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Abstract

In this article, the synchronization of drive-response memristive competi-

tive neural networks (MCNNs) under multiple actuator failures is studied

through implementing fault-tolerant control scheme. Unlike previous stud-

ies, the actuator failures considered in this paper include both bias and

effectiveness failures. To address these challenges, a proper mathematical

model is firstly established to capture the impact of actuator failures on

control inputs. Subsequently, several sufficient conditions are deduced by

designing an appropriate bilayer fault-tolerant controller and constructing

a Lyapunov functional to achieve the global exponential synchronization,

finite-time synchronization, fixed-time synchronization and predefined-time

synchronization respectively. Additionally, the settling time upper bounds

for the proposed synchronization methods are determined. In the end, nu-
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merical simulations with analysis and comparison are performed to confirm

the validity of the proposed results.

Keywords: Fault-tolerant synchronization, multiple actuator failures,

drive-response systems, memristive competitive neural networks

1. Introduction

Synchronization represents a prevalent and extremely important dynamic

behavior, which means that two or more subsystems exhibit consistent dy-

namic behavior. This behavior can be caused by the coupling between sys-

tems or external forces. It serves as the theoretical basis for understanding

unknown dynamic systems with the help of one or more known dynamic sys-

tems and has made remarkable progress in numerous fields [1–4]. Based on

the exponential stability theory, global exponential synchronization strate-

gies have been proposed, which allows for a more effective way to utilize

the known systems to understand the unknown ones [5–7]. The authors in

[6] investigated the global exponential synchronization of discrete-time high-

order bidirectional associative memory neural networks subject to multiple

time-varying delays.

It is well-known that the synchronization process in most of existing re-

sults is typically analyzed in infinite-time. However, the driving-response

system often requires rapid synchronization in practical applications to en-

sure real-time performance and reliability. Thus, Kamenkov [8] introduced

the concept of finite-time stability initially in 1953. In finite-time synchro-

nization [9–12], the settling time hinges on the initial state. But it is rather

difficult to precisely determine the initial value of a system. Consequently,
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the concept of fixed-time stability [13–16] was introduced to overcome this

limitation. Liu et al. [14] investigated the robust fixed-time synchroniza-

tion of fuzzy shunting-inhibitory cellular neural networks with time delays

through the development of two distinct control strategies. Actually, fixed-

time synchronization offers a precise upper bound for the settling time, and

this bound is not determined by the initial state. However, this bound is not

arbitrary, which renders that it is difficult to be adjusted according to the

parameters of the system and controller. Consequently, the predefined-time

synchronization theory was presented to address the challenge of settling

time by providing an arbitrary bound that doesn’t rely on initial conditions

and can be set as a controller parameter. This allows for the network to be

easily tuned in advance. In secure communication, it is essential that syn-

chronization occurs within a predetermined time to meet the designer’s re-

quirements. In [17], the authors proposed a novel approach for Lyapunov-like

characterizations that ensure predefined-time stability, integrating previous

methods to create a unified framework for constructing dynamic systems with

predefined-time stability and a sliding mode controller with predefined-time

performance.

Over the past several decades, neural networks (NNs) have emerged as

the focus of extensive research owing to their broad applications across fields

such as computer science, signal processing, visual analytics, and so on [18–

20]. It is a common understanding that a key feature of dynamic NNs is

the presence of both feedforward and feedback connections between neu-

ral layers. Additionally, it is recognized that synaptic weights in biological

networks change over time. These aspects of dynamic NNs and the chang-
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ing synaptic weights in biological networks set the stage for exploring more

complex neural mechanisms. To further unravel this complexity, Cohen and

Grossberg [21] introduced competitive NNs (CNNs) model for the first time

in 1983, which integrates both activity and weight dynamics. These net-

works can store target patterns as stable equilibrium points, a property that

relies on stability criteria to explain the complex interplay between neural

activity and learning dynamics. Furthermore, CNNs not only describe the

slow, unsupervised synaptic adjustments associated with long-term memory

(LTM) but also represent the rapid neural activities linked to short-term

memory (STM). CNNs have led to numerous significant research advance-

ments due to the above-mentioned advantages [22–25]. In [24], the authors

investigated the multistability properties of a class of CNNs with sigmoidal

activation functions, incorporating state-dependent switching and fractional-

order derivatives.

In 2008, HP team [26] fabricated a memristor device having memory

properties. Memristors [27–30] can be better connected to large circuits in

NNs compared to regular resistors, thus the calculating capacity, parallel

working ability and self-adjusting abilities of NNs are significantly improved.

Accordingly, memristors have been increasingly introduced into CNNs by

academics to form memristive CNNs (MCNNs) [31–34]. Xu et al. [31] carried

out an in-depth study on the fixed-time synchronization of complex-valued

MCNNs affected by mixed delays. Gong et al. [34] carried out research on

the synchronization issue of MCNNs with time-varying delay.

Although significant progress has been made in the synchronization of

MCNNs, the matter of fault tolerance on this kind of network has failed
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to garner adequate attention. Within practical applications, system fail-

ures are often unavoidable due to factors such as network disturbances and

electromagnetic interference, which can severely impact network stability.

Therefore, the study of fault-tolerant strategies for network synchronization

is essential [35–42]. In [39], the global exponential synchronization of com-

plex networks, incorporating node delay and a switching topology, was an-

alyzed under an almost sure condition. In [40], the authors explored the

synchronization issue relying on an observer for a class of complex dynami-

cal networks in the presence of randomly occurring actuator defects, external

disruptions, input saturation and time delay. However, most existing stud-

ies on fault-tolerant synchronization mainly focus on actuator effectiveness

failures [41, 42], assuming that actuators either degrade partially or com-

pletely lose their function. In practical systems, actuators may also suffer

from bias failures, where they produce constant erroneous outputs regard-

less of control signals. These two types of failures can occur independently

or simultaneously, and ignoring either may lead to inaccurate modeling and

reduced control reliability. To the best of our knowledge, few studies have ad-

dressed both bias and effectiveness failures in a unified framework, especially

for drive-response MCNNs. This gap motivates us to design a fault-tolerant

synchronization scheme that takes both failure types into account for better

robustness and practical relevance.

Taking into account the perspective discussed above, this study compre-

hensively explores the fault-tolerant synchronization of drive-response MC-

NNs with the bias and effectiveness failures. The prominent contributions

put forward in this paper are listed below. 1) This article comprehensively
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considers two types of actuator failures within drive-response MCNNs, which

are bias and effectiveness failures. 2) A bilayer fault-tolerant controller de-

signed in this article can be directly used to achieve the synchronization of

MCNNs with both bias and effectiveness failures, further minimizing net-

work communication resource usage. The structure of this paper is outlined

below. In the second part, fundamental elements such as system models,

failure characterizations, and related basic concepts are introduced. The

third part presents the key research findings of this paper. In the fourth

part, simulation instances are provided to validate the efficacy of the pro-

posed synchronization control strategies. Lastly, the fifth part summarizes

this article and points out some future research directions.

2. Model Description and Preliminaries

The memristive competitive neural networks (MCNNs) model is defined

as follows:
STM : εṡq(η) = −cqsq(η) +

n∑
l=1

hql(sq(η))gl(sl(η)) + dq

i∑
ς=1

mqς(η)vς ,

LTM : ṁqς(η) = −eqmqς(η) + bqvςgq(sq(η)),

(1)

where q = 1, 2, . . . , n; sq(η) serves as the current activity level of neuron;

mqς(η) indicates the synaptic adaptability, vς reflects the strength of the ex-

ternal stimulus; cq > 0 signifies the self-inhibition rate of neuron; gl(·) acts as

an activation function; dq > 0 represents the intensity of the external stimu-

lus, ε denotes some time scale in STM; eq > 0 and bq are disposable scaling

constants. Furthermore, the initial conditions of system (1) are: sq(0) ∈ R
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and mqς(0) ∈ R; hql(sq(η)) acts as the synaptic connection weight of mem-

ristors, which is expressed as:

hql(sq(η)) =
Pql

Fq

× signql, signql =

 1, q ̸= l,

−1, q = l,

in which q, l = 1, 2, . . . , n, Pql is designated as the memductance of memristor

Gql, which denotes the memristor situated between gl(sl(η)) and sq(η). Based

on the current and voltage characteristics of the memristor, one obtains

hql(sq(η)) =

 ĥql, |sq(η)| ⩽ χq,

ȟql, |sq(η)| > χq,

where q, l = 1, 2, . . . , n, ĥql, ȟql represent constants, χq > 0 indicates the

switching jumps. For convenience, we denote h̄ql = |ĥql−ȟql|, h̃ql = max{|ĥql|,

|ȟql|}, H̃ = diag(
∑n

l=1(h̃1l)
2,
∑n

l=1(h̃2l)
2, . . . ,

∑n
l=1(h̃nl)

2), H̄ = (h̄ql)n×n.

By defining ∥v∥2 = v21 + v22 + . . . + v2i and Mq(η) =
∑i

ς=1mqς(η)vς ,

q = 1, 2, . . . , n. It is commonly assumed that the input stimulus vector v

is normalized with unit magnitude ∥v∥2 = 1 and ε = 1. Consequently, MC-

NNs (1) can be rephrased as below:
STM : ṡq(η) = −cqsq(η) +

n∑
l=1

hql(sq(η))gl(sl(η)) + dqMq(η),

LTM : Ṁq(η) = −eqMq(η) + bqgq(sq(η)).

(2)

Consider the above MCNNs (2) as a drive system, then the response

system associated with MCNNs (2) is
STM : ẏq(η) = −cqyq(η) +

n∑
l=1

hql(yq(η))gl(yl(η)) + dqQq(η) + ITq Kq(η),

LTM : Q̇q(η) = −eqQq(η) + bqgq(yq(η)) + ITq Wq(η),

(3)
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where Iq = (Iq1, Iq2, · · · , Iqϱ)T ∈ Rϱ with Iqι > 0(ι = 1, 2, · · · , ϱ); the vectors

Kq(η) = (kq1(η), kq2(η), · · · , kqϱ(η))T ∈ Rϱ and Wq(η) = (wq1(η), wq2(η), · · · ,

wqϱ(η))
T ∈ Rϱ are inputs that occur multiple types of potential failures.

