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Abstract: This paper presents a dual-function wearable device (Tacsac) with capacitive tactile sensing
and integrated tactile feedback capability to enable communication among deafblind people. Tacsac has
a skin contactor which enhances localized vibrotactile stimulation of the skin as a means of feedback
to the user. It comprises two main modules—the touch-sensing module and the vibrotactile module;
both stacked and integrated as a single device. The vibrotactile module is an electromagnetic actuator
that employs a flexible coil and a permanent magnet assembled in soft poly (dimethylsiloxane)
(PDMS), while the touch-sensing module is a planar capacitive metal-insulator-metal (MIM) structure.
The flexible coil was fabricated on a 50 µm polyimide (PI) sheet using Lithographie Galvanoformung
Abformung (LIGA) micromoulding technique. The Tacsac device has been tested for independent
sensing and actuation as well as dual sensing-actuation mode. The measured vibration profiles of the
actuator showed a synchronous response to external stimulus for a wide range of frequencies (10 Hz
to 200 Hz) within the perceivable tactile frequency thresholds of the human hand. The resonance
vibration frequency of the actuator is in the range of 60–70 Hz with an observed maximum off-plane
displacement of 0.377 mm at coil current of 180 mA. The capacitive touch-sensitive layer was able
to respond to touch with minimal noise both when actuator vibration is ON and OFF. A mobile
application was also developed to demonstrate the application of Tacsac for communication between
deafblind person wearing the device and a mobile phone user who is not deafblind. This advances
existing tactile displays by providing efficient two-way communication through the use of a single
device for both localized haptic feedback and touch-sensing.

Keywords: actuator; tactile sensor; deafblind communication; tactile display

1. Introduction

Tactile displays enable people’s interaction with the environment by creating tactile sensation on
the skin as haptic feedback which is perceived and interpreted by the brain. Haptics, which involves
both tactile (cutaneous) and kinesthetic (force) feedback, plays a great role in the way we communicate,
interact with and perceive the environment [1–4]. In the area of robotics and virtual reality, it’s viewed
as real and simulated touch interactions between robots and humans [5]. This means that these
interactions may be accomplished by human, machine or both and the environments can be real
or virtual. This is recently changing the way humans interact with information and communicate
ideas [6,7]. In case of haptic visual aids for deafblind people, the interaction is not accompanied by
vision or hearing.
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The human sense of touch is well developed and there is often a minimal perceived intensity for
various stimuli like pressure, temperature, heat, and vibration. Humans are able to recognize common
objects by touch within 1–2 s and the skin is very sensitive to light pressure [8]. Although there
are different mechanoreceptors, tactile reception results from a combination of all the receptors in
a particular skin area. The threshold of tactile perception depends on several factors like location,
contact area, type of stimulus, duration, age and even hormone levels [9–14]. In [12], it was observed that
the most significant age difference in vibrotactile detection threshold was found in the glabrous finger
with the difference being less pronounced at lower frequencies (5–10 Hz) and more pronounced as the
frequency increases to 300 Hz. Studies have equally shown that the perceived intensity of stimulation is
determined by both the depth of penetration and the rate of skin indentation [8,15]. The large numbers
of touch receptors present in our skin allow us to obtain rich information through haptic interaction by
touching the objects around [16–21]. So, the importance of touch sensing [22] is evident in situations
where other sensing modalities such as vision are insufficient or unavailable [23]. An example is
the interaction by the hearing and visually impaired people in the real-world environment [24–27].
Through various forms of tactile stimulations such as skin stretching [28,29], vibration, force or painless
electric shock, they substitute the hearing and vision impairments. Thus, they substantially rely on
the tactile sensing [30] as well as tactile feedback (e.g., using actuators in tactile displays) to explore
and manipulate objects around them [6,7,31]. Similarly, combination of tactile sensing [32] and tactile
feedback is needed in areas such as minimal invasive surgery [2,5] and virtual reality [33,34] to
improve the user’s haptic interaction experience. Therefore, a tactile display with an inherent ability to
provide touch feeling as well as the vibrotactile feedback within these limits would be advantageous.
Further, considering the close contact of such displays with the curvy human body, they are desired to
be soft and flexible [35,36].

