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Inter-city interactions are critical for the transmission of infectious diseases, yet their effects on the 
scaling of disease cases remain largely underexplored. Here, we use the commuting network as a proxy 
for inter-city interactions, integrating it with a general scaling framework to describe the incidence 
of seven infectious diseases across Brazilian cities as a function of population size and the number 
of commuters. Our models significantly outperform traditional urban scaling approaches, revealing 
that the relationship between disease cases and a combination of population and commuters varies 
across diseases and is influenced by both factors. Although most cities exhibit a less-than-proportional 
increase in disease cases with changes in population and commuters, more-than-proportional 
responses are also observed across all diseases. Notably, in some small and isolated cities, proportional 
rises in population and commuters correlate with a reduction in disease cases. These findings suggest 
that such towns may experience improved health outcomes and socioeconomic conditions as they 
grow and become more connected. However, as growth and connectivity continue, these gains 
diminish, eventually giving way to challenges typical of larger urban areas – such as socioeconomic 
inequality and overcrowding – that facilitate the spread of infectious diseases. Our study underscores 
the interconnected roles of population size and commuter dynamics in disease incidence while 
highlighting that changes in population size exert a greater influence on disease cases than variations 
in the number of commuters.

The global population has increasingly shifted toward urban areas, with a notable milestone reached in 2007 
when, for the first time, the world’s urban population surpassed 50%1. This trend has continued, with the urban 
population reaching 56.2% in 20201. Projections suggest that by 2050, 68% of the global population will live in 
urban areas, with an estimated 2.5 billion additional people moving to cities, primarily in Asia and Africa1,2. 
This growing urban concentration presents both opportunities and challenges. Urban settings foster intellectual 
and economic development through the close proximity of individuals, enabling the exchange of knowledge and 
services. However, this growth also exacerbates issues such as environmental pollution, rising housing costs, and 
congestion, while straining resources like food, energy, and water. Furthermore, urbanization has far-reaching 
impacts on public health, financial markets, and the global economy1,2.

The increasing concerns about the impact of cities on these various issues, together with the growing availability 
of extensive datasets on urban indicators, have enabled deeper investigations into urban dynamics. This has led to 
the emergence of a new urban science, which conceptualizes cities as complex systems shaped by the interactions 
among residents and between residents and urban infrastructures3–5, potentially explaining the emergence of 
diverse urban phenomena3–5. Urban scaling is a prominent example of emergent behavior of city systems that 
has captured the attention of researchers since the 1970s6,7, but that only gained significant recognition within 
the complexity science community following the works of West, Bettencourt and coauthors8–10. The so-called 
urban scaling hypothesis posits that the relationship between a given urban indicator Y and the population N 
within an urban system with multiple units (such as metropolitan areas, counties, or municipalities) follows a 
power-law function, Y ∼ NβN , where βN  is the urban scaling exponent. Urban scaling is typically categorized 
into three regimes:9 isometry (βN ≈ 1 for indicators related to individual needs); superlinear allometry, or 
increasing returns to scale (βN > 1 for socioeconomic metrics); and sublinear allometry, or decreasing returns 
to scale (βN < 1 for infrastructure-related indicators). Similar to the explanation for the allometric scaling 

1Complex Systems Modeling Program, School of Arts, Sciences and Humanities, University of São Paulo, São 
Paulo, Brazil. 2College of Science and Engineering, University of Derby, Markeaton Street, DE22 3AW Derby, 
United Kingdom. 3Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 
Maribor, Slovenia. 4Community Healthcare Center Dr. Adolf Drolc Maribor, Ulica talcev 9, 2000 Maribor, Slovenia. 
5Complexity Science Hub Vienna, Josefstädterstraße 39, 1080 Vienna, Austria. 6Department of Physics, Kyung Hee 
University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea. 7Departamento de Física, Universidade 
Estadual de Maringá, Maringá, PR 87020-900, Brazil. email: hvr@dfi.uem.br

OPEN

Scientific Reports |          (2025) 15:498 1| https://doi.org/10.1038/s41598-024-84252-z

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-84252-z&domain=pdf&date_stamp=2024-12-25


in biology11, the emergence of this pattern is attributed to the underlying structure of urban networks (e.g., 
transport, supply, and social networks) that mediate the interactions among the city’s parts10.

