to encode nodes inside a community continuously.

Therefore an appropriate DFS heuristic rule to guide the process of traversing the nodes within

one community is needed. As such, the index of these nodes in one community is continuous

which makes them more likely to be in one sub-matrix when the original matrix is being divided.

In our experiment, it is shown that this heuristic rule will achieve an improved performance

together with the retention of community structural characteristics. We use a simple and effective

heuristic rule: structural similarity. For a given node pair (u,v), the structural similarity between u

and v is α(u,v),

)()(

)()(
),(

vNuN

vNuN
vu

=α （1 （ ,

where N(u) denotes the neighbor set of node u. For every edge e(u,v), we can define its structural

similarity α(u,v). Using DFS, the neighbor which has the largest structural similarity is selected as

the next node to visit.

We take Figure 1(a) as an example. In Figure 1(a), we have two communities where the indices of

nodes are randomly assigned. Figure 2(a) shows the re-encoded graph from node 1 using our

heuristic DFS rule. Every node inside a community is indexed continuously. Its corresponding

adjacency matrix is given in Figure 2(b). Edges inside one community tend to appear in the same

block, which will assist the compression efficiency of K2 tree. The graph in Figure 2(c) has 4 less

nodes than that in graph 1(c).

Structural similarity has been widely used in computing the collection similarity, which is also

known as the Jaccard coefficient. For graphs represented by an adjacency list, we can first perform

a sort on an adjacency list. For an edge (u,v), its Jaccard coefficient can be obtained by using

mergesort in Θ(d(u)+d(v)). Based on mergesort, it can be proved that we can obtain the Jaccard

coefficient of every edge in the graph in O(N log2N).

Lemma 1: For a sparse graph G(M=Θ(N logN)), where N is the number of vertices, M is the

number of edges. Based on mergesort, the time complexity of calculating the Jaccard coefficient

of all edges is O (N log2N).

Proof:

The cost of sorting an adjacency list is

∑∑
∈∈

≤≤
VuVu

dMuddudud maxmax log)(log)(log)(

where dmax is the maximal degree in the graph. Therefore the total cost of mergesort is:

NMNududvdud
VuEvu Vu

22

),(

2))(()()()(=≤=+ ∑∑ ∑
∈∈ ∈

Because of M=Θ(N logN), the time complexity is O (N log2N).

Large scale, real world networks such as social networks always have a scale-free network

topography[16]. Its degree distribution obeys a power law form:

R
R

vr
N

vd))((
1

)(=

where r(v) is the degree rank of vertex v in the graph, R is a constant and R<0. For real graphs of

this kind, it can be proved that the Jaccard coefficient can be calculated in O(NlogN) when R≤-

0.5. In fact, the R value of most of the scale-free networks is within -2 to -3 [17].

Corollary 1(Time complexity of calculating the Jaccard coefficient on scale-free networks):

For graph with degree distribution of R
R

vr
N

vd))((
1

)(= and M=Θ(NlogN), the time

complexity of calculating the Jaccard coefficient of all edges based on mergesort is O(NlogN).

Proof:

The cost of sort on adjacency list is the same as the proof in lemma 1, which is O(NlogN). The

accumulated cost is:

R
N

i

R

Evu Vu

Niudvdud 2

1

2

),(

2)()()(∑∑ ∑
=∈ ∈

==+

Therefore, when ≤−0.5� the upper bound is O(NlogN).

For large scale networks with more than 1M nodes the method given above to compute the

Jaccard coefficient is still too costly. An alternative is to adopt shingle [18] instead. Shingle has

been used widely in similarity computation for large scale networks. It [19] has been proved that

for a random permutation π on a given set U=A∪B,

BA

BA
ba

BbAa ∪
∩

==
∈

−

∈

−)})]({min()})({min(Pr[11 ππππ （ 2（

That is to say, the probability that the minimum element of A under permutation π equals to the

minimum element of B under permutation π is the Jaccard coefficient of set A and B. Based on the

theorem above, the O(N) shingle computation method has been proposed [20] to obtain the

Jaccard coefficient. In this case, the time complexity of computing the Jaccard coefficient in our

heuristic rule is O(N).

