Some remarks on 3-partitions of multisets

Dorin Andrica ${ }^{1}$
Faculty of Mathematics and Computer Science
Babess-Bolyai University
Str. Mihail Kogalniceanu Nr. 1, 400084 Cluj-Napoca, Romania

Ovidiu Bagdasar ${ }^{2}$
Department of Electronics, Computing and Mathematics
University of Derby
Kedleston Road, Derby, DE22 1GB, United Kingdom
2010 MSC: 05A16, 05A15, 05A18, 11B75.

Abstract

Partitions play an important role in numerous combinatorial optimization problems. Here we introduce the number of ordered 3 -partitions of a multiset M having equal sums denoted by $S\left(m_{1}, \ldots, m_{n} ; \alpha_{1}, \ldots, \alpha_{n}\right)$, for which we find the generating function and give a useful integral formula. Some recurrence formulae are then established and new integer sequences are added to OEIS, which are related to the number of solutions for the 3 -signum equation.

Keywords: multiset; 3-partition of a multiset; generating function; asymptotic formula; 3 -signum equation.

[^0]
1 Introduction

The signum equation for a given sequence of integers is considered in [3], in connection with the Erdös-Surányi problem. In particular, for a given integer $n \geq 2$, the level n solution of this equation represents the number $S(n)$ of ways of choosing + and - such that $\pm 1 \pm 2 \pm 3 \pm \cdots \pm n=0$. This is also the number of ordered partitions of $\{1,2, \ldots, n\}$ in two sets with equal sums.

Andrica and Tomescu [4] conjectured an asymptotic formula for $S(n)$:

$$
\lim _{\substack{n \rightarrow \infty \\ n \equiv 0 \\ \text { or } 3(\text { mod } 4)}} \frac{S(n)}{\frac{2^{n}}{n \sqrt{n}}}=\sqrt{\frac{6}{\pi}},
$$

which was proved by analytic methods by Sullivan [11].
Starting from a problem involving derivatives, Andrica established a generating function which allowed novel approaches in the study of 2-partitions with equal sums for multisets [1]. We refer the reader to $[2,3]$ for connections with Erdös-Suranyi representations, to [10] for general theory of multisets and to [12] for details about generating functions.

This paper is motivated by some recent results on the number of ordered 2 -partitions with equal sums for multisets obtained in [5]. The study of 3partitions of multisets differs essentially from that of 2-partitions. In Section 2 of this paper we investigate the number of ordered 3 -partitions of a multiset M having equal sums, for which establish the generating function and a useful integral formula. Some particular instances related to the number of solutions for the 3-signum equation are studied in Section 3, where recurrence formulae are established and some new integer sequences are proposed.

2 3-partitions of multisets with equal sums

Partitions have direct applications to classical combinatorial optimization problems such as Bin Packing Problem (BPP), Multiprocessor Scheduling Problem (MSP) and the 0-1 Multiple Knapsack Problem (MKP) [6].

Of particular interest is the 3 -partition problem, one of the famous strongly NP-complete problems $[7,8]$. Given a positive integer b and a set $[n]=$ $\{1,2, \ldots, n\}$ of $n=3 m$ elements, each having a positive integer size a_{s}, such that $\sum_{s=1}^{n} a_{s}=m b$. The problem has a solution if there is a partition of N into m subsets, each containing exactly three elements from N, whose sum is exactly b. For example, the set $\{10,13,5,15,7,10\}$ can be partitioned into the two sets $\{10,13,7\},\{5,15,10\}$, each of which sum to 30 .

Here we investigate another 3-partition concept of a multiset defined for the real numbers $\alpha_{1}, \ldots, \alpha_{n}$ and the positive integers m_{1}, \ldots, m_{n}, denoted by

$$
M=\{\underbrace{\alpha_{1}, \cdots, \alpha_{1}}_{m_{1} \text { times }}, \cdots, \underbrace{\alpha_{n}, \cdots, \alpha_{n}}_{m_{n} \text { times }}\} .
$$

We call m_{s} the multiplicity of the element α_{s} in the multiset M, while the notation $\sigma(M)=\sum_{s=1}^{n} m_{s} \alpha_{s}$ represents the sum of the elements of M.

