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Abstract

This paper proposes a data-driven multi-step ahead battery state of
charge (SOC) forecasting system that can be used for prognostics
and health management (PHM) of a battery management system
(BMS). Two long short-term memory (LSTM) recurrent neural net-
works (RNN) are implemented and tested, due to their unique capa-
bility to, at the same time, use a high number of past time steps and
forecast a horizon of interest at real-time. This online inference is
then capable to provide an advisory window in case the BMS needs
to take any preventive action. The LSTM models, a stacked-LSTM
and a Bidi-LSTM, are compared to a statistical-based algorithm
which uses a combination of autoregressive integrated moving
average (ARIMA) with a polynomial regressor that fits measured
variables into the battery SOC. The three methods are tested and
validated against a wealthy battery dataset and results demonstrate
the feasibility of using the Bidi-LSTM RNN as multi-step ahead
SOC forecast estimator.
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1 Introduction

Electric vehicles (EVs) have been widely adopted aiming to reduce
transportation emissions and accelerate decarbonization across
the transportation sector. EVs are almost exclusively powered by
lithium-ion (Li-ion) batteries in today’s global automotive market
[1]. Accurate state of charge (SOC) estimation of Li-ion batteries is
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crucial in prolonging cell lifespan and ensuring its safe operation
for EV applications [2].

Modelling a battery considering all possible factors is difficult
due to the complex non-linearity and time-variability of the system.
Different models have been proposed: electrochemical model (EM),
equivalent circuit model (ECM), and electrochemical impedance
model (EIM) [3]. In many works, the model-based methods are used
in conjunction with adaptive filters and state estimation algorithms.
The most prominent algorithms for battery’ state estimation include
Kalman filters and its variants [3], particle filter [4], Hoo filter [5],[6]
and sliding-mode observer [7], [8].

Herein, as in [9] we propose a fully data-driven framework to
estimate the current battery SOC which is also capable of providing
a multi-step ahead (MSA) advisory window for the system status
to prevent faults that can lead to system mishaps.

This paper proposes a novel approach for real-time PHM of em-
bedded battery management system (BMS), which is based on an
optimized bidirectional-LSTM (Bidi-LSTM) model used for MSA
forecast. The proposed model is then compared with a MSA stacked-
LSTM and a regression model that uses ARIMA to forecast the
measured variables and then uses a polynomial regressor to esti-
mate the SOC. The models implementation as well as the results
are presented and discussed herein. Two important research con-
tributions are presented herein: it proposes a real-time framework
capable of providing an advisory window for the system status and
implements a robust Bidi-LSTM that provides consistent results
tested to a forecast horizon of up to thirty time steps ahead.

This paper is structured as follows: Section 2 provides an overview
of similar applications, their implementation and results, Section 3
provides a comprehensive background of the methodology and the
proposed system; Section 4 presents the experimental setup and the
methodology, while Section 5 the main results obtained, including
the proposed framework and its results. Finally, Section 6 expands
the study findings and outlines the future work.

2 Related Work

Several models and architectures have been proposed for time series
forecasting. From state space model to neural networks, many
approaches have been used. Seasonal ARIMA (SARIMA) is used as
a state space model to compare with deep learning methods in [10].
Sequence-to-sequence RNNs and LSTMs have become popular due
to their ability to learn temporal patterns and long range memory.

A multi-output (MIMO) RNN forecasting architecture, where
explicit temporal dependencies between outputs capture the rela-
tionship between the predictions is proposed in [11]. This work
introduces and differentiates two forecasting methods, the recursive
and the multi-output. Recursive forecasting is the primary form
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of multi-step forecasting [12], where forecasting is done by the
factorization of previous values, amplifying potential errors and
leading to lower quality predictions as the time horizon increases.
The MIMO forecasting aims to estimate the future values in one
step. Multi-output approaches sidestep the issue of error feedback
by jointly estimating over the prediction window [11].

A review of single-output versus MIMO approaches showed di-
rect strategy more promising choice over recursive strategy [13],
and a study on the properties shows that direct strategy provides
prediction values that are relatively robust and the benefits in-
creases with the prediction horizon [14].