3.2. Self-adaptive K

Another key factor of K2 tree compression is the selection of K, which is usually fixed for a simple

K2 tree. In many cases, a fixed K may break a sub-matrix which has many values of one into a

scatter, resulting in an incremental increase in the number of K2 tree internal nodes. As shown in

Figure 3, if K=3, we need to divide the matrix according to the community in this graph, otherwise

the community will be broken. Therefore an appropriate value for K is vital.

Fig. 3 A 9×9 adjacency matrix

To address this, we consider K no longer to be fixed value, which leads to a variable tree structure

with every internal node having a different fan-out number. Ideally, an algorithm has to propose

the best fan-out number for every internal node, thus presenting a significant computational

overhead. We propose that only the sibling nodes that share a common parent node will share also

the same value for K. In this section, we will illustrate by means of theoretical analysis and

experimental results that the cost of this is relatively low, whilst also achieving good performance.

Algorithm 1: BuildK2Tree(G)
Input: Graph G

Output: TG: Optimal K2 tree;

1（ Let M be the adjacent matrix of G;

2（ TG _set= {};

3（ For each k from kmin to kmax

4（ TG _set= TG _set ∪{ConstructK2 (M, k, 0)};

5（ Return the tree with minimal nodes in TG_set as TG;

The algorithm for building a K2 Tree with a self-adaptive K value is described in Algorithm 1. We

try every possible k value in [kmin, kmax], then call the method ConstructK2 to calculate the optimal

K2 tree, before selecting the best value for K. In Algorithm 2, lines 1 and 4 iterate through the

current sub-matrix to determine whether it is all zeroes or ones, thus identifying a leaf node.

Otherwise, go to line 8 to recursively compute the best value for K. Algorithm 2 also attempts to

divide the current sub-matrix into every possible value for K, recording the resulting node number

(lines 11~13) and storing as descendant_count. After all possible values for K have been tried,

Algorithm 2 takes the value stored in descendant_count and stores the minimum value into

m[level] (line 17~19). This results in an optimized K2 tree (line 20~21).
Algorithm 2: ConstructK2 (M, K, level)
Input: Adjacency matrix M，K(current K value),level(current
level)

Output: TG: optimal K2 tree;

1（ IF all the elements in M are 0 Then {

2（ m[level] = 0; //m[level]store the number of nodes of the

K2 sub-trees corresponding to M

3（ Construct a leaf with label 0 as TG; }

4（ IF all the elements in M are 1 Then {

5（ m[level] = 0;

6（ Construct a leaf with label 1 as TG; }

7（ Else

8（ min_TG_set = {};

9（ m[level] = ∞;

10（ Divide M into K2 SubMatrixes with equal size.

11（ For each k from kmin to kmax {

12（ TG_set = {}; //store the K2 tree of submatrix

13（ descendant_count = 0;

14（ For each SubMatrix {

15（ TG_set = TG_set ∪ {ConstructK2 (SubMatrix,

k, level+1)}（

16（ descendant_count += m[level + 1] + 1; }

17（ IF m[level] > descendant_count Then {

18（ min_TG_set = TG_set;

19（ m[level] = descendant_count; }

20（ Create a new tree TG with a root node R;

21（ Set R’s subtrees as Min_TG_Set;}

22（ Return TG;

The recurrence formula is given below:

C
n

TT(n)
k

kd 2

i

2

ik
+

= （ 3（ ,

where ki is the current recurrence depth.

