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A Multi-Objective Flexible Manufacturing System Design 

Optimization using A Hybrid Response Surface Methodology 

Abstract 

The present study proposes a hybrid framework combining multiple methods to determine the 

optimal values of design variables in a flexible manufacturing system (FMS). The framework uses 

a multi-objective response surface methodology (RSM) to achieve optimum performance. The 

performance of an FMS is characterized using various weighted measures using the best-worst 

method (BWM). Subsequently, an RSM approximates the functional relationship between the 

FMS performance and design variables. The central composite design (CCD) is used for this aim, 

and a polynomial regression model is fitted among the factors. Eventually, a bi-objective model, 

including the fitted and cost functions, is formulated and solved. As a result, the optimal percentage 

for deploying the FMS equipment and machines to achieve optimal performance with the lowest 

deployment cost is determined. The proposed framework can serve as a guideline for 

manufacturing organizations to lead strategic decisions regarding the design problems of FMSs. It 

significantly increases productivity for the manufacturing system, reduces redundant labor and 

material handling costs, and facilitates production. 

Keywords. Flexible Manufacturing System; Response Surface Methodology; Central Composite 

Design; Best-Worst Method; Multi-objective Optimization.   
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1. Introduction 

FMSs were developed in response to the severity of competition in markets and the necessity of 

manufacturers to become more flexible in adapting to changes. An FMS is based on an integrated 

computer-controlled system that simultaneously processes numerous parts at middle-size volumes 

(Rifai et al., 2018). The eight main types of flexibility consist of routing, machine, operation, 

production, expansion, process, product, and volume (Yadav and Jayswal, 2018; 2019). An FMS 

includes a set of machines and technologies that produces various products by performing different 

processes (Wang et al., 2018). Therefore, it is a computerized, high-tech, and automated 

manufacturing system that combines mass production efficiency with job shops' flexibility to 

improve productivity (Wang et al., 2016). In automated machining environments, minimizing the 

total time, decreasing the risk of tool breakdowns, and reducing tool switching are essential. 

However, some other factors can affect the performance of FMSs (Karimi et al., 2019). Decreasing 

setup time dna equipment utilization and reducing and controlling work-in-process (WIP) directly 

impact manufacturing lead time (MLT). Hence, an FMS and its related factors need optimal cycle 

times, equipment availability, and efficiency (Mahmood et al., 2017). These systems have a 

complicated design that deals with Distributed Data Processing (DDP) and Automated Material 

Flow (AMF) systems (Souier et al., 2019). Today, an FMS is a proper and prominent solution for 

industries to shift from a fixed type to a customized production (Silva et al., 2017). 

The effects and importance of FMSs have been widely investigated. In this regard, the intelligence 

and flexibility of workstations are two critical factors. FMSs autonomously move material, WIPs, 

or production to enhance performance and efficiency. These systems should also be intelligent to 

respond to changes in the environment and customers' demands (Silva et al., 2017). FMSs are an 

essential solution for production systems to control and manage any changes required by the 

market and unforeseen demand (Yadav and Jayswal 2019). Due to the limited set of resources and 

influence on cost reduction and efficiency, optimizing FMSs scheduling is another essential part 

of the control that should be considered for these systems (Priore et al., 2018). Improving products' 

quality, work in process (WIP), lead times (LTs), reduction, and flexibility of operations are also 

considerable. Thus, flexible computerized manufacturing systems play a vital role in achieving 

them. Versatile machines used in the manufacturing system to perform multiple types of operations 

can reduce MLTs and WIPs (Zhengmin et al., 2019). FMSs are excellent production systems that 

have used and increased the development of computer-aided process planning (CAPP) techniques. 

FMSs can reduce gaps between process planning, production planning, timetabling problems, and 

scheduling (Pellegrinelli et al., 2018).  

Since setting and designing an FMS is vital for a successful performance, this research uses and 

experimentally models the factors affecting the performance of an FMS and proposes an optimum 

configuration for these factors to attain the systems most effective and efficient performance. The 

paper, therefore, addresses a gap in the academic literature by proposing a formal hybrid 

framework using RSM to increase the productivity of FMSs at an optimal performance level. In 

this regard, while previous studies have characterized the performance of FMSs using a single 

measure or variable, e.g., routing and machine flexibility (e.g., Souier et al., 2019; Ghadirpour et 
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al., 2020), in this study, a multi-dimensional perspective is followed to examine FMSs 

performance. Furthermore, the previous literature has focused on operational variables (e.g., 

layout, routing, and dispatching rules) and their effect on the performance of FMSs (e.g., Jerbi et 

al., 2019, Zhang et al., 2021; Shin et al., 2020). Nonetheless, the academic literature has not 

extensively considered the optimal level of multi-variables and how to apply FMS indicators. For 

example, some scholars have focused on the importance of influential factors in FMSs 

performance (e.g., Jain, 2018, Jain and Soni 2019; Mishra, 2020). The present study significantly 

contributes to these objectives by developing a hybrid framework that includes BWM, RSM, 

multi-objective optimization (MOO), and simulation. In this research, the RSM is also proposed 

to optimize the FMS performance of FMSs along with a nonlinear optimization method to tune 

the optimal set of parameters. In this regard, experiments based on a Central Composite Design 

(CCD) were conducted to investigate various component settings on an FMSs performance. Some 

primary indexes were considered to measure the performance of an FMS, and the final response 

variables were calculated based on the experimental results. The response variables were 

approximated by determining different inputs and running the designed experiments, and a 

mathematical model illustrating the relationship between input variables and system response was 

fitted. Since several performance factors were modeled using RSM to gain a multi-objective result, 

a weighting vector was obtained for different objectives using BWM. To this aim, a group of 

company experts initially determined the most important (best) and least important (worst) 

objectives (see Section 4 for details). Subsequently, they expressed their judgments regarding the 

pairwise preferences of the best objective regarding others and all objectives concerning the worst 

one. This information was then processed using the BWM model to determine the objective 

weights (Rezaei, 2015). Ultimately, the fitted regression model was optimized, and the optimal 

designs of input variables were chosen. 

The value of implementing a new and optimal technology-oriented framework is reflected in a 

positive impact on the efficiency and productivity of production systems. These improvements 

lead to better responses to customers and accelerate manufacturing processes. Achieving these 

results is often based on high investments in experiments or trial-and-error techniques. In this 

regard, applying simulation and experimental design reduces the costs of measuring each 

production equipment status. It determines the weights of the response levels as a significant input 

for better and more accurate analytics. These outputs are valuable for manufacturing companies to 

make better decisions with minimum cost and higher performance.   

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature. FMS 

performance measures are reviewed in Section 3. The proposed methodology is described in 

Section 4, followed by its application in a real-world case study in Section 5. Finally, the paper is 

concluded in Section 6. 