The applications of MSA forecasting for real-world are several
[15], including models for predicting critical levels of abnormality
in physiological signals, flood forecasting using RNNs, Nitrogen
oxide emission forecast, electric power load forecasting and even
earthquake and seismic response prediction. Yet for electrical power
dispatching forecast a bidirectional LSTM (Bidi-LSTM) was used
to schedule the power demand and dispatching with one day in
advance window in [16]. Wind power forecasting was also proposed
using LSTM in [17].

Not many works have been found for a MSA prediction of the Li-
ion batteries SOC though. In [18], an ARIMA-NARX model, which
is capable of predicting SOC for higher charging/discharging rates
(C-rates), is proposed. NARX stands for nonlinear auto-regressive
network with exogenous inputs. The use of different multi-step
prediction techniques for long-term prognosis of the Lithium-ion
batteries condition is presented in [19]. The paper proposed the
use of adaptive neuro-fuzzy inference systems, random forest, and
group method of data handling, along with various MSA strategies:
iterative, direct and DirRec (which is a combination of the former
ones). These methods were then evaluated for prediction of capacity
over the long horizon. A novel machine-learning enabled method
to perform real-time multi-forward-step SOC prediction for battery
systems using a recurrent neural network with LSTM is presented
in [20]. Most of the SOC predictions in published studies are basi-
cally single-step predictions/estimates based on experimental data.
By using a multi-forward-step SOC prediction for battery systems,
battery anomalies/faults caused by SOC anomalies (such as low
SOC, SOC jumping, etc.) can also be diagnosed in advance, thereby
avoiding more serious battery faults/failures or even battery ther-
mal runaway.

3 Multi-Step Ahead Forecasting

A multi-step ahead (also called long-term) time series forecasting
task consists of predicting the next H values of (x,y) asin (1) of a
historical time series [(x,y)1 ... (x,y)n] composed of N observa-
tions, where H > 1 denotes the forecasting horizon [12].

(Y) = [k U)o Coar e € R ()

3.1 Auto-regressive Integrated Moving Average
(ARIMA)

In this paper, ARIMA is selected to be compared with both stacked-

LSTM and Bidi-LSTM. The most well-known method called Uni-

variate Auto-Regressive Moving Average (ARMA) for single time

series’ data in which Auto-Regressive (AR) and Moving Average
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(MA) models are combined. Univariate Auto-Regressive Integrated
Moving Average (ARIMA) is a special type of ARMA where non-
stationarity is taken into account in the model [21]. ARIMA is a
well-used approach for time series forecasting [22].

Non-stationarity is related to time series that have means, vari-
ances and covariances that change over time. Non-stationary be-
haviours can be trends, cycles, random walks, or combinations
of the three. Non-stationary data, as a rule, are unpredictable and
cannot be modelled or forecasted. The results obtained by using non-
stationary time may indicate a relationship between two variables
that does not exist. To obtain reliable results, the non-stationary
data needs to be transformed into stationary data [23].

ARIMA holds a relationship between the current observation
and past observations (Auto-regression - AR) with a capability of
differencing of actual observations in order to make the time series
stationary (Integrated - I) with lags of the forecast errors of the
moving average mode (Moving Average - MA).

These components are included in an ARIMA model as a set of
parameters. The standard notation for the ARIMA model is usually
given as ARIMA(p, d, q); where p is the number of lag observations,
d is the degree of differencing and q is the size of the moving average
window.

Initially the system shall be assessed for non-stationarity, so the
measured values x(k) are replaced by the results of a recursive
differencing process V¢x, where d is the number of times the dif-
ferencing process has been applied. The first order differencing is
shown in (2):

Vax* (k) = V4 1x(k) - V¥ x(k - 1) (2)
Finally, the ARIMA model to estimate X is given below:

p q
X(k) =+ Y gixt (k=) + ) ek - +e(k)  (3)
i=1 i=1
Where , x* (k) is the current estimated value at time sequence k;
€(k) is the random error at time k; ¢ and 0 are parameters for
the AR and MA addends; and p and q are the auto-regressive and
moving average specific parameters respectively.