Empirical validation of the urban scaling hypothesis has driven numerous studies using data from multiple 
countries and examining a wide array of urban indicators. In the realm of disease incidence, the seminal work 
by Bettencourt et al. reported that HIV/AIDS cases in the USA scale superlinearly with population size9, a 
pattern also observed in Brazil by Antonio et al.12. Rocha et al.13 extended this analysis by investigating the 
scaling of various health indicators using data from Brazil, Sweden, and the USA. Their findings revealed that 
infectious diseases such as HIV/AIDS, chlamydia, and influenza generally scale superlinearly with population 
size. However, other infectious diseases, including leprosy, viral hepatitis, and dengue, exhibited isometric or 
even sublinear scaling. The authors suggest that the superlinear scaling observed in some infectious diseases 
likely reflects the increased number of contacts among residents in larger cities compared to smaller towns14. In 
contrast, the isometric and sublinear scaling of other infectious diseases may be due to the insufficient allocation 
of medical resources in smaller cities. Patterson-Lomba et al.15 reported that sexually transmitted diseases scale 
superlinearly with the population of urban areas in the USA, even when controlling for socioeconomic variables. 
They also found that income inequality positively correlates with disease incidence, while educational level is 
negatively correlated.

Expanding on these findings, Bilal et al.16 investigated the scaling of various mortality indicators across ten 
Latin American countries and the USA, identifying distinct scaling regimes among different regions and causes 
of death. Their results suggest the absence of a universal scaling law for mortality indicators encompassing both 
communicable and non-communicable diseases. This lack of universality was attributed to variations in urban 
characteristics influencing health, such as socioeconomic, environmental, healthcare, and behavioral factors, 
across different regions. Additionally, Patterson-Lomba and Gómez-Lievano17 demonstrated that intrinsic 
features of diseases may also affect the scaling regime, with diseases that transmit less easily increasing at a faster 
pace with population than those that are more contagious. Studies on COVID-19 cases have also shown that 
larger USA cities initially experienced more pronounced growth rates in the number of cases18, with the number 
of cases and deaths in Brazilian cities displaying a sublinear scaling regime only during the first approximately 
one hundred days following the disease introduction, after which a superlinear scaling regime emerged19.

The universality of urban scaling laws is often explained through models and theoretical frameworks that 
emphasize human interactions within cities while largely overlooking inter-city processes20. However, cities do 
not exist in isolation; rather, they are in continuous interaction with one another, driven by processes spanning 
economic, social, technological, political, and cultural exchanges21,22, as well as through the movement of 
people between cities for work, education, or better living conditions23,24. Although the importance of inter-
city processes in shaping urban dynamics is acknowledged, relatively few studies have explicitly examined their 
impact on urban scaling20,25–28. These inter-city interactions are particularly critical for the spread of diseases, yet 
there is still a knowledge gap on how such interactions may influence the number of disease cases in urban areas.

Here we bridge this gap by investigating the effect of inter-city interactions on the association between 
population size and the number of cases for seven infectious diseases across Brazilian cities. To do so, we use 
the commuting network among cities as a proxy for inter-city interactions, combined with a general scaling 
framework based on the economic theory of production functions29, which has proven useful in studies of urban 
carbon dioxide emissions30 and urban wealth27. This approach allows us to describe the number of disease cases 
as a function of both population size and the strength of inter-city interactions, modeled by the total number of 
commuters (the weighted total degree of a city in the commuting network). We show these models significantly 
outperform the traditional urban scaling model across the seven disease types, particularly by reducing bias in 
large urban areas. Additionally, we assess the impact of proportional changes in population and total number 
of commuters on disease cases by calculating an elasticity of scale derived from our models for individual cities. 
This elasticity depends on the product of population and number of commuters and predicts the existence of 
distinct scaling regimes, depending on whether this product exceeds specific thresholds. Overall, the majority 
of cities display decreasing returns to scale in relation to changes in population and the number of commuters, 
with the proportion of cities showing this trend ranging from 95% to 66%. This implied that a 1% increase in 
both quantities is associated with less than a 1% increase in disease cases for most Brazilian cities. However, 
increasing returns to scale are also observed for all disease types, with percentages ranging from 0.4% to nearly 
a quarter of Brazilian cities. In these cities, a 1% increase in population and commuters correlates with more 
than a 1% increase in disease cases. Interestingly, we also identify a few small cities that exhibit negative elasticity 
of scale for certain disease types, indicating that a small proportional increase in population and commuters is 
associated with a decrease in the number of disease cases for these cities. We also investigate the individual effects 
of population and commuters on disease cases, finding that most cities exhibit a less-than-proportional response 
in disease cases to changes in either population or commuter numbers; however, an increase in commuters is 
associated with a decrease in syphilis and pertussis cases in most cities, as well as in a significant number of 
cities for tuberculosis and viral hepatitis. Finally, we compare the relative impact of both variables, revealing 
that changes in population generally affect disease cases more than proportional changes in the total number of 
commuters.

