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Abstract

In this article, the synchronization of drive-response memristive competi-
tive neural networks (MCNNs) under multiple actuator failures is studied
through implementing fault-tolerant control scheme. Unlike previous stud-
ies, the actuator failures considered in this paper include both bias and
effectiveness failures. To address these challenges, a proper mathematical
model is firstly established to capture the impact of actuator failures on
control inputs.. Subsequently, several sufficient conditions are deduced by
designing an appropriate bilayer fault-tolerant controller and constructing
a Lyapunov functional to achieve the global exponential synchronization,
finite-time synchronization, fixed-time synchronization and predefined-time
synchronization respectively. Additionally, the settling time upper bounds

for the proposed synchronization methods are determined. In the end, nu-
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merical simulations with analysis and comparison are performed to confirm
the validity of the proposed results.
Keywords: Fault-tolerant synchronization, multiple actuator failures,

drive-response systems, memristive competitive neural networks

1. Introduction

Synchronization represents a prevalent and extremely important dynamic
behavior, which means that two or more subsystems exhibit consistent dy-
namic behavior. This behavior can be caused by the coupling between sys-
tems or external forces. It serves as the theoretical basis for understanding
unknown dynamic systems with the help of one or more known dynamic sys-
tems and has made remarkable progress in numerous fields [1-4]. Based on
the exponential stability theory, global exponential synchronization strate-
gies have been proposed, which allows for a more effective way to utilize
the known systems to understand the unknown ones [5-7|. The authors in
[6] investigated the global exponential synchronization of discrete-time high-
order bidirectional associative memory neural networks subject to multiple
time-varying delays.

It is well-known that the synchronization process in most of existing re-
sults is typically analyzed in infinite-time. However, the driving-response
system often requires rapid synchronization in practical applications to en-
sure real-time performance and reliability. Thus, Kamenkov [8] introduced
the concept of finite-time stability initially in 1953. In finite-time synchro-
nization [9-12], the settling time hinges on the initial state. But it is rather

difficult to precisely determine the initial value of a system. Consequently,
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the concept of fixed-time stability [13-16] was introduced to overcome this
limitation. Liu et al. [14] investigated the robust fixed-time synchroniza-
tion of fuzzy shunting-inhibitory cellular neural networks with time delays
through the development of two distinct control strategies. Actually, fixed-
time synchronization offers a precise upper bound for the settling time, and
this bound is not determined by the initial state. However, this bound is not
arbitrary, which renders that it is difficult to be adjusted according to the
parameters of the system and controller. Consequently, the predefined-time
synchronization theory was presented to address the challenge of settling
time by providing an arbitrary bound that doesn’t rely on initial conditions
and can be set as a controller parameter. This allows for the network to be
easily tuned in advance. In secure communication, it is essential that syn-
chronization occurs within a predetermined time to meet the designer’s re-
quirements. In [17], the authors proposed a novel approach for Lyapunov-like
characterizations that ensure predefined-time stability, integrating previous
methods to create a unified framework for constructing dynamic systems with
predefined-time stability and a sliding mode controller with predefined-time
performance.

Over the past several decades, neural networks (NNs) have emerged as
the focus of extensive research owing to their broad applications across fields
such as computer science, signal processing, visual analytics, and so on [18-
20]. It is a common understanding that a key feature of dynamic NNs is
the presence of both feedforward and feedback connections between neu-
ral layers. Additionally, it is recognized that synaptic weights in biological

networks change over time. These aspects of dynamic NNs and the chang-
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ing synaptic weights in biological networks set the stage for exploring more
complex neural mechanisms. To further unravel this complexity, Cohen and
Grossberg [21] introduced competitive NNs (CNNs) model for the first time
in 1983, which integrates both activity and weight dynamics. These net-
works can store target patterns as stable equilibrium points, a property that
relies on stability criteria to explain the complex interplay between neural
activity and learning dynamics. Furthermore, CNNs not only describe the
slow, unsupervised synaptic adjustments associated with long-term memory
(LTM) but also represent the rapid neural activities linked to short-term
memory (STM). CNNs have led to numerous significant research advance-
ments due to the above-mentioned advantages [22-25|. In [24], the authors
investigated the multistability properties of a class of CNNs with sigmoidal
activation functions, incorporating state-dependent switching and fractional-
order derivatives.

In 2008, HP team [26] fabricated a memristor device having memory
properties. Memristors [27-30] can be better connected to large circuits in
NNs compared to regular resistors, thus the calculating capacity, parallel
working ability and self-adjusting abilities of NNs are significantly improved.
Accordingly, memristors have been increasingly introduced into CNNs by
academics to form memristive CNNs (MCNNs) [31-34]. Xu et al. [31] carried
out an in-depth study on the fixed-time synchronization of complex-valued
MCNNs affected by mixed delays. Gong et al. [34] carried out research on
the synchronization issue of MCNNs with time-varying delay.

Although significant progress has been made in the synchronization of

MCNNSs, the matter of fault tolerance on this kind of network has failed
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to garner adequate attention. Within practical applications, system fail-
ures are often unavoidable due to factors such as network disturbances and
electromagnetic interference, which can severely impact network stability.
Therefore, the study of fault-tolerant strategies for network synchronization
is essential [35-42|. In [39], the global exponential synchronization of com-
plex networks, incorporating node delay and a switching topology, was an-
alyzed under an almost sure condition. In [40], the authors explored the
synchronization issue relying on an observer for a class of complex dynami-
cal networks in the presence of randomly occurring actuator defects, external
disruptions, input saturation and time delay. However, most existing stud-
ies on fault-tolerant synchronization mainly focus on actuator effectiveness
failures [41, 42|, assuming that actuators either degrade partially or com-
pletely lose their function. In practical systems, actuators may also suffer
from bias failures, where they produce constant erroneous outputs regard-
less of control signals. These two types of failures can occur independently
or simultaneously, and ignoring either may lead to inaccurate modeling and
reduced control reliability. To the best of our knowledge, few studies have ad-
dressed both bias and effectiveness failures in a unified framework, especially
for drive-response MCNNs. This gap motivates us to design a fault-tolerant
synchronization scheme that takes both failure types into account for better
robustness and practical relevance.