3.2 Multivariate Multi-step Bidirectional LSTM

One solution that addresses the vanishing gradients issue for time-
dependent and sequential data series is a method called long short-
term memory (LSTM) [24], [25]. Unlike traditional neural networks,
the recurrent neural network LSTM is an extremely efficient tool
when the information is sequential [26]. This model replaces the
traditional neuron of the perceptron with a memory block [27].
LSTM can learn how to bridge minimal time lags of more than
1,000 discrete time steps.

The LSTM structure calculation process, shown in Fig. 1 is such
that, at each time iteration k, the hidden layer maintains a hidden
state hy, and updates it based on the layer input x;, and previous
hidden state hp_.

In Fig. 1, x(k) and y(k) are measurable scalar input and out-
put, respectively. LSTM has three gates to protect and control the
cell state: forget gate F(k), input gate I(k), and output gate O(k).
Additionally, ¢(k) and I(k) are inner states.
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Figure 1: Long Short-Term Memory Cell

Below are the governing equations referring to the gates, states
and output:

Gates:
f(k) =a(Wpp-h(k—1) + Wy - x(k) + by) (4)
i(k) =c(Wy; - h(k = 1) + Wy; - x(k)) + b;) (5)
o(k) = 0(Wpe - h(k = 1) + Wyo - x(k) + bo) (6)

States:
é(k) = tanh(Wp, - h(k — 1) + Wy, - x(k) + b) 7)
c(k) = f(k)e(k = 1) +i(k)e(k) (®)

Output:

y(k) = h(k) = o(k) tanh(c(k)) )

Traditional RNNs including unidirectional LSTM (also called
forward-pass) are suitable for processing sequential data but are
trained only in the forward path. Bidirectional learning trains on
both forward and reverse paths with two separate hidden layers
[28] and uses the output for prediction as well. Bidi-LSTM uses the
information by independently calculating both the forward path
and the reverse path [9]. The output, which results from the flow
of information, is also used for learning so that features are better
extracted and have higher accuracy than the existing LSTM.

A RNN computes only the forward hidden sequence rs By imple-

menting the backward hidden sequence, <h— the output sequence
y is obtained by iterating layers from k = {1...n} in the forward
direction and k = {n...1} in the reverse direction [29], [30]. The
formulation of the bidirectional LSTM forward direction is given in
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(10), the backward direction is given in (11) and the output function
is finally achieved in (12):

— -
hy= W(wxﬁ - Xk +W77 s hr_q +bz>) (10)
— —
hk:ﬂ(wx(ﬁlxk +W<;<F hk—l"'b‘;) (11)
R — —
yk=0'y(wz>y~ hk+W(ﬁy. hi+Dby) (12)

Fig. 2 shows an example of MSA Bidi-LSTM architecture, con-
taining forward and backward LSTM layers. This architecture is
trained to provide at each time the forecast of next H values of
(y) = (Ygs1> --- >YkeH), using N past time steps of the input
(x) = (=N -+ > Xp)-

4 Experimental Setup and Methodology

A comprehensive review of publicly available batteries datasets
is presented in [31]. The dataset selected herein is the one avail-
able in [32] (under ‘CC BY 4.0’), which has been cited in multiple
publications, such as in [33], [34] and [35].
This battery testing dataset covers four typical driving cycles, US06,
HWEFET, UDDS and LA92 and a mix of other cycles. It contains data
from a single 2.9 Ah NCA (Lithium Nickel Cobalt Aluminium Oxide)
Panasonic 18650PF cell. A brand new 2.9 Ah Panasonic 18650PF
cell was tested in an 8 cu.ft. thermal chamber with a 25 A, 18 V
Digatron Firing Circuits Universal Battery Tester channel. The cell
was cycled according to the above driving cycles and an additional
"neural network driving cycle" systematically through a range of
temperatures (25 °C, 10 °C, 0 °C, -10 °C, and -20 °C, in that order).
The dataset, presented in “mat’ and ‘.csv’ files contains the volt-
age, current, capacity, energy and temperature from the driving
cycles, sorted by temperature, test type and drive cycle.
A series of nine drive cycles were performed in the following order:
Cycle 1, Cycle 2, Cycle 3, Cycle 4, US06, HWFET, UDDS, LA92,
Neural Network (NN). Cycles 1-4 consist of random mix of US06,
HWFET, UDDS, LA92, and Neural Network drive cycles (these been
emission test cycles regulated by American authorities [36]). Neural
Network drive cycle consists of combination of portions of US06
and LA92 drive cycle, and was designed to have some additional
dynamics which may be useful for training neural networks. The
drive cycle power profile is calculated for an electric Ford F150
truck with a 35 kWh battery pack scaled down for a single 18650PF
cell. The drive cycle tests are terminated when voltage first hits 2.5
V for 25 °C.