Definition 2.1 Denote by $S\left(m_{1}, \ldots, m_{n} ; \alpha_{1}, \ldots, \alpha_{n}\right)$ the number of ordered 3partitions of M having equal sums, i.e., the number of triplets $\left(C_{1}, C_{2}, C_{3}\right)$ of pairwise disjoint subsets of M such that
(i) $C_{1} \cup C_{2} \cup C_{3}=M$;
(ii) $\sigma\left(C_{1}\right)=\sigma\left(C_{2}\right)=\sigma\left(C_{3}\right)=\frac{1}{3} \sigma(M)$.

The number $S\left(m_{1}, \ldots, m_{n} ; \alpha_{1}, \ldots, \alpha_{n}\right)$ is the constant term of the expansion of the Laurent polynomial $F(X, Y) \in \mathbb{Z}\left[X, Y, X^{-1}, Y^{-1}\right]$, defined as

$$
\begin{equation*}
F(X, Y)=\left(X^{\alpha_{1}}+Y^{\alpha_{1}}+\frac{1}{(X Y)^{\alpha_{1}}}\right)^{m_{1}} \cdots\left(X^{\alpha_{n}}+Y^{\alpha_{n}}+\frac{1}{(X Y)^{\alpha_{n}}}\right)^{m_{n}} \tag{1}
\end{equation*}
$$

Indeed, assume that in the product $\left(X^{\alpha_{s}}+Y^{\alpha_{s}}+\frac{1}{(X Y)^{\alpha_{s}}}\right)^{m_{s}}$ we have selected c_{1}^{s} terms equal to $X^{\alpha_{s}}, c_{2}^{s}$ terms equal to $Y^{\alpha_{s}}$, and c_{3}^{s} terms equal to $\frac{1}{(X Y)^{\alpha_{s}}}$, with $s=1, \ldots, n$, and notice that in this case we must have $c_{1}^{s}+c_{2}^{s}+c_{3}^{s}=m_{s}$.

Such a selection contributes to the free term if and only if

$$
X^{\sum_{s=1}^{n} c_{1}^{s} \alpha_{s}} \cdot Y^{\sum_{s=1}^{n} c_{2}^{s} \alpha_{s}} \cdot \frac{1}{(X Y)^{\sum_{s=1}^{n} c_{3}^{s} \alpha_{s}}}=1
$$

which is equivalent to

$$
\sum_{s=1}^{n} c_{1}^{s} \alpha_{s}=\sum_{j=1}^{n} c_{2}^{s} \alpha_{s}=\sum_{s=1}^{n} c_{3}^{s} \alpha_{s} .
$$

This means that the sets

$$
C_{j}=\{\underbrace{\alpha_{1}, \cdots, \alpha_{1}}_{c_{1}^{j} \text { times }}, \cdots, \underbrace{\alpha_{n}, \cdots, \alpha_{n}}_{c_{n}^{j} \text { times }}\}, \quad j=1,2,3,
$$

represent a partition of M which also satisfies property (ii) in Definition 2.1.

Ordering (1) in the increasing order of integer powers, one can write

$$
\begin{equation*}
F(X, Y)=\sum_{m \in \mathbb{Z}} P_{m}(Y) X^{m}=\sum_{m \in \mathbb{Z}} Q_{m}(X) Y^{m}, \tag{2}
\end{equation*}
$$

where $P_{m}(Y)$ and $Q_{m}(X)$ are Laurent polynomials. Also, notice that the free term of $F(X, Y)$ is the free term of $P_{0}(Y)$ and $Q_{0}(X)$.

Clearly, we can write

$$
\begin{equation*}
F(X, Y)=\prod_{s=1}^{n}\left(X^{\alpha_{s}}+Y^{\alpha_{s}}+\frac{1}{(X Y)^{\alpha_{s}}}\right)^{m_{s}}=P_{0}(Y)+\sum_{m \in \mathbb{Z}, j \neq 0} P_{j}(Y) X^{j} \tag{3}
\end{equation*}
$$

Considering $X=\cos t+i \sin t$, in (3) and integrating with respect to t over the interval $[0,2 \pi]$, one obtains the following integral representation of the polynomial

$$
\begin{equation*}
P_{0}(Y)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \prod_{s=1}^{n}\left(X^{\alpha_{s}}+Y^{\alpha_{s}}+\frac{1}{(X Y)^{\alpha_{s}}}\right)^{m_{s}} \mathrm{~d} t \tag{4}
\end{equation*}
$$