Taking into account the perspective discussed above, this study compre-
hensively explores the fault-tolerant synchronization of drive-response MC-
NNs with the bias and effectiveness failures. The prominent contributions

put forward in this paper are listed below. 1) This article comprehensively
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considers two types of actuator failures within drive-response MCNNs, which
are bias and effectiveness failures. 2) A bilayer fault-tolerant controller de-
signed in this article can be directly used to achieve the synchronization of
MCNNs with both bias and effectiveness failures, further minimizing net-
work communication resource usage. The structure of this paper is outlined
below. In the second part, fundamental elements such as system models,
failure characterizations, and related basic concepts are introduced. The
third part presents the key research findings of this paper. In the fourth
part, simulation instances are provided to validate the efficacy of the pro-
posed synchronization control strategies. Lastly, the fifth part summarizes

this article and points out some future research directions.

2. Model Description and Preliminaries

The memristive competitive neural networks (MCNNs) model is defined

as follows:

n

STM : e5,(n) = —c454(n) + Z ha(sq(n))gi(s1(n)) + dg Z Mg (n)ve,

LTM : 1ing(n) = —eqmqe(n) + bgvegq(sq(n)),

where ¢ = 1,2,...,n; s,(n) serves as the current activity level of neuron;
mge(n) indicates the synaptic adaptability, v, reflects the strength of the ex-
ternal stimulus; ¢, > 0 signifies the self-inhibition rate of neuron; g;() acts as
an activation function; d, > 0 represents the intensity of the external stimu-
lus, € denotes some time scale in STM; e, > 0 and b, are disposable scaling

constants. Furthermore, the initial conditions of system (1) are: s,(0) € R
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and my (0) € R; hy(sqe(n)) acts as the synaptic connection weight of mem-

ristors, which is expressed as:

IP) [ . . ]-7 q 7é l7
hql(SlI(n)) = F_q X S18N 4y, SI8Ny =
q _17 q= lv
in which ¢, =1,2,...,n, Py is designated as the memductance of memristor

Gy, which denotes the memristor situated between g;(s;(n)) and s,(n). Based

on the current and voltage characteristics of the memristor, one obtains

il 1y |S (77)| < Xq>
ha(sgm) =4 " " {
hats 1Sq(M)] > Xy,

~ ~

where ¢, = 1,2,...,n, hy, hy represent constants, x, > 0 indicates the
switching jumps. For convenience, we denote hy = |hg—hq|, hg = max{|hy|,
b}, H = diag(37 (hu)?, X0 (ha)?, - 300 (hat)?)s H = () nxn-

By defining [|v]|> = v} 03 + ... + v and My(n) = Zizl Mge (1),
q=1,2,...,n. It is commonly assumed that the input stimulus vector v
is normalized with unit magnitude ||v||* = 1 and ¢ = 1. Consequently, MC-

NNs (1) can be rephrased as below:

n

STM 1 54(1) = —cysq(n) + Y hat(5q(m)g1(s1(1)) + dy Mo(), o

LTM : Mq(n) = —egMy(n) + bygq(s4(n))-

Consider the above MCNNs (2) as a drive system, then the response
system associated with MCNNs (2) is

STM : (1) = —cqyq(n) + Z hai(Yq(n)gi(yi(n)) + dgQq(n) + ]qu(n), 3

LTM : Qq(n) = —€,Qq(n) + bygq(ya(n)) + ITWy(n),

7
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where I, = (I,1, 12, , I,o)" € R? with I, > 0(t = 1,2,--- , 0); the vectors
Kq(n) = (kql(n)a kq?(n)a e ?kqe(n))T € R?and Wq(n) = (wa(n)v wq?(n)a )

wgo(n))” € R? are inputs that occur multiple types of potential failures.

Remark 1. In the network model of drive-response MCNNs (2) and (3),
the physical properties of memristors and the competitive mechanism are
integrated. Compared with traditional MNNs, MCNNs combine both the
dynamic evolution of neural states and adaptive synaptic weights. This dual-
layered dynamic makes MCNNs better suited to model both short-term and
long-term memory processes. Moreover, the competitive mechanism among
neurons enables more efficient information processing and pattern storage,
which are essential for analyzing complex neural behaviors in real-world sys-
tems. In recent years, more and more scholars have focused on this kind of
network and studied the dynamical behaviors of MCNNSs in [31-34], such as
synchronization, anti-synchronization and decay projection synchronization.
However, the fault-tolerant synchronization of this type of network remains
an understudied area, which forms the core motivation for the research pre-

sented in this paper.

This work simultaneously considers both bias and effectiveness failures.
Actually, it has been noted in existing literatures [50-52| that the control
signal acting on system (3) is formed by linearly combining the outputs of
multiple actuators. However, these studies have primarily considered only
actuator effectiveness failure, yet other types of failures have been overlooked.
This motivates us to further explore the fault-tolerant synchronization of the
MCNNSs impacted by multiple actuator failures. More exactly, the models

for these two kinds of actuator faults are depicted in the following manner.

8
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The model of effectiveness failure is described by:

ki(n) = ﬂquqb(T}), n 2 ﬁqm

wfﬁ (77) = ﬁqbwqb(n)7 > ﬁqw

(4)

where ¢ € G = {&|the &-th actuator experiences the effectiveness failure} C
{1,2,---, o}, ¢ represents the number of actuators impacted by effectiveness
failures, kX (n) and w(n) represent the output values that the actuators
kq.(n) and wg,(n) actually produce, respectively; 7, is the occurrence time of
the effectiveness failure; 3,, € [3,,1] denotes the efficacy ratio and 3, > 0
signifies the smallest value of /,,.

The model of bias failure is characterized by:

Q?T‘
S <
=
=
~—
|
oyl
)
3
=

~ 5)
wqp(n) = Wqp; 1 2 Tgp-

where p € G = {|the &-th actuator experiences the bias failure} C {1,2, - |

o}, p represents the number of actuators impacted by bias failures, &y, (n)

and w,, (1) represent the output values that the actuators k(1) and wg,(n)

actually produce, respectively; 7, is the occurrence time of the bias failure

and l;:qp > (0 and w,, > 0 are bias constants.