Remark 1. In the network model of drive-response MCNNs (2) and (3),

the physical properties of memristors and the competitive mechanism are

integrated. Compared with traditional MNNs, MCNNs combine both the

dynamic evolution of neural states and adaptive synaptic weights. This dual-

layered dynamic makes MCNNs better suited to model both short-term and

long-term memory processes. Moreover, the competitive mechanism among

neurons enables more efficient information processing and pattern storage,

which are essential for analyzing complex neural behaviors in real-world sys-

tems. In recent years, more and more scholars have focused on this kind of

network and studied the dynamical behaviors of MCNNs in [31–34], such as

synchronization, anti-synchronization and decay projection synchronization.

However, the fault-tolerant synchronization of this type of network remains

an understudied area, which forms the core motivation for the research pre-

sented in this paper.

This work simultaneously considers both bias and effectiveness failures.

Actually, it has been noted in existing literatures [50–52] that the control

signal acting on system (3) is formed by linearly combining the outputs of

multiple actuators. However, these studies have primarily considered only

actuator effectiveness failure, yet other types of failures have been overlooked.

This motivates us to further explore the fault-tolerant synchronization of the

MCNNs impacted by multiple actuator failures. More exactly, the models

for these two kinds of actuator faults are depicted in the following manner.
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The model of effectiveness failure is described by: kXqι (η) = βqιkqι(η), η ⩾ η̂qι,

wX
qι(η) = βqιwqι(η), η ⩾ η̂qι,

(4)

where ι ∈ G = {ξ|the ξ-th actuator experiences the effectiveness failure} ⊂

{1, 2, · · · , ϱ}, ι represents the number of actuators impacted by effectiveness

failures, kXqι (η) and wX
qι(η) represent the output values that the actuators

kqι(η) and wqι(η) actually produce, respectively; η̂qι is the occurrence time of

the effectiveness failure; βqι ∈ [β̄qι, 1] denotes the efficacy ratio and β̄qι > 0

signifies the smallest value of βqι.

The model of bias failure is characterized by: kVqρ(η) = k̄qρ, η ⩾ η̌qρ,

wV
qρ(η) = w̄qρ, η ⩾ η̌qρ.

(5)

where ρ ∈ Ḡ = {ξ̄|the ξ̄-th actuator experiences the bias failure} ⊂ {1, 2, · · · ,

ϱ}, ρ represents the number of actuators impacted by bias failures, kVqρ(η)

and wV
qρ(η) represent the output values that the actuators kqρ(η) and wqρ(η)

actually produce, respectively; η̌qρ is the occurrence time of the bias failure

and k̄qρ > 0 and w̄qρ > 0 are bias constants.

Assumption 1. (see [43]). The synchronization of drive-response systems

(2) and (3) can be achieved if up to ϱ− 1 actuators fail, while the remaining

actuators suffer partial effectiveness loss.

With reference to the aforementioned actuator effectiveness failure model
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(4) and bias failure model (5), it follows from Assumption 1 that
ITq Kq(η) =

∑
ι∈G

Iqιβqιkqι(η) +
∑
ρ∈Ḡ

Iqρk̄qρ,

ITq Wq(η) =
∑
ι∈G

Iqιβqιwqι(η) +
∑
ρ∈Ḡ

Iqρw̄qρ.
(6)

For the two failure models (4) and (5) mentioned above, βqι = 1 in-

dicates that the actuators kqι(η) and wqι(η) are functioning normally, and∑
ρ∈Ḡ Iqρk̄qρ = 0 and

∑
ρ∈Ḡ Iqρw̄qρ = 0 signify that the absence of bias fail-

ure in any actuator. Based on Assumption 1, it can be concluded that∑
ι∈G Iqιβqι > 0 holds for ∀η ⩾ 0.

Remark 2. In real-world engineering applications, actuators are complex

electromechanical components that are prone to various failure modes. Among

them, effectiveness failure and bias failure are two primary and commonly

observed types. For example, the authors in [41, 42] studied effectiveness

failures of actuator in their fault-tolerant synchronization strategies. How-

ever, effectiveness failure and bias failure may occur simultaneously, and they

have distinct dynamic effects on the control system. More specifically, bias

failures may cause constant errors that build up over time and may lead to

system instability. Ignoring bias failures oversimplifies the fault model and

limits the reliability and robustness of the designed controller. Furthermore,

MCNNs are characterized by rich dynamics and intricate feedback mech-

anisms. This makes them particularly sensitive to actuator faults. Since

MCNNs are widely adopted in memory computing, pattern recognition, and

secure communications [31–34], where reliability and stability are critical, it

is imperative to design a generalized fault model that reflects both types of
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failures simultaneously. To address this gap, this work aims to systemati-

cally investigate the fault-tolerant synchronization of drive-response MCNNs

with bias and effectiveness failures by designing a novel bilayer fault-tolerant

controller. Note that the occurrence time and type of the actuator failures

mentioned in this work are considered to have no relation with each other.

Additionally, either kind of failure could occur unexpectedly and exert an

influence on the system. Thus, these two types of actuator failures are both

considered to better align with practical reality.

Let zq(η) = yq(η)− sq(η) and ẑq(η) = Qq(η)−Mq(η) be the error system,

we obtain

żq(η) =− cqzq(η)− (
n∑

l=1

hql(sq(η))−
n∑

l=1

hql(yq(η)))gl(yl(η)) + dqẑq(η)

+
n∑

l=1

hql(sq(η))ψl(zl(η)) + ITq Kq(η),

˙̂zq(η) =− eqẑq(η) + bqψq(zq(η)) + ITq Wq(η),

(7)

where ψl(zl(η)) = gl(yl(η))− gl(sl(η)).

For convenience, we define z(η) = (z1(η), z2(η), · · · , zn(η))T , ẑ(η) = (ẑ1(η),

ẑ2(η), · · · , ẑn(η))T , z̄(η) = (z1(η), z2(η), · · · , zn(η), ẑ1(η), ẑ2(η), · · · , ẑn(η))T ,

C = diag(c1, c2, · · · , cn), B = diag(b1, b2, · · · , bn), E = diag(e1, e2, · · · , en),

D = diag(d1, d2, · · · , dn).

Assumption 2. (see [44]). For any r, r1, r2 ∈ R, there are positive con-

stants ul, σl, l = 1, 2, . . . , n, such that: |gl(r1)− gl(r2)| ⩽ ul|r1 − r2|, |gl(r)| ⩽

σl. To facilitate the demonstration given in this paper, we define U =

diag(u21, u
2
2, . . . , u

2
n) ∈ Rn×n.
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Definition 2.1. (see [45]). For any z̄(0) ∈ R2n, τ1 > 0 and τ2 > 0, if

the inequality ∥z̄(η)∥ ⩽ τ2e
−τ1(η−η0) is satisfied for ∀η ⩾ η0, then the error

network (7) is said to achieve global exponential stability.

Definition 2.2. (see [46]). Assume that there is a constant η∗ ⩾ 0 such that

z̄(η) = 0 for ∀η > η∗ and z̄(0) ∈ R2n, then the error network (7) is said to

be finite-time stable. Moreover, for ∀z̄(0) ∈ R2n, the settling time function is

defined as T (z̄(0)) = inf{η∗ : z̄(η) = 0,∀η > η∗}.

Definition 2.3. (see [47]). The error system (7) is fixed-time stable if

it satisfies finite-time stability, and there is a scalar Tmax > 0 such that

T (z̄(0)) ⩽ Tmax for ∀z̄(0) ∈ R2n. In other words, the settling time function

T (·) is uniformly bounded.

Definition 2.4. (see [48]). The error system (7) is called to be predefined-

time stable if its fixed-time stability is achieved, and for any predefined time

Tδ > 0, the inequality T (z̄(0)) ⩽ Tδ holds for ∀z̄(0) ∈ R2n, where Tδ is an

adjustable parameter in the designed controller, which is irrelevant to initial

value.

Remark 3. In this paper, the above-mentioned four types of synchroniza-

tion differ mainly in how the convergence time is determined and controlled.

Based on the definition of global exponential stability as in Definition 2.1, it is

easy to know that the synchronization error decays exponentially over time.

That is, the system gradually approaches the synchronized state, but the

error does not become exactly zero in finite time. This approach is smooth

and predictable, yet may not be fast enough for time-critical applications.

According to Definition 2.2, finite-time synchronization guarantees that the
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system reaches exact synchronization in a finite time, but the settling time

function T (z̄(0)) for convergence depends on the initial conditions. This

makes it difficult to determine the settling time in advance. The fixed-time

synchronization introduced in Definition 2.3 improves upon finite-time syn-

chronization by ensuring the settling time function for convergence within

a uniform upper bound Tmax > 0 that is independent of the initial state.

However, this bound is fixed once the system is designed and cannot be ad-

justed flexibly. In contrast, predefined-time synchronization, as introduced

in Definition 2.4, allows users to set the desired convergence time Tδ in ad-

vance. The system is then designed to synchronize within this specified time,

regardless of initial conditions. This provides the highest level of flexibility,

which is particularly valuable in real-time or deadline-sensitive applications.

Lemma 2.1. (see [45, 48, 50, 51]). Suppose there exists a function J(z̄(η)) :

R2n → R+ ∪ {0}, which is continuous, positive definite and radially un-

bounded, such that

J̇(z̄(η)) ⩽ −τ1J(z̄(η))− τ2J
α1(z̄(η))− τ3J

α2(z̄(η))

then the following conclusions are established:

1) When τ2 = τ3 = 0 and τ1 > 0, the error network (7) reaches global

exponential stability.