4.1 Battery SOC Estimation

Herein, the Neural Networks (NN) drive cycle dataset at 25 °C pro-
vided in [32] is used to estimate the SOC of the proposed methods.

The widely used SOC estimation method is the Ah (Ampére-hour)
Coulomb-counting method, as used in [37], and shown in (13).

k
SOC;. = SOCy_; + Qi /k Tdk (13)
o S

where Qp, is the rated battery capacity, 7 is the charge-discharge
efficiency, which is related to the battery working temperature,
charge and discharge rate and other aspects; I is the measured
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Figure 2: Bidirectional LSTM Architecture

instant current across the battery terminals.

The Coulomb-counting (CC) keeps tracking the Ampeére-hour
(Ah) and determines, therefore the battery remaining capacity. It
is a time consuming process and requires a high storage capacity.
Also, if the initial value of Ampere-hour is given wrong, then all
estimation tends to be incorrect. So, frequent calibration are often
needed to prevent accumulated errors in charge integration [38].
For the SOC estimation, The Coulomb-counting (13) is compared
with three data-driven proposed methods:

e A statistical-based algorithm composed of a combination of
ARIMA and polynomial regression, as explained in subsec-
tion 4.2.

e Stacked-LSTM method as elucidated in [9].

e Bidi-LSTM, as described in [9].

4.2 ARIMA and Polynomial Regression

Based on the direct relationship between the battery instant capac-
ity and its SOC, we propose utilising ARIMA to forecast different
horizons H for the capacity, given in Ah.

Then the obtained horizon is combined with recent measure-
ments as the data for an estimator of a regression function that
computes the SOC based on the forecasted capacity Ah. The regres-
sion function has the form of (14) and it is obtained using the curve
fitting tool from and Simulink R2023b [39].

§(k) = pox(k) + p1 + &(k) (14)

Where ¢ is a random error component.

4.3 Forecast Evaluation

Several performance metrics have been proposed for the evaluation
of multi-step forecasting models, like in [40], [41], [10] and [42] .
Many accuracy measures are reviewed in [41] and [10]. For datasets
depending on the scale of their data, absolute and squared errors are
used and known as scale-dependent measures. An option is using
percentage-based measures to become more scale-independent. The
use of scaled-independent data metrics is proposed in [10].

In this work, we propose the use of both scale-dependent and
percentage-based metrics due to the uniformity of data and its

dependency on the scale. Four metrics are selected, which are the
mean absolute error (MAE), the mean squared error (MSE) and
its squared-root (RMSE), and the mean absolute percentage error
(MAPE). The equations are as follows:

1 n
MAE = - ) |e| (15)
a2l
where n is the number of data points, y; are the observed (or true)
values and g the predicted ones. The scale-dependent error ey is
defined as:

e =Yk — Uk (16)
The MSE and RMSE are:
1 n
MSE= = ¢
nZ el 17)
k=1
RMSE = VMSE (18)

Finally, the MAPE definition is given below:

1 n
MAPE = —Z(le—k| (19)
n eyl

4.4 Hardware and Software

The offline training for the data-driven PHM methods was per-
formed on a 1xQuadro RTX8000 - 48GB GDDR6 GPU (graphical
card).

The SOC estimator using ARIMA is computed using Matlab and
Simulink R2023b. The data-driven PHM SOC estimator is computed
using Keras [43] with a Tensorflow-backend, with Python version
3.9.7.

5 Results and Analysis

This section summarizes the main results obtained in the evaluation
and comparison of the different proposed methods. Initially the CC
SOC is obtained directly from the application of (13) to the available
dataset, and the data-driven methods are obtained according to the
previous sections.