2. Basic Concepts and Literature Review 

This research is related to the production management field. The main components of FMSs are 

computer numerical control (CNC) machine tools loaded and unloaded by advanced industrial 

robots, automated material handling devices, storage and retrieval systems controlled by computer 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 
 

systems, and automated equipment (Kabir and Suzuki 2018). FMSs problems are classified into 

four areas, i.e., design, planning, scheduling, and control (Demesure et al., 2017). FMSs design 

problems include determining the appropriate number of machine tools of each type, the material 

handling system's capacity, and the size of the buffer. FMSs involve planning problems such as 

determining which parts should be machined simultaneously, optimizing machine tools into 

groups, allocating pallets and fixtures to part types, and assigning operations. Problems related to 

FMSs scheduling include determining the optimal input sequence of parts and the optimal 

sequence of machine tools. FMS control problems are those concerned with monitoring the system 

to ensure that requirements and due dates are met and that unreliability problems are considered 

(Demesure et al., 2017; Priore et al., 2018; Sourier et al., 2019; Lee et al., 2020b). The proposed 

research in this paper is focused on addressing the design problem.  

Previous studies have focused on routing and machine flexibility, which impact different 

performance parameters. FMSs problems are related to productivity improvement, selecting 

appropriate machines, number of allocated machines, material handling systems, capacity, buffers 

sizes, pallets allocations, FMSs planning, scheduling, jigs and fixtures allocations, limited 

resources optimization, and FMSs controls (Lee et al., 2020b; Bi et al., 2020). Table 1 presents a 

chronological overview of previous investigations regarding the performance of FMSs.  

Table 1. Relevant literature regarding FMS performance 

Author(s) Year Research Objective(s) Research Method(s) Research Findings 

Jain and 

Raj 
2016 

Extracting 

performance variables 

of FMS 

Interpretive Structural 

Modelling (ISM) and Graph 

Theory and Matrix Approach 

(GTMA) 

Identifying performance 

variables influential on FMS 

performance 

Ali et al. 2016 

Performance 

Evaluation of 

Flexible 

Manufacturing 

Simulation and statistical 

analysis 

The optimal routing flexibility 

level for a given material 

handling strategy is a 

determinant factor 

Gothwal 

and Raj 
2016 

Performance 

evaluation of FMS 

digraph and matrix/GTMA Evaluation of the performance 

index for an organization, 

comparison of different 

industries, and ways to improve 

the performance 

Mahmoud 

et al. 
2017 

Studying the 

performance factors 

of FMSs 

hybrid application of process 

modeling, simulation, and fault 

tree analysis 

Investigating the effects of 

changes in cutting conditions 

Gothwal 

and Raj 
2017 

prioritizing the 

performance factors 

of FMSs 

ISM Twelve factors affecting the 

flexibility of FMSs were 

presented 

Florescu et 

al. 
2017 

Determining 

Operational 

parameters estimation 

for an FMS 

Case study and simulation Extracting initial conditions or 

parameters on the behavior of 

the FMS 
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Author(s) Year Research Objective(s) Research Method(s) Research Findings 

Florescu 

and 

Barabas 

2018 

Assessing the 

Performance of an 

FMS 

Simulation Effects of planning strategies in 

the use of system resources 

Jain 2018 

Prioritizing the 

performance factors 

of FMSs 

Multi-Criteria Decision Making 

(MCDM), Multi-Objective 

Optimization based on Ratio 

Analysis (MOORA), and 

Parameter Space Investigation 

(PSI) 

Productivity should be 

considered the most crucial 

factor 

Jain and 

Soni 
2019 

Analyzing FMSs 

performance variables 

and interactions 

ISM and Fuzzy Cross-Impact 

Matrix Multiplication Applied to 

Classification (MICMAC) 

Automation, use of automated 

material handling, an effect on 

tool life, and rework percentage 

were identified as determinant 

factors of FMS performance 

Yadav and 

Jayswal 
2019 

FMS performance 

improvement 

Design of Experiments (DOE) 

and simulation 

loop layout with many numbers 

batches is a determinant factor 

of FMS performance 

Jerbi et al. 2019 
Minimizing the mean 

flow time of an FMS 

DOE and simulation Optimization of FMS 

performance 

Zhang et al. 2020 

Performance 

modeling of an 

integrated FMS 

Mathematical optimization and 

simulation 

Investigating material handling 

processes 

Mishra 2020 

Verifying the enablers 

of volume flexibility 

and product-mix 

flexibility 

Statistical Analysis Enablers of volume flexibility 

and product-mix flexibility 

were confirmed 

Nabi and 

Aized 
2020 

Performance 

evaluation of a multi-

product FMS 

MOO Analyzing different production 

methods effects on FMS 

performance 

According to the studies above, scholars have considered several factors that significantly impact 

FMSs performance. Among them, authors refer to routing flexibility, sequencing flexibility, part 

sequencing, cutting conditions, skills and versatility of workers, type of machine, design changes 

required in the product, and determining the maximum number of routes. As Table 1 denotes, 

various studies have implemented MCDM approaches (e.g., Fuzzy MICMAC or ISM) to 

determine the importance of compelling factors and variables on FMSs performance. Furthermore, 

other studies have focused on optimization or simulation-based optimization methods to determine 

the optimal value of variables to increase the overall performance of FMSs. Other researchers have 

also focused on using the DoE and statistical analyses to assess the effects of variables and factors 

on the performance of FMSs. The proposed framework satisfies all these objectives through a 

hybrid framework that includes MCDM, RSM, MOO and simulation. This methodology is applied 

to a real-world industrial case to demonstrate the potential capabilities and desired objectives. 

Moreover, as illustrated in Table 1, previous studies have focused on the performance of FMSs 

from a single point of view. For instance, some studies have investigated the productivity 
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dimension, while others have studied the time flow as one criterion or dimension. However, the 

current study examines various performance measures simultaneously to optimize the performance 

of an FMS. Furthermore, previous studies have focused on operational variables and their effect 

on FMSs' performance, e.g., variables including layout, routing, and dispatching rules have been 

examined extensively. Nonetheless, the academic literature has not considered the optimal level 

of variables and how to apply FMS indicators. Thus, the present study also contributes to the FMSs 

body of knowledge by considering the design variables to provide manufacturing managers with 

an insight into how to apply FMS design.  

 

3. FMSs Performance Measures  

In the present research, the performance of an FMS is characterized by using (1) MLT, (2) 

production rate (Rp), (3) capacity, (4) productivity, (5) availability and (6) WIP. The improvement 

of automated equipment and manufacturing technologies efficiency is also illustrated based on 

these indexes. For instance, the MLT and production rate indexes illustrate how the automated 

manufacturing equipment and CNC machines may change the production duration or how the 

Automated Storage and Retrieval Storage (AS/RS) warehousing system can improve productivity 

and production flow. Besides, other factors such as product diversity and raw material ordering 

costs can be considered for this problem (Groover, 2020). As FMSs offer a competitive and high-

cost environment, internal and external factors should be considered (Edh Mirzaei et al., 2021). 