Results
We begin by presenting the data used in our study. The commuting network was constructed using data from 
the Brazilian 2010 Census, provided by the Brazilian Institute of Geography and Statistics (IBGE)31. This dataset 
includes information on the number of individuals who reported commuting daily from their city of residence 
to work in another city. We aggregate this information into a graph where nodes represent Brazilian cities, and 
weighted edges between city pairs indicate the total number of commuters traveling between them, irrespective 
of direction. The direction of commuting flow was disregarded because we use the commuting network as a 
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proxy for inter-city interactions, and both flow directions are likely to affect disease propagation equally. 
Furthermore, previous research has demonstrated a strong linear correlation between the numbers of incoming 
and outgoing commuters in both Brazil and the USA27, indicating that considering these numbers separately 
does not significantly improve the models employed in our study. Figure 1 illustrates this commuting network 
in which nodes are Brazilian cities and weighted edges among them indicate the total number of commuters 
traveling between city pairs. This representation reveals the overall complexity of inter-city interactions, which 
is completely ignored when cities are considered isolated entities. From this network, we evaluate the weighted 
total degree S of each city, corresponding to the total number of incoming and outgoing commuters in a given 
city. This quantity indicates the centrality of cities in the commuting networks and can be further related to 
the overall strength of the interactions a city has with all its neighboring cities. Additionally, we obtain the 
population N of Brazilian cities from the Brazilian 2010 Census, which is also provided by the Brazilian Institute 
of Geography and Statistics (IBGE)31. Finally, we collect the reported cases Y of seven infectious diseases – HIV/
AIDS, influenza, pertussis, syphilis, tuberculosis, and viral hepatitis – across Brazilian cities in 2010 from the 
Department of Data Processing of Brazil’s Public Healthcare System (DATASUS)32. These diseases were selected 
based on data availability and to focus our investigation on infectious diseases transmitted directly from person 
to person.

Using these data, we compare the predictive power of the urban scaling model, which posits that the number 
of disease cases Y is a function of population N, with a generalized framework inspired by the economic theory 
of production functions29. In this framework, we model the number of disease cases Y as the output of a two-
term production function involving both the population N and the total number of commuters S. Specifically, 
we consider the standard urban scaling model

 Y ∼ NβN or its linearized form log Y ∼ βN log N, (1)

Fig. 1. Commuting network among Brazilian cities. The map displays the locations of Brazilian cities, 
which correspond to the network nodes. Connections represent the flow of commuters between city pairs, 
irrespective of direction. Node sizes are proportional to the weighted total degree of the cities and are 
also color-coded accordingly. Edge widths indicate the number of commuters between city pairs. In this 
visualization, edges are grouped based on their proximity using a kernel-based edge bundling algorithm33. The 
emerging structures of this network illustrate the complexity of inter-city interactions. Figure created using 
Matplotlib34, GeoPandas35, and NetworkX36.
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where βN  is the urban scaling exponent, in comparison with two forms of the production functions borrowed 
from the theory of production functions29 that have already been previously applied in urban studies27,30. The 
first is the Cobb-Douglas model37

 Y ∼ NβN SβS or its linearized form log Y ∼ βN log N + βS log S, (2)

where βN  and βS  are parameters analogous to the power-law exponent of urban scaling. The Cobb-Douglas 
model provides a straightforward generalization of urban scaling (which is recovered by setting βS = 0) while 
explicitly accounting for inter-city interactions mediated by the commuting network. This model exhibits a 
scale-invariant elasticity ε = βN + βS , indicating that proportional changes in disease cases, in response to 
proportional changes in population and commuters, are independent of N and S. Similar to standard scaling 
models, doubling the population and commuters can lead to less than doubling (βN + βS < 1), more than 
doubling (βN + βS > 1), or exactly doubling (βN + βS = 1) the number of disease cases.