Setting $Y=1$ in (3) one obtains

$$
\begin{equation*}
F(X, 1)=\prod_{s=1}^{n}\left(X^{\alpha_{s}}+1+\frac{1}{X^{\alpha_{s}}}\right)^{m_{s}}=P_{0}(1)+\sum_{j \in \mathbb{Z}, j \neq 0} P_{m}(1) X^{j} \tag{5}
\end{equation*}
$$

which by symmetry in X and X^{-1} gives that

$$
P_{m}(1)=P_{-m}(1), \quad j \in \mathbb{Z}
$$

Also, from (4) we deduce that

$$
\begin{equation*}
P_{0}(1)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \prod_{s=1}^{n}\left(X^{\alpha_{s}}+1+\frac{1}{X^{\alpha_{s}}}\right)^{m_{s}} \mathrm{~d} t \tag{6}
\end{equation*}
$$

Since $X^{\alpha_{s}}+1+\frac{1}{X^{\alpha_{s}}}=1+2 \cos \alpha_{s}$, we have

$$
\begin{equation*}
P_{0}(1)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \prod_{s=1}^{n}\left(1+2 \cos \alpha_{s} t\right)^{m_{s}} \mathrm{~d} t \tag{7}
\end{equation*}
$$

Note that

$$
\begin{equation*}
P_{0}(1)=S\left(m_{1}, \ldots, m_{n} ; \alpha_{1}, \ldots, \alpha_{n}\right)+R\left(m_{1}, \ldots, m_{n} ; \alpha_{1}, \ldots, \alpha_{n}\right) \tag{8}
\end{equation*}
$$

where $R\left(m_{1}, \ldots, m_{n} ; \alpha_{1}, \ldots, \alpha_{n}\right)$ is the sum of the coefficients different from the free term of $P_{0}(Y)$. This is also equivalent to finding the number of solutions of the 3 -signum equation for a multiset

$$
\begin{equation*}
\sum_{s=1}^{n}\left(\sum_{j=1}^{m_{k}} \varepsilon_{s, j} \alpha_{s}\right)=0 \tag{9}
\end{equation*}
$$

where $\varepsilon_{s, j} \in\{-1,0,1\}$, and corresponds to $P_{0}(1)$. Furthermore, setting $X=1$ in (5) we obtain $F(1,1)=3^{m_{1}+\cdots+m_{n}}=\sum_{m \in \mathbb{Z}} P_{m}(1)$, that is the sum of all the coefficients in all polynomials is $3^{m_{1}+\cdots+m_{n}}$.

3 3-partitions with equal sums of the set $\{1, \ldots, n\}$

When $\alpha_{s}=s$ and $m_{s}=1$ for $s=1, \ldots, n$ one obtains

$$
\begin{equation*}
F_{n}(X, Y)=\prod_{s=1}^{n}\left(X^{s}+Y^{s}+\frac{1}{(X Y)^{s}}\right)=\sum_{m \in \mathbb{Z}} P_{n, m}(Y) X^{m} \tag{10}
\end{equation*}
$$

The computation of polynomials $P_{n, m}(Y)$ can be done recursively.
Theorem 3.1 The following recurrence is valid for $m \in \mathbb{Z}$ and $n \geq 1$.

$$
\begin{equation*}
P_{n, m}(Y)=P_{n-1, m-n}(Y)+Y^{n} P_{n-1, m}(Y)+Y^{-n} P_{n-1, m+n}(Y) . \tag{11}
\end{equation*}
$$

Also, for $m=0$ we have

$$
\begin{equation*}
P_{n, 0}(Y)=P_{n-1,-n}(Y)+Y^{n} P_{n-1,0}(Y)+Y^{-n} P_{n-1, n}(Y) \tag{12}
\end{equation*}
$$

Proof. The following formula can be established.

$$
\begin{aligned}
F_{n}(X, Y) & =F_{n-1}(X, Y)\left(X^{n}+Y^{n}+\frac{1}{(X Y)^{n}}\right) \\
& =\left(\sum_{m \in \mathbb{Z}} P_{n-1, m}(Y) X^{m}\right)\left(X^{n}+Y^{n}+\frac{1}{(X Y)^{n}}\right) \\
& =\sum_{m \in \mathbb{Z}}\left(P_{n-1, m-n}(Y)+Y^{n} P_{n-1, m}(Y)+Y^{-n} P_{n-1, m+n}(Y)\right) X^{m} .
\end{aligned}
$$

From simple computations we obtain the numbers in Table 1.