Assumption 1. (see [43]). The synchronization of drive-response systems
(2) and (3) can be achieved if up to o — 1 actuators fail, while the remaining

actuators suffer partial effectiveness loss.

With reference to the aforementioned actuator effectiveness failure model
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(4) and bias failure model (5), it follows from Assumption 1 that

Iqu(n) = Z Iqbﬁqbkqb(n) + Z qu]%qpa

LeEG peG (6)
o) = Y )+ Y
LeG peG
For the two failure models (4) and (5) mentioned above, 8, = 1 in-

dicates that the actuators kg, (1) and wg,(n) are functioning normally, and
> pec Ipkqp = 0 and > pe LapWqp = 0 signify that the absence of bias fail-
ure in any actuator. Based on Assumption 1, it can be concluded that

> e 1auBq > 0 holds for ¥n > 0.

Remark 2. In real-world engineering applications, actuators are complex
electromechanical components that are prone to various failure modes. Among
them, effectiveness failure and bias failure are two primary and commonly
observed types. For example, the authors in [41, 42| studied effectiveness
failures of actuator in their fault-tolerant synchronization strategies. How-
ever, effectiveness failure and bias failure may occur simultaneously, and they
have distinct dynamic effects on the control system. More specifically, bias
failures may cause constant errors that build up over time and may lead to
system instability. Ignoring bias failures oversimplifies the fault model and
limits the reliability and robustness of the designed controller. Furthermore,
MCNNSs are characterized by rich dynamics and intricate feedback mech-
anisms. This makes them particularly sensitive to actuator faults. Since
MCNNSs are widely adopted in memory computing, pattern recognition, and
secure communications [31-34], where reliability and stability are critical, it

is imperative to design a generalized fault model that reflects both types of

10
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failures simultaneously. To address this gap, this work aims to systemati-
cally investigate the fault-tolerant synchronization of drive-response MCNNs
with bias and effectiveness failures by designing a novel bilayer fault-tolerant
controller. Note that the occurrence time and type of the actuator failures
mentioned in this work are considered to have no relation with each other.
Additionally, either kind of failure could occur unexpectedly and exert an
influence on the system. Thus, these two types of actuator failures are both

considered to better align with practical reality.

Let z4(n) = yq(n) — s4(n) and 2,(n) = Q4(n) — M,(n) be the error system,

we obtain
o) = — cyzal) <§nj () Z B () + ()
; Z (s () + 07 K, (), @)
Za(n) = — eq2q(n) + batbg(24(n)) + I Wy(n),

\

where ¢y(z(n)) = gy (n)) — 9:(

For convenience, we define z(n) = (21(n), 22(n), -, z.(n)T, 2(n) = (21(n),
), 8m)T 2) = (), 22(0), -+, za(n), 21(n), 22(n), -+ 2a(0))",
C = diag(ey, ¢, -+ ,¢n), B = diag(by,ba, -+ ,b,), E = diag(es, e, - ,€n),
D = diag(dy, dy, -+ - ,d,).

s1(1))-

Assumption 2. (see [44]). For any r,ri,ro € R, there are positive con-
stants w, 00,0 = 1,2, ...,n, such that: |gi(r1) — qi(r2)| < wlry — 72, |ai(r)| <
o;.  To facilitate the demonstration given in this paper, we define U =

: 2,2 nxn
diag(u?, u3,...,u?) e R

11
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Definition 2.1. (see [/5]). For any z2(0) € R*", 71 > 0 and o > 0, if
the inequality ||Z(n)|| < Toe ™ 7M0) is satisfied for ¥n > no, then the error

network (7) is said to achieve global exponential stability.

Definition 2.2. (see [40]). Assume that there is a constant n* > 0 such that
zZ(n) = 0 for Yn > n* and z(0) € R*", then the error network (7) is said to
be finite-time stable. Moreover, for Vz(0) € R*", the settling time function is

defined as T(z(0)) = inf{n* : Z2(n) = 0,¥n > n*}.

Definition 2.3. (see [47]). The error system (7) is fized-time stable if
it satisfies finite-time stability, and there is a scalar T.x > 0 such that
T(2(0)) < Thax for V2(0) € R*™. In other words, the settling time function

T(-) is uniformly bounded.

Definition 2.4. (see [48]). The error system (7) is called to be predefined-
time stable if its fired-time stability is achieved, and for any predefined time
Ts > 0, the inequality T(2(0)) < Ts holds for ¥z(0) € R*™, where Ts is an
adjustable parameter in the designed controller, which is irrelevant to initial

value.

Remark 3. In this paper, the above-mentioned four types of synchroniza-
tion differ mainly in how the convergence time is determined and controlled.
Based on the definition of global exponential stability as in Definition 2.1, it is
easy to know that the synchronization error decays exponentially over time.
That is, the system gradually approaches the synchronized state, but the
error does not become exactly zero in finite time. This approach is smooth
and predictable, yet may not be fast enough for time-critical applications.

According to Definition 2.2, finite-time synchronization guarantees that the

12
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system reaches exact synchronization in a finite time, but the settling time
function T'(z(0)) for convergence depends on the initial conditions. This
makes it difficult to determine the settling time in advance. The fixed-time
synchronization introduced in Definition 2.3 improves upon finite-time syn-
chronization by ensuring the settling time function for convergence within
a uniform upper bound Ty, > 0 that is independent of the initial state.
However, this bound is fixed once the system is designed and cannot be ad-
justed flexibly. In contrast, predefined-time synchronization, as introduced
in Definition 2.4, allows users to set the desired convergence time Ty in ad-
vance. The system is then designed to synchronize within this specified time,
regardless of initial conditions. This provides the highest level of flexibility,

which is particularly valuable in real-time or deadline-sensitive applications.

Lemma 2.1. (see [45, 48, 50, 51]). Suppose there exists a function J(Z(n)) :
R* — R* U {0}, which is continuous, positive definite and radially un-

bounded, such that

J(2(n)) < =m1J(2(n)) = 72 (2()) — 73T (2(1))
then the following conclusions are established:

1) When 1o = 73 = 0 and 7, > 0, the error network (7) reaches global

exponential stability.