2) When τ1 = τ3 = 0, τ2 > 0 and 0 < α1 < 1, the error network (7) reaches

finite-time stability with the corresponding time given by T (z̄(0)) =

J1−α1 (z̄(0))
τ2(1−α1)

.

3) When τ1 = 0, τ2 > 0, τ3 > 0, 0 < α1 < 1 and α2 > 1, the error network

(7) reaches fixed-time stability. Furthermore, Tmax =
1

τ2(1−α1)
+ 1

τ3(α2−1)
.
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4) When τ1 = 0, τ2 = τ3 = π
θTδ

> 0, α1 = 1 + θ
2
> 1 and 0 < α2 =

1 − θ
2
< 1, where 0 < θ < 1, Tδ > 0 represents a predefined-time

constant set beforehand, the error network (7) reaches predefined-time

stability within the predefined-time Tδ.

Lemma 2.2. (see [52]). If f1, f2, · · · , fn ⩾ 0, 0 < ζ1 ⩽ 1, ζ2 > 1, then we

have (
n∑

q=1

fq

)ζ1

⩽
n∑

q=1

f ζ1
q , n

1−ζ2

(
n∑

q=1

fq

)ζ2

⩽
n∑

q=1

f ζ2
q .

3. Fault-tolerant synchronization of MCNNs

This section is dedicated to studying the global exponential synchroniza-

tion, finite-time synchronization, fixed-time synchronization and predefined-

time synchronization problems of MCNNs through the fault-tolerant control

scheme. The following theorem is presented to facilitate the synchronization

of the drive-response systems (2) and (3).

Theorem 1. Given that Assumptions 1 and 2 are satisfied and the bilayer

fault-tolerant controllers kql(η) and wql(η) for the system (7) are designed as:

kql(η) =− 1∑
ι∈G Iqιβqι

[(
δ(1)q pφ1

q |zq(η)|ϕ1 + δ(2)q pφ2
q |zq(η)|ϕ2

)
sign(zq(η))

+
n∑

l=1

sign(zq(η))h̄qlσl + γqzq(η) +
∑
ρ∈Ḡ

Iqρk̄qρ
]
,

wql(η) =− 1∑
ι∈G Iqιβqι

[(
δ(1)q oφ1

q |ẑq(η)|ϕ1 + δ(2)q oφ2
q |ẑq(η)|ϕ2

)
sign(ẑq(η))

+ γqẑq(η) +
∑
ρ∈Ḡ

Iqρw̄qρ

]
,

(8)
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if there exists 0 < P = diag(p1, p2, . . . , pn) ∈ Rn×n, O = diag(o1, o2, . . . , on) ∈

Rn×n and Υ = diag(γ1, γ2, · · · , γn) ∈ Rn×n such that

− 2PC + P 2H̃ + 2U + PD − 2PΥ < 0, (9)

− 2OE + PD +O2B2 − 2OΥ < 0, (10)

then the following results are obtained.

1) When φ1 = 0, δ(2)q = 0, ϕ1 = 1, δ(1)q , pq, oq and γq satisfy δ
(1)
q > 0,

pq > 0, oq > 0 and γq > 0, where δ(1) = min{δ(1)q , q = 1, 2, . . . , n},

the drive system (2) and response system (3) realize global exponential

synchronization.

2) When δ
(2)
q = 0, φ1 = ζ1−1

2
, ϕ1 = ζ1, δ

(1)
q , pq, oq and γq satisfy δ(1)q > 0,

pq > 0, oq > 0 and γq > 0, where 0 < ζ1 < 1, δ(1) = min{δ(1)q , q =

1, 2, . . . , n}, the drive system (2) and response system (3) realize finite-

time synchronization. Additionally, T (z̄(0)) = J
1−ζ1

2 (z̄(0))

δ(1)(1−ζ1)
.

3) When φ1 = ζ1−1
2

, φ2 = ζ2−1
2

, ϕ1 = ζ1, ϕ2 = ζ2, δ
(1)
q , δ(2)q , pq, oq and

γq satisfy δ
(1)
q > 0, δ(2)q > 0, pq > 0, oq > 0 and γq > 0, where

0 < ζ1 < 1, ζ2 > 1, δ(1) = min{δ(1)q , q = 1, 2, . . . , n}, δ(2) = min{δ(2)q , q =

1, 2, . . . , n}, the drive system (2) and response system (3) realize fixed-

time synchronization and Tmax =
1

δ(1)(1−ζ1)
+ 1

(2n)
1−ζ2

2 δ(2)(ζ2−1)
.

4) When δ
(1)
q = δ

(1)
1 = πn

ζ1
2

2
2−ζ1

2 ζ1Tδ

, δ(2)q = δ
(2)
1 = π

2ζ1Tδ
, φ1 = ζ1

2
, φ2 = − ζ1

2
,

ϕ1 = 1+ ζ1, ϕ2 = 1− ζ1, pq, oq and γq satisfy pq > 0, oq > 0 and γq > 0,

where 0 < ζ1 < 1, the drive system (2) and response system (3) achieve

predefined-time synchronization with predefined-time Tδ.
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Proof. Constructing the below Lyapunov functional for error system (7):

J(z̄(η)) =
n∑

q=1

pqz
2
q (η) +

n∑
q=1

oqẑ
2
q (η). (11)

The derivative of J(z̄(η)) can be calculated as

J̇(z̄(η)) =2
n∑

q=1

pqzq(η)żq(η) + 2
n∑

q=1

oqẑq(η) ˙̂zq(η)

=2
n∑

q=1

pqzq(η)
[
−cqzq(η)+

n∑
l=1

hql(sq(η))ψl(zl(η))+dqẑq(η)+I
T
q Kq(η)

−(
n∑

l=1

hql(sq(η))−
n∑

l=1

hql(yq(η)))gl(yl(η))
]
+2

n∑
q=1

oqẑq(η)
[
−eqẑq(η)

+ bqψq(zq(η)) + ITq Wq(η)
]
. (12)

Apparently, one has,

2
n∑

q=1

n∑
l=1

pqzq(η)hql(sq(η))ψl(zl(η))

⩽2
n∑

q=1

n∑
l=1

pq|zq(η)|h̃ql|gl(yl(η))− gl(sl(η))|

⩽2
n∑

q=1

n∑
l=1

pq|zq(η)|h̃qlul|zl(η)|

⩽
n∑

q=1

n∑
l=1

p2qh̃
2
qlz

2
q (η) +

n∑
l=1

u2l z
2
l (η)

=zT (η)(P 2H̃ + U)z(η), (13)

and

2
n∑

q=1

oqẑq(η)bqψq(zq(η))

16



=2
n∑

q=1

oqẑq(η)bq(gq(yq(η))− gq(sq(η)))

⩽2
n∑

q=1

oq|ẑq(η)||bq|uq|zq(η)|

⩽
n∑

q=1

o2qb
2
q ẑ

2
q (η) +

n∑
q=1

u2qz
2
q (η)

=ẑT (η)O2B2ẑ(η) + zT (η)Uz(η). (14)

Moreover,

− 2
n∑

q=1

n∑
l=1

pqzq(η)(hql(sq(η))− hql(yq(η)))gl(yl(η))

=2
n∑

q=1

n∑
l=1

pqzq(η)(hql(yq(η))− hql(sq(η)))gl(yl(η))

⩽2
n∑

q=1

n∑
l=1

pq|zq(η)||ĥql − ȟql||gl(yl(η))|

⩽2
n∑

q=1

n∑
l=1

pq|zq(η)|h̄qlσl, (15)

2
n∑

q=1

pqzq(η)dqẑq(η)

⩽2
n∑

q=1

pq|zq(η)|dq|ẑq(η)|

⩽
n∑

q=1

pqdq(z
2
q (η) + ẑ2q (η))

=
n∑

q=1

pqdqz
2
q (η) +

n∑
q=1

pqdqẑ
2
q (η)

=zT (η)PDz(η) + ẑT (η)PDẑ(η). (16)

17



Substituting the bilayer fault-tolerant controllers (8) into (6), we have

2
n∑

q=1

pqzq(η)I
T
q Kq(η)

=2
n∑

q=1

pqzq(η)
(∑

ι∈G

Iqιβqιkqι(η) +
∑
ρ∈Ḡ

Iqρk̄qρ
)

=2
n∑

q=1

pqzq(η)
[
−
(
δ(1)q pφ1

q |zq(η)|ϕ1 + δ(2)q pφ2
q |zq(η)|ϕ2

)
sign(zq(η))− γqzq(η)

−
n∑

l=1

sign(zq(η))h̄qlσl −
∑
ρ∈Ḡ

Iqρk̄qρ +
∑
ρ∈Ḡ

Iqρk̄qρ
]

=− 2
n∑

q=1

pqzq(η)
[ (
δ(1)q pφ1

q |zq(η)|ϕ1 + δ(2)q pφ2
q |zq(η)|ϕ2

)
sign(zq(η)) + γqzq(η)

+
n∑

l=1

sign(zq(η))h̄qlσl
]
, (17)

and

2
n∑

q=1

oqẑq(η)I
T
q Wq(η)

=2
n∑

q=1

oqẑq(η)
(∑

ι∈G

Iqιβqιwqι(η) +
∑
ρ∈Ḡ

Iqρw̄qρ

)
=2

n∑
q=1

oqẑq(η)
[
−
(
δ(1)q oφ1

q |ẑq(η)|ϕ1 + δ(2)q oφ2
q |ẑq(η)|ϕ2

)
sign(ẑq(η))− γqẑq(η)

−
∑
ρ∈Ḡ

Iqρw̄qρ +
∑
ρ∈Ḡ

Iqρw̄qρ

]
=−2

n∑
q=1

oqẑq(η)
[(
δ(1)q oφ1

q |ẑq(η)|ϕ1+δ(2)q oφ2
q |ẑq(η)|ϕ2

)
sign(ẑq(η))+γqẑq(η)

]
. (18)

Substituting (13) - (18) into (12), then we have

J̇(z̄(η)) ⩽zT (η)
[
− 2PC + P 2H̃ + 2U + PD − 2PΥ

]
z(η) + ẑT (η)

[
− 2OE
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+ PD +O2B2 − 2OΥ)
]
ẑ(η)− 2

n∑
q=1

pqzq(η)
[(
δ(1)q pφ1

q |zq(η)|ϕ1

+ δ(2)q pφ2
q |zq(η)|ϕ2

)
sign(zq(η))

]
− 2

n∑
q=1

oqẑq(η)
[(
δ(1)q oφ1

q |ẑq(η)|ϕ1

+ δ(2)q oφ2
q |ẑq(η)|ϕ2

)
sign(ẑq(η))

]
.