However, these performance indexes create a trade-off between efficiency and product 

characteristics (i.e., quality, variety, customization). This point should be considered during the 

optimization of an assembly line (Moretti et al., 2021). Table 2 presents the indexes for FMS 

performance measures.  

Table 2. FMS Performance Indexes 

Index Description 

I Operation sequence 𝑖 = 1,2, … , 𝑛𝑚 

nm Separated machines used in the production line or operation sequences 

Q Quantity of products in each batch 

Toi The time of each operation in the machine or workstation i 

Tnoi The time of each non-operational process in the machine or workstation i 

Tsui 
The time of setting the workpiece, tools and jigs and fixtures in the machine or 

workstation i 

W The number of workstations 

H The number of shifts in each workstation (Hours per day in each shift) 

𝑆𝑤 The number of shifts in each Week 

MTBF Mean time between failure 

MTTR Mean time to repair 

WIP Work-in-Process 

U Productivity 

𝑃𝐶 Production Capacity 
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Index Description 

𝑅𝑝  Production Rate 

(1) Manufacturing lead time (MLT) or Production period. MLT is the time between production 

authorization and completion (Ivanov and Jaff, 2017). MLT comprises queue, setup, run, delay 

and transport times (Jaff and Ivanov, 2016). Accordingly, this study formulated MLT as follows. 

𝑀𝐿𝑇 = ∑ (𝑇𝑠𝑢𝑖 + 𝑄𝑇𝑜𝑖 + 𝑇𝑛𝑜𝑖)
𝑛𝑚

𝑖=1
 (1) 

If the operation, non-operational processes and setting up times are considered equal in different 

workstations, the MLT formula is simplified as follows (Groover, 2020). 

𝑀𝐿𝑇 = 𝑛𝑚 × (𝑇𝑠𝑢 + 𝑄𝑇𝑜 + 𝑇𝑛𝑜) (2) 

 

(2) Production Rate (𝑹𝒑 ). In job shop systems, if production unit per hour (𝑄 = 1), then 

production time per unit is 𝑇𝑝 =𝑇𝑠𝑢 + 𝑇𝑜. In mass production systems, the cycle time is defined as 

the sum of the longest operational and transportation time, excluding the setting time (Sprodowski 

et al., 2020). In this study, the production rate is measured as follows. First, the production time of 

each unit is estimated with Eq. (3).  

𝑇𝑝 =
𝑇𝑠𝑢 + 𝑄𝑇𝑜

𝑄
 (3) 

Then, the production rate is defined as follows (Groover, 2020). 

𝑅𝑝 =
1

𝑇𝑝
 (4) 

(3) Capacity. Capacity is the maximum output rate a production system can produce in a given 

period. In this study, capacity is calculated based on the number of shifts and workstations 

(Elmaghraby, 2011), see Eq. (5). This factor aims to reach a time-related production demand (Lee 

et al., 2020a). 

𝑃𝐶 = 𝑊𝑆𝑤 × 𝐻𝑅𝑝 (5) 

Where 𝑃𝐶 is the production capacity for each group of working stations.   

(4) Productivity. Productivity is commonly defined as the ratio of a system or machines output 

quantity (value) to its capacity (Grifell-Tatjé and Knox Lovell 2015). Productivity is calculated 

based on Eq. (6). 

Productivity =
𝑂𝑢𝑡𝑝𝑢𝑡

𝑃𝐶
= 𝑈 (6) 
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 (5) Availability or machine reliability. This vital index affects the performance measurement of 

the considered system and includes two factors (i) mean time between failures (MTBF) and (ii) 

mean time to repair (MTTR). MTBF is calculated by dividing the "Total Time" by the "Number 

of Failures" and MTTR by dividing the "Total Time" by the "Number of Units Under Test". The 

machine availability value measures automated manufacturing systems performance as follows 

(He et al., 2017). 

Availability =
MTBF

MTBF + MTTR
 (7) 

 (6) Work-in-Process. WIP refers to partially finished goods waiting for completion. WIP 

handling cost is one of the manufacturing costs. WIP products commonly have some of the below 

statuses (Chattinnawat, 2013). 

a. Their production process has not been started yet; 

b. Some stages of their processes have already started, or 

c. They are finished and are being prepared for delivery.  

Therefore, the completion statuses of WIP products are various. The equation below shows this 

index (Groover, 2020). 

𝑊𝐼𝑃 =
𝑈𝑃𝐶

𝐻𝑆𝑤
× 𝑀𝐿𝑇 (8) 

The best status for WIP is that all products in the production line have been processed. Thus, the 

ratio is 1:1 in mass production systems, while in batch production systems, the WIP ratio is 1:50 

or higher. However, this depends on the average batch size and other production factors (Khan et 

al., 2017). 

4. Methodology  

RSM is an effective solution for modeling and analyzing variables effects on a particular 

response(s) of interest. In this case, the goal is to optimize the response(s) (Lalwani et al., 2020). 

Suppose a system operating under a set of controllable variables 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑘) and 

uncontrollable variables 𝐳 = (𝑧1, 𝑧2, … , 𝑧𝑝) that result in a response variable y. It is assumed that 

a function of type 𝑦 = 𝑓(𝐱, 𝐲) is established according to some physical and chemical underlying 

relations. RSM aims to approximate the above function using a polynomial function of the least 

significant order (Myers et al., 2011; Zhang et al., 2020). de Oliveira et al. (2019) proposed a nine-

step roadmap to perform an RSM.  

 (1) Identifying the parameters, influencing factors and response(s). 

 (2) Analyzing the impacts of the identified factors on the response variable(s).  
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 (3) Designing an experiment of a linear polynomial model to examine the main and 

interaction effects of factors.  

 (4) Performing the designed experiments, and (5) evaluating the existence of curvature. (6) 

If no curvature exists, the stationary point is determined. (7) Otherwise, a new set of 

experiments adding axial points (three-level factorial designs like central composite or 

Box-Behnken designs) is designed and performed.  

 (8) Designing a model in the form of 𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑘
𝑖=1 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑘
𝑗=𝑖+1𝑖<𝑗 +

∑ 𝛽𝑖𝑖𝑥𝑖
2𝑘

𝑖=1 + 𝜀, for each response (𝜀 the error), where 𝛽0, (𝛽1, … , 𝛽𝑘), (𝛽12, … . , 𝛽𝑘−1,𝑘), 

(𝛽11, … , 𝛽𝑘𝑘) are the intercept, the main effect or first order, the interaction and pure-

quadratic term coefficients, respectively.  

 (9) Optimizing the designed model. 

The methodology was designed based on the nine steps to conduct the RSM analysis proposed by 

de Oliveira et al. (2019) in Figure 1. Each step is described in the subsequent sections. The first 

step of the proposed methodology (i.e., factor identification and DoEs) corresponds to steps 1-3 of 

de Oliveira et al. (2019) methodology. This step identifies and measures the considered response 

variables (i.e., productivity). Then, a two-block CCD design is scheduled. Afterwards, the 

experiments were implemented using simulation to measure the response variables. The FMS 

productivity factors such as MLT, production rate, WIPs, capacity, productivity and availability 

are considered to reach the optimized combination of equipment. Hence, the calculated simulation 

results reached from these factors are the input or response level of the CCD design for each run. 