The second generalized model considered is the transcendental logarithmic (translog) production function29,38

 log Y ∼ βN log N + βS log S + βC log N log S, (3)

where βN , βS  and βC  are model parameters. The translog model extends the Cobb-Douglas model by 
incorporating an interaction term between population and number of commuters, modulated by the parameter 
βC  (the Cobb-Douglas model is recovered when βC = 0). This interaction term enhances the model’s flexibility 
in describing the number of disease cases as a function of population and total number of commuters. Unlike 
the urban scaling and Cobb-Douglas models, the translog function does not exhibit a scale-invariant elasticity 
of scale. Instead, its elasticity is given by29

 ε = βN + βS + βC log NS, (4)

indicating that variations in the number of disease cases associated with proportional changes in population and 
number of commuters depend on the initial values of N and S. The translog elasticity varies from city to city, 
serving as a local measure of how the number of disease cases is expected to respond to changes in population 
and number of commuters. Thus, for fixed values of the parameters βN , βS , and βC , a city can exhibit decreasing 
(ε < 1), increasing (ε > 1), or constant (ε = 1) returns to scale, depending on whether the product of its 
population and number of commuters, Ω = NS, is respectively smaller, larger, or equal to the critical value 
Ω∗ = 10(1−βN −βS)/βC . Interestingly, this model also allows the possibility of negative elasticity when Ω < Ω̃∗, 
with Ω̃∗ = 10(−βN −βS)/βC . It is also informative to rewrite the translog model (Eq. 3) by factoring either log N  
and log S, as follows:

 log Y ∼ (βN + βC log S) log N + βS log S and log Y ∼ βN log N + (βS + βC log N) log S, (5)

where the terms in brackets multiplying log N  in the first expression (∆N = βN + βC log S) and log S in the 
second expression (∆S = βS + βC log N ) correspond to marginal products of population and total number 
of commuters; they represent the expected change in disease cases resulting from an infinitesimal change in 
population and commuters. These alternative formulations of the translog model, along with the non-constant 
behavior of the marginal products, highlight that proportional changes in population or number of commuters 
lead to proportional changes in disease cases that depend on the initial values of N and S. The translog model 
also allows an increase in population N to be associated with a reduction in the number of disease cases Y when 
the number of commuters S is below the threshold S∗ = 10−βN /βC . Similarly, an increase in the number of 
commuters can also be associated with a reduction in the number of disease cases Y when the population N is 
below the threshold N∗ = 10−βS/βC . The threshold values Ω∗, Ω̃∗, S∗, and N∗ all become irrelevant when 
the translog parameters are positive. As we shall verify, βC  is positive for all diseases, while βS  is negative for 
all disease types, and βN  can be either positive or negative depending on the disease type. Thus, we shall find 
intriguing transitions in the scaling behavior of disease cases depending on the interplay between population 
size and commuter numbers.

We fit the urban scaling (Eq. 1), Cobb-Douglas (Eq. 2), and translog (Eq. 3) models to each of the seven disease 
types. For the urban scaling model, we estimate the value of βN  using the standard least-squares method applied 
to the relationship between log Y  and log N  (see Supplementary Figure S1 for visualizations of the adjusted 
scaling laws). In contrast, estimating the parameters of the Cobb-Douglas and translog models using ordinary 
least-squares is not recommended due to the strong correlations between log N  and log S, as well as between 
these terms and their product in the case of the translog model. This effect, known as multicollinearity39, occurs 
when two or more predictor variables in a regression model are highly correlated, leading to unstable parameter 
estimates and inflated standard errors. This instability arises because the ordinary least-squares method relies 
on the inversion of the Gram matrix G, defined as the product of the transpose of the regressor matrix and the 
regressor matrix. In the presence of strong correlations among predictors, this matrix becomes nearly singular, 
making its inversion highly sensitive to small perturbations in the data. To address this issue, we use the ridge 
regression approach40 to estimate the parameters of the Cobb-Douglas and translog models. Ridge regression 
mitigates the effects of multicollinearity by adding a constant λ to the diagonal elements of G, stabilizing the 
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inversion of G, and reducing the sensitivity of the regression coefficients to multicollinearity. This modification 
is equivalent to identifying the best-fitting parameters by minimizing the residual sum of squares with an added 
regularization term proportional to the sum of squares of the model parameters, where λ is the proportionally 
constant. Thus, in addition to the model parameters, the hyperparameter λ needs to be estimated from the data. 
Following standard practice, we estimate this hyperparameter by minimizing the mean squared error using a 
leave-one-out cross-validation strategy. Furthermore, to ensure uniform regularization across all independent 
variables, we standardized the values of log N  and log S before determining the optimal hyperparameter value 
(see Refs.27,30,41 for more details). For the numerical implementation of this approach, we rely on the Python 
module scikit-learn42.

