
Some remarks on 3-partitions of multisets

Dorin Andrica 1

Faculty of Mathematics and Computer Science
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Abstract

Partitions play an important role in numerous combinatorial optimization problems.
Here we introduce the number of ordered 3-partitions of a multiset M having equal
sums denoted by S(m1, ...,mn;α1, ..., αn), for which we find the generating function
and give a useful integral formula. Some recurrence formulae are then established
and new integer sequences are added to OEIS, which are related to the number of
solutions for the 3-signum equation.
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1 Introduction

The signum equation for a given sequence of integers is considered in [3], in
connection with the Erdös-Surányi problem. In particular, for a given integer
n ≥ 2, the level n solution of this equation represents the number S(n) of
ways of choosing + and − such that ±1 ± 2 ± 3 ± · · · ± n = 0. This is also
the number of ordered partitions of {1, 2, . . . , n} in two sets with equal sums.

Andrica and Tomescu [4] conjectured an asymptotic formula for S(n):

lim
n→∞

n≡0 or 3(mod4)

S(n)
2n

n
√
n

=

√

6

π
,

which was proved by analytic methods by Sullivan [11].

Starting from a problem involving derivatives, Andrica established a gen-
erating function which allowed novel approaches in the study of 2-partitions
with equal sums for multisets [1]. We refer the reader to [2,3] for connections
with Erdös-Suranyi representations, to [10] for general theory of multisets and
to [12] for details about generating functions.

This paper is motivated by some recent results on the number of ordered
2-partitions with equal sums for multisets obtained in [5]. The study of 3-
partitions of multisets differs essentially from that of 2-partitions. In Section
2 of this paper we investigate the number of ordered 3-partitions of a multiset
M having equal sums, for which establish the generating function and a useful
integral formula. Some particular instances related to the number of solutions
for the 3-signum equation are studied in Section 3, where recurrence formulae
are established and some new integer sequences are proposed.

2 3-partitions of multisets with equal sums

Partitions have direct applications to classical combinatorial optimization
problems such as Bin Packing Problem (BPP), Multiprocessor Scheduling
Problem (MSP) and the 0-1 Multiple Knapsack Problem (MKP) [6].

Of particular interest is the 3-partition problem, one of the famous strongly
NP-complete problems [7,8]. Given a positive integer b and a set [n] =
{1, 2, ..., n} of n = 3m elements, each having a positive integer size as, such
that

∑n

s=1 as = mb. The problem has a solution if there is a partition of N
into m subsets, each containing exactly three elements from N , whose sum is
exactly b. For example, the set {10, 13, 5, 15, 7, 10} can be partitioned into the
two sets {10, 13, 7}, {5, 15, 10}, each of which sum to 30.



Here we investigate another 3-partition concept of a multiset defined for
the real numbers α1, ..., αn and the positive integers m1, ..., mn, denoted by

M = {α1, · · · , α1
︸ ︷︷ ︸

m1 times

, · · · , αn, · · · , αn
︸ ︷︷ ︸

mn times

}.

We call ms the multiplicity of the element αs in the multiset M , while the
notation σ(M) =

∑n

s=1msαs represents the sum of the elements of M .

Definition 2.1 Denote by S(m1, ..., mn;α1, ..., αn) the number of ordered 3-
partitions of M having equal sums, i.e., the number of triplets (C1, C2, C3) of
pairwise disjoint subsets of M such that

(i) C1 ∪ C2 ∪ C3 = M ;

(ii) σ(C1) = σ(C2) = σ(C3) =
1
3
σ(M).

The number S(m1, ..., mn;α1, ..., αn) is the constant term of the expansion
of the Laurent polynomial F (X, Y ) ∈ Z[X, Y,X−1, Y −1], defined as

F (X, Y ) =

(

Xα1 + Y α1 +
1

(XY )α1

)m1

· · ·

(

Xαn + Y αn +
1

(XY )αn

)mn

. (1)

Indeed, assume that in the product
(

Xαs + Y αs + 1
(XY )αs

)ms

we have selected

cs1 terms equal to Xαs , cs2 terms equal to Y αs , and cs3 terms equal to 1
(XY )αs

,
with s = 1, . . . , n, and notice that in this case we must have cs1+ cs2+ cs3 = ms.

Such a selection contributes to the free term if and only if

X
∑n

s=1
cs
1
αs · Y

∑n
s=1

cs
2
αs ·

1

(XY )
∑n

s=1
cs
3
αs

= 1,

which is equivalent to

n∑

s=1

cs1αs =
n∑

j=1

cs2αs =
n∑

s=1

cs3αs.