Thereafter, we will discuss the impact of the controller variables on the

stability of the system (7).

Case 1: Based on the variable conditions of Case 1, and applying Lemma

2.2, we get

− 2
n∑

q=1

pqzq(η)
[(
δ(1)q pφ1

q |zq(η)|ϕ1 + δ(2)q pφ2
q |zq(η)|ϕ2

)
sign(zq(η))

]
=− 2

n∑
q=1

δ(1)q pqzq(η)sign(zq(η))|zq(η)|

⩽− 2δ(1)
n∑

q=1

pqz
2
q (η),

− 2
n∑

q=1

oqẑq(η)
[(
δ(1)q oφ1

q |ẑq(η)|ϕ1 + δ(2)q oφ2
q |ẑq(η)|ϕ2

)
sign(ẑq(η))

]
=− 2

n∑
q=1

δ(1)q oqẑq(η)sign(ẑq(η))|ẑq(η)|

⩽− 2δ(1)
n∑

q=1

oqẑ
2
q (η).

Based on the preceding analysis, we can conclude the following:

J̇(z̄(η)) ⩽zT (η)
[
− 2PC + P 2H̃ + 2U + PD − 2PΥ

]
z(η) + ẑT (η)

[
− 2OE

+ PD +O2B2 − 2OΥ)
]
ẑ(η)− 2δ(1)

n∑
q=1

pqz
2
q (η)− 2δ(1)

n∑
q=1

oqẑ
2
q (η)
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⩽− 2δ(1)

(
n∑

q=1

pqz
2
q (η) +

n∑
q=1

oqẑ
2
q (η)

)

=− 2δ(1)J(z̄(η)).

According to Lemma 2.1, it follows that the error system (7) achieves

global exponential synchronization when the bilayer fault-tolerant controller

(8) is applied under the parameter conditions given in Case 1.

Case 2: Considering the variable conditions in Case 2, and by way of

Lemma 2.2, one gets

− 2
n∑

q=1

pqzq(η)
[(
δ(1)q pφ1

q |zq(η)|ϕ1 + δ(2)q pφ2
q |zq(η)|ϕ2

)
sign(zq(η))

]
=− 2

n∑
q=1

δ(1)q p
1+ζ1

2
q zq(η)sign(zq(η))|zq(η)|ζ1

⩽− 2δ(1)
n∑

q=1

p
1+ζ1

2
q |zq(η)|1+ζ1

⩽− 2δ(1)

(
n∑

q=1

pqz
2
q (η)

) 1+ζ1
2

,

and

− 2
n∑

q=1

oqẑq(η)
[(
δ(1)q oφ1

q |ẑq(η)|ϕ1 + δ(2)q oφ2
q |ẑq(η)|ϕ2

)
sign(ẑq(η))

]
=− 2

n∑
q=1

δ(1)q o
1+ζ1

2
q ẑq(η)sign(ẑq(η))|ẑq(η)|ζ1

⩽− 2δ(1)
n∑

q=1

o
1+ζ1

2
q |ẑq(η)|1+ζ1

⩽− 2δ(1)

(
n∑

q=1

oqẑ
2
q (η)

) 1+ζ1
2

.
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From the preceding analysis, the following conclusions can be drawn:

J̇(z̄(η)) ⩽ zT (η)
[
− 2PC+P 2H̃+2U+PD−2PΥ

]
z(η)+ẑT (η)

[
− 2OE + PD

+O2B2−2OΥ)
]
ẑ(η)−2δ(1)

(
n∑

q=1

pqz
2
q (η)

) 1+ζ1
2

−2δ(1)

(
n∑

q=1

oqẑ
2
q (η)

) 1+ζ1
2

⩽ −2δ(1)

( n∑
q=1

pqz
2
q (η)

) 1+ζ1
2

+

(
n∑

q=1

oqẑ
2
q (η)

) 1+ζ1
2


⩽ −2δ(1)

(
n∑

q=1

pqz
2
q (η) +

n∑
q=1

oqẑ
2
q (η)

) 1+ζ1
2

= −2δ(1) (J(z̄(η)))
1+ζ1

2 .

According to Lemma 2.1, the error network (7) reaches globally finite-time

synchronization, and T (z̄(0)) = J
1−ζ1

2 (z̄(0))

δ(1)(1−ζ1)
.

Case 3: Taking into account the variable conditions in Case 3, one has

− 2
n∑

q=1

pqzq(η)
[(
δ(1)q pφ1

q |zq(η)|ϕ1 + δ(2)q pφ2
q |zq(η)|ϕ2

)
sign(zq(η))

]
=− 2

n∑
q=1

δ(1)q p
1+ζ1

2
q zq(η)sign(zq(η))|zq(η)|ζ1

− 2
n∑

q=1

δ(2)q p
1+ζ2

2
q zq(η)sign(zq(η))|zq(η)|ζ2

=− 2
n∑

q=1

δ(1)q p
1+ζ1

2
q |zq(η)|1+ζ1 − 2

n∑
q=1

δ(2)q p
1+ζ2

2
q |zq(η)|1+ζ2

⩽− 2δ(1)
n∑

q=1

p
1+ζ1

2
q |zq(η)|1+ζ1 − 2δ(2)

n∑
q=1

p
1+ζ2

2
q |zq(η)|1+ζ2

⩽− 2δ(1)

(
n∑

q=1

pqz
2
q (η)

) 1+ζ1
2

− 2δ(2)n
1−ζ2

2

(
n∑

q=1

pqz
2
q (η)

) 1+ζ2
2

.
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Similarly,

− 2
n∑

q=1

oqẑq(η)
[(
δ(1)q oφ1

q |ẑq(η)|ϕ1 + δ(2)q oφ2
q |ẑq(η)|ϕ2

)
sign(ẑq(η))

]
=− 2

n∑
q=1

δ(1)q o
1+ζ1

2
q ẑq(η)sign(ẑq(η))|ẑq(η)|ζ1

− 2
n∑

q=1

δ(2)q o
1+ζ2

2
q ẑq(η)sign(ẑq(η))|ẑq(η)|ζ2

⩽− 2δ(1)

(
n∑

q=1

oqẑ
2
q (η)

) 1+ζ1
2

− 2δ(2)n
1−ζ2

2

(
n∑

q=1

oqẑ
2
q (η)

) 1+ζ2
2

.

According to analyses presented above,

J̇(η) ⩽zT (η)
[
− 2PC + P 2H̃ + 2U + PD − 2PΥ

]
z(η) + ẑT (η)

[
− 2OE + PD

+O2B2−2OΥ)
]
ẑ(η)−2δ(1)

(
n∑

q=1

pqz
2
q (η)

) 1+ζ1
2

−2δ(1)

(
n∑

q=1

oqẑ
2
q (η)

) 1+ζ1
2

− 2δ(2)n
1−ζ2

2

(
n∑

q=1

pqz
2
q (η)

) 1+ζ2
2

− 2δ(2)n
1−ζ2

2

(
n∑

q=1

oqẑ
2
q (η)

) 1+ζ2
2

⩽− 2δ(1)

( n∑
q=1

pqz
2
q (η)

) 1+ζ1
2

+

(
n∑

q=1

oqẑ
2
q (η)

) 1+ζ1
2


− 2δ(2)n

1−ζ2
2

( n∑
q=1

pqz
2
q (η)

) 1+ζ2
2

+

(
n∑

q=1

oqẑ
2
q (η)

) 1+ζ2
2


⩽− 2δ(1)

(
n∑

q=1

pqz
2
q (η) +

n∑
q=1

oqẑ
2
q (η)

) 1+ζ1
2

− 2(2n)
1−ζ2

2 δ(2)

(
n∑

q=1

pqz
2
q (η)

+
n∑

q=1

oqẑ
2
q (η)

) 1+ζ2
2

=− 2δ(1)
(
J(z̄(η))

) 1+ζ1
2 − 2(2n)

1−ζ2
2 δ(2)

(
J(z̄(η))

) 1+ζ2
2 .
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According to Lemma 2.1, the drive and response systems (2) and (3)

achieve fixed-time synchronization within a fixed settling time Tmax =
1

δ(1)(1−ζ1)
+

1

(2n)
1−ζ2

2 δ(2)(ζ2−1)
.

Case 4: Referring to the previously discuss, it is evident that

− 2
n∑

q=1

pqzq(η)
[(
δ(1)q pφ1

q |zq(η)|ϕ1 + δ(2)q pφ2
q |zq(η)|ϕ2

)
sign(zq(η))

]
=− 2

n∑
q=1

δ(1)q p
1+

ζ1
2

q zq(η)sign(zq(η))|zq(η)|1+ζ1

− 2
n∑

q=1

δ(2)q p
1− ζ1

2
q zq(η)sign(zq(η))|zq(η)|1−ζ1

=− 2δ
(1)
1

n∑
q=1

p
1+

ζ1
2

q |zq(η)|2+ζ1 − 2δ
(2)
1

n∑
q=1

p
1− ζ1

2
q |zq(η)|2−ζ1

⩽− 2
δ
(1)
1

n
ζ1
2

(
n∑

q=1

pqz
2
q (η)

)1+
ζ1
2

− 2δ
(2)
1

(
n∑

q=1

pqz
2
q (η)

)1− ζ1
2

.