Figure 2 compares the performance of the three models in predicting the number of cases of HIV/AIDS, 
meningitis, and influenza. A simple visual inspection reveals that urban scaling models provide the poorest 
predictions (Fig.  2A), significantly underestimating the number of disease cases in large cities. The Cobb-
Douglas models (Fig.  2B) improve the predictions by slightly reducing this bias. However, it is the translog 
models (Fig. 2C) that offer the most accurate predictions, markedly reducing the underestimation of disease 
cases in large cities. This visual assessment is corroborated by the coefficients of determination (R2), shown 
in the figures, which attain the highest values for the translog models. Similar conclusions are drawn from the 
Bayesian information criterion (BIC) and Akaike information criterion (AIC)43, which account for the varying 
number of parameters among the urban scaling, Cobb-Douglas (one more parameter than the urban scaling), 
and translog models (one more parameter than the Cobb-Douglas). Specifically, the insets of Fig.  2B and C 
compare the BIC and AIC values across the three models, demonstrating that the translog model yields the 

Fig. 2. Urban scaling predictions of disease cases compared with the enhanced descriptions of the Cobb-
Douglas and translog models. (A) Relationship between the predictions from the urban scaling model (Eq. 1) 
and the observed cases of HIV/AIDS, meningitis, and influenza. (B) Improved predictions considering the 
number of commuters in the Cobb-Douglas model (Eq. 2). (C) Improved predictions considering the number 
of commuters in the translog model (Eq. 3). Disease cases are expressed on a base-10 logarithmic scale, and the 
dashed lines represent the identity function. Insets in panels (B) and (C) compare the Bayesian information 
criterion (BIC) and Akaike information criterion (AIC) calculated for each model. The translog models 
yield the lowest BIC/AIC values and the highest coefficients of determination (R2, shown within each plot), 
confirming a superior fit of the translog model.

 

Scientific Reports |          (2025) 15:498 5| https://doi.org/10.1038/s41598-024-84252-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


minimum BIC and AIC values, indicating not only the best predictions but also the most parsimonious fit for 
our data.

We have illustrated the superior predictive performance of the translog model for HIV/AIDS, meningitis, 
and influenza, but the same holds for all disease types in our study (see Supplementary Figure  S2). Indeed, 
Fig. 3 demonstrates that translog models display the lowest values of BIC and AIC as well as the highest values 
of R2 across the seven disease types. The Cobb-Douglas model offers the second-best description for five of 
the diseases, but its improvement is marginal for tuberculosis and viral hepatitis. These results indicate that the 
interaction term between population and number of commuters in the translog model is the main factor driving 
the improved predictions compared to the urban scaling model.

As the translog model provides the most parsimonious and accurate description of our data, we focus on 
interpreting its adjusted behavior for each disease type. Figure 4 presents the estimated values of βN , βS , and βC  
across all disease types. We observe that βS  is negative and βC  is positive for all disease types. In contrast, βN  
is positive for tuberculosis, HIV/AIDS, viral hepatitis, and syphilis, while it is negative for meningitis, influenza, 
and pertussis. However, analyzing these parameters individually is insufficient to fully understand the effects of 
changes in population and commuters on disease incidence due to the coupled nature of the translog model.

Fig. 3. Comparison of the goodness of fit among the urban scaling, Cobb-Douglas, and translog models. 
Values of the (A) Bayesian information criterion (BIC), (B) Akaike information criterion (AIC), and (C) 
coefficient of determination (R2) calculated for the three models across the seven disease types. The gray 
bars represent values for the urban scaling model, blue bars for the Cobb-Douglas model, and red bars for 
the translog model. The translog model provides the best (and most parsimonious) fit for all disease types 
according to the three model selection criteria.
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To address this, we first calculate the elasticity of scale ε (as defined by Eq. 4) for each disease type and city 
in our dataset. Since this elasticity also depends on both the population N and the total number of commuters 
S, Fig. 5A depicts ε using a color gradient in a scatter plot of log S versus log N . For cities with ε > 1 (purple 
hues), a 1% increase in both population and commuters is associated with more than a 1% increase in disease 
cases. Conversely, for cities with 0 < ε < 1 (green hues), a less than 1% increase in disease cases is expected for 
the same 1% increase in both population and commuters. Lastly, for cities where ε < 0 (blue hues), an increase 
in both population and commuters correlates with a reduction in disease cases. In this figure, continuous lines 
and varying background colors delineate the distinct scaling regimes, which are obtained by solving Eq. 4 for 
each threshold. We observe the three transitions in the scaling regimes for viral hepatitis, meningitis, syphilis, 

Fig. 5. Elasticity of scale for each city and transitions in the scaling regime. (A) Dependence of the elasticity 
of scale ε on population and commuter numbers for every Brazilian city reporting cases of tuberculosis, HIV/
AIDS, viral hepatitis, meningitis, syphilis, influenza, and pertussis. The color-coded markers and background 
colors in each panel correspond to the values of ε, while the blue and purple continuous lines indicate the 
transitions from negative to sublinear and from sublinear to superlinear scaling regimes, respectively. (B) 
Probability distribution of the elasticity of scale estimated for each disease type. The three colors represent 
the fractions of cities within negative (blue), sublinear (green), and superlinear (purple) scaling regimes, with 
vertical lines indicating the transitions between them.