Several assistive tactile displays with a single actuator or array of actuators have been developed
for the purpose of providing tactile feedback. Early research in this area mainly focused on sensory
substitution for the blind using Braille as well as camera-based types such as opticon [37] which
reproduces texts in tactile form. However, the application domain has recently expanded to fields such
as robotics, [38] haptics, teleoperation, virtual reality, video games, and prosthetics etc. Although all
tactile feedback presents certain information to the user, the difference between tactile information for
sensory substitution and information for robotic surgery is obvious. Here, we have grouped these
existing tactile displays as: (a) the exploration types (ET), in which the user explores the surface of
objects as in Braille, and (b) the localized stimulation types (LST), in which the actuator is positioned
on the palm or elsewhere on the body to exert localized stimulation such as vibration, or skin stretch.
The latter is popularly used for assistive purposes [27,39,40].

Table 1 summarizes different types of tactile displays and the actuation technologies explored so
far. These include electromagnetic, electrostatic, dielectric elastomer (DE), piezoelectric [41], pneumatic,
rheological fluids, and shape-memory alloy (SMA) [41]. Each of these technologies has advantages and
disadvantages with regards to the development of tactile displays. Electrostatic actuators which are based
on the attraction of two forces are widely used due to their low power requirements and fast actuation
speed but suffer limited spatial resolution and performs better on dry fingers. Dielectric elastomers are
excellent smart materials for actuation and are widely explored for a number of applications including
soft robotics and tactile displays for assistive purposes. However, the common drawback of DE actuators
is the requirement of very high voltage (usually in the order of kV). SMA provides high force and large
displacement but has characteristic slow response time and suffers hysteric effect. Another technology
that provides high force and large displacement is the pneumatic-based tactile displays, but they
are often quite bulky and the lack of portability poses a problem for wearability. In comparison
with these technologies, the electromagnetic principle used here to develop the integrated sensor and
actuator offers high precision and displacement at comparatively low voltages (Table 1), which are
important for wearable applications. Additionally, none of the tactile displays (e.g., Braille displays
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and deafblind smart gloves) reported so far have the dual integrated capability of tactile sensing and
vibrotactile feedback.

Table 1. Summary of selected tactile displays and their actuation technology.

Technology Tactile
Sensing

Disp.
(µm) Type Current

Req. (mA)
Voltage

Req. Freq (Hz) Ref.

Piezoelectric No 0.257 ET <250 80 Vpk 250 [41]
Electromagnetic 1000 ET 0.250 5 V N/A [42,43]

Electrostatic No N/A ET <200 2000 Vp–p 100–400 [44]
Electroactive Polymer No 680 LST N/A 5 kV/mm 0.1–300 [45]

Thermal 61 ET N/A 28.7 V N/A [46]
Electrotactile No N/A ET N/A 9.3–63.4 V 20 [47]
ERM Motor No NA LST 72 5 V 208 [39,48]

SMA No up to 2000 ET N/A 120 mA 2 [49,50]
Pneumatic No 560 ET N/A N/A 0.2–20 [51]

Electrorheological Fluid No 700 LST N/A 4 kV 10 [52]
Electromagnetic Capacitive 377 LST 100 mA 3–5 V 10–200 This Work

N/A—Not Available. ET-Exploration Type; LST—Localized Stimulation Type; ERM—Eccentric Rotation Mass;
SMA—Shape Memory Alloy.