Constant C corresponds to lines 6 and 9 in Algorithm 2. By iterating we can determine whether the

sub-matrix contains either all zeroes or all ones. In formula 3, ki corresponds to a different

recurrence depth, but in practice, k is selected within a small range. In later experiments, we select

k in [2,4]. In our analysis, we assume selection of the same ki for every recurrence depth such as

Kmid, and then according to the master theorem, the complexity of our algorithm is)(αNO ,

where kKmidkK
dkd

midmid
log

2

1
1log 2

2 +==α . In subsequent experiments, we select a k value in

[2,4], which provides good performance in our experiment on a network with 105 nodes where the

complexity is O(N1.5).

4. Experiments

We implemented the proposed algorithm using C++. All the experiments were conducted on

Windows 7 Professional with Intel Core Duo 1.60GHz and 2GB memory.

4.1. Dataset

The network data used in this experiment is shown in Table 1, where N is the vertex number, M is

the edge number and 2M/N is the average degree. Gq is the random network generated by Pajek

and Lesmis[21]. Football[22], Cond_mat[23] and DBLP[24] is real network data.

Table 1 Experimental data

Network N M 2M/N
Gq 578 1068 3.696
Lesmis 77 254 6.597
Football 115 613 10.661
Cond_mat 36458 171736 9.421
Dblp 48143

3
171932
0

7.143

4.2. Results

Based on this specification, the following represents our experiment results.

4.2.1 Re-sort of Vertices

This experiment is conducted to show the relative compression efficiency of a K2 tree constructed

using the DFS heuristics, compared with that of a naïve K2 tree.

Fig. 4 Results on Gq Fig. 5 Results on Football Fig. 6 Results on Lesmis

Fig. 7 Results on Cond_mat Fig. 8 Results on Dblp

We compare the number of nodes in a K2 tree obtained by the original method and DFS, with a

heuristic rule on the real network data listed on table 1, when K=2, 3, 4, 5, 6, 7. The experimental

results are given in Figures 4 - 8. In Gq, Lesmis, Football, Cond_mat and DBLP networks, the

ratio of numbers of nodes of K2 tree using DFS, with heuristic rule and nodes of the original K2

tree is 64.22%, 63.40%, 62.14%, 36.73% and 47.8% on average. In those graphs, the number of

nodes reduces to 42.07%, 38.0%, 48.76%, 66.5% and 54.0% respectively in the best case. These

experiments indicate that the K2 tree using DFS and a heuristic rule can effectively reduce the

number of nodes in a K2 tree.

Similarly, for different real networks, the optimal K value is also different. Generally, the number

of nodes of a K2 tree will increase with the growth of K. However, there are some counter

examples. For the Football network data, when K=4, the compression effectiveness reaches its

optimum. It follows, therefore that the optimal K value depends on the structural property of a

community networks.

4.2.2 Adaptive K compared with the fixed K

This experiment is conducted to illustrate the efficiency of an adaptive adjustment strategy for K,

in comparison to a naïve K2 tree.

Table 2 Adaptive K compared with fixed K
Graph Original K2 tree K2 tree with vertex ordered by DFS code

K=2 K=3 K=4 K=2 K=3 K=4 SA
Lesmis 1760

25.68%

1771

22.52%

2064

21.90%

1120

40.36%

1086

41.62%

1280

35.31%

452

Football 7876

18.68%

8211

17.91%

5340

27.55%

4036

36.45%

4280

34.37%

3568

41.23%

1471

Gq 22598

29.50%

25788

25.85%

31365

21.26%

15172

43.94%

17587

37.91%

20390

32.70%

6667

Cond_

mat

1151592

15.58%

132314
9

13.56%

201464
0

8.91%

472716

37.96%

508969

35.26%

771004

23.28%

17946
0

For a given node order, we compare the number of nodes of the self-adaptive k algorithm with that

of the original K2 tree. In table 2, we present the experimental results for Lesmis, Football, Gq and

Cond_mat when K=2, 3, 4. Based on the DFS encoding with a heuristic rule, the number of nodes

in a self-adaptive K2 tree reduces to 39.10%, 37.35%, 38.18% and 32.17% of the original K2 tree

on average. In the best case, the ratio is 35.31%, 34.37%, 32.70% and 23.28% respectively. So, by

self-adaptively altering k, we can minimize damage to the community structure of the input graph.