This means that the sets

Cj = {α1, · · · , α1
︸ ︷︷ ︸

c
j
1

times

, · · · , αn, · · · , αn
︸ ︷︷ ︸

c
j
n times

}, j = 1, 2, 3,

represent a partition of M which also satisfies property (ii) in Definition 2.1.



Ordering (1) in the increasing order of integer powers, one can write

F (X, Y ) =
∑

m∈Z
Pm(Y )Xm =

∑

m∈Z
Qm(X)Y m, (2)

where Pm(Y ) and Qm(X) are Laurent polynomials. Also, notice that the free
term of F (X, Y ) is the free term of P0(Y ) and Q0(X).

Clearly, we can write

F (X, Y ) =
n∏

s=1

(

Xαs + Y αs +
1

(XY )αs

)ms

= P0(Y ) +
∑

m∈Z,j 6=0

Pj(Y )Xj. (3)

Considering X = cos t + i sin t, in (3) and integrating with respect to t over
the interval [0, 2π], one obtains the following integral representation of the
polynomial

P0(Y ) =
1

2π

∫ 2π

0

n∏

s=1

(

Xαs + Y αs +
1

(XY )αs

)ms

dt. (4)

Setting Y = 1 in (3) one obtains

F (X, 1) =

n∏

s=1

(

Xαs + 1 +
1

Xαs

)ms

= P0(1) +
∑

j∈Z,j 6=0

Pm(1)X
j, (5)

which by symmetry in X and X−1 gives that

Pm(1) = P−m(1), j ∈ Z.

Also, from (4) we deduce that

P0(1) =
1

2π

∫ 2π

0

n∏

s=1

(

Xαs + 1 +
1

Xαs

)ms

dt. (6)

Since Xαs + 1 + 1
Xαs

= 1 + 2 cosαst, we have

P0(1) =
1

2π

∫ 2π

0

n∏

s=1

(1 + 2 cosαst)
ms dt. (7)

Note that

P0(1) = S(m1, ..., mn;α1, ..., αn) +R(m1, ..., mn;α1, ..., αn), (8)



where R(m1, ..., mn;α1, ..., αn) is the sum of the coefficients different from the
free term of P0(Y ). This is also equivalent to finding the number of solutions
of the 3-signum equation for a multiset

n∑

s=1

(
mk∑

j=1

εs,jαs

)

= 0, (9)

where εs,j ∈ {−1, 0, 1}, and corresponds to P0(1). Furthermore, setting X = 1
in (5) we obtain F (1, 1) = 3m1+···+mn =

∑

m∈Z Pm(1), that is the sum of all
the coefficients in all polynomials is 3m1+···+mn .

3 3-partitions with equal sums of the set {1, . . . , n}

When αs = s and ms = 1 for s = 1, . . . , n one obtains

Fn(X, Y ) =
n∏

s=1

(

Xs + Y s +
1

(XY )s

)

=
∑

m∈Z
Pn,m(Y )Xm. (10)

The computation of polynomials Pn,m(Y ) can be done recursively.

Theorem 3.1 The following recurrence is valid for m ∈ Z and n ≥ 1.

Pn,m(Y ) = Pn−1,m−n(Y ) + Y nPn−1,m(Y ) + Y −nPn−1,m+n(Y ). (11)

Also, for m = 0 we have

Pn,0(Y ) = Pn−1,−n(Y ) + Y nPn−1,0(Y ) + Y −nPn−1,n(Y ). (12)

Proof. The following formula can be established.

Fn(X, Y ) = Fn−1(X, Y )

(

Xn + Y n +
1

(XY )n

)

=

(
∑

m∈Z
Pn−1,m(Y )Xm

)(

Xn + Y n +
1

(XY )n

)

=
∑

m∈Z

(
Pn−1,m−n(Y ) + Y nPn−1,m(Y ) + Y −nPn−1,m+n(Y )

)
Xm.

✷

From simple computations we obtain the numbers in Table 1.