Here we present a device (Tacsac) with both capacitive tactile sensing capability and vibrotactile
feedback for application in tactile displays (LST); e.g., assistive communication devices by the deafblind
people who otherwise use tactile communication methods such as deafblind manual alphabets [53].
It consists primarily of two modules; (1) a capacitive touch sensing module fabricated using flexible
printed circuit board; and (2) an actuation module based on electromagnetic principle which is capable
of providing vibrotactile feedback at a range of frequencies (10 Hz–200 Hz) within the range perceivable
by human. A mobile app was also developed and utilized for the demonstration of its potential
application as a means of communication. In particular, the presented device could be used by
deafblind to communicate with people without vision/hearing impairment via a smartphone as we
demonstrate here (Figure 1). The capacitive touch sensing layer serves as a touch interface for sending
message to the mobile phone user (via the developed mobile app), while the vibrotactile module is
used as a means of interpreting the message to the user.

Further, the Tacsac device is advantageous as it utilizes a skin contactor which directly stimulates
the skin of the user. This enables the provision of localized vibration rather than full-body vibration like
popular conventional commercial vibration motors used so far in deafblind communication devices.
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2. Materials and Methods

2.1. Device Structure and Operating Principle

Figure 2 shows the structure and working principle of the Tacsac device. It comprises two main
modules: (a) the touch-sensing module, and (b) the vibrotactile module. The touch sensing module was
designed with a simple metal-insulator-metal capacitive configuration with capacitance expressed as:

C = εrε0A/d (1)

where C is the capacitance, which changes when the sensor is touched, εr is the relative permittivity
of the dielectric material, ε0 is the permittivity of free space, A is the area of metal plates and d is
the distance between the two conducting metal plates. The actuation module uses electromagnetic
principle and is driven by the interaction of a spiral coil and a permanent magnet. As a principal
component of the actuator, the coil determines the magnetic field produced. When a uniform square
current pulse flows through the coil at a particular frequency, a pulsating magnetic field is produced
along the axis, which exerts a force on the tiny magnet of the actuator and leading to periodic actuation
of the top layer. The choice of the parameters of the coil is very key in the realization of a spiral coil
which is capable of giving the desired results. Here we present how different parameters of the coil
were calculated.
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Any wire carrying current creates a magnetic field in the region surrounding it and the relationship
between the current and the accompanying magnetic field is given by Biot Savart’s Law. If a spiral coil
carrying current I is considered to be made up of n number of concentric circular loops with inner
radius ri, outer radius ro and thickness t (Figure 2a,b), then if n = N where N = number of turns of
the spiral.

Utilizing the 2D-axisymmetric model of the spiral coil as shown in Figure 2a (adapted from [54]),
the relationship between the internal and external radii of the spiral coil is given as:

ro − ri = N(p + w) (2)
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where p is the pitch of the coil, w is the width of the coil conductor. The coil aspect ratio is also an
important consideration in as different coil aspect ratio could affect the magnetic field produced at
the center of the coil which provides the required force of actuation when it interacts with a magnet.
Defining α = w/t as the coil aspect ratio we have:

ro − ri = N(p + αt) (3)

Given the length of the spiral coil as l = N2πro, we derived the total magnetic field generated at
the center by the N-turns of the spiral as:

BCenter o f Spiral =
N∑
1

µ0I
2(N(αt + p))

ln
(

ro

ro −N(αt + p)

)
(4)

where, µ0 is the relative permeability of free space (4π × 10−7) [H/m]. Equation (4) depicts the
relationship between the coil parameters and shows how varying these parameters affect the magnetic
field generated at the center of the actuating coil.

2.2. Device Fabrication

This section presents the fabrication of the Tacsac device, which involves three main tasks:
(1) fabrication of the spiral coil, which is the primary element of the integrated actuator that provides
the vibrotactile feedback; (2) fabrication of the capacitive sensing layer; and (3) Integration of the
vibrotactile actuator and the capacitive sensing layer to realize Tacsac.