The third step of the proposed framework (i.e., metamodel building and optimization) deals with 

designing the model as explained in steps 5-8 of de Oliveira et al. (2019). Step 4 of the proposed 

framework (i.e., model optimization) corresponds to the optimization of the developed model 

according to step 9 of de Oliveira et al. (2019). This step determines the weight of productivity 

measures using the BWM method. Then, the overall performance function is determined, and the 

final aggregated model is designed and optimized.   
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Figure 1. The framework of the current study 

4.1. Factor identification and DoEs 

The first step involves defining an FMSs productivity index and identifying the variables affecting 

these measures. The primary assumption is investigating production productivity by considering 

various factors and equipment compositions in the automated manufacturing system. In dealing 

with the problem of FMSs productivity, different variables are introduced as essential factors 

affecting FMSs performance. This research evaluated various equipment compositions affecting 

the FMS productivity indices. The critical factors are as follows. 

 Computer-Aided Design/Manufacturing/Engineering (CAD/CAM/CAE) plans to design 

and locate the automated assembly workstations along with CNC machines.  

 Programmable Logic Controller (PLC). 

 AS/RS and Automated Guided Vehicles (AGV) for storage and material handling system. 

 Jigs and Fixtures, including a funnel, power supply, etc. 

 Group Technology (GT) implementation with determined cell. The problem framework is 

illustrated in Figure 2. The main objective is to determine how to set different factors to 

maximize FMSs productivity.  

(1) Factor identification and DoEs 

(de Oliveira et al. (2019) steps 1-3) 

Determining Productivity measures Design a CCD two block design 

Determining factor Levels for 

designing FMS production line 

(2) Simulation (de Oliveira 

et al. (2019) step 4) 
Approximate FMS productivity in 

different situations  

via equations (1) to (8) 

(3) Metamodel building (de 

Oliveira et al. (2019) steps 5-8)  Meta-Model design using simulation 

results and equations (9) and (10) 

(4) Model optimization (de 

Oliveira et al. (2019) step 9) 

Determining Productivity 

measures weights by BWM Eqs. 

(14-15) 

Determining overall performance 

function by equations (11) to (13) 

Designing Final aggregated model 

by equations (17) and (18) 

Optimization via compromise 

programming and equation (19) 
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Figure 2. The design FMS problem framework 

To calculate the response surface "y" for each experiment, these factors and measures are 

aggregated using the BWM weights. A CCD in two blocks was designed to analyze the illustrated 

problem in Figure 2. In a CCD, each factor is evaluated at two factorial levels, indicated with (-1, 

1), two axial levels ±𝛼, and a central level, indicated with 0. A complete CCD with k factors is 

composed of a set of 2𝑘 factorial points, 2𝑘 axial points and 𝑛𝑐 the central point, a total of 2𝑘 +

2𝑘 + 𝑛𝑐 experiments (Myers et al. 2011). For 𝑘 = 5, a complete CCD includes more than 42 + 𝑛𝑐 

experiments. To decrease the number of required experiments, a half-CCD plan was used that 

included 2𝑘−1 + 2𝑘 + 𝑛𝑐 experiments in each iteration. Therefore, for 𝑘 = 5, the designed 

experiment included 26 + 𝑛𝑐 experiments in each replication. Using Minitab Statistical Software 

(MINITAB) to design the experiments, the optimal value of 𝛼 for five factors was determined to 

equal 2. The factor levels are illustrated in Figure 3. This figure sets the factor levels according to 

their settlement amount in the production line. 

 
Figure 3. Factor levels used for designing FMS production line

4.2. Simulation 

To represent the studied FMS with different factor combinations (treatments), a discrete-event 

simulation using the AnyLogic software has been employed. Discrete event simulation captures 

CCD Value -2 -1 0 1 2

Automated WS + CNC + 
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PLCs

AGV + AS/RS

Jigs & Fixtures

GT
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Used in the Production 

Line 
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Low Usage of FMS 

Components in the 
Production Line
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Components in the 
Production Line

FMS factory 

Automated WS + 

CNCs + 

CAD/CAM/CAE 

PLCs 

AS/RS + AGVs 

GT 

[1]. MLT 

[2]. Production Rate 

[3]. Capacity 

[4]. Productivity 
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Reliability 

[5]. WIP 
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different systems performances under various situations (Choi and Kang, 2013; Rao and Naikan, 

2016). Simulation provides an easier way of dealing with sources of variations. The present study 

aims to analyze the effects of designing factors on FMS productivity. Since six different 

productivity measures represented the performance of the FMS, as described in Section 4, 

simulation was used to approximate the FMS productivity in different situations.  

 

4.3. Metamodel building  

While simulation represents an illustration of the considered system, a metamodel develops a 

mathematical model of the behavior of a system using the simulation results for further analysis 

(Chen et al., 2019). Two general types of methodologies are used to build metamodels. First, if the 

underlying relationships among variables are known and perceptible, mathematical modeling 

translates the interrelation among variables into corresponding mathematical equations. On the 

other hand, when these relationships are complex and unknown, building an empirical model 

would be appropriate (de Oliveira et al., 2019). Empirical model-building techniques are usually 

based on regression analyses to fit a polynomial regression model. The degree of this polynomial 

depends on the significance of the corresponding term in the statistical analysis phase. To this aim, 

DoE is used to test the significance of the related terms and then to fit the suitable form of the 

meaningful polynomial of the required order. Considering (𝑥1, 𝑥2, … , 𝑥𝑘) as the impacting factors 

on the response y, the first-order (linear) model is as follows. 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝜀 (9) 

The second-order metamodel of the form in Eq. (10) is more popular. 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑘

𝑖=1
+ ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑘

𝑗=𝑖+1𝑖<𝑗
+ ∑ 𝛽𝑖𝑖𝑥𝑖

2
𝑘

𝑖=1
+ 𝜀 (10) 

Higher-order terms are usually insignificant due to the sparsity of effects, meaning that higher-

order interactions are scarcely significant and neglected. The sparsity of effects is studied and 

approved by Bergquist et al. (2011). Six main manufacturing factors, including MLT (𝑥1), 

production rate 𝑥2, capacity 𝑥3, productivity 𝑥4, availability 𝑥5 and WIP 𝑥6, were used in the 

experiments to measure the response level for the manufacturing system, as discussed in section 

3. 

4.4 Model optimization 

As described in Section 3, six measures were used to evaluate the performance of the studied FMS. 