Similarly,

− 2
n∑

q=1

oqẑq(η)
[(
δ(1)q oφ1

q |ẑq(η)|ϕ1 + δ(2)q oφ2
q |ẑq(η)|ϕ2

)
sign(ẑq(η))

]
=− 2

n∑
q=1

δ(1)q o
1+

ζ1
2

q ẑq(η)sign(ẑq(η))|ẑq(η)|1+ζ1

− 2
n∑

q=1

δ(2)q o
1− ζ1

2
q ẑq(η)sign(ẑq(η))|ẑq(η)|1−ζ1

⩽− 2
δ
(1)
1

n
ζ1
2

(
n∑

q=1

oqẑ
2
q (η)

)1+
ζ1
2

− 2δ
(2)
1

(
n∑

q=1

oqẑ
2
q (η)

)1− ζ1
2

.

According to analyses presented above,

J̇(z̄(η)) ⩽zT (η)
[
− 2PC + P 2H̃ + 2U + PD − 2PΥ

]
z(η)+ẑT (η)

[
− 2OE + PD
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+O2B2−2OΥ)
]
ẑ(η)−2

δ
(1)
1

n
ζ1
2

(
n∑

q=1

pqz
2
q (η)

)1+
ζ1
2

−2δ
(2)
1

(
n∑

q=1

pqz
2
q (η)

)1− ζ1
2

− 2
δ
(1)
1

n
ζ1
2

(
n∑

q=1

oqẑ
2
q (η)

)1+
ζ1
2

− 2δ
(2)
1

(
n∑

q=1

oqẑ
2
q (η)

)1− ζ1
2

⩽− 2
δ
(1)
1

n
ζ1
2

( n∑
q=1

pqz
2
q (η)

)1+
ζ1
2

+

(
n∑

q=1

oqẑ
2
q (η)

)1+
ζ1
2


− 2δ

(2)
1

( n∑
q=1

pqz
2
q (η)

)1− ζ1
2

+

(
n∑

q=1

oqẑ
2
q (η)

)1− ζ1
2


⩽− 2

2−ζ1
2 δ

(1)
1

n
ζ1
2

(
n∑

q=1

pqz
2
q (η) +

n∑
q=1

oqẑ
2
q (η)

)1+
ζ1
2

− 2δ
(2)
1

(
n∑

q=1

pqz
2
q (η)

+
n∑

q=1

oqẑ
2
q (η)

)1− ζ1
2

=− 2
2−ζ1

2 δ
(1)
1

n
ζ1
2

(
J(z̄(η))

)1+ ζ1
2 − 2δ

(2)
1

(
J(z̄(η))

)1− ζ1
2

=− π

ζ1Tδ

[(
J(z̄(η))

)1+ ζ1
2 +

(
J(z̄(η))

)1− ζ1
2
]
,

where δ(1)q = δ
(1)
1 = πn

ζ1
2

2
2−ζ1

2 ζ1Tδ

, δ(2)q = δ
(2)
1 = π

2ζ1Tδ
. Based on Lemma 2.1, the

error system (7) achieves predefined-time synchronization within predefined-

time Tδ by applying the bilayer fault-tolerant controllers (8).

Remark 4. As is well known, CNNs considered in this paper usually are

composed of two types of state variables including STM and LTM, where

STM reflects rapidly changing dynamics of neurons while LTM represents

slow activities of unsupervised synaptic modifications. Since CNNs have two

distinct time scales, it can handle information through inhibition, competi-
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tion, coordination, and excitation between neurons. Therefore, this class of

network has great application value in image processing, modern biomedicine,

optimization and especially secure communication. Recently, some meaning-

ful results on dynamics of CNNs have been published [21–26]. On the other

hand, memristive NNs are able to simulate the human brain in a better way

via replacing the traditional resistor with memristor. By integrating mem-

ristive characteristics into CNNs, MCNNs can be constructed. Taking into

account their advantages in practical applications, some scholars have begun

to study dynamics of MCNNs [31–34]. However, these studies did not con-

sider actuator failures commonly encountered in practical control systems,

such as effectiveness failure and bias failure. This has thus motivated us to

develop an efficient fault-tolerant control strategy in this paper, aiming to

achieve synchronization of MCNNs under multiple actuator faults. To the

best of our knowledge, this marks the first step in exploring fault-tolerant

synchronization of MCNNs subject to multiple actuator failures.

Remark 5. It is worth emphasizing that the conditions (9) and (10) given in

Theorem 1 acts as the sufficient conditions for achieving fault-tolerant syn-

chronization of MCNNs (7). To be more precise, the fault-tolerant synchro-

nization of the considered network can be achieved under the well-designed

bilayer fault-tolerant controllers (8) if there exist three matrices P , O and

Υ that satisfy the matrix inequality conditions (9) and (10). Essentially,

the conditions in this theorem exhibits relatively low conservatism, which is

attributed to the presence of the positive definite diagonal matrices P and

O in this theorem. In numerous existing studies, the quadratic term of Lya-

punov functionals typically omits the positive weighting coefficients, instead
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adopting a simple sum-of-squares form of error state variables. By contrast,

our two quadratic terms targeting two error components of STM and LTM

in Lyapunov functional (11) incorporate two sets of positive constants pq

and oq, which forms two positive definite diagonal matrices P and O. Com-

pared with the traditional Lyapunov functional forms that exclude positive

constants, our design reduces conservatism to a certain extent, thereby im-

proving the flexibility of the derived fault-tolerant synchronization conditions

in Theorem 1.

Remark 6. The fault-tolerant synchronization technique proposed in this

paper boasts distinct advantages and holds substantial significance for re-

search on the synchronization of MCNNs. A general bilayer fault-tolerant

controller (8) is designed, and by assigning distinct parameter values to this

controller, four types of synchronization criteria for MCNNs – specifically

global exponential, finite-time, fixed-time, and predefined-time synchroniza-

tion – are established accordingly. Among these, the predefined-time syn-

chronization of drive-response MCNNs achieves the most precise and con-

trollable performance. In contrast to other synchronization strategies, the

predefined-time method ensures synchronization within a predefined-time

Tδ irrespective of initial conditions, which is particularly valuable for time-

critical applications such as secure communications and safety-critical au-

tomation systems. It is worth noting that applying a fault-tolerant control

strategy to achieve synchronization of MCNNs under multiple actuator fail-

ures constitutes a novel approach, which offers greater flexibility and adapt-

ability in comparison to traditional methods.
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4. Numerical examples

Consider the following drive and response MCNNs:
STM : ṡq(η) = −cqsq(η) +

6∑
l=1

hql(sq(η))gl(sl(η)) + dqMq(η),

LTM : Ṁq(η) = −eqMq(η) + bqgq(sq(η)),

(19)

and
STM : ẏq(η) =−cqyq(η)+

6∑
l=1

hql(yq(η))gl(yl(η))+dqQq(η)+I
T
q Kq(η),

LTM : Q̇q(η) = −eqQq(η) + bqgq(yq(η)) + ITq Wq(η),

(20)

where q = 1, 2, . . . , 6, gı(a) = |a+1|+|a−1|
5

(ı = 1, 2, . . . , 6), C = diag(0.5, 0.7, 0.9,

0.6, 0.8, 0.3), E = diag(0.6, 0.9, 0.8, 0.7, 0.6, 0.6), B = diag(0.8, 1.2, 1.1, 0.9, 0.4,

1.3), D = diag(0.4, 0.2, 0.6, 0.5, 0.9, 0.3), I1 = I2 = I3 = I4 = I5 = I6 =

[1, 1, 1, 1, 1, 1]T . The parameters in actuator failures are taken as k̄11 = 0.4,

k̄12 = 0.3, k̄13 = 0.5, w̄11 = 0.5, w̄12 = 0.2, w̄13 = 0.9, β14 = 0.5, β15 = 0.3,

β16 = 0.9, k̄21 = 0.2, k̄22 = 0.6, k̄23 = 0.4, w̄21 = 0.3, w̄22 = 0.6, w̄23 = 0.4,

β24 = 0.6, β25 = 0.4, β26 = 0.3, k̄31 = 0.5, k̄32 = 0.7, k̄33 = 0.3, w̄31 = 0.4,

w̄32 = 0.8, w̄33 = 0.3, β34 = 0.2, β35 = 0.5, β36 = 0.8, k̄41 = 0.6, k̄42 = 0.8,

k̄43 = 0.7, w̄41 = 0.6, w̄42 = 0.7, w̄43 = 0.8, β44 = 0.9, β45 = 0.7, β46 = 0.4,

k̄51 = 0.3, k̄52 = 0.4, k̄53 = 0.6, w̄51 = 0.9, w̄52 = 0.3, w̄53 = 0.6, β54 = 0.8,

β55 = 0.6, β56 = 0.5, k̄61 = 0.7, k̄62 = 0.5, k̄63 = 0.8, w̄61 = 0.7, w̄62 = 0.4,

w̄63 = 0.5, β64 = 0.4, β65 = 0.9, β66 = 0.6. The synaptic connection weight

of memristors hql(sq(η)) is designed as follows:

h11(s1(η)) =

 −0.22, |s1(η)| ⩽ 0.9,

0.50, |s1(η)| > 0.9,
h12(s1(η)) =

 −0.48, |s1(η)| ⩽ 0.9,

−0.32, |s1(η)| > 0.9,
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h13(s1(η)) =