2.2.1. Fabrication of the Spiral Coil

The spiral coil is the primary element of the actuating layer and was fabricated using the
Lithographie Galvanoformung Abformung (LIGA, Figure 3) process [55], which is needed to
produce structures with high aspect ratio. A Plassys MEB 550S Electron Beam Evaporator system
(Plassys, Glasgow, UK) was used to deposit a 20 nm/80 nm NiCr/Au on a flexible 50 µm polyimide sheet.
Following this was the spinning of an AZ4562 photoresist (Clariant GmbH, Wiesbaden, Germany)
at 2000 rpm for ~3 s, and the sample left at room temperature for ~30 min prior to baking on a hot
plate at ~100 ◦C for 10 min. The baked sample was left again at room temperature for 30 min to allow
evaporation of the solvent. This was followed by an exposure of the sample to ultraviolet (UV) light
for ~60 min following a standard lithography technique. An AZ826 developer was utilized to develop
the exposed sample for ~10 min, after which it was rinsed in reverse osmosis water.

In order to increase the thickness of the resulting spiral coil, we electroplated it using a litre of
non-cyanide gold electroplating solution. The solution was prepared by first heating 250 mL of RO
water at 50 ◦C using a hotplate. The water was then removed from the hotplate and 60 mL of solution
containing Na2SO3 and tripotassium citrate (K3C6H5O7) was added to the water. Following this, 5 mL
of brightener (containing arsenic salt) was added. Next is the addition of 50 mL of gold complex
solution which contains gold sulphite. Finally, the resultant solution was adjusted to reach 1liter by
adding more RO water.

The coil sample was then electroplated for ~45 min using the prepared non-cyanide gold complex
solution [56] to realize a coil with ~17 µm thickness. The unwanted gold layer was then etched using
conventional gold etchant for ~15 s, thus exposing only the NiCr seed layer. The sample was annealed
at 350 ◦C in a furnace for ~20 min under a nitrogen atmosphere to increase the strength of electroplated
metal and avoid undesirable lift-off during etching of the seed layer. The NiCr seed layer was then
was removed using Nichrome etchant to realize the required spiral coil as shown in Figure 3h.
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(c) Spin-coating of photoresist; (d) Exposure of photoresist; (e) Developing the photoresist; (f) Electroplating
the coil; (g) lift-off the photoresist; (h) Etching of the seed layer; and (i) Fabricated Coil.

2.2.2. Fabrication of the Capacitive Sensing Layer

The touch-sensing module was realized following the steps depicted in Figure 4a. It was fabricated
using a facile planar capacitive structure realized by bonding two layers of single-sided flexible
printed circuit board (FPCB) with ~35 µm of copper on a polyimide substrate. This was achieved
by sandwiching a PVC film between the non-conducting surface of one FPCB with the conducting
copper surface of the other, and so the polyimide substrate of the top FPCB and the PVC serves as
the dielectric layer for the capacitive touch sensor (Figure 4a). The FPCB and PVC were cut using the
Silhouette Cameo 2 blade cutter (Silhouette, Lindon, UT, USA, Figure 4(a3,a5)). The software of the
Silhouette Cameo has a built-in library of different materials with options of editing their properties.
The pattern to be cut was first designed in a graphic software and then transferred to the Silhouette
Cameo software for cutting Figure 4(a1). The Silhouette Cameo was set to be able to cut only the
required portions of the sheet. To do this, the speed, force, and blade position of the blade cutter was
set to 5, 20, and 10 cm·s−1 respectively. This was followed by attachment of a plain FPCB on a sticky
12 in × 12 in cutting mat, from which the designed pattern was cut out Figure 4(a3). Similar steps
were followed to cut a PVC film (Figure 4(a4,a5)). After cutting, the unwanted parts were removed
revealing only the pattern, as shown in Figure 4(a5). The cut piece of PVC was sandwiched between
two cut pieces of FPCB as shown in Figure 4(a6). This was then followed by the attachment of a fine
copper wire to serve as electrodes Figure 4(a7).
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Figure 4. (a) Fabrication steps for the sensing layer; (a1) Design of the pattern using CAD software;
(a2) attachment of the FPCB on the 12 in × 12 in cutting mat; (a3) Cutting of two layers of the pattern
using the Silhouette Cameo 3 blade cutter; (a4) Attachment of the PVC film on the 12 in × 12 in cutting
mat (a5) Cutting of the PVC film using the Silhouette Cameo 3 blade cutter; (a6) Bonding of the FPCB
and PVC layer using Loctite adhesive; (a7) Soldering of a fine copper wire on both layers of the FPCB
to serve as electrode; and (b) Fabrication steps for integration of the capacitive sensing layer and
vibrotactile actuator(b1) Attachment of the touch-sensing layer to the coil; (b2) Integration of the coil
separator; (b3) Attachment of skin contactor to the permanent magnet; (b4) Integration of the PDMS
packaging; (b5) Final packaging of the actuator using PDMS cover.