Suppose that 𝑦1(𝑘) is the approximated performance for the MLT measure; 𝑦2(𝑘) the model fitted 

for production rate; 𝑦3(𝑘) the model developed for capacity under treatment k; 𝑦4(𝑘) the model 

developed for productivity; 𝑦5(𝑘) the model obtained for availability or machine reliability, and 

𝑦6(𝑘) is the model developed for WIP under treatment k. Consequently, the overall performance 

function under treatment k is obtained to optimize the FMS performance.  
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y(k) = ∑ wi × y′i(k)
6

i=1
 (11) 

Where 𝑊 = (𝑤1, 𝑤2, … , 𝑤6) is the performance measures weight vector and 𝑦′𝑖(𝑘), 𝑖 = 1,2, … ,6 

are the normalized performance of ith measure under treatment k. For the first MLT and sixth WIP 

measures, Eq. (12) is estimated. 

y′i(k)=
min

k
yi(k)

yi(k)
 (12) 

While for the second (production rate), third (capacity), fourth (productivity), and fifth 

(availability) measures, Eq. (13) is employed as follows.  

y′i(k) =
yi(k)

max
k

yi(k)
 (13) 

Considering the six performance criteria for the FMS performance, a criteria weight vector 𝑊 =

(𝑤1, 𝑤2, … , 𝑤6) is required. In this regard, the BWM method was implemented. BWM is 

commonly employed to extract criteria weights (Rezaei, 2015). Further developments of this 

method have been designed for specific and uncertain circumstances (Mahdiraji et al., 2020). In 

this paper, the nonlinear approach of BWM was used as follows (Rezaei, 2015). 

1. Determine the set of decision criteria known as ({C1, C2, … , Cn}). 

2. Define the best (most important) and worst (least important) criteria using experts opinions. 

The best criteria is known as (B) or (b), and the worst criteria is denoted as (W) or (w). 

Subsequently, determine the preference of the best criteria over other criteria by a number 

between 1 and 9, known as AB = (Ab1, Ab1, … . , Abn). 

3. Measure the importance of other criteria over the worst criteria on a scale between 1 and 

9, denoted by AW = (A1w, A2w, … . , Anw) by each expert through a designed questionnaire.  

4. Determine the optimal weights by solving the NLP model as (14) via GAMS software. The 

results are emanated as 𝑊𝑗
𝑘 = {𝑊1

𝑘, 𝑊2
𝑘 , … , 𝑊𝑛

𝑘} for the kth expert. Then, these weights are 

aggregated via arithmetic mean to measure the final weight of each FMS performance 

indicator. 

min ξ 

St:  

|
WB

Wj
− Abj| ≤ ξ;               for all j  

|Ajw −
Wj

WW
| ≤ ξ;              for all j  

∑ Wj = 1, 

(14) 
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Wj ≥ 0 

5. To check the reliability of the extracted weights, the compatibility ratio (CR) for each 

expert is investigated via equation (15), where 𝐶𝑅𝑘 is the consistency ratio for kth expert. 

In this research, CR less than 0.1 is acceptable. CI determines the consistency index 

adopted by Rezaei (2015).  

𝐶𝑅𝑘 =
𝜉∗

𝐶𝐼
 

(15) 

Using 𝑦(𝑘) as the aggregated response variable, the first objective of the problem is formulated as 

follows. 

Max y = max
x1,x2,…,x5

f(x1, x2, … , x5) = Max f1(x) (16) 

Where 𝑓(𝑥1, 𝑥2, … , 𝑥5) = 𝑓1(x) is a polynomial metamodel, as discussed in Section 4.3. However, 

an additional objective function is also considered since deploying these factors requires 

infrastructure investment. If a one-percent increase in the level of factor 𝑥𝑖, 𝑖 = 1,2, … ,5 needs a 

cost of 𝑐𝑖, 𝑖 = 1,2, … ,5, then the cost-related function is formulated as follows.  

Min ∑ cixi

5

i=1
= Minf2(x) (17) 

Therefore, the final model is as follows.  

Max f1(x) 

Minf2(x) 

S.T. 0 ≤ xi ≤ 1, i = 1,2, … ,7 

(18) 

A weighted Lp-metric-based model was used to solve the Eq. (18) model using compromise 

programming (Zeleny, 1973). Defining 𝑓𝑖
∗(𝑥) and 𝑓𝑖∗(𝑥) as the ideal and non-ideal solutions of 

𝑓𝑖(𝑥), 𝑖 = 1,2 respectively, the Lp-metric objective function is formulated as follows.  

Min [∑ wi (
fi

∗(x) − fi(x)

fi
∗(x) − fi∗(x)

)

p2

i=1
]

1 p⁄

 

S.T. 0 ≤ xi ≤ 1, i = 1,2, … ,7 

(19) 

Where 𝑊 = (𝑤1, 𝑤2) is the weight vector of objectives in a way that 𝑤𝑖 ≥ 𝜀 and 𝑤1 + 𝑤2 = 1. 

The above problem is usually solved for 𝑝 = 1,2 and ∞. Since the approximated objective 

functions are expected to be second-order polynomial; thus, the above model is a nonlinear 

programming model.  
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5. Case Study  

The FMSs of an elevator control panel and electric boards produced by an Iranian manufacturing 

organization were considered as a case study to illustrate the application of the proposed 

framework in this paper. The FMS used to produce the elevator control panel and electric boards 

were launched in 2007. In 2007, the factory was established on a 500m2 site. After four years, they 

moved to a larger, brand-new site with all the developed facilities. Continuous improvement, the 

lowest delivery time, and quality control were the main strategies for the organization to satisfy its 

customers. The main activities were internal and external logistics, electrical operations, control 

panel operations, production quality control, sales, after-sales services, and marketing. The 

information about the production line and the required equipment was gathered from interviews 

with company experts at the end of November 2020. An initial list of company experts was 

compiled based on their experience (at least three years), electronic equipment knowledge (at least 

a bachelors degree in engineering), and their knowledge regarding the current production system 

(at least managerial level). As a result, eight experts were nominated for the initial list. The board 

of directors introduced this list by considering the abovementioned criteria. According to this list, 

the board of directors compiled a final list of experts using the Borda method and expert selection 

criteria (Du and Gao, 2021). Thus, the weight of each expert was measured accordingly. Table 3 

illustrates the results of the Borda method analysis. Consequently, experts No. 5 to 8, i.e., CEO, 

Planning Manager, Financial Manager, and Quality Manager, were selected for data gathering. 

The data gathering was carried out through interviews and a questionnaire.  

Table 3. The results of the Borda method for experts weighting and selection 

 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Sum of Scores Weights Rank 

Expert 1 10 5 5 10 5 15 0 15 210 9.95% 7 

Expert 2 5 10 5 10 15 20 5 20 250 11.85% 5 

Expert 3 5 5 10 20 0 5 15 0 220 10.43% 6 

Expert 4 0 10 0 5 20 0 15 5 155 7.35% 8 

Expert 5 20 0 20 0 15 10 15 15 320 15.17% 3 

Expert 6 15 5 15 5 10 5 0 5 270 12.80% 4 

Expert 7 15 10 5 20 5 20 15 10 340 16.11% 2 

Expert 8 10 20 15 10 5 10 5 15 345 16.35% 1 

Score 7 6 5 4 3 2 1 0 2110  

The interviews included a briefing on the research and a structured interview using the 

questionnaire/protocol represented in Appendix A. Regarding the surveys and BWM 

questionnaire; the authors thoroughly explained the methodology steps. The questions were sent 

to the interviewees five days before the interview session. As a result, 75 minutes were spent on 

average for each interview. Furthermore, the BWM questionnaire (Appendix B) was presented by 

the research team and given to the experts. These were then collected three weeks later, in 

December 2020. The manufacturing system studied included two main production lines (i) Cabin 

and (ii) Control panel and board production lines. 