 

Fig. 4. Parameters of the translog model estimated for each disease type. (A) Parameter βN  quantifying the 
association between population size and disease cases. (B) Parameter βS  quantifying the association between 
the number of commuters and disease cases. (C) Parameter βS  quantifying the combined effect of population 
size and number of commuters on disease cases. In all panels, the error bars represent the standard errors of 
the parameter estimates. All parameters are statistically significantly different from zero.
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and influenza. In contrast, tuberculosis and HIV/AIDS only present transitions from sublinear to superlinear 
scaling, while pertussis shows only a transition from negative to sublinear scaling, except for the one sole city 
with ε ≈ 1.

We also evaluate the probability distributions of ε for each disease. Figure  5B shows these distributions, 
indicating that decreasing returns to scale is the most common regime across the seven disease types. The 
percentage of cities exhibiting sublinear scaling ranges from 66% for pertussis to 95% for syphilis and influenza. 
Increasing returns to scale represent the second most common regime, with the percentage of cities ranging 
from 24% for tuberculosis to 5% for syphilis and influenza. Negative scaling is the rarest behavior; although 
present in a few cities for viral hepatitis, meningitis, syphilis, and influenza, it is only significantly represented 
among cities in the cases of pertussis (33%). To better illustrate the implications of these distinct regimes, 
consider the case of HIV/AIDS. A 1% increase in population and commuters translates into an approximately 
2% rise in HIV/AIDS cases in São Paulo and Rio de Janeiro (the two largest metropolises in Brazil), while the 
same change is associated with a 0.86% rise in HIV/AIDS cases in Parintins (a city with 100,000 inhabitants in 
the far east of the Amazonas state) and an exact 1% increase in Guarapuava (a city with 180,000 inhabitants in 
the center of the state of Paraná). Now, considering pertussis, a 1% increase in population and commuters results 
in the same proportional increase of disease cases in São Paulo, while the same change is expected to reduce 
disease cases by 0.18% in Santana do Araguaia (a city with 75,000 inhabitants in the southernmost part of the 
state of Pará). In addition to these distributions, investigating the geographic patterns in the spatial distribution 
of elasticity values offers an intriguing avenue for future research. While a comprehensive analysis is beyond the 
scope of this study, preliminary mapping of these values (see Supplementary FigureS3) suggests the existence of 
correlated structures akin to those observed in the spatial distribution of disease incidence44,45 and other urban 
indicators46,47.

Somewhat counterintuitively, negative scaling regimes have been observed in density scaling laws, particularly 
in the context of housing prices48,49, where the price of detached housing decreases with increasing population 
density at high densities in England. In our study, cities exhibiting negative elasticities are predominantly 
observed for pertussis cases. These cities are mainly located in the inner regions of Brazil (see Supplementary 
Figure S4), which are often characterized by smaller populations, lower economic development, and limited 
healthcare resources compared to larger urban centers. Pertussis, or whooping cough, is a highly contagious 
respiratory disease that primarily affects infants and young children. It is a vaccine-preventable disease, and 
Brazil has included the pertussis vaccine in its National Immunization Program since the 1970s, offering it free 
of charge through the public healthcare system. We hypothesize that as these small and isolated cities grow 
and become better connected, they may benefit from improved health services and socioeconomic conditions. 
These improvements may include more aggressive vaccination campaigns and increased awareness of disease 
prevention, which can more effectively reduce risky behaviors that facilitate the spread of pertussis than in 
smaller and more isolated populations. However, these potential benefits appear to saturate as the population 
and total number of commuters continue to rise. We further hypothesize that a similar mechanism may be at 
play in the few cities displaying negative elasticities for other diseases. Nevertheless, the specific characteristics 
of these diseases, such as differing transmission dynamics and latency periods, may attenuate this initial benefit, 
resulting in a significantly smaller number of cities in this regime.