P2,0(Y ) Y 3

P3,0(Y ) 2
Y 3 + Y 6

P4,0(Y ) 2
Y 5 +

2
Y 2 + 2 Y + Y 10

P5,0(Y ) 2
Y 6 +

2
Y 3 + 6 + 2 Y 3 + 2 Y 6 + Y 15

P6,0(Y ) 2
Y 9 +

4
Y 6 +

4
Y 3 + 6 + 8 Y 3 + 6 Y 6 + 2 Y 9 + 2 Y 12 + Y 21

P7,0(Y ) 8
Y 14 +

4
Y 11 +

6
Y 8 +

10
Y 5 +

8
Y 2 + 10 Y + 8 Y 4 + 14 Y 7 + 8 Y 10+

6 Y 13 + 2 Y 16 + 2 Y 19 + Y 28

P8,0(Y ) 4
Y 18 +

6
Y 15 +

10
Y 12 +

18
Y 9 +

22
Y 6 +

22
Y 3 + 18 + 22 Y 3 + 16 Y 6 + 18 Y 9+

18 Y 12 + 14 Y 15 + 8 Y 18 + 6 Y 21 + 2 Y 24 + 2 Y 27 + Y 36

Table 1
Polynomials Pn,0(Y ) and their coefficients for n = 2, 3, 4, 5, 6, 7, 8.

Setting Y = 1 in (10) one obtains

Fn(X, 1) =
n∏

s=1

(

Xs + 1 +
1

Xs

)

=
∑

m∈Z
Pn,m(1)X

m. (13)

By the symmetry in X and X−1, we obtain Pn,−m(1) = Pn,m(1) for m ∈ Z.
Also, by (12) we obtain the recurrence generating the sequence {Pn,0(1)}n≥1:

Pn,0(1) = Pn−1,−n(1) + Pn−1,0(1) + Pn−1,n(1) = Pn−1,0(1) + 2Pn−1,n(1). (14)

Sequence Pn,0(1) has provided new context for the OEIS sequence A007576:

1, 1, 3, 7, 15, 35, 87, 217, 547, 1417, 3735, 9911, 26513, 71581, 194681, 532481, . . .

By applying (7) to this case, one obtains the integral formula

Pn,0(1) = S3(n) +R3(n) =
1

2π

∫ 2π

0

n∏

s=1

(1 + 2 cos st) dt, (15)

where S3(n) = S(1, . . . , 1; 1, . . . , n) and R3(n) = R(1, . . . , 1; 1, . . . , n).

The free term S3(n) of (13) has been added by us to OEIS as A317577:

0, 0, 0, 0, 6, 6, 0, 18, 54, 0, 258, 612, 0, 3570, 8880, 0, 55764, 142368, 0, 947946,

https://oeis.org/A007576
https://oeis.org/A317577


For n = 3k + 1, the number n(n+1)
2

is not divisible by 3, hence S3(n) = 0.
The following identity holds S3(n) = 6 ·a(n), where a(n) is sequence A112972.
This is also the third row of the triangle T (n, k) indexed as A275714 in OEIS.

The sequence R3(n) is new, and has the numerical values

1, 1, 3, 7, 9, 29, 87, 199, 493, 1417, 3477, 9299, 26513, 68011, 185801, 532481, . . .

Recall that Pn,0(1) (15) represents the free term in the expansions (10) and
(13), hence corresponds to the number of solutions of the 3-signum equation

ε1 · 1 + ε2 · 2 + · · ·+ εn · n = 0, (16)

where εs ∈ {−1, 0, 1}, s = 1, . . . , n.

As the monomials in the Fn(X, Y ) expansion have the form XαY β(XY )−γ,
a term is independent of X if and only if α = γ. For a given n, we have to
enumerate all the partitions A,B,C of [n] having the property σ(A) = σ(C).
The problem is equivalent to finding all triplets (α, β, γ) such that α, β, γ ≥ 0,
α = γ and α + β + γ = σ([n]).

For example, when [n] = {1, 2, 3, 4} we have σ([n]) = 10. Table 2 presents
all such partitions and the possible configurations εs, s = 1, . . . , 4 with (16).
This also clearly illustrates that we have P4,0(1) = 7.

α β γ A B C ε1 ε2 ε3 ε4 Multiplicity

0 10 0 ∅ [n] ∅ 0 0 0 0 1

3 4 3 {1, 2} {4} {3} 1 1 -1 0 1

{3} {4} {1, 2} -1 -1 1 0 1

4 2 4 {1, 3} {2} {4} 1 0 1 -1 1

{4} {2} {1, 3} -1 0 -1 1 1

5 5 5 {1, 4} ∅ {2, 3} 1 -1 -1 1 1

{2, 3} ∅ {1, 4} -1 1 1 -1 1

Table 2
Partitions of [n] into 3 subsets when n = 4 and k = 3.
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