 −0.13, |s1(η)| ⩽ 0.9,

0.53, |s1(η)| > 0.9,
h14(s1(η)) =

 −0.20, |s1(η)| ⩽ 0.9,

0.52, |s1(η)| > 0.9,

h15(s1(η)) =

 −0.47, |s1(η)| ⩽ 0.9,

−0.30, |s1(η)| > 0.9,
h16(s1(η)) =

 −0.14, |s1(η)| ⩽ 0.9,

0.51, |s1(η)| > 0.9,

h21(s2(η)) =

 −0.51, |s2(η)| ⩽ 0.9,

−0.38, |s2(η)| > 0.9,
h22(s2(η)) =

 0.44, |s2(η)| ⩽ 0.9,

0.26, |s2(η)| > 0.9,

h23(s2(η)) =

 0.42, |s2(η)| ⩽ 0.9,

−0.52, |s2(η)| > 0.9,
h24(s2(η)) =

 −0.54, |s2(η)| ⩽ 0.9,

−0.37, |s2(η)| > 0.9,

h25(s2(η)) =

 0.46, |s2(η)| ⩽ 0.9,

0.25, |s2(η)| > 0.9,
h26(s2(η)) =

 0.43, |s2(η)| ⩽ 0.9,

−0.49, |s2(η)| > 0.9,

h31(s3(η)) =

 0.49, |s3(η)| ⩽ 0.9,

0.31, |s3(η)| > 0.9,
h32(s3(η)) =

 0.24, |s3(η)| ⩽ 0.9,

−0.47, |s3(η)| > 0.9,

h33(s3(η)) =

 −0.35, |s3(η)| ⩽ 0.9,

0.42, |s3(η)| > 0.9,
h34(s3(η)) =

 0.48, |s3(η)| ⩽ 0.9,

0.33, |s3(η)| > 0.9,

h35(s3(η)) =

 0.26, |s3(η)| ⩽ 0.9,

−0.45, |s3(η)| > 0.9,
h36(s3(η)) =

 −0.34, |s3(η)| ⩽ 0.9,

0.54, |s3(η)| > 0.9,

h41(s4(η)) =

 0.45, |s4(η)| ⩽ 0.9,

0.29, |s4(η)| > 0.9,
h42(s4(η)) =

 0.27, |s4(η)| ⩽ 0.9,

−0.48, |s4(η)| > 0.9,

h43(s4(η)) =

 −0.31, |s4(η)| ⩽ 0.9,

0.47, |s4(η)| > 0.9,
h44(s4(η)) =

 0.42, |s4(η)| ⩽ 0.9,

0.30, |s4(η)| > 0.9,

h45(s4(η)) =

 0.23, |s4(η)| ⩽ 0.9,

−0.48, |s4(η)| > 0.9,
h46(s4(η)) =

 −0.37, |s4(η)| ⩽ 0.9,

0.52, |s4(η)| > 0.9,
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h51(s5(η)) =

 0.53, |s5(η)| ⩽ 0.9,

0.39, |s5(η)| > 0.9,
h52(s5(η)) =

 0.28, |s5(η)| ⩽ 0.9,

−0.47, |s5(η)| > 0.9,

h53(s5(η)) =

 −0.39, |s5(η)| ⩽ 0.9,

0.52, |s5(η)| > 0.9,
h54(s5(η)) =

 0.48, |s5(η)| ⩽ 0.9,

0.39, |s5(η)| > 0.9,

h55(s5(η)) =

 0.27, |s5(η)| ⩽ 0.9,

−0.52, |s5(η)| > 0.9,
h56(s5(η)) =

 −0.36, |s5(η)| ⩽ 0.9,

0.53, |s5(η)| > 0.9,

h61(s6(η)) =

 0.48, |s6(η)| ⩽ 0.9,

0.28, |s6(η)| > 0.9,
h62(s6(η)) =

 0.31, |s6(η)| ⩽ 0.9,

−0.50, |s6(η)| > 0.9,

h63(s6(η)) =

 −0.41, |s6(η)| ⩽ 0.9,

0.49, |s6(η)| > 0.9,
h64(s6(η)) =

 0.50, |s6(η)| ⩽ 0.9,

0.36, |s6(η)| > 0.9,

h65(s6(η)) =

 0.35, |s6(η)| ⩽ 0.9,

−0.56, |s6(η)| > 0.9,
h66(s6(η)) =

 −0.37, |s6(η)| ⩽ 0.9,

0.54, |s6(η)| > 0.9,

hql(yq(η)) is assigned the same value as hql(sq(η)). It is not hard to obtain

H̄ =



0.72 0.16 0.66 0.72 0.17 0.65

0.13 0.18 0.94 0.17 0.21 0.92

0.18 0.71 0.77 0.15 0.71 0.88

0.16 0.75 0.78 0.12 0.71 0.89

0.14 0.75 0.91 0.09 0.79 0.89

0.20 0.81 0.90 0.14 0.91 0.91


.

Clearly, gı(·) satisfies Assumption 2 with uı = σı = 0.4. The parameters

in the fault-tolerant controller (8) are set as ζ1 = 0.3, ζ2 = 1.2. Select

Υ = diag(0.5013, 0.4125, 0.6324, 0.8547, 0.9063, 0.7182), the matrices P and
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O can be computed by using MATLAB

P =



0.4856 0 0 0 0 0

0 0.4764 0 0 0 0

0 0 0.4416 0 0 0

0 0 0 0.4583 0 0

0 0 0 0 0.4349 0

0 0 0 0 0 0.4710


,

O =



0.4556 0 0 0 0 0

0 0.3141 0 0 0 0

0 0 0.3609 0 0 0

0 0 0 0.3590 0 0

0 0 0 0 0.4698 0

0 0 0 0 0 0.3101


,

which satisfies conditions (9) and (10). By Theorem 1, through the appropri-

ate selection of parameters for the bilayer fault-tolerant controller (8), various

types of synchronization are realized.

Case 1: Take δ(1)q = 1
q+3

, q = 1, 2, . . . , 6, we can obtain δ(1) = min{δ(1)q , q =

1, 2, . . . , 6} = 1/9, failure time η̌qι = η̂qρ = 0.3s, q = 1, 2, . . . , 6, ι = 4, 5, 6,

ρ = 1, 2, 3. Figures 1 and 2 illustrate the simulation results of the global

exponential synchronization errors of networks (19) and (20) under the bi-

layer fault-tolerant controller (8). It is clearly observed that zq(η) and ẑq(η)

converge to zero at approximately 0.377s and 3.587s, respectively, confirming

the effectiveness of the global exponential synchronization process.

Case 2: By setting δ(1)q = 3
q+3

, q = 1, 2, . . . , 6, we get δ(1) = min{δ(1)q , q =

1, 2, . . . , 6} = 1/3, failure time η̌qι = η̂qρ = 0.5s, q = 1, 2, . . . , 6, ι = 4, 5, 6,
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||ẑ6(η)||

X: 3.587

Y: 0.00196

Figure 1: The norms of global exponen-

tial synchronization errors zq(η) = yq(η) −

sq(η), q = 1, 2, . . . , 6.
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Figure 2: The norms of global exponen-

tial synchronization errors ẑq(η) = Qq(η)−

Mq(η), q = 1, 2, . . . , 6.

ρ = 1, 2, 3. The values T (z̄(0)) = J
1−ζ1

2 (z̄(0))

δ(1)(1−ζ1)
is computed as T (z̄(0)) = 3.8s.

Figures 3 and 4 present the simulation results of finite-time synchronization

errors of networks (19) and (20) under the bilayer fault-tolerant controller

(8) with T (z̄(0)) = 3.8s. It is clearly observed that zq(η) and ẑq(η) converge

to zero at approximately 0.327s and 0.579s, respectively, demonstrating the

effectiveness of the finite-time synchronization process.

Case 3: Set δ(1)q = 6
q
, δ(2)q = 12

q
, q = 1, 2, . . . , 6, we get δ(1) = min{δ(1)q , q =

1, 2, . . . , 6} = 1, δ(2) = min{δ(1)q , q = 1, 2, . . . , 6} = 2, failure time η̌qι =

η̂qρ = 0.4s, q = 1, 2, . . . , 6, ι = 4, 5, 6, ρ = 1, 2, 3. The values Tmax =

1
δ(1)(1−ζ1)

+ 1

(2n)
1−ζ2

2 δ(2)(ζ2−1)
is calculated as Tmax = 4.6s. Figures 5 and 6 de-

pict the simulation results of fixed-time synchronization errors of networks

(19) and (20) under the bilayer fault-tolerant controller (8) with Tmax = 4.6s.

As observed from these two figures, zq(η) and ẑq(η) converge to zero at ap-

proximately 0.135s and 0.127s, respectively, demonstrating the effectiveness
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Figure 3: The norms of finite-time syn-

chronization errors zq(η) = yq(η) − sq(η),

q = 1, 2, . . . , 6.
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Figure 4: The norms of finite-time syn-

chronization errors ẑq(η) = Qq(η)−Mq(η),

q = 1, 2, . . . , 6.

of the fixed-time synchronization process.

Case 4: Take Tδ = 0.2s, failure time η̌qι = η̂qρ = 0.2s, q = 1, 2, . . . , 6,

ι = 4, 5, 6, ρ = 1, 2, 3. By using MATLAB, δ(1)1 and δ
(2)
1 can be calculated

as δ(1)1 = πn
ζ1
2

2
2−ζ1

2 ζ1Tδ

= 38.0054, δ(2)1 = π
2ζ1Tδ

= 26.1799. Figures 7 and 8

depict the simulation results that show the evolution of the predefined-time

synchronization errors of networks (19) and (20) under the bilayer fault-

tolerant controller (8) with T (δ) = 0.2s. It is evident that, zq(η) and ẑq(η)

converge to zero at approximately 0.048s and 0.055s, respectively, validating

the efficacy of the predefined-time synchronization procedure.