As previously mentioned, decreasing returns to scale is the predominant response of cities to a proportional 
increase in both population and commuters. This regime is more common among cities of intermediate size 
and connectivity within the commuting network. As these cities grow and enhance their connectivity, they may 
experience modest improvements in healthcare and socioeconomic conditions compared to cities with negative 
scaling while also beginning to encounter challenges typical of larger urban areas, which contribute to increased 
disease transmission. The balance of these factors may yield sublinear regimes with variations across disease 
types. In contrast, increasing returns to scale tend to emerge in large, highly connected cities. The transition 
from decreasing to increasing returns to scale in disease cases is likely multifactorial, involving socioeconomic, 
infrastructural, and behavioral influences. Large, highly connected cities tend to feature high-density areas, more 
frequent social interactions, increased mobility patterns, and greater socioeconomic inequalities, all of which 
may contribute to environments where infectious diseases spread more efficiently. For instance, substandard 
housing conditions, such as overcrowded spaces and poor ventilation, are more common in large urban centers 
and may facilitate the airborne transmission of diseases like tuberculosis and influenza. Additionally, large cities 
often have higher rates of substance abuse, unsafe sexual practices, and transient relationships, which could 
explain the more than proportional rise in sexually transmitted infections such as HIV/AIDS and syphilis.

In addition to analyzing the combined effects of changes in population and commuters, we further examine 
the individual impacts of these variables on disease cases by evaluating the marginal products of population, 
∆N = βN + βC log S, and total number of commuters, ∆S = βS + βC log N . As previously mentioned, ∆N  
and ∆S  represent the expected changes in disease cases resulting from small proportional changes in population 
and commuters, respectively. Thus, a small proportional increase in population, N → (1 + x)N  (with x ≪ 1), 
leads to a proportional increase in disease cases that depends on the parameters βN  and βC , as well total number 
of commuters, Y → (1 + x∆N )Y . Similarly, a small proportional increase in commuters, S → (1 + x)S, 
results in a proportional increase in disease cases that depends on the parameters βS  and βC , and the population 
size, Y → (1 + x∆S)Y . We calculate the values of ∆N  and ∆S  for each city and estimate their probability 
distributions for each disease type, as shown in Fig. 6A and B. Only 1% cities exhibit negative marginal products 
of population for meningitis and influenza, while 14% of cities satisfy this condition for pertussis. A small 
percentage of cities display values of ∆N  greater than one for syphilis, meningitis, viral hepatitis, and HIV/AIDS, 
while 14% of cities satisfy this condition for tuberculosis. Thus, similar to the elasticity of scale, disease cases 
generally respond sublinearly to changes in population for most cities across all disease types, with percentages 
ranging from 86 to 99.6% of cities. The marginal product of commuters behaves quite differently, with no city 
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exhibiting values of ∆S  larger than one. The most common response to changes in commuters is a less-than-
proportional change in disease cases for most diseases; however, the percentages of cities in this regime range 
from 34% to 93%. A decrease in disease cases associated with an increase in commuters is the most common 
response of cities for syphilis and pertussis, with a significant number of cities also showing this behavior for 
tuberculosis and viral hepatitis. These results highlight the potential benefits of improved connectivity for cities, 
which may be linked to a combination of socioeconomic advantages, better access to healthcare, and more 
effective public health interventions in highly connected cities. The marginal products further enable us to 
compare the effects of changes in population and commuters on disease cases. To achieve this, we calculate the 
difference between the absolute values of ∆N  and ∆S  for each city and disease type, and analyze the distribution 
of these differences. As shown in Fig. 6C, proportional changes in population generally have a greater impact on 
disease cases than proportional changes in commuters across the vast majority of cities and diseases. A notable 
exception is pertussis, where a significant percentage of cities exhibit a greater effect for changes in total number 
of commuters. Therefore, while inter-city relations proved important in improving the description of disease 
cases, our findings also highlight that population size alone remains a key determinant of disease incidence.

Discussion
Our work addresses the existing gap in the literature concerning the effects of inter-city interactions on the 
scaling of disease cases in urban areas. By extending traditional urban scaling models to incorporate both 
population size and total number of commuters, we demonstrate that inter-city interactions play a critical 
role in shaping disease incidence across Brazilian cities. Our results indicate that models that account for the 
number of commuters outperform those based solely on population size, particularly in large urban centers 
where traditional scaling models tend to underestimate disease cases. Moreover, our generalized models reveal 
distinct scaling regimes for disease incidence, driven by the interplay between population size and number of 
commuters.