2) Whent =13 =0,7 > 0and0 < a; < 1, the error network (7) reaches

finite-time stability with the corresponding time given by T(z(0)) =
J'1(2(0)
7’2(1—0{1) .

3) Whent =0, >0,73>0,0<a; <1 andas > 1, the error network

1 1
To(l—aq) + 3(a2—1) "

(7) reaches fized-time stability. Furthermore, Thax =

13
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4) Whenﬁ:(),Tg:Tg:ﬁ>0,a1:1+g>1and0<a2:

1 - g < 1, where 0 < 6 < 1, Ts > 0 represents a predefined-time

constant set beforehand, the error network (7) reaches predefined-time

stability within the predefined-time Ty.
Lemma 2.2. (see [52]). If fi,fo,  ,[n=20,0<( <1, > 1, then we
have

n G1 n n G2 n
(Z fq) <Y et (Z fq> <> fe
q=1 q=1 q=1

q=1
3. Fault-tolerant synchronization of MCNNs

This section is dedicated to studying the global exponential synchroniza-
tion, finite-time synchronization, fixed-time synchronization and predefined-
time synchronization problems of MCNNs through the fault-tolerant control
scheme. The following theorem is presented to facilitate the synchronization

of the drive-response systems (2) and (3).

Theorem 1. Given that Assumptions 1 and 2 are satisfied and the bilayer

fault-tolerant controllers ky(n) and wy(n) for the system (7) are designed as:

( 1
kql(ﬁ) N Z o IqL/BqL |:(

+ Z sign (24 (1)) haqior +Y424(n) + Z Iyokap)
< = pee (8)

1 . . . R
wa(n) = — =————[ (802 |2,(n)|”* + 62 0£2|2,(n)|**)sign(2,(n))
ZLEG Iqb/BqL

+ YoZq(n) + Z quwqp] ’
\ peCG

3P 2] + 02 p¥2 24 (n)|*) sign(z4(n))

14
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if there exists 0 < P = diag(p1, p2, ..., pn) € R™"™ O = diag(01,09,...,0,) €
R™™ and T = diag(y1,72, -+ , ) € R™" such that

—2PC + P?H +2U 4+ PD — 2PY < 0, (9)
—20E + PD + O?B? — 207 < 0, (10)

then the following results are obtained.

1) When ¢ = 0, 532) =0, ¢ = 1, 5&1), Dg» 04 and 7, satisfy 531) > 0,
pg > 0, 0, > 0 and 7, > 0, where 1) = min{é,gl),q =1,2,...,n},
the drive system (2) and response system (3) realize global exponential

synchronization.

2) When 6" =0, ¢, = G o= G, 05", pq, 0q and 7, satisfy 85" > 0,
Py >0, 0, > 0 and 7, > 0, where 0 < ¢; < 1, §) = min{d{" ¢ =
1,2,...,n}, the drive system (2) and response system (3) realize finite-

1-¢;
_ JZ (2(0)

time synchronization. Additionally, 7'(z(0)) = O

3) When $1 = C12_17 P2 = C22_17 ¢1 = Cla ¢2 = C27 551)7 5'52)7 Pq; Oq and
v, satisfy 6(51) > 0, (552) > 0, pg > 0, 0 > 0 and v, > 0, where
0<G<1,(>1,00= min{&gl), ¢=1,2,...,n}, 0% = min{ééz),q =

1,2,...,n}, the drive system (2) and response system (3) realize fixed-

time synchronization and T}, = 5@(}_ o + o 5 ;(2) P
n 2 2—

¢
1 1 ™ 2 2 2 us
o) When 6 = 6" = =7 — 67 = 6 = o o0 = §. 02 = =%
o1 = 14+C1, @2 = 1 —=C1, pg, 04 and 7, satisty p, > 0, o, > 0 and 7, > 0,
where 0 < (; < 1, the drive system (2) and response system (3) achieve

predefined-time synchronization with predefined-time Tj.

15
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Proof. Constructing the below Lyapunov functional for error system (7):

n)) = quzg(ﬂ) + Z Oqu(n)- (11)

q=1 q=1

The derivative of J(Z(n)) can be calculated as
) =2 pozq(n)Z4(n) + 2 Z 0424(11)24(1)
q=1
=2 quzq(n)[_cqzq +thl $q(n)) (21 ))+dq2q(n)+Iqu(n)
- (Z hai(sq(n)) _Z hai(yq(n))) g1 (e (n +2 Z 0q2q(1) | —€q24(n)
=1 =1

+ bgthg(24(n)) + [(?Wq(n)}- (12)

Apparently, one has,

QZquzq ha(s4()i(z1(n))

<2;;pqlzq Ml hal g (n)) = a(si(n))]
<2;;pq|zq Mgl z1(n)]

<21;p 222 +Zulzl

=2T(n)(P*H + U)=(n), (13)

and

2 Z 042q(1)bg¥q(24(1))

16
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—ZZoqzq 0(9(Wa(n)) = gq(sq(n)))
<220qlzq ) [bgluq|z4(m)|

< Z oabaza(n) + Y ugza(n)
q= g=1
=z"(n)O’B*2(n) + 2" (n)U=z(n). (14)

Moreover,

—QZZM hat(54(1)) — ot (e (M) 9t (3 (m))

qlll

—QZquzq ha(yq(n)) — hai(sq(n)))gi(yi(n))

q=1 [=1
<222pq1zq Nha = halla(w(n)]
g=1 I=1
<222pq1zq |hq10'l (15)
q=1 I=1
2 quzq (m)dqZq(n)

<22pq|zq )dq| 24(n)]
q=1

= qudng () + Z pqdqég (n)
q=1 q=1

=2"(n)PDz(n) + " (n) PDZ(n). (16)

17
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Substituting the bilayer fault-tolerant controllers (8) into (6), we have
2 quzq(n)IqTKq(n)
q=1