Moreover, there was an automated storage and retrieval system for warehousing. The automated 

elevator control panel consisted of various types of equipment such as AGVs, AS/RS warehousing 
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systems, automated machines, robots, CNC machines, cabins production lines, jigs and fixtures, 

conveyors, and an automated packing system. Thus, the production line of the control panel was 

based on a mechanical process and included wiring, board and drive installation and assembly, 

final quality control, and packing. An overview of the studied production line is illustrated in 

Figure 4.  

 
Figure 4. The view of the automated equipment layout of the case study production line 

The roidngidagrn (known as CAP Co.) can employ the proposed framework and relevant results 

when developing manufacturing systems, automated tools, and related CAD/CAM solutions to 

optimize productivity and increase production capacity. The company employed some of these 

automated systems on a small scale. Consequently, more than 20% improvement in production 

rate, an 8% reduction in WIP and an increase in the capacity of workstations were achieved.  

 As described in Section 4.1, five types of FMS technologies were considered, namely (1) WS, 

CNCs and CAD/CAM/CAE, (2) PLCs, (3) AGV and AS/RS, (4) Jigs and Fixtures, and (5) GT. 

Moreover, five main performance factors, i.e. (1) MLT, (2) production rate, (3) capacity, (4) 

productivity, availability, and machine reliability, and (5) WIPs were employed. Furthermore, a 

half-CCD experiment with three replicates, i.e., 96 runs, was designed to investigate the effect of 

the factors on the FMS performance. The factor levels are represented in Figure 4. In this research, 

the experiments were designed based on the five main equipment classes. For instance, if any 

equipment, e.g., a CNC machine, was eliminated, all the CNC machines in both product lines could 

not be used, and these processes were performed manually. To approximate productivity measures, 

different factor combinations were simulated. Each combination was simulated in MATLAB to 

analyze the results of the performance response measures. The simulation runs were performed for 

5,000,000-time units on a PC with a Core 2 Duo CPU (2.00 GHz) and 1.99 GB of RAM, and each 

run took about 5 to 6 minutes. The equations for calculating the performance measures are 

presented in Section 3. The underlying logic of the simulation was to simulate the effect of 
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designing factors on each measure. Table 4 denotes some parts of the simulation results for six 

main classifications of automated equipment and illustrates the impact of setting all five types of 

equipment as automated.  

Table 4. Simulation for six main classifications of automated equipment (sample data) 

Q Nm Tsu Tno Sw Output MTTR MTBF 

2a. The first classification 

11.36 0.12 0.8 0 37.5 84.25 2.512563 29.41176 

2b. The second classification 

7.27 0.1875 1.25 0 24 53.92 1.60804 18.82353 

2c. The third classification  

5.91 0.23 1.53 2 19.5 43.81 1.3065 15.294 

2d. The fourth classification 

4.55 0.3 2 0 15 33.7 1.005025 11.76471 

2e. The fifth classification 

1.82 0.75 5 1 6 13.48 0.40201 4.705882 

2f. The sixth classification 

0.45 3 20 4 1.5 3.37 0.100503 1.176471 
(2a)expected effect of this combination in different measures; (2b)one of the equipment was fully automated, and others are semi-automated; (2c)two or three types of equipment were automated, 

and others were partially automated; (2d)all equipment was set in level 0, which meant that 50% of the production line was automated; (2e)one of the equipment was automated, while the others 

were semi-automated; (2f)all of the pieces of equipment were in level -1 or all except one were in level -1. 

Except for MTBF, which results were obtained through each experiment, others were derived from 

the simulation. The approximated performance measures were evaluated by simulating 96 

treatments based on the above logic. A part of the obtained results and the corresponding treatment 

combinations is illustrated in Table 5.  

Table 5. Treatment combinations and the simulated performance measures (sample) 

CNC and 

Automated 

PL 

AGV 

and 

AS/RS 

PLC 
Jigs and 

Fixtures 
GT MLT Rp Pc U Availability WIP 

1 1 1 -1 -1 1.127 0.322 150.768 0.270 0.934 18.792 

0 0 -2 0 0 4.595 0.276 39.724 0.083 0.775 20.194 

0 0 2 0 0 0.616 0.272 156.868 0.332 1.298 10.693 

Moreover, the considered measures were weighted using the BWM by gathering the required 

comparisons from the panel of experts (via the questionnaire described in Appendix B). 

Accordingly, by implementing model (14), the importance of the FMS performance measures were 

0.08, 0.17, 0.17, 0.33, 0.17 and 0.08, respectively. These weights were used for different aggregate 

performance measures in experimental treatments to achieve an overall performance. The BWM 

questionnaire was completed by a group of experts from the studied company, including four 

middle and high-level managers. The CR of the panel of experts was measured through equation 

(12). The results indicated that the expert panel weights were reliable (CR = 0.021).   

After running all the required experiments, approximating performance measures and aggregating 

them using the weights mentioned above, the next step was to measure the functional form of the 

FMS performance based on the design variables. These functions were approximated through 
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regression analysis. The complete model included five main effect terms (i.e., 𝑥𝑖), ten interaction 

terms (i.e., 𝑥𝑖𝑥𝑗) and five pure quadratic terms (i.e., 𝑥𝑖
2). However, only the statistically significant 

terms were used in the models using analysis of variance (ANOVA) and the notion of the 

significant test. Figure 5 illustrates the obtained regression models with the corresponding 

statistical significance tests for each response. The box-Cox transformation was used to improve 

the approximated models, and all models were developed using MINITAB19. Eq. (10) was 

approximated using the optimal Box-Cox transformation.  

y1.31888 = 0.52466 + 0.09154x1 + 0.08618x2 + 0.09204x3 + 0.08934x4

+ 0.09639x5 − 0.02686x1
2 − 0.02117x2

2 − 0.02097x3
2 − 0.02352x4

2

− 0.02658x5
2 − 0.00896x1x2 − 0.01589x1x3 − 0.02022x1x4

− 0.01788x1x5 − 0.01720x2x3 − 0.01750x2x4 − 0.01995x2x5

− 0.00967x3x4 − 0.01704x3x5 − 0.01643x4x5 

(20) 

In the above equation, the coefficient of determination (𝑅2) is 98.26%, while the adjusted 𝑅2 is 

97.80%. Furthermore, the model assumptions were tested, as shown in Figure 5. 