From the trajectories of the control inputs, the following conclusions can

be arrived at. 1) The synchronization of the drive-response MCNNs can

still be ensured when effectiveness failures occur to the actuators kqι and

wqι(q = 1, 2, . . . , 6, ι = 4, 5, 6) and bias failures occur to the actuators kqρ

and wqρ(q = 1, 2, . . . , 6, ρ = 1, 2, 3). 2) Even if actuator failure occurs at
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||ẑ6(η)||

X: 0.127

Y: 0.000448

Figure 5: The norms of fixed-time syn-

chronization errors zq(η) = yq(η) − sq(η),

q = 1, 2, . . . , 6.
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||ẑ2(η)||
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Figure 6: The norms of fixed-time syn-

chronization errors ẑq(η) = Qq(η)−Mq(η),

q = 1, 2, . . . , 6.
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Figure 7: The norms of predefined-time

synchronization errors zq(η) = yq(η) −

sq(η), q = 1, 2, . . . , 6.
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Figure 8: The norms of predefined-time

synchronization errors ẑq(η) = Qq(η) −

Mq(η), q = 1, 2, . . . , 6.
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different time point, bilayer fault-tolerant controller (8) can still guarantee

the synchronization of the simulation system. 3) Under the bilayer fault-

tolerant controller (8), the synchronization performance within the predefined

time of the drive-response MCNNs is the best. These results collectively

indicate that the bilayer fault-tolerant controller (8) developed in this study

is reliable.

Remark 7. In practical control systems, actuators may suffer from both

effectiveness and bias failures, and these two types of failure can even occur

simultaneously. However, most existing studies only takes effectiveness fail-

ures into account [41, 42], while neglecting the combined impact of the two

failure modes on system performance and stability. To tackle this limitation,

we propose a bilayer fault-tolerant control scheme for drive-response MCNNs,

which is capable of handling both types of faults. The layered structure not

only enhances the clarity of controller design and stability analysis, but also

boosts the flexibility of parameter tuning. Furthermore, MCNNs incorporate

competition characteristics, which endow them with greater expressiveness

and make them more suitable for complex tasks compared to traditional

MNNs. The simulation results presented in this section confirm that our

proposed method successfully achieves four types of synchronization – expo-

nential, finite-time, fixed-time, and predefined-time – under the coexistence

of bias and effectiveness faults. These results not only validate the theoretical

analysis but also demonstrate the robustness of the proposed fault-tolerant

control scheme in static fault scenarios. That is to say, the current work does

not take varying failure patterns into account, such as time-varying or ape-

riodically intermittent actuator faults. However, in real-world applications,
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faults may occur intermittently or evolve over time, which poses additional

challenges to controller design. Some recent studies have explored such fault

patterns by adopting time-varying [53, 54] and intermittent [55, 56] fault-

tolerant control strategies. Nevertheless, incorporating these complex failure

modes into the MCNN framework remains an open and meaningful research

problem. In the near future, it would be valuable to extend our results to

handle time-varying delay or intermittent actuator failures, which would fur-

ther enhance the practicality and reliability of the proposed control scheme.

5. Conclusions

This paper centers around addressing four types of fault-tolerant syn-

chronization issue regarding drive-response MCNNs in the event of multiple

actuator failures. The failures under study involve both bias and effective-

ness failures. By employing a suitable Lyapunov functional along with in-

equality techniques, the bilayer fault-tolerant controller has been properly

designed. Through the adjustment of controller parameters, the global expo-

nential synchronization, finite-time synchronization, fixed-time synchroniza-

tion, and predefined-time synchronization of the drive-response MCNNs can

be respectively achieved. Finally, simulation examples with detailed anal-

ysis and comparison are provided to verify the feasibility of the obtained

results. In the future, it would be very interesting to further explore the

synchronization problem of MCNNs with multiple actuator failures by us-

ing some advanced fault-tolerant control approaches. More specifically, pos-

sible directions include improving robustness against external disturbances

and parameter uncertainties, addressing time-varying delays, and develop-
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ing adaptive strategies to estimate fault parameters. Additionally, extending

the proposed approach to more complex network structures, such as coupled

MCNNs, would further enhance their practical value.

Acknowledgments

The authors would like to thank the Editor and anonymous reviewers for

their valuable comments and suggestions for improving this manuscript. This

work was supported by the National Natural Science Foundation of China

under Grant 62173244.

References

References

[1] H. Wang, Y. Zou, X. J. Liu, Z. Y. Meng, A rapid time synchronization

scheme using virtual links and maximum consensus for wireless sensor

networks, IEEE Internet of Things Journal, 12 (3) (2025) 3318-3329.

[2] G. Marti, F. Arquint, C. Studer, Jammer-resilient time synchronization

in the MIMO uplink, IEEE Transactions on Signal Processing, 73 (2025)

706-720.

[3] C. L. Da, F. Li, L. F. Wang, C. X. Tao, S. F. Li, M. Nie, Pulse syn-

chronization scheme for undersea BWPT system based on simultaneous

wireless power and data transfer technology, IEEE Transactions on Cir-

cuits and Systems II: Express Briefs, 72 (1) (2025) 333-337.

36



[4] X. N. Song, X. L. Sun, S. Song, S. Y. Xu, A novel event-triggered bipar-

tite consensus for PDE-based multiagent systems with switching topolo-

gies and antagonistic interactions, IEEE Transactions on Cybernetics,

54 (10) (2024) 5759-5769.

[5] W. T. Wang, J. H. Wu, W. Chen, The characteristics method to study

global exponential stability of delayed inertial neural networks, Mathe-

matics and Computers in Simulation, 232 (2025) 91-101.

[6] E. Y. Cong, L. Zhu, X. Zhang, Global exponential synchronization

of discrete-time high-order BAM neural networks with multiple time-

varying delays, AIMS Mathematics, 9 (12) (2024) 33632-33648.

[7] Y. Chen, S. Zhu, H. C. Yan, M. Q. Shen, X. Y. Liu, S. P. Wen, Event-

based global exponential synchronization for quaternion-valued fuzzy

memristor neural networks with time-varying delays, IEEE Transactions

on Fuzzy Systems, 32 (3) (2024) 989-999.

[8] G. Kamenkov, On stability of motion over a finite interval of time, Jour-

nal of Applied Mathematics and Mechanics, 17 (2) (1953) 529-540.

[9] X. H. Liu, Y. F. Li, G. J. Xu, Finite-time synchronization analysis for the

generalized caputo fractional spatio-temporal neural networks, Mathe-

matics and Computers in Simulation, 230 (2025) 94-110.

[10] L. X. Lin, Finite-time synchronization of memristor-based neural net-

works: energy cost estimation, International Journal of Dynamics and

Control, 11 (2) (2023) 738-747.

37



[11] A. J. Wang, Z. L. Yang, X. Wang, J. Zhang, M. J. Li, Finite-time

synchronization of delayed complex network under event-dependent in-

termittent control, Control and Decision, 39 (11) (2024) 3673-3680.

[12] A. A. Wei, Z. Y. Yao, Y. Zhang, K. M. Wang, Finite-time synchroniza-

tion of delayed semi-markov reaction-diffusion systems: an asynchronous

boundary control scheme, ISA Transactions, 148 (2024) 326-335.

[13] A. Abdurahman, R. Tohti, C. C. Li, New results on fixed-time synchro-

nization of impulsive neural networks via optimized fixed-time stability,

Journal of Applied Mathematics and Computing, 70 (4) (2024) 2809-

2826.

[14] Z. J. Liu, Y. F. Pu, X. Y. Hua, X. X. You, Robust fixed-time syn-

chronization of fuzzy shunting-inhibitory cellular neural networks with

feedback and adaptive control, International Journal of Adaptive Con-

trol and Signal Processing, 38 (7) (2024) 2320-2339.

[15] J. Liu, Y. B. Wu, C. X. Mu, C. Y. Sun, Aperiodically intermittent fixed-

time synchronization of coupled reaction-diffusion systems via average

control rate, IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 55 (2) (2025) 963-975.

[16] J. Y. Ran, T. C. Zhang, Fixed-time synchronization control of fuzzy

inertial neural networks with mismatched parameters and structures,

AIMS Mathematics, 9 (11) (2024) 31721-31739.

[17] M. J. Zhang, H. Y. Zang, Z. D. Shi, A unified Lyapunov-like char-

38



acterization for predefined time synchronization of nonlinear systems,

Nonlinear Dynamics, 112 (11) (2024) 8775-8787.

[18] T. B. Lopez-Garcia, J. A. Domínguez-Navarro, Optimal power flow with

physics-informed typed graph neural networks, IEEE Transactions on

Power Systems, 40 (1) (2025) 381-393.

[19] S. Batreddy, P. Mishra, Y. Kakarla, A. Siripuram, Inpainting-driven

graph learning via explainable neural networks, IEEE Signal Processing

Letters, 32 (2025) 111-115.

[20] S. X. Lai, W. N. Luan, J. Tao, Explore your network in minutes: a

rapid prototyping toolkit for understanding neural networks with visual

analytics, IEEE Transactions on Visualization and Computer Graphics,

30 (1) (2024) 683-693.

[21] M. A. Cohen, S. Grossberg, Absolute stability of global pattern forma-

tion and parallel memory storage by competitive neural networks, IEEE

Transactions on Systems, Man, and Cybernetics, 13 (5) (1983) 815-826.

[22] Y. L. Yang, Y. T. Liu, Global exponential convergence and synchroniza-

tion for exponential numerical competitive neural networks with differ-

ent time scales and fuzzy logic, Proceedings of the Institution of Me-

chanical Engineers, Part C: Journal of Mechanical Engineering Science,

238 (14) (2024) 6795-6812.

[23] A. R. Subhashri, T. Radhika, Robust dissipativity analysis for stochastic

markov jump competitive neural networks with mixed delays, Journal

of Applied Mathematics and Computing, 71 (1) (2025) 801-828.