=2 quzq(n) ( Z Lo Baikiq(n) + Z Lopkap)

eG pEG

=2 quzq — (0pg 12 ()7 + 857 P2 |24 (1)|°2 ) sign(2(m)) = Ye2q(1)

- Z sign (2 (1)) ot — Z Lopkigp + Z qu];qp}

peCG ped

=—2quzq (8570 12 ()] + 0D |2 (m)12) sign(z4(m)) + Yqzq (1)

+ Z sign(zq(n))haoi], (17)

and

2 Z Oqéq(n)]g’Wq (n)
q=1

=2 Z Oqéq(n) ( Z IqL/BquQL(n) + Z quU_Jqp)

LeG peC
=2 Z 0424(n Dot |2,(n)|9" + 687082 |24(n)|*)sign(2,(n)) — Ye24(n)
Z apWqp + Z quqp
peCG peCG

23 0,2, (6008 12, (n)| 30 2, (1)) sign(Zy(n) + a2 ()] (1)
Substituting (13) - (18) into (12), then we have

J(z(n)) <2"(n)[ - 2PC + P*H +2U + PD — 2PY]2(n) + 27 (n)[ — 20E
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+ PD + 0’B® — 207)]2(n) — 2 quzq [(852 95 24 ()|

+6(§2)p§2|2( )|¢2)Slgn Zq 220(]2(1 1 O‘Pl|Z( )|¢1
+ 3072 2, ()] sign(2 ()]

Thereafter, we will discuss the impact of the controller variables on the
stability of the system (7).
Case 1: Based on the variable conditions of Case 1, and applying Lemma

2.2, we get
—2quzq V(85795 [2g (MI* + 0 pi* 2 ()] ) sign(zy(m))]

——2 Z 0 pazq(m)sign (2 (1) zq ()]

q=1

< — 200 qu%(n)
—2 Z 0a2a(M) (65708 |24 (m)|”* + 670 |24(n)| %) sign(24(n))]

=2 Z 050, (m)sign(2,(1m)|24(n)|

qg=1
< = 26W Z oqég(n).
q=1
Based on the preceding analysis, we can conclude the following:

J(2(n)) <z"(n)[ - 2PC + P*H + 2U + PD — 2PY]2(n) + ' ()| — 20F

+ PD + 0*B* - 207)]4(n) — 26 Z pazi(n) = 260 " 0,22(n)

19
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< — 260 (Z Pazg () + ) oq2§<n)>
= —200.J(2(n)).

According to Lemma 2.1, it follows that the error system (7) achieves
global exponential synchronization when the bilayer fault-tolerant controller
(8) is applied under the parameter conditions given in Case 1.

Case 2: Considering the variable conditions in Case 2, and by way of

Lemma 2.2, one gets

—2quzq(77)[ O3 D 1za () + 857 iz ()| ) sign(z4(n))]
=—2Z5(1 it " zg(m)sin ()2, (7) |

_25 quz |z |1+Cl

1+¢q

< — 200 (Zm%(n)) ,
q=1

n

=2 0q2q(m) [(67 05" 124(m)”* + 6P 02|24 (1m)| ) sign(24(n))]

q—l

and
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From the preceding analysis, the following conclusions can be drawn:

J(z(m) < 2'(n)[ — 2PC+P*H+2U+PD—2PY]z(n)+2"(n)[ — 20E + PD

4G 4G
2 2

+0?B*—207)] —26W (Zp z ) —26W (Z oqég(n)>
q=1

n 2 n
< —200) (Zmi(n)) + (Z 0#3(77))
g=1 g=1
. 146
n n 2
< =200 (> paze(n) + Y 0,2 (n)
qg=1 q=1

1+¢1

=260 (J(2(n))) 7

According to Lemma 2.1, the error network (7) reaches globally finite-time

-G
synchronization, and T'(2(0)) = Jé(f)T(_ZC(?))).

Case 3: Taking into account the variable conditions in Case 3, one has
—2 quzq V(G0 zg ()] + 0D |24 (n)|*2)sign (z4(1))]
= — 225(1 "2y (n)sign(zy(n) |2 (n) |
- 225(2 2y (m)sien(zy(n))zq(n)|%
=- 225( Pi® L) - 225 P )

q=1

< —26¢ ZPQQ |24(1) |1+Cl_ 6(2)219 & |24(n |1+<2

1+¢ 1+¢o

" ’ 1o [ ’
< — 260 (Z png(n)) —26®p (Z Pq@?(ﬁ))
q=1 q=1
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Similarly,

=2 0q2q(m) [(857 05" 124 + 0P 02 2, (1)|*) sign(2 ()]

q=1
o) 5 (V¢
=23 6Wo, % 2, (m)sign(z,(n)) |2, (n)[
q=1
n 14+¢o
—23 " 0P0, 7 2,(m)sign(z,())|2,(n)|°
qg=1
1+¢1 14¢o
n 2 1-¢y n ) 2
< — 950 Zong(”) _95@ 5 Zoqzq(ﬂ)
q=1 q=1

According to analyses presented above,

J(n) <z¥(n)[ = 2PC + P*H +2U + PD —2PY|z(n) + 2" (n)[ = 20E + PD

4G 4G
2 2

+0?B?—-207)]2(n) —26W (qu ) —26W (Zoqsg(n)>
q=1

Itc I+e
2

1— 42 : 1-¢o u ~
—26@p <Z PaZ, ) —26¥n 2 (Z 0@3(77))
qg=1

1+¢ 1+¢1

< — 260 [(quzqz(n)) + (Z Oqiﬁ(n)>
o] !(qu ) + (Z 0422(n) ]

n n 2
~ 1 C2
< — 20 (Z pqzq2 (n) + Z Oqz(? (77)> - ? ( pq
q=1 q=1

1+¢o
2

4+¢ 1-¢o 1462

+ Z Oqu (n)
q=1

=—260(J(2(n))
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According to Lemma 2.1, the drive and response systems (2) and (3)
achieve fixed-time synchronization within a fixed settling time T}, = m+
1
(2n) 250 (C=1)
Case 4: Referring to the previously discuss, it is evident that