 
Figure 5. Residual analysis for the approximated model 

According to Figure 5, the normal probability plot proved the normality assumption, whereas 

residual plots versus fit and order illustrated the homogeneity of variances and randomness. 

Therefore, the fitted model was acceptable. On the other hand, considering the required monetary 

investment for increasing the percentage of five characteristics of the FMS, the cost of different 

machines associated with five factors were approximated as $39,500, $1,000, $115,000, $10,000, 

and $2,000, respectively. Therefore, the cost function was formulated as follows.  

39,500x1 + 1,000x2 + 115,000x3 + 10,000x4 + 2,000x5 (21) 
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The studied company also considered a budget of $100,000 to enhance its FMS performance by 

equipping the company with the considered machines and technologies. Therefore, the final model 

configuring the factors affecting the FMS performance was formulated as Eq. (22). 

Max 0.52466 + 0.09154x1 + 0.08618x2 + 0.09204x3 + 0.08934x4 + 0.09639x5 −

0.02686x1
2 − 0.02117x2

2 − 0.02097x3
2 − 0.02352x4

2 − 0.02658x5
2 − 0.00896x1x2 −

0.01589x1x3 − 0.02022x1x4 − 0.01788x1x5 − 0.01720x2x3 − 0.01750x2x4 −

0.01995x2x5 − 0.00967x3x4 − 0.01704x3x5 − 0.01643x4x5  

Min 39,500x1 + 1,000x2 + 115,000x3 + 10,000x4 + 2,000x5 

S.T. 

39,500x1 + 1,000x2 + 115,000x32 + 10,000x4 + 2,000x5 ≤ 10,0000 

0 ≤ xi ≤ 1, i = 1,2, … ,5 

(22) 

The model in Eq. (22) is a multi-objective nonlinear programming model. Its Hessian matrix was 

constructed to investigate the concavity of the considered function, and the eigenvalues were 

determined. The eigenvalues of the first objectives Hessian matrix were determined as -0.1127, -

0.0416, -0.0343, -0.0302 and -0.0192. Since all the eigenvalues were negative, it was concluded 

that the first objective was concave. Therefore, the obtained solutions were the global optimum of 

the problem. According to the proposed method, the next step was to find the ideal solutions. The 

ideal solution for the objective functions were obtained as 𝑓1∗ = 52.47%, and 𝑓2∗ = 100,000. 

Finally, the single objective function was formulated as follows according to Eq. (19).  

Min [w1 (
115.35% − f1(x)

62.88%
)

p

+ w2 (
f2(x)

100,000
)

p

]

1 p⁄

 

S.T. 

39,500x1 + 1,000x2 + 115,000x3 + 10,000x4 + 2,000x5 ≤ 100,000 

0 ≤ xi ≤ 1, i = 1,2, … ,5 

(23) 

The model was solved for different values of p and w. To this aim, three distinct values of 𝑝 = 1, 

𝑝 = 2, and 𝑝 = ∞(inf) were considered. Moreover, the weights were respectively assigned as 

𝑤1 = 0,0.1,0.2, … ,1 and 𝑤2 = 1 − 𝑤2. Figure 6 illustrates the respective Pareto-optimal solutions 

found by solving the model.  
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Figure 6. The Pareto front for different values of p and w 

According to Figure 6, decision-makers can choose different solutions and select optimal FMS 

settings. Consider the case where 𝑤1 = 𝑤2 = 0.5. For three values of p, Table 6 represents the 

optimal setting of FMS factors. 

Table 6. The optimal settings of FMS factors 

 p=1 p=2 𝑝 = ∞ 

WS + CNCs 0% 17% 38% 

PLCs 100% 100% 100% 

AS/RS + AGV 0% 0% 0% 

GT 100% 100% 100% 

Jigs and Fixtures 100% 100% 100% 

Cost 13,000 19,633 27,920 

Approximated performance 92.17% 94.57% 97.79% 

For p=1, the company must equip all its production lines with PLCs, all the lines must be structured 

as GT, and jigs and fixtures must be used. However, the other two factors were not required. 

Considering the costs of the above three solutions, it might seem unreasonable to increase the cost 

from $13,000 to more than $19,000 for a 3% to 5% of performance improvement. Therefore, if 

managers consider equal weights over cost and performance objectives, the best FMS settings were 

obtained using the solution for 𝑝 = 1. On the other hand, if the company considers only the 

performance of the system, i.e., 𝑤1 = 1, 𝑤2 = 0, then the results are shown in Figure 7 for different 

values of p. 
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Figure 7. The limiting case with w1 = 1, w2 = 0 

The next concern is the sensitivity of the obtained results to the variation of parameters, especially 

the available budget. For different levels of objective weights, the budget is increased from $0 to 

$100,000 with a step size of 1,000. Figure 8 illustrates the results of solving 101 models with 

different available budgets (horizontal axis) and the optimum performance (vertical axis). 

According to Figure 8, by increasing the weight of the first objective, the results become more 

sensitive to the available budget. The correlation of FMS performance with the available budget 

increased from 17.15% (𝑤1 = 0.1) to 89.29%(𝑤1 = 1). It means that the more important the FMS 

performance becomes, the higher budget is required. 

 
Figure 8. The sensitivity of the model to the available budget 

6. Discussion 

The problem of converting traditional manufacturing systems into FMSs is a challenging and cost-

consuming decision. Madson et al. (2020) focused on the lack of a formal framework for designing 

FMSs. The problem studied in this paper is devoted to finding a suitable solution. Since FMSs are 

comprised of several modules with different impacts, this study determines an optimal set of these 

modules by simultaneously optimizing the performance of an FMS and its implementation costs. 

The primary response variable, i.e., 𝑥𝑗, was defined as the extent to which a given machine type j 
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must be implemented in an FMS. However, different machines have diverse direct or indirect 

effects on the performance of an FMS. To find these effects, RSM was used to design experiments 

to study the impact of different machine implementation scenarios on the FMS performance. The 

performance of the FMS, known as a response, was characterized using six different and prominent 

measures. On the other hand, the factors affecting these performance measures were determined 

by the extent of implementation of different machines in the manufacturing system. A CCD was 

proposed to measure the direct and indirect effects, and the overall response surface was obtained. 

Accordingly, all considered machines had a potentially positive effect on the overall performance 

of the FMS. Considering the results emanated from the proposed method and illustrated in Sections 

4 and 5, a one percent increase in the implementation of CNC and automated PLC had a 9.15% ×

0.01 = 0.092% positive effect on the overall performance of the FMS. Similarly, AGV and 

AS/RS, PLC, jigs and fixtures, and GT received 0.082%, 0.092%, 0.089%, and 0.096% positive 

effects, respectively. These values indicate that all the considered machines directly improve the 

performance of an FMS, and the GT effect is partially more than the others, while the difference 

is insignificant.  

For two variables x1 and x2, a 1% simultaneous increase impacts the performance by 0.17%. 