2.2.3. Device Integration

The steps for the realization of the touch-sensitive actuator (Tacsac) are shown in Figure 4b.
The main components of the actuator include the touch sensitive layer, the coil, a permanent magnet,
skin contactor, and PDMS packaging. The integration and packaging was carefully designed to
reduce damping of the actuation/vibration. The actuator has an overall diameter of ~1.5 cm and was
designed to fit appropriately into the user’s finger. It was realized layer by layer as shown in Figure 4b.
A cylindrical mould with 1.5 cm and 1.9 cm inner and outer diameter respectively was designed and
realized with 3D printer for the PDMS packaging. The mould was designed for the body of the actuator
and meant to realize a PDMS packaging of diameter 1.5 cm and height 0.4 cm, with a hole of 1mm
inner diameter for the movement of the skin contactor.

For the realization of the actuator, 10:1 PDMS (Sylgard 184, Sigma-Aldrich, Gillingham, UK)
comprising of mixture of pre-polymer base and crosslinking agent was prepared and poured into the
mould, and then cured at 80 ◦C in the oven for 15 min. The same PDMS was also used to attach the
touch-sensitive layer to the coil and cured for 10 min Figure 4(b1). The coil separator was then attached
to the coil substrate Figure 4(b2) using Loctite transparent adhesive (Amazon UK, Slough, UK).
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The permanent magnet used here was a 2 mm thick N42 grade neodymium magnet from
E-Magnets (E-Magnets, Berkhamsted, UK), comprising of ~29–32% neodymium, 64.2–68.5% iron and
1–1.2% E-Boron (NdFeB). A 1 mm2 skin contactor (made of polylactic acid (PLA) plastic) was attached
to the permanent magnet using a Loctite transparent adhesive, and both placed on the coil separator
(Figure 4(b3)). The actuator was then packaged with the cured PDMS described earlier in this section
(Figure 4(a4,a5)).

2.3. Device Characterization

This section describes the procedure for characterizing the actuation (vibrotactile) and sensing
(capacitive) capabilities of the Tacsac device. The actuation characterization (displacement and
amplitude characteristics at different frequencies) of the actuator in response to varying current pulse
inputs was carried out by employing custom-made optical lever technique (Figure 5).Sensors 2020, 19, x FOR PEER REVIEW 9 of 16 
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In this technique, a pointed laser ray is directed onto a reflective material (mirror) placed on the
actuator and the reflected ray properly directed on to an opaque screen where the actuation is measured as
a magnified value of the original displacement (Figure 5). Before the experiment, the laser and the actuator
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were all firmly attached to a stable optical table and the ray adjusted to obtain a sharp image on the screen.
The actuator was then connected to a power supply, and a signal generator via a custom-made constant
current source (Figure 5a). During the experiment, the actuator was driven with different currents (60, 90,
120, 150, and 180 mA) and at different frequencies ranging from 10 Hz to 200 Hz in order to understand
the behavior of the actuator over this range which is detectable by human. To record displacement at
any time, the camera is used to capture the motion of the ray on the screen when the actuator is turn
on at the given current and frequency. In our experiment, the motion of the reflected laser spot on the
opaque screen during the vibration of the actuator was recorded as a video using a high-speed camera
with 960 frames per second (fps). This enabled the amplitude and displacement characteristics of Tacsac
to be effectively captured in real time for different vibration frequencies ranging from 10 Hz to 200 Hz.
Further, the recorded videos were processed (with appropriate calibration) using digital signal processing
by a MATLAB program to obtain the dynamic response of the Tacsac device.