- 22%%(?7)[ 05 D5 2g ()7 + 67 D2 24 ()] ) sign(zq (n))]
=—2 Z 5(1 (n)sign(zq(n ))lzq(n)’HCl
- 22 6 py % zy(m)sign(z, (1)) |z (m)] 7S

1
=2 S H e 2

S

1441 -4
6§1) & 2 2 (2) : 2 ’
-2 3% § :pqzq (1) — 20, E DqZ, (1) .
2 q:l q:l

Similarly,

—2 Z 0424 () [(0 024 (m)|** + 8072 |2, (1) |2 ) sign (24 () )]
=-2 Z 5(1)0q Zq(n)sign(Z4(n))[Z(m)["F€

_zza%q % 2 msign(z,(n) |z ()0

145 1-5
5%1) n A2 2 @ n A2 2
<—2—¢ 5 042, (1) — 24, E 042, (1) )
q=1

According to analyses presented above,

J(2(n)) <z"(n)[- 2PC + P*H + 2U + PD — 2PY]z(n)+4"(n)[ — 20E + PD

23



Journal Pre-proof

1+$ -3
. s [ 2 n 2
+02B2—207)]2(n) —2°L ( mzﬁ(n)) —26% (Z qu§07)>
2 q:l q=1

n
s [/ 14+ 1-
-2 1<71 Z oqég(n)> — 2(5 (Z 042, A2 )
nz2 g=1

B 1+C1 JrC1
<=2 1D pgzi(n)
n 2 q=1

Cl

— 261" (iwﬁ(n)) (Zoq )

2 C1 6(1) 2
< - (qu +Zoq ) — 2(5( (qu

&

n 2
+> oq2§<n>)
qg=1

== S (Gm) S - 20 ()

nz

Ty

<1
50 = 5 = o 52 = 5@
272 (Ts

error system (7) achieves predefined-time synchronization within predefined-

where Based on Lemma 2.1, the

_2<T

time Ty by applying the bilayer fault-tolerant controllers (8).

Remark 4. As is well known, CNNs considered in this paper usually are
composed of two types of state variables including STM and LTM, where
STM reflects rapidly changing dynamics of neurons while LTM represents
slow activities of unsupervised synaptic modifications. Since CNNs have two

distinct time scales, it can handle information through inhibition, competi-
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tion, coordination, and excitation between neurons. Therefore, this class of
network has great application value in image processing, modern biomedicine,
optimization and especially secure communication. Recently, some meaning-
ful results on dynamics of CNNs have been published [21-26]|. On the other
hand, memristive NNs are able to simulate the human brain in a better way
via replacing the traditional resistor with memristor. By integrating mem-
ristive characteristics into CNNs, MCNNs can be constructed. Taking into
account their advantages in practical applications, some scholars have begun
to study dynamics of MCNNs [31-34]. However, these studies did not con-
sider actuator failures commonly encountered in practical control systems,
such as effectiveness failure and bias failure. This has thus motivated us to
develop an efficient fault-tolerant control strategy in this paper, aiming to
achieve synchronization of MCNNs under multiple actuator faults. To the
best of our knowledge, this marks the first step in exploring fault-tolerant

synchronization of MCNNs subject to multiple actuator failures.

Remark 5. It is worth emphasizing that the conditions (9) and (10) given in
Theorem 1 acts as the sufficient conditions for achieving fault-tolerant syn-
chronization of MCNNs (7). To be more precise, the fault-tolerant synchro-
nization of the considered network can be achieved under the well-designed
bilayer fault-tolerant controllers (8) if there exist three matrices P, O and
T that satisfy the matrix inequality conditions (9) and (10). Essentially,
the conditions in this theorem exhibits relatively low conservatism, which is
attributed to the presence of the positive definite diagonal matrices P and
O in this theorem. In numerous existing studies, the quadratic term of Lya-

punov functionals typically omits the positive weighting coefficients, instead
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adopting a simple sum-of-squares form of error state variables. By contrast,
our two quadratic terms targeting two error components of STM and LTM
in Lyapunov functional (11) incorporate two sets of positive constants p,
and o,4, which forms two positive definite diagonal matrices P and O. Com-
pared with the traditional Lyapunov functional forms that exclude positive
constants, our design reduces conservatism to a certain extent, thereby im-
proving the flexibility of the derived fault-tolerant synchronization conditions

in Theorem 1.

Remark 6. The fault-tolerant synchronization technique proposed in this
paper boasts distinct advantages and holds substantial significance for re-
search on the synchronization of MCNNs. A general bilayer fault-tolerant
controller (8) is designed, and by assigning distinct parameter values to this
controller, four types of synchronization criteria for MCNNs — specifically
global exponential, finite-time, fixed-time, and predefined-time synchroniza-
tion — are established accordingly. Among these, the predefined-time syn-
chronization of drive-response MCNNs achieves the most precise and con-
trollable performance. In contrast to other synchronization strategies, the
predefined-time method ensures synchronization within a predefined-time
Ty irrespective of initial conditions, which is particularly valuable for time-
critical applications such as secure communications and safety-critical au-
tomation systems. It is worth noting that applying a fault-tolerant control
strategy to achieve synchronization of MCNNs under multiple actuator fail-
ures constitutes a novel approach, which offers greater flexibility and adapt-

ability in comparison to traditional methods.
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4. Numerical examples

Consider the following drive and response MCNNs:

6

STM = 34(n) = —cys4(n) + D haa(sq(m)gu(s1(m) + dy My (n), 1)

LTM : Mq(’I]) = —equ(ﬂ) + bng(Sq(U)),

and

6

STM : §4(n) :_quq(n>+z th(yq(n))gz(yz(ﬁ))+dqu(ﬁ)+IqTKq(77), (20)