From Table 2 we can also observe that by combining the two optimization methods together, we

can achieve a compression effectiveness of 21.90%, 17.91%, 21.26% and 8.91% in the best case.

4.2.3 Selection of K

This experiment is conducted to find the best K of an adaptive adjustment strategy when used to

build K2 trees from real networks.

(a) BA network (b) ER network

Fig. 9 Experimental result under different K

An appropriate k value interval is of great importance to our compress algorithm. We use 2

synthetic networks to determine the best k value interval. The first BA network has 1000 nodes

and 1980 edges and the second ER network has 1000 nodes and 5141 edges. For k varies from 2

to 10, the result on those two graph is given in figure 9. The number of nodes in K2 tree grows

with the increment of k value. When k falls in [2,4], K2 tree has a acceptable result.

4.2.4 Influence of community structure

In this subsection, we will investigate how a community structure of a real network can impact

upon on the efficiency of our approach.

Fig. 10 Experimental result under different community structure

In this section we will discuss the impact of the clarity of a community structure in a network on

the method we propose. We divide 1000 nodes into 10 communities. For a node pair (u,v), if they

are in the same community, then the edge probability is 0.7, otherwise the probability is 0.001. As

a result, we obtain a graph with 1000 nodes and 39124 edges. It is self-evident from the

construction of synthetic networks that the resulting synthetic graphs are of strong community

structure. In order to test the impact mentioned in this section, we do a t time experiment. In each

experiment, we randomly disconnect 10t edges inside a community and then randomly link 10t

edges between different communities. In our setting, t varies from 1 to 3. The result on those

synthetic networks is given in Figure 10. It is shown that the compression grows worse with the

loss of community structure. These results demonstrate that a mature NoP shall encompass two

key characteristics. Firstly, the overall behavior of a mature NoP should be homogenous which in

effect demonstrates that participant nodes interact with other well defined and trusted participant

nodes. The results also demonstrate that such a behavior should be expected to occur during stage

three of a NoP. This is because participant nodes have developed the skill, knowledge and

expertise to process filtered requests. The results show also that the more explicit community

structure is reflected in better compression. Secondly, the structure of the underlying network shall

be broadly stable. That is to say that communication links between participant nodes will tend to

be altered for the purposes of relationship maintenance, rather than as a general attempt to

establish a relationship. Again, the results demonstrate that the more dynamic the structural

changes, the worse the compression. It is expected that a newly formed CoP is more likely to

exhibit a greater proportion of participant nodes joining and leaving (as per stage one) and thus

will not tend to demonstrate stability.

5. Conclusion

A key thrust of this research has been to investigate how complex data graphs, such as those that

represent NoP communities, can be appraised in terms of their relative maturity. As described

earlier, we consider a network to be mature when two conditions are met; although individual

nodes may possess heterogeneous behaviors, the overall behavior of the network would be

regarded as homogenous. Secondly the network that represents a NoP will have progressed

through three stages of maturity, based on those proposed by [23].

We have also described the simple K2 tree approach and illustrated how the natural occurrence of

sparse regions in real-world networks can be exploited to achieve effective compression.

However, since this method does not consider the structural characteristics of a community

network, there is still an opportunity to optimize compression further for graphs of NoP.

Therefore, we have proposed two optimization methods as follows: encoding nodes using DFS

with heuristic rule, and a self-adaptive k building K2 tree. These two methods take good advantage

of community feature in the real network, so as to reduce the number of internal nodes further.

Experiments on synthetic and real networks indicate that the K2 tree has less nodes than simple K2

tree. To conclude, we have chosen to exploit the observation that an augmented K2 tree

compression method can be used to validate that a network has in fact reached stage three

maturity.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grants

No.61003001; Specialized Research Fund for the Doctoral Program of Higher Education

No.20100071120032; the Natural Science Foundation of Jiangsu Province No.BK2009153,

BK2010280.