The prediction results are related to one single run of the battery
data when the SOC was slightly above 90%. For comparison, the
different horizons were tested within H = {10, 20,30} for the three
different methods.



Multi-Step Ahead Battery SOC Estimation Using Data-Driven Prognostics and Health Management

SOC Forecast Horizon=10

ICSIE 2024, December 2-4, 2024, Derby, UK

]
0.915]- e ]
| Teeeall
[—S0C (Coulomb) LT e T
0.91 - - -SoC (Stacked-LSTM) ! 3
SoC (Bidi-LSTM) !
0.905 [~ "SoC (ARIMA) i i
0 300 600
SOC Forecast Horizon=20
0915+ e .
S
[— S0C (Coulomb) N
0.91[1- - -50C (Stacked-LSTM) L T 7
SoC (Bidi-LSTM) e L b L PP b
0.905 |1 *S0C (ARIMA) I |
0 300 600
SOC Forecast Horizon=30
]
0915 \ .
i
[—SoC (Coulomb) N
0.91 - - .S0C (Stacked-LSTM) ! el 7
SoC (Bidi-LSTM) e J P
0.905 H- = 'SoC (ARIMA) if """ ul
0 300 600

Figure 3: SOC Forecast for Different Horizons

The results can be seen in Fig. 3. It is noticeable that both
ARIMA and Bidi-LSTM have good fitting to the expected values.
The stacked-LSTM, despite fitting within the close range of the ex-
pected values does not perform as the other methods. Overall, in the
figure, it is seen that the ARIMA outperforms the other methods.

The quantitative analysis, using the metrics detailed in section 4.3
are found in Table 1. All indicators show that statistical method
ARIMA outperforms the machine learning ones, however the Bidi-
LSTM has consistently better results than the stacked-LSTM. As
the forecast window increases, the Bidi-LSTM falls under the same
index scales of the ARIMA.

Table 1: SOC Forecast Estimation Comparison

as stated before, is more computationally intensive and requires
frequent calibration to prevent accumulated errors in charge inte-
gration [38].

Therefore, as presented in this paper, the use of a bidirectional
LSTM stands as an effective data-driven option for this applica-
tion, which agrees with [9], [28], [29], [44], and [15]. Besides, the
Bidi-LSTM requires to be trained only once and provides a MIMO
response at each time sequence with excellent fitting to the dataset.
For the continuation of this work, it is envisaged to:

e Expand the use of the PHM framework for real-time fore-
casting models, using multi-steps ahead implementation, to
allow future predictions beyond {k + 1}, important aspects
for critical safety applications.

o Use the proposed framework with other applications’ datasets,

Horizon Method MAE MSE RMSE  MAPE to continue proving its generalization and robustness across
different use cases.
ARIMA 1.27e—4 3.61e-8 1.90e—4 1.39%-4 e Implement the PHM framework on embedded devices to
10 Bidi-LSTM ~ 1.16e-3 176e~6 133e-3 127e-3 explore real-time edge applications where time constraints
Stacked-LSTM  1.94e-3 3.89e—6 1.97e-3 2.12e—4 are relevant; and
ARIMA 6.62e—4 5.03e—7 7.10e—4 7.25e—4 e The whole system design to evolve towards the full PHM
20 Bidi-LSTM 3.10e—=3 1.15e=5 3.39e—3 3.41e—3 capability and remaining useful life (RUL) determination for
Stacked-LSTM 5.76e-3 3.38e-5 5.8le-3 6.31e-3 embedded systems.
ARIMA 1.17e-3 1.6le—6 1.27e-3 1.29¢-3
30 Bidi-LSTM  4.18¢=3 2.14e=5 463e—3 4ole—3 / ‘cknowledgments
Stacked-LSTM  6.77e—=3 4.75e—=5 6.89e—3 7.41e—3 The authors acknowledge the University of Derby for the support

6 Conclusions and Future Works

The presented work compares one statistical-based algorithm for
the determination of the multi-step ahead forecast of a battery SOC
with two data-driven machine-learning PHM methodologies.
Despite of the best results and fitting to the proposed dataset,
the statistical-based algorithm, a combination of ARIMA with poly-
nomial regression, is based on the BMS Coulomb-counting, which

of this research.
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