LTM : Qq(n) = —,Qq(n) + bega(ye(n) + IF Wyln),

where g = 1,2,...,6, g,(a) = 1“2t = 179 . 6), O = diag(0.5,0.7,0.9,
0.6,0.8,0.3), E = diag(0.6,0.9,0.8,0.7,0.6,0.6), B = diag(0.8,1.2,1.1,0.9, 0.4,
1.3), D = diag(0.4,0.2,0.6,0.5,0.9,0.3), [, = I, = Iy = I, = Iy = Is =
[1,1,1,1,1,1)T. The parameters in actuator failures are taken as ki, = 0.4,
ko = 0.3, ki3 = 0.5, Wy = 0.5, wo = 0.2, w13 = 0.9, By = 0.5, By5 = 0.3,
Brg = 0.9, koy = 0.2, kgo = 0.6, ko3 = 0.4, Wey = 0.3, Way = 0.6, W3 = 0.4,
Bos = 0.6, Bog = 0.4, Bog = 0.3, kg1 = 0.5, kso = 0.7, ks = 0.3, @3 = 0.4,
W3y = 0.8, w3z = 0.3, Bsy = 0.2, B35 = 0.5, B3g = 0.8, kyy = 0.6, kyp = 0.8,
ks = 0.7, 04y = 0.6, Wyp = 0.7, wyz = 0.8, Bay = 0.9, Bus = 0.7, Bys = 0.4,
ksi = 0.3, kso = 0.4, ks3 = 0.6, w5 = 0.9, W50 = 0.3, W53 = 0.6, Bs4 = 0.8,
Bss = 0.6, Bse = 0.5, kg1 = 0.7, kgz = 0.5, kg3 = 0.8, wg; = 0.7, wge = 0.4,
wez = 0.5, Bea = 0.4, Bg5 = 0.9, Bgg = 0.6. The synaptic connection weight

of memristors hy(s,(n)) is designed as follows:

022, |si(n)] < 0.9, 048, |s1(n)| < 0.9,
hii(s1(n)) = hia(s1(n)) =
0.50, |s1(n)| > 0.9, —0.32, |s1(n)] > 0.9,
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has(s1(n)) = { _(());§
hus(s1(n)) = { :2;
hai(s2(n)) = { :22213
has(s2()) = { _(())i
has(s2(1)) = { gi
ha (s3(n)) = { gi
hss(s3(n)) = { _Siz
has(s3(n)) = { _(())ii
ha(s4(1)) = { 2;125)
has(s4(n)) = { _gi
has(sa(n)) = { _?)Z:,
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hia(s1(n)) = { _(())2(2)
hue(s1(n)) = { _(());l
haa(s2(n)) = { 222
N
hag(s2(n)) = { _(())iz
o (s3(1)) = { _(())T;
hsa(ss(n)) = { gii
hae(s3(n)) = { _Ei
has(s4(n)) = { _Zj;
haa(sa(n)) = { gi
hae(s4(n)) = { _(?ZZ
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0.53,

hs1(ss(n)) =
0.39,
—0.39,
hs3(s5(n)) = { 052
0.27,
hss(s5(n)) = 05
0.48,

he1(s6(n)) =
0.28,
—0.41,
he3(s6(n)) = { 049
0.35,
hes(s6(n)) = 056

hqa(yqe(n)) is assigned the same value as hgy(s,(n)).

T
[

0.72
0.13
0.18
0.16
0.14
0.20

[s5(n)] <
[s5(n)| > 0.9,

|5577|
|s577|>09

(
(n)
[s5(n)] <
|s5(n
(
)

| <
|>09

)

)| > 0.9,

|56(n)

|s6(n)

|s6(n)] <

|s6(n)] > 0.9,
(

[s6(n)] <
[s6(n)| > 0.9,

0.16
0.18
0.71
0.75
0.75
0.81

0.66
0.94
0.77
0.78
0.91
0.90

0.28,

hsa(s5(n)) = { o
0.48,

hsa(ss(n)) = { 0,30
—0.36,

hse(s5(n)) = { 053
0.31,

he2(s6(n)) = { >
0.50,

hea(s6(n)) = { 0.36
—0.37,

hes(s6(1)) = 054

0.72
0.17
0.15
0.12
0.09
0.14

0.17
0.21
0.71
0.71
0.79
0.91

0.65
0.92
0.88
0.89
0.89
0.91
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It is not hard to obtain

Clearly, g,(-) satisfies Assumption 2 with u, = o, = 0.4. The parameters

in the fault-tolerant controller (8) are set as (;

=03, ¢ =

1.2. Select

T = diag(0.5013,0.4125,0.6324, 0.8547, 0.9063, 0.7182), the matrices P and
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O can be computed by using MATLAB

0.4856 0 0 0 0 0
0 0.4764 0 0 0 0
P 0 0 0.4416 0 0 0 |
0 0 0 0.4583 0 0
0 0 0 0 0.4349 0
0 0 0 0 0 0.4710
0.4556 0 0 0 0 0
0 0.3141 0 0 0 0
0= 0 0 0.3609 0 0 0 |
0 0 0 0.3590 0 0
0 0 0 0 0.4698 0
0 0 0 0 0 0.3101

which satisfies conditions (9) and (10). By Theorem 1, through the appropri-
ate selection of parameters for the bilayer fault-tolerant controller (8), various
types of synchronization are realized.

Case 1: Take 5&1) = qﬁ, g=1,2,...,6, we can obtain () = min{&(ll), q=
1,2,...,6} = 1/9, failure time 7y, = 7y, = 0.3, ¢ = 1,2,...,6, « = 4,5,6,
p = 1,2,3. Figures 1 and 2 illustrate the simulation results of the global
exponential synchronization errors of networks (19) and (20) under the bi-
layer fault-tolerant controller (8). It is clearly observed that z,(n) and Z,(n)
converge to zero at approximately 0.377s and 3.587s, respectively, confirming
the effectiveness of the global exponential synchronization process.

Case 2: By setting 6" = %, g=1,2,...,6, we get 6(1) = min{éél),q =
1,2,...,6} = 1/3, failure time 7, = 7y, = 0.55, ¢ = 1,2,...,6, « = 4,5,6,
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Figure 1: The norms of global exponen- Figure 2: The norms of global exponen-
tial synchronization errors z4(n) = y4(n) — tial synchronization errors Z,(n) = Qq(n) —

Sq(n)vq:1a27”~;6- Mq(n),q=1,2,...,6.

p =1,2,3. The values T'(2(0)) = % is computed as T'(2(0)) = 3.8s.
Figures 3 and 4 present the simulation results of finite-time synchronization
errors of networks (19) and (20) under the bilayer fault-tolerant controller
(8) with T'(2(0)) = 3.8s. It is clearly observed that z,(n) and Z,(n) converge
to zero at approximately 0.327s and 0.579s, respectively, demonstrating the
effectiveness of the finite-time synchronization process.