$P_{2,0}(Y)$	Y^{3}
$P_{3,0}(Y)$	$\frac{2}{Y^{3}}+Y^{6}$
$P_{4,0}(Y)$	$\frac{2}{Y^{5}}+\frac{2}{Y^{2}}+2 Y+Y^{10}$
$P_{5,0}(Y)$	$\frac{2}{Y^{6}}+\frac{2}{Y^{3}}+6+2 Y^{3}+2 Y^{6}+Y^{15}$
$P_{6,0}(Y)$	$\frac{2}{Y^{9}}+\frac{4}{Y^{6}}+\frac{4}{Y^{3}}+6+8 Y^{3}+6 Y^{6}+2 Y^{9}+2 Y^{12}+Y^{21}$
$P_{7,0}(Y)$	$\begin{aligned} & \frac{8}{Y^{14}}+\frac{4}{Y^{I I}}+\frac{6}{Y^{8}}+\frac{10}{Y^{5}}+\frac{8}{Y^{2}}+10 Y+8 Y^{4}+14 Y^{7}+8 Y^{10}+ \\ & 6 Y^{13}+2 Y^{16}+2 Y^{19}+Y^{28} \end{aligned}$
$P_{8,0}(Y)$	$\begin{aligned} & \frac{4}{Y^{18}}+\frac{6}{Y^{15}}+\frac{10}{Y^{12}}+\frac{18}{Y^{9}}+\frac{22}{Y^{6}}+\frac{22}{Y^{3}}+18+22 Y^{3}+16 Y^{6}+18 Y^{9}+ \\ & 18 Y^{12}+14 Y^{15}+8 Y^{18}+6 Y^{21}+2 Y^{24}+2 Y^{27}+Y^{36} \end{aligned}$

Table 1
Polynomials $P_{n, 0}(Y)$ and their coefficients for $n=2,3,4,5,6,7,8$.
Setting $Y=1$ in (10) one obtains

$$
\begin{equation*}
F_{n}(X, 1)=\prod_{s=1}^{n}\left(X^{s}+1+\frac{1}{X^{s}}\right)=\sum_{m \in \mathbb{Z}} P_{n, m}(1) X^{m} \tag{13}
\end{equation*}
$$

By the symmetry in X and X^{-1}, we obtain $P_{n,-m}(1)=P_{n, m}(1)$ for $m \in \mathbb{Z}$. Also, by (12) we obtain the recurrence generating the sequence $\left\{P_{n, 0}(1)\right\}_{n \geq 1}$:

$$
\begin{equation*}
P_{n, 0}(1)=P_{n-1,-n}(1)+P_{n-1,0}(1)+P_{n-1, n}(1)=P_{n-1,0}(1)+2 P_{n-1, n}(1) . \tag{14}
\end{equation*}
$$

Sequence $P_{n, 0}(1)$ has provided new context for the OEIS sequence A007576: $1,1,3,7,15,35,87,217,547,1417,3735,9911,26513,71581,194681,532481, \ldots$

By applying (7) to this case, one obtains the integral formula

$$
\begin{equation*}
P_{n, 0}(1)=S_{3}(n)+R_{3}(n)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \prod_{s=1}^{n}(1+2 \cos s t) \mathrm{d} t, \tag{15}
\end{equation*}
$$

where $S_{3}(n)=S(1, \ldots, 1 ; 1, \ldots, n)$ and $R_{3}(n)=R(1, \ldots, 1 ; 1, \ldots, n)$.
The free term $S_{3}(n)$ of (13) has been added by us to OEIS as A317577:

$$
0,0,0,0,6,6,0,18,54,0,258,612,0,3570,8880,0,55764,142368,0,947946,
$$

For $n=3 k+1$, the number $\frac{n(n+1)}{2}$ is not divisible by 3 , hence $S_{3}(n)=0$. The following identity holds $S_{3}(n)=6 \cdot a(n)$, where $a(n)$ is sequence A112972. This is also the third row of the triangle $T(n, k)$ indexed as A275714 in OEIS.