The capacitive touch-sensing layer was equally characterized to understand how the device
responds when touched and when not touched. Force sensing was not studied here since this is not key
for the intended application. This characterization was carried out using an E4980AL precision LCR
meter (Keysight, Santa Rosa, CA, USA) and a LabVIEW 2018 Robotics v18.0f2 (National Instruments,
Austin, TX, USA) program installed in a computer for automatic reading of the capacitance values
(Figure 5). Capacitive values were read with the LabVIEW program for the case when actuator was
touched and the vibration OFF and then ON. Similar setup was used to drive the actuator in Figure 5
at 150 Hz using a square wave of 5 Vp-p, 50% duty cycle and zero offset (Figure 5). While the actuator
was vibrating, the capacitive sensing layer was touched at different intervals using a finger and the
change in capacitance was recorded using the LCR meter via the LabVIEW program.

3. Results and Discussion

Figure 6a shows the captured laser images for recorded amplitude of the actuator oscillation
at 70 Hz and 100 Hz. Similar images captured for other frequencies were processed in MATLAB to
determine the actual dynamic response of the actuator. Figure 6b shows the normalized transient
response profiles of the actuator as a function of elapsed time for a peak pulse current of 180 mA.
The actuator displacement was measured for various frequencies ranging from 10 Hz to 200 Hz with
equal intervals of 10 Hz which is well within the range detected by human. At low frequencies it can be
observed that, as the magnet switches from one position to another, it undergoes damped oscillations
before coming to stabilize in that particular position. For frequencies above 50 Hz, the magnet
switches smoothly from its position before coming to a steady state. This results in the actuator not
getting sufficient time to restore to its equilibrium state before the subsequent input current pulse.
The switching pulse may result in constructive or destructive interference with the damped oscillations,
resulting in an oscillatory behavior.

Figure 6c shows the absolute amplitude (displacement) of the actuator for different frequencies
(within the range detectable by human) at constant current of 180 mA, with the maximum displacement
observed at 70 Hz. As the frequency increases further, the displacement drops significantly owing
to the inherent mechanical impedance during oscillations. The resonance frequency of the oscillator
is in the range of 60–70 Hz. The slight increase of actuator displacement at 120 Hz and 190 Hz is
likely related to the first and second overtones of the resonance frequency between 120–130 Hz and
180–190 Hz respectively. Our control experiments at different currents and fixed frequency showed
that the actuator response is similar, except proportional increase in amplitude (Figure 6d). During this
experiment, the current in the spiral coil was increased to observe its effect on the actuation and
to choose the optimum coil current for perceivable vibration. This is because, the magnetic field
generated along the axis of the coil increases with pulsed current passing through the coil, leading to
stronger repulsive impulse force on the magnet to displace it from its mean position. The maximum
input current to the coil was restricted to 180 mA owing to the dimensional limit of the casing of
the actuator on the amplitude of actuation. Increasing the current to very large values (>200 mA)
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could increase the chances of the coil getting hot as result of Joule heating. At a constant current of
180 mA, the actuator was able to give an off-plane displacement of 0.377 mm with negligible Joule
heating effect. The transient response of the actuator was equally recorded for various coil currents
(60, 90, 120, 150 and 180 mA) at a fixed frequency of 10 Hz (Figure 6d). This showed similar oscillating
pattern in each case with current and displacement having direct proportionality. This means that
60 mA gave the least peak to peak displacement while 180 mA gave the highest in this case (Figure 6d).
The actuator has a response time ~93 ms (at 180 mA, for as frequency as low as 10 Hz) which is similar
to that of conventional vibration motors (~50–140 ms).Sensors 2020, 19, x FOR PEER REVIEW 10 of 16 
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The response of the sensor module characterization, recorded using an LCR meter and a LabVIEW
program, is shown in Figure 7a,b. Capacitance values were read when the actuator vibration was OFF
and ON. The result shows average ∆C/Co ~ 0.35 for both cases. This means that the sensing layer is
able to respond quite similar both when the actuator is ON or OFF. The results were similar other
frequencies tested and so only the response of the actuator at frequency of 150 Hz is presented as
shown in Figure 7.
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4. Application