Case 3: Set 05" = o 5 = 2,4=1,2,...,6, we get 50 = min{o", ¢ =
1,2,...,6} =1, 0@ = min{o\", ¢ = 1,2,...,6} = 2, failure time 7}, =

Ngp = 04s, ¢ = 1,2,...,6, v = 4,5,6, p = 1,2,3. The values Tox =

1 1

s (1—¢1) + (Zn)lgcz 52 (L2—1)

pict the simulation results of fixed-time synchronization errors of networks

is calculated as Ty,.x = 4.6s. Figures 5 and 6 de-

(19) and (20) under the bilayer fault-tolerant controller (8) with 71, = 4.6s.
As observed from these two figures, z,(n) and Z,(n) converge to zero at ap-

proximately 0.135s and 0.127s, respectively, demonstrating the effectiveness
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Figure 3: The norms of finite-time syn- Figure 4: The norms of finite-time syn-
chronization errors z,(n) = yq(n) — sq(n), chronization errors Z,(n) = Qq(n) — My(n),
g=1,2,...,6. ¢=1,2,..6.

of the fixed-time synchronization process.
Case 4: Take T5 = 0.2s, failure time 7j, = 7y, = 0.25, ¢ = 1,2,...,6,
L =4,56, p=1,2,3. By using MATLAB, 5;1) and 5;2) can be calculated

€1
as 5§1) = % = 38.0054, 5§2) = o5 = 26.1799. Figures 7 and 8
145

depict the simulation results that show the evolution of the predefined-time
synchronization errors of networks (19) and (20) under the bilayer fault-
tolerant controller (8) with 7'(§) = 0.2s. It is evident that, z,(n) and Z,(n)
converge to zero at approximately 0.048s and 0.055s, respectively, validating
the efficacy of the predefined-time synchronization procedure.

From the trajectories of the control inputs, the following conclusions can
be arrived at. 1) The synchronization of the drive-response MCNNs can
still be ensured when effectiveness failures occur to the actuators k, and
we(q = 1,2,...,6,0 = 4,5,6) and bias failures occur to the actuators kg,

and wg,(¢ = 1,2,...,6,p = 1,2,3). 2) Even if actuator failure occurs at
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Figure 5: The norms of fixed-time syn- Figure 6: The norms of fixed-time syn-

chronization errors z,(n) = yq(n) — sq(n), chronization errors 2,(n) = Qq(n) — My(n),

¢=1,2,...,6. ¢g=1,2,...,6.
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Figure 7: The norms of predefined-time Figure 8: The norms of predefined-time
synchronization errors z,(n) = y,(n) — synchronization errors Z,(n) = Qq(n) —

Sq(n)7q:1327'--36- Mq(n),q=1,2,...,6.
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different time point, bilayer fault-tolerant controller (8) can still guarantee
the synchronization of the simulation system. 3) Under the bilayer fault-
tolerant controller (8), the synchronization performance within the predefined
time of the drive-response MCNNs is the best. These results collectively
indicate that the bilayer fault-tolerant controller (8) developed in this study

is reliable.

Remark 7. In practical control systems, actuators may suffer from both
effectiveness and bias failures, and these two types of failure can even occur
simultaneously. However, most existing studies only takes effectiveness fail-
ures into account [41, 42|, while neglecting the combined impact of the two
failure modes on system performance and stability. To tackle this limitation,
we propose a bilayer fault-tolerant control scheme for drive-response MCNNSs,
which is capable of handling both types of faults. The layered structure not
only enhances the clarity of controller design and stability analysis, but also
boosts the flexibility of parameter tuning. Furthermore, MCNNs incorporate
competition characteristics, which endow them with greater expressiveness
and make them more suitable for complex tasks compared to traditional
MNNs. The simulation results presented in this section confirm that our
proposed method successfully achieves four types of synchronization — expo-
nential, finite-time, fixed-time, and predefined-time — under the coexistence
of bias and effectiveness faults. These results not only validate the theoretical
analysis but also demonstrate the robustness of the proposed fault-tolerant
control scheme in static fault scenarios. That is to say, the current work does
not take varying failure patterns into account, such as time-varying or ape-

riodically intermittent actuator faults. However, in real-world applications,
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faults may occur intermittently or evolve over time, which poses additional
challenges to controller design. Some recent studies have explored such fault
patterns by adopting time-varying [53, 54| and intermittent [55, 56| fault-
tolerant control strategies. Nevertheless, incorporating these complex failure
modes into the MCNN framework remains an open and meaningful research
problem. In the near future, it would be valuable to extend our results to
handle time-varying delay or intermittent actuator failures, which would fur-

ther enhance the practicality and reliability of the proposed control scheme.

5. Conclusions

This paper centers around addressing four types of fault-tolerant syn-
chronization issue regarding drive-response MCNNs in the event of multiple
actuator failures. The failures under study involve both bias and effective-
ness failures. By employing a suitable Lyapunov functional along with in-
equality techniques, the bilayer fault-tolerant controller has been properly
designed. Through the adjustment of controller parameters, the global expo-
nential synchronization, finite-time synchronization, fixed-time synchroniza-
tion, and predefined-time synchronization of the drive-response MCNNs can
be respectively achieved. Finally, simulation examples with detailed anal-
ysis and comparison are provided to verify the feasibility of the obtained
results. In the future, it would be very interesting to further explore the
synchronization problem of MCNNs with multiple actuator failures by us-
ing some advanced fault-tolerant control approaches. More specifically, pos-
sible directions include improving robustness against external disturbances

and parameter uncertainties, addressing time-varying delays, and develop-
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ing adaptive strategies to estimate fault parameters. Additionally, extending
the proposed approach to more complex network structures, such as coupled

MCNNSs, would further enhance their practical value.
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