References

[1] comScore: http://www.cctime.com/html/2010-4-22/201042291342486.htm

[2] Aggarwal C, Xie Y, Yu P S. Gconnect: A connectivity index for massive disk-resident graphs. Proc. of

VLDB'09. Lyon, France: ACM, 2009: 862-873

[3] Brisaboa N R, Ladra S, Navarro G. k2-trees for compact web graph representation. LNCS 5721: Proc of the

16th Int Symp on String Processing and information Retrieval. Berlin: Springer, 2009: 18-30

[4] Boldi P,Vigna S. The webgraph framework I: Compression techniques. Proc of the 13th Int Conf World Wide

Web2004, New York, USA.ACM, 2004: 595–602

[5] Boldi P,Vigna S. The Webgraph framework ii: Codes for the world-wide web. Proc of Data Compression

Conference (DCC '04), Washington, USA: IEEE Computer Society, 2004: 528

[6] Buehrer G, Chellapilla K. A scalable pattern mining approach to web graph compression with communities

Proc of the 1st WSDM'08, California, USA: ACM, 2008: 95-106

[7] Xiao Yanghua, MacArthur B D, Wang Hui, et al. Network Quotients: Structural Skeletons of Complex

Systems. Physical Review E, 2008, 78: 046102

[8] Chierichetti F, Kumar R, Lattanzi S, et al. On Compressing social networks. Proc of the SIGKDD’09. Paris,

France, 2009: 219-228

[9] Li Yuming, Dong Wanpeng, Peng Yinghong. Study on Matrix Compressive Storage Method Based on 0-1

Property-matrix. Computer Engineering and Applications. 2003,39(2):82-84 (in Chinese)

[10] Sergio L. Toral, M. Rocıo Martınez-Torres, Federico Barrero and Francisco Cortes. An empirical study of the

driving forces behind online communities. Internet Research, 2009, 19(4): 378-392

[11] M.R. Martınez-Torres, S.L. Toral, F. Barrero and F. Cortes. The role of Internet in the development of future

software projects. Internet Research, 2010, 20(1): 72-86

[12] E. Wenger, Communities of Practice: Learning, Meaning, and Identity, Cambridge University Press,

Cambridge, 1998

[13] J.P. Johnson, Collaboration, peer review and open source software, Information Economics and Policy 18

(2006) 477–497.

[14] Samet H. The Quadtree and Related Hierarchical Data Structures. ACM Computing Surveys, 1984, 16 (2):

187-260

[15] Garey M R, Johnson D S, Stockmeyer L. Some simplified NP-complete graph problems Proc the 6th Annual

ACM Symp Theoret Comput. Sci.,1974,1(3):237–267,197

[16] Faloutsos M, Faloutsos P, and Faloutsos C. On power-law relationships of the internet topology. Proc. of

SIGCOMM. Cambridge MA, USA.ACM,1999: 251-262

[17] Newman M E J .The structure and function of complex networks. SIAM Review, 2003, 45(2):167-256

[18] Broder A Z,Glassman S C,Manasse M S,et al.Syntactic clustering of the Web. Computer Networks,1997,

29(8-13):1157-1166

[19] Broder A, Charikar M, Frieze A, Mitzenmacher M. Min-wise independent permutations. Journal of Computer

and System Sciences, 2000, 60:630–659

[20] Gibson D, Kumar R,Tomkins A. Discovering Large Dense Subgraphs in Massive Graphs. Proc. of VLDB'05.

Trondheim, Norway: ACM, 2005. 721–732

[21] Knuth D E. The Stanford GraphBase: A Platform for Combinatorial Computing. ACM Press,1993

[22] Batagelj V, Mrvar A. (2006): Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/

[23] Newman M E J. The structure of scientific collaboration networks. Proc Natl Acad Sci USA. 2001, 98(2):

404–409

[24] Dblp [2010-05-5] http://dblp.uni-trier.de/xml/

http://www.acm.org/publications