Figure 8 shows the block diagram and result of the actuator with the mobile app developed in this work.
This is to demonstrate one of the applications of Tacsac, which is wireless communication between (1) a
deafblind person and a hearing-and-sighted person who uses a mobile phone, or (2) deafblind-to-deafblind
people, both of whom wear the device. The overall communication system comprises four main modules
(1) the fabricated Tacsac device, (2) the control module including the drive and readout circuits, (3) the
wireless module, and (4) the developed mobile app.

The deafblind user employs the actuator to communicate with a mobile phone held by the sighted
and hearing person. Messages are sent by the deafblind person using the capacitive sensing layer of
the actuator, and then received via the vibrotactile actuator in the form of vibration. This could also be
adapted for use as a Morse code communication device for deafblind people. Morse code is one of the
methods used by deafblind people for communication and this device could be of benefit for users of
this communication method. In this case, messages sent from the mobile app would be converted to
Morse codes in the form of vibration of varying frequencies and duration. To send messages in the form
of Morse code, deafblind people could tap the capacitive sensing layer, which would be decoded and
converted to text messages by the mobile app. In comparison to Braille for instance, Morse code has
advantage in terms of wearability and simplicity and with only a single device (integrated sensor and
actuator), a two-way communication can be established. Braille introduces some level of complexity in
terms of the number of devices required to represent the six dots of Braille.

However, in this work we have only demonstrated the use of Tacsac to successfully send and
receive message from the developed mobile app with a single fabricated actuator. This demonstration
was achieved using a mobile app which communicates with the actuator via an HC-05 Bluetooth
module (Amazon UK, Slough, UK). When the app is launched, the user presses the connect button
(Figure 8) to connect with the actuator and a connection status is displayed (Figure 8). To communicate
from the app to the Tacsac device, the user types a number in the message box of the app and sends
it via Bluetooth. When the actuator receives this information, it vibrates accordingly. For instance,
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when the number “1” is sent from the app, the actuator vibrates once, while it vibrates twice when
the number “2” is sent. To demonstrate the communication from Tacsac to the mobile app, the user
touches the capacitive sensing layer, this touch is then sensed, and the information sent to the mobile
app via Bluetooth (Supplementary Materials Video S1). When the mobile app receives this information,
it displays the word “Touched” or “None” otherwise (see message receipt status in Figure 8).
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5. Conclusions

In this work, an assistive haptic device for application in tactile displays (such as smart assistive
gloves) is presented. The actuation is based on electromagnetic principle and the device also has
capacitive touch-sensing capability. Considering the state of the art, this is a step forward given
that majority of the existing tactile displays do not have the ability for both touch sensing and
vibrotactile feedback. The addition of touch-sensitivity to the tactile displays is advantageous for
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simultaneous sending and receiving of information—particularly for deafblind people as it will provide
a close-loop communication system. The sensor and actuator combination show good performance
and the potential to be used in a tactile display for deafblind communication. The integrated actuator
provides a 0.377 mm displacement and its measured vibration profiles showed its capability to provide
perceivable vibration within a wide range of perceivable frequencies (10 Hz to 200 Hz). A developed
app was used to send and receive messages to/from the actuator, demonstrating its application for
communication between deafblind people and mobile phone users who have hearing and vision.
This work finds application in Morse code communication for deafblind people where the user is able
to compose messages based on Morse code and then send it to mobile phone user. Future work will
involve the fabrication of array of such integrated sensor and actuator for application in other methods
of deafblind communication (e.g., British deafblind manual alphabet).

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/17/4780/s1,
Video S1: Tacsac communicating with a custom-made mobile app.
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