However, the curvature effects of these two variables decreased the improvement by 0.048%, and 

their mutual effect also had a 0.0001% negative effect on the performance of the system. On the 

other hand, the cost dimension can also adjust the setting of the optimal decision. For instance, 

according to Eq. (20), if all the factors were set at 100%, an overall performance of 70% would be 

obtained. However, the cost of applying all the machines at the full level was $167500. This 

investment is risky for a manufacturing system. Therefore, it will be required to trade off the 

amount of increasing the performance against its required cost. Figure 9 illustrates the effect of a 

1% increase in machine usage against its imposed cost. 

 
Figure 9. Machine usage and the trade-off between cost and performance 
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According to Figure 9, increasing the usage of different machines illustrates a range of 

performance increase between 0.085% to less than 0.098%. Nevertheless, the cost of this 1% 

increase ranges between 10 to more than $11,000. This limited range of performance improvement 

against the wide range of costs illustrates the necessity of seeking Pareto-optimal solutions, as 

discussed in the previous section.  

7. Conclusions 

This study considers the problem of optimally using various advanced and automated 

manufacturing equipment. To this aim, an empirical model-building based on RSM was proposed 

to determine the level of deployment of different technological components of FMSs. A 

combination of CCD design, simulation, regression modeling, BWM, and MOO allowed the 

investigation of FMS performance measures and clarified design variables impact, individually 

and mutually. The proposed method was applied in a real-world case study. The results determined 

the Pareto-optimal configuration of the system for its practitioners. Theoretically, this method 

includes measuring manufacturing indexes based on sub-category parameters using BWM and 

RSM. The input factors from the simulation were WIPs, production rates, availability, and 

performance. Different combinations of automated manufacturing systems such as robots, CNC 

machines, automated warehouse systems and AGVs were the output of RSM, and the regression 

equation and the performance of the system in each status were the models results. Hence, this 

analytical method was applied to balance the production line indexes, elaborate on the details of 

production factors, and change different factors to reach the best solutions. This method can be 

easily used for other large-scale FMSs and is not limited to any specific system. 

Furthermore, changing the parameters and indexes and even the combinations of automated 

manufacturing technologies is possible. Designing FMSs is expensive, and this technique and 

stages of this research enabled us to reach the best combination of automated equipment used in 

FMSs as accessible as possible since this method is cheaper and more flexible for different 

production lines. Using DoE to enter "y" for each experiment is one of the practical benefits of this 

research, as this hard-to-change model cannot calculate the inputs of DoEs. Simulation enables 

enterprises to measure them simply and with minimum time. Thus, a notable innovation of this 

research was measuring all the responses without reasonable expenses and experiments. Improving 

production line productivity, controlling WIPs, working on machines and equipment efficiency, 

comparing suitable technologies, elaborating production problems, and reducing the workforce 

were some of the consequences and results of using this system. However, although simulation is 

a valuable tool, the results might defer from reality and should be considered a significant 

constraint. 

The respective Pareto-optimal values based on the cost and performance objectives make it 

possible to choose various solutions and required FMS combinations, including advanced 

machines, CNCs, PLCs, AS/RS, AGV, GT, Jigs and Fixtures. Also, decision-makers can compare 

these FMS settings and choose the combination that is possible to implement.  Besides, as the three 

values of 𝑝 illustrated, it is required to spend more budget to reach higher production performance.  
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In this paper, the levels of design variables were specified at fixed levels while considering the 

range [0, 100]. However, a random effect model can be developed in future studies. On the other 

hand, since non-controllable and external factors can affect the optimal combination of design 

variables, robust designs are also recommendable for future studies to eliminate the harmful effects 

of external nuisance. A combination of design and operational variables is also considerable for 

future researchers to hybridize the strength of the current study with previous ones. Accessing 

accurate data (e.g., manufacturing process details, resources, precise real-world parameters, etc.) 

was another limitation of this research. As a result, some required information was gathered from 

experts based on their subjective judgment. This data-gathering approach may negatively impact 

the performance indexes and simulation results. Hence, these issues have influenced the 

generalizability of the research. As a recommendation, future investigators could focus on gaining 

access to the response level of experimental design, the discrete event simulation results, and 

reaching precise data. This change in information could be used for more complicated models and 

large-scale manufacturing systems. Moreover, this study focused on the design variables of an 

FMS at the highest level. However, the design is extendable to more operational variables. 

Moreover, this research neglected environmental and social factors in designing the FMS and 

should be considered in future investigations.  
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Appendix A. The Structured Interview 

 

Date of Completion: ……………………. 

Name of Surveyor: ……………………. 

Name and Post of Interviewee …………………. 

Company Name: ……………………. 

------------------------------------------------------------------------------------------------------------------------------- 

Dear Sir/Madam.  

This checklist is created for academic research on the effects of using advanced machines and Flexible 

Manufacturing Systems (FMS) in the CAP production line. Answering these questions can help us to gain 

accurate results for better decision-making.  

1. Do you have access to the list of workstations, the shift between them, and their capacity? 

2. Can you present the data related to the production rate for each type of product in a specific period? 

3. How many products were manufactured in that period? 

4. Information regarding machines and equipment failure and their repairing time were available in 

that period? 

5. Were Bill of Materials (BOMs), equipment lists, and Bill of Processes (BOPs) available? 

6. How much does each of the FMS elements (In the following Table) influence the productivity and 

capacity of the production line? 

FMS Element Current Capacity Current Productivity Improved Capacity Improved Productivity 

AS/RS     

Rittal System      

CNC Machines      

Robots     

…..     

7. Do you have access to the time study results for each element and process, including the time of 

each operation in the machine or workstation and non-operational activities in the machine or 

workstation? 

8. How many of the products have specific Cycle Times (CTs)? 

9. Is it possible to send us some data concerning the Work-in-Processes (WIPs) during the various 

periods of the day? 

Regards 
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Appendix B. BWM Questionnaire.  

Please determine the most important (Best: B) and the least important (Worst: W) FMS 

performance indicator amongst (1) Manufacturing lead time (MLT), (2) production rate (Rp), (3) 

capacity, (4) productivity (5) availability and (6) Work-in-Process (WIP). Then, compare the Best 

(B) criteria with other FMS performance measures (Part I) and other FMS performance measures 

with the Worst (W) (Part II).  

FMS Performance Measures Best: Most Important Worst: Least Important 

MLT   

Rp   

Capacity   

Productivity   

Availability   

WIP   

 Compare the Best (B) criteria with other FMS performance measures (Part I). On a scale of 1 to 

9, how is the essential FMS performance measure (Best: B) more critical than other indicators?  

Best versus other MLP Rp Capacity Productivity Availability WIP 

B (Scale of 1 to 9)       

Compare other FMS performance measures with the Worst (W) (Part II). On a scale of 1 to 9, how 

other FMS performance indicators are more important compared to the least important measure 

(Worst: W) 

Others versus Worst W (Scale of 1 to 9) 

MLT  

Rp  

Capacity  

Productivity  

Availability  

WIP  
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