The sequence $R_{3}(n)$ is new, and has the numerical values

$$
1,1,3,7,9,29,87,199,493,1417,3477,9299,26513,68011,185801,532481, \ldots
$$

Recall that $P_{n, 0}(1)$ (15) represents the free term in the expansions (10) and (13), hence corresponds to the number of solutions of the 3 -signum equation

$$
\begin{equation*}
\varepsilon_{1} \cdot 1+\varepsilon_{2} \cdot 2+\cdots+\varepsilon_{n} \cdot n=0 \tag{16}
\end{equation*}
$$

where $\varepsilon_{s} \in\{-1,0,1\}, s=1, \ldots, n$.
As the monomials in the $F_{n}(X, Y)$ expansion have the form $X^{\alpha} Y^{\beta}(X Y)^{-\gamma}$, a term is independent of X if and only if $\alpha=\gamma$. For a given n, we have to enumerate all the partitions A, B, C of $[n]$ having the property $\sigma(A)=\sigma(C)$. The problem is equivalent to finding all triplets (α, β, γ) such that $\alpha, \beta, \gamma \geq 0$, $\alpha=\gamma$ and $\alpha+\beta+\gamma=\sigma([n])$.

For example, when $[n]=\{1,2,3,4\}$ we have $\sigma([n])=10$. Table 2 presents all such partitions and the possible configurations $\varepsilon_{s}, s=1, \ldots, 4$ with (16). This also clearly illustrates that we have $P_{4,0}(1)=7$.

α	β	γ	A	B	C	ε_{1}	ε_{2}	ε_{3}	ε_{4}	Multiplicity
0	10	0	\emptyset	$[n]$	\emptyset	0	0	0	0	1
3	4	3	$\{1,2\}$	$\{4\}$	$\{3\}$	1	1	-1	0	1
			$\{3\}$	$\{4\}$	$\{1,2\}$	-1	-1	1	0	1
4	2	4	$\{1,3\}$	$\{2\}$	$\{4\}$	1	0	1	-1	1
			$\{4\}$	$\{2\}$	$\{1,3\}$	-1	0	-1	1	1
5	5	5	$\{1,4\}$	\emptyset	$\{2,3\}$	1	-1	-1	1	1
			$\{2,3\}$	\emptyset	$\{1,4\}$	-1	1	1	-1	1

Table 2
Partitions of $[n]$ into 3 subsets when $n=4$ and $k=3$.
Acknowledgment O. Bagdasar's research was supported by a grant of the Romanian National Authority for Research and Innovation, CNCS/CCCDI UEFISCDI, project number PN-III-P2-2.1-PED-2016-1835, within PNCDI III.

References

[1] Andrica, D., A combinatorial result concerning the product of two or more derivatives, Bull. Cal. Math. Soc., 92(4), 299-304(2000).
[2] Andrica, D., Ionascu, E.J., Some unexpected connections between Analysis and Combinatorics, in "Mathematics without boundaries. Topics in pure Mathematics", Th.M. Rassias and P. Pardalos, Eds., Springer, 2014, pp.1-20.
[3] Andrica, D., Ionascu, E.J., The signum equation for Erdos-Suranyi sequences, INTEGERS 15A, 1-9(2015).
[4] Andrica, D., Tomescu, I., On an integer sequence related to a product of trigonometric fuctions, and its combinatorial relevance, J.Integer Sequence, 5(2002), Article 02.2.4.
[5] Bagdasar, O., Andrica, D., New results and conjectures on 2-partitions of multisets, 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, 2017, pp. 1-5.
doi: 10.1109/ICMSAO.2017.7934928
[6] Dell'Amico, M., Martello, S., Reduction of the Three-Partition Problem, Journal of Combinatorial Optimization, Vol.3, No.1, 17-30(1999).
[7] Garey, M.R., Johnson D. S., Complexity results for multiprocessor scheduling under resource constraints, SIAM Journal on Computing, 4(1975), 397-411.
[8] Garey, M.R., Johnson D. S., Computers and Intractability; A Guide to the Theory of NP-Completeness, Freeman: San Francisco (1979).
[9] The On-Line Encyclopedia of Integer Sequences, http://oeis.org, OEIS Foundation Inc. 2011.
[10] Stanley, R.P., Weyl groups, the hard Lefschetz theorem and the Sperner property, SIAM J. Algebraic and Discrete Methods 1 (1980), 168-184.
[11] Sullivan, B.D., On a Conjecture of Andrica and Tomescu, J.Integer Sequence 16(2013), Article 13.3.1.
[12] H. Wilf, Generatingfunctionology, Academic Press, New York, 1994.

[^0]: ${ }^{1}$ Email: dandrica@math.ubbcluj.ro
 ${ }^{2}$ Email: O.Bagdasar@derby.ac.uk