39



[24] X. B. Nie, B. Q. Cao, W. X. Zheng, J. D. Cao, Multistability analy-

sis of fractional-order state-dependent switched competitive neural net-

works with sigmoidal activation functions, IEEE Transactions on Sys-

tems, Man, and Cybernetics: Systems, 55 (3) (2025) 2106-2119.

[25] S. T. Chen, Y. Wan, J. D. Cao, J. Kurths, Predefined-time synchro-

nization for competitive neural networks with different time scales and

external disturbances, Mathematics and Computers in Simulation, 222

(2024) 330-349.

[26] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, The missing

memristor found, Nature, 453 (2008) 80-83.

[27] Q. M. Wang, L. M. Wang, W. D. Wen, Y. Li, G. D. Zhang, Dynamical

analysis and preassigned-time intermittent control of memristive chaotic

system via T-S fuzzy method, Chaos, 35 (2025) 023102.

[28] L. M. Wang, Q. M. Wang, G. D. Zhang, Adaptive intermittent stabi-

lization of memristive chaotic system via TS fuzzy model, IEEE Trans-

actions on Circuits and Systems II: Express Briefs, 71 (3) (2024) 1351-

1355.

[29] X. N. Song, J. T. Man, J. H. Park, S. Song, Finite-time synchroniza-

tion of reaction-diffusion inertial memristive neural networks via gain-

scheduled pinning control, IEEE Transactions on Neural Networks and

Learning Systems, 33 (9) (2022) 5045-5056.

[30] X. N. Song, J. T. Man, S. Song, C. K. Ahn, Gain-scheduled finite-

time synchronization for reaction-diffusion memristive neural networks

40



subject to inconsistent Markov chains, IEEE Transactions on Neural

Networks and Learning Systems, 32 (7) (2021) 2952-2964.

[31] C. G. Xu, M. H. Jiang, J. H. Hu, Fixed-time synchronization of complex-

valued memristive competitive neural networks based on two novel fixed-

time stability theorems, Neural Computing and Applications, 35 (30)

(2023) 22605-22620.

[32] S. S. Ren, Y. Zhao, Y. H. Xia, Anti-synchronization of a class of fuzzy

memristive competitive neural networks with different time, Neural Pro-

cessing Letters, 52 (1) (2020) 647-661.

[33] M. Sader, F. Y. Wang, Z. X. Liu, Z. Q. Chen, General decay projective

synchronization of memristive competitive neural networks via nonlinear

controller, International Journal of Nonlinear Sciences and Numerical

Simulation, 23 (6) (2022) 867-878.

[34] S. Q. Gong, S. F. Yang, Z. Y. Guo, T. W. Huang, Global exponential

synchronization of memristive competitive neural networks with time-

varying delay via nonlinear control, Neural Processing Letters, 49 (1)

(2019) 103-119.

[35] X. N. Song, M. Wang, C. K. Ahn, S. Song, Finite-time fuzzy bounded

control for semilinear PDE systems with quantized measurements and

Markov jump actuator failures, IEEE Transactions on Cybernetics, 52

(7) (2022) 5732-5743.

[36] S. Song, J. H. Park, B. Y. Zhang, X. N. Song, Adaptive NN finite-

time resilient control for nonlinear time-delay systems with unknown

41



false data injection and actuator faults, IEEE Transactions on Neural

Networks and Learning Systems, 33 (10) (2022) 5416-5428.

[37] Z. J. Zhao, Y. Ren, C. X. Mu, T. Zou, K. S. Hong, Adaptive neural-

network-based fault-tolerant control for a flexible string with composite

disturbance observer and input constraints, IEEE Transactions on Cy-

bernetics, 52 (12) (2022) 12843-12853.

[38] Z. J. Zhao, Z. J. Liu, W. He, K. S. Hong, H. X. Li, Boundary adaptive

fault-tolerant control for a flexible Timoshenko arm with backlash-like

hysteresis, Automatica, 130 (2021) 109690.

[39] X. S. Yang, X. D. Li, J. Q. Lu, Z. S. Cheng, Synchronization of time-

delayed complex networks with switching topology via hybrid actuator

fault and impulsive effects control, IEEE Transactions on Cybernetics,

50 (9) (2020) 4043-4052.

[40] P. Selvaraj, R. Sakthivel, C. K. Ahn, Observer-based synchronization of

complex dynamical networks under actuator saturation and probabilistic

faults, IEEE Transactions on Systems, Man, and Cybernetics: Systems,

49 (7) (2019) 1516-1526.

[41] J. P. Zhou, Y. M. Liu, J. W. Xia, Z. Wang, S. Arik, Resilient fault-

tolerant anti-synchronization for stochastic delayed reaction-“diffusion

neural networks with semi-Markov jump parameters, Neural Networks,

125 (2020) 194-204.

[42] X. S. Yang, X. X. Wan, Z. S. Cheng, J. D. Cao, L. Yang, L. Rutkowski,

Synchronization of switched discrete-time neural networks via quantized

42



output control with actuator fault, IEEE Transactions on Neural Net-

works and Learning Systems, 32 (9) (2021) 4191-4201.

[43] M. X. Wang, S. L. Zhu, S. M. Liu, Y. Du, Y. Q. Han, Design of adap-

tive finite-time fault-tolerant controller for stochastic nonlinear systems

with multiple faults, IEEE Transactions on Automation Science and

Engineering, 20 (4) (2023) 2495-2502.

[44] Z. Guo, S. Yang, J. Wang, Global exponential synchronization of multi-

ple memristive neural networks with time delay via nonlinear coupling,

IEEE Transactions on Neural Networks and Learning Systems, 26 (6)

(2015) 1300-1311.

[45] Y. Chen, S. Zhu, M. Shen, X, Liu, S. Wen, Event-based output quan-

tized synchronization control for multiple delayed neural networks, IEEE

Transactions on Neural Networks and Learning Systems, 35 (1) (2024)

428-438.

[46] S. P. Bhat, D. S. Bernstein, Finite-time stability of continuous au-

tonomous systems, SIAM Journal on Control and Optimization, 38 (3)

(2000) 751-766.

[47] A. Polyakov, Nonlinear feedback design for fixed-time stabilization of

linear control systems, IEEE Transactions on Automatic Control, 57

(8) (2012) 2106-2110.

[48] J. D. Sánchez-Torres, D. Gómez-Gutiérrez, E. López, A. G. Loukianov,

A class of predefined-time stable dynamical systems, IMA Journal of

Mathematical Control and Information, 35 (1) (2018) 1-29.

43



[49] A. Wu, Y. Chen, Z. Zeng, Multi-mode function synchronization of mem-

ristive neural networks with mixed delays and parameters mismatch via

event-triggered control, Information Sciences, 572 (2021) 147-166.

[50] M. X. Wang, S. Zhu, M. Q. Shen, X. Y. Liu, S. P. Wen, Fault-tolerant

synchronization for memristive neural networks with multiple actuator

failures, IEEE Transactions on Cybernetics, 54 (9) (2024) 5092-5101.

[51] C. A. Anguiano-Gijón, A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, G.

Romero-Galván, F. Martínez-Reyes, On predefined-time synchronisation

of chaotic systems, Chaos Solitons and Fractals, 122 (2019) 172-178.

[52] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Uni-

versity Press, 1952.

[53] D. Z. Zhao, L. L. Cui, D. D. Lui, Adaptive demodulation synchro-

extracting transform for bearing time-varying fault feature extraction,

Proceedings of the Institution of Mechanical Engineers Part C-Journal

of Mechanical Engineering Science, 238 (13) (2024) 6103-6116.

[54] X. F. Zhao, X. W. Li, J. Z. Zhang, Z. Zhang, Active fault-tolerant con-

trol scheme for unmanned air-ground attitude system with time-varying

delay faults, Applied Sciences, 12 (12) (2022) 5882.

[55] L. L. Yang, S. M. Zhou, W. X. Zheng, Hybrid intermittent fault di-

agnosis of general graphs, Discrete Applied Mathematics, 374 (2025)

16-32.

[56] X. P. Fang, H. J. Fan, L. Liu, W. Wang, B. Wang, Adaptive event-

triggered control for uncertain nonlinear systems with multiple inter-

44



mittent actuator faults of uncertain directions, ISA Transactions, 161

(2025) 14-23.

45



Declaration of interests
 
 The authors declare that they have no known competing financial interests or ☒

personal relationships that could have appeared to influence the work reported in 
this paper.
 
 The authors declare the following financial interests/personal relationships ☐

which may be considered as potential competing interests:

 
 
 



Authors’ Biographies

I. Biography of Yanli Huang:

Yanli Huang received her Ph.D. degree in applied math-
ematics from School of Mathematics and System Sciences,
Beihang University, China, in 2012.

Currently, she is a professor in the School of
Computer Science and Technology, Tiangong Univer-
sity. Her research interests include complex dynami-
cal networks, synchronization, passivity and stability the-
ory.

II. Biography of Wenjing Duan:

Wenjing Duan received her B.S. degree in computer sci-
ence and technology from School of Intelligent Engineering,
Zhengzhou University of Aeronautics, China, in 2023.

She is currently a graduate student at School of Com-
puter Science and Technology, Tiangong University. Her
research interests include neural networks and predefined-
time synchronization.

III. Biography of Quang Dan Le:

Quang Dan Le received his Ph.D. degree from School of
Electrical Engineering, University of Ulsan, South Korea,
in 2022.

Currently, he is a lecturer in the College of Science and
Engineering, University of Derby. His research interests in-
clude teleoperation, wearable haptics, robotics inspire and
fault-tolerant control.

IV. Biography of Tse Chiu Wong:

Tse Chiu Wong received his Ph.D. degree in Operations
Research from the University of Hong Kong, China, in 2008.

Currently, he is a senior lecturer in the department
of Design Manufacturing and Engineering Management,
University of Strathclyde. His research interests include

1



operations research, neural computing and soft comput-
ing.

2