We find that the majority of cities exhibit sublinear scaling, wherein proportional increases in both 
population and commuters are associated with less-than-proportional increases in disease cases. However, a 
significant subset of cities (ranging from 5% to almost a quarter of Brazilian cities) exhibits superlinear scaling, 
where a 1% increase in population and commuters results in a more-than-proportional rise in disease cases. 
Interestingly, our analysis identifies a small number of cities where proportional increases in population and 
commuters are associated with a reduction in disease cases, particularly for pertussis. Superlinear scaling is most 
common in large, highly connected cities, suggesting that socioeconomic and infrastructural conditions – such 
as overcrowding, poor ventilation, and inequality – amplify disease transmission, especially for tuberculosis and 
HIV/AIDS, which are most often associated with this regime. Sublinear scaling predominates across all disease 
types, particularly in mid-sized cities with moderate connectivity. We hypothesize that this reflects a balance 
between improvements in healthcare and socioeconomic conditions as these cities grow. Conversely, negative 
scaling, mainly observed in small cities in Brazil’s interior, suggests that these areas may benefit from enhanced 
health services and socioeconomic conditions as they develop and become more connected. This may include 
more effective vaccination campaigns and increased awareness of disease prevention, particularly for vaccine-

Fig. 6. Marginal products of population and total number of commuters. Probability distributions of the 
marginal products for (A) population ∆N  and (B) commuters ∆S , calculated for all Brazilian cities reporting 
cases of tuberculosis, HIV/AIDS, viral hepatitis, meningitis, syphilis, influenza, and pertussis. The three colors 
represent the fractions of cities with negative (blue), sublinear (green), and superlinear (purple) marginal 
products, with vertical lines marking the transitions between them. (C) Probability distributions of the 
difference between the absolute values of the marginal products of population and commuters (|∆N | − |∆S |
). Positive values (gray) indicate cities where changes in population have a greater impact on disease cases than 
changes in commuters, while negative values (red) indicate the few cities where changes in commuters have a 
larger effect on disease cases.
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preventable diseases like pertussis. Our findings further suggest that as cities grow larger and more connected, 
the benefits of connectivity and urbanization diminish, eventually giving rise to both sublinear and superlinear 
scaling regimes.

The marginal products of population and commuters further highlight the distinct roles these variables play 
in disease dynamics. We find that changes in population have a greater impact on disease cases than changes 
in number of commuters for most cities and disease types. Pertussis, however, stands out as a partial exception, 
where commuters exert a greater influence than population size in approximately one-third of cities, likely 
reflecting the unique transmission dynamics and public health responses associated with this disease. This 
underscores the central role of population size in shaping disease incidence, while also highlighting the nuanced 
contribution of inter-city interactions via commuting networks to urban disease dynamics.

Our study highlights the potential benefits of improved connectivity between cities, particularly regarding 
public health outcomes. Increased connectivity is likely associated with a combination of socioeconomic 
advantages, better access to healthcare, and more effective public health interventions. These benefits are 
especially evident in smaller cities and those with moderate levels of connectivity, where enhanced commuting 
networks may mitigate disease incidence. However, as cities expand and connectivity intensifies, the challenges 
of increased disease transmission may outweigh the benefits, particularly for diseases that spread more easily 
through human contact.

Our study is not without limitations. While our findings provide evidence supporting the suitability 
of the Cobb-Douglas and translog models in better describing the data, these models lack mechanistic 
explanations that directly link the holistic concept of interacting cities to their specific functional forms or to 
the broader theoretical framework of production functions from which they are derived. Additionally, despite 
the application of a regularization approach to estimate model parameters, the strong correlations between 
population size and the number of commuters may constrain the ability to disentangle their individual effects 
on disease cases. To address these limitations, future research could explore mechanistic foundations, explicitly 
incorporate correlations among predictors into model assumptions, and account for zero disease counts in cities. 
Recent advances in urban scaling — such as generative processes based on the distribution of tokens among 
individuals 25,50–52 — offer promising avenues for addressing these challenges.

Despite these limitations, our research shows that while population size remains a key determinant of disease 
incidence, inter-city interactions, modeled through commuting networks, add an essential layer of complexity 
to understanding urban disease dynamics. Incorporating networks into disease models not only improves 
predictive accuracy but also uncovers distinct scaling behaviors that vary across disease types and city sizes. 
Future research could also explore how other forms of inter-city interactions, such as trade and social networks, 
further influence disease transmission. Additionally, our findings suggest that urban planning and public health 
interventions should consider both population size and connectivity to optimize strategies for controlling 
infectious diseases in urban areas.

Data availibility
The data used during the current study are freely available from the Brazilian Institute of Geography and Statis-
tics (IBGE) and the Department of Data Processing of Brazil’s Public Healthcare System (DATASUS), as well as 
from the corresponding authors on reasonable request.
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