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Abstract The rapid growth of the Internet of Things (IoT) in industrial operations
has driven the adoption of the Industrial Internet of Things (IIoT), necessitating intel-
ligent networks of edge devices to efficiently generate, analyze, and utilize data from
sensors. However, secure transmission of data within edge networks presents signif-
icant challenges, including privacy concerns and difficulties in secure data sharing.
Existing methods addressing these issues often impose high computational overhead,
negatively impacting efficiency. To address these limitations, a novel method, Feder-
ated Learning with Enhanced Privacy for Industrial IoT Edge Networks (FLEPNS), is
proposed to adopt the edge network system and enhance privacy preservation while
optimizing training efficiency. This approach incorporates the Paillier algorithm to
implement an information masking mechanism and a shared token system, ensuring
secure and obfuscated multi-device data sharing. FLEPNS achieves robust privacy
protection without compromising model training accuracy or imposing substantial
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computational overhead. Additionally, a masking algorithm (SET) is introduced to
counter adversarial attacks and ensure data integrity during sensor deployment and
transmission between edge servers and devices. Experimental evaluations demon-
strate that FLEPNS outperforms compared techniques for accuracy, showing a value
of 62% for PAFLM and 70% for FLEPNS. For efficiency of privacy preservation,
the FLEPNS has a higher value of 77% compared to 74%.Further evaluation reveals
computational overhead and bandwidth usage by PALFM of 4.122MBps, in contrast
to 3.1MBps for FLEPNS), showing significant advantage over compared techniques.
These results highlight the distinct performance and practical benefits of FLEPNS in
industrial edge network applications

Keywords Edge Network System · Federated learning (FL), Internet of Things, In-
dustrial Internet of Things (IIoT), Privacy-preserving data analysis, and information
masking

1 Introduction

The Industrial Internet of Things (IIoT) is an emerging technology that enables de-
vices or sensors involved in industrial processes to communicate and interact with
each other, making it possible to collect, process and analyze data in real time [19].
However, data collection and analysis within industrial IoT systems generate sev-
eral challenges, particularly in terms of data privacy and security [28]. The use of
machine learning algorithms in IIoT systems can help detect patterns and insights in
data, but at the same time, it requires the collection of large amounts of data from var-
ious sources and the high level of accuracy usually begins to decline, as the big data
reaches the threshold. Hence, federated learning (FL) [31] has emerged as a promis-
ing technique for training data sets and models on distributed data sources without
compromising data privacy. Specifically, FL is a distributed machine learning tech-
nique that enables the training of learning models on decentralized devices without
the need for centralized data storage. In other words, the centralized cloud only needs
to collect the updated local training model from individual users in federated learn-
ing. This approach allows industrial IoT systems to train machine learning models on
data generated by different edge devices while preserving the privacy of the data [18].
In addition, it also reduces the amount of data that needs to be transferred between
devices, which can help overcome the limitations of network bandwidth and latency.
Although federated learning is designed with privacy in mind, it may not be enough
alone to guarantee complete privacy protection [21]. There are still risks associated
with the data that is transmitted between devices or servers during the training pro-
cess, and there may be ways for adversaries to infer sensitive information from the
data. Privacy preservation techniques are therefore used to enhance federated learn-
ing to ensure that sensitive information is not compromised during the training and
transmission process. Some common methods include differential privacy [7], Homo-
morphic encryption [32, 1], and blockchain [3], capable of supporting data privacy
protection while enabling efficient training of machine learning models.

These strategies have been investigated in recent years as a privacy-preserving
way to enhance federated learning for standard IIoT systems and IIoT-enabled edge
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Fig. 1 : Industrial IoT enabled Edge Network System Architecture

network systems, as shown in Figures 1 and 2, respectively. This typical edge network-
enabled IIoT system architecture has the following listed layers.

– Embedded Edge: This comprise of edge device such as a sensor, or laptop that is
typically the source of the dataset, a locally trained model.

– Gateway Edge usually consists of the decentralized edge server that acts as the
collector and aggregator of data from multiple peripherals or other gateways.

– Network Edge: This layer intermediates between the local network (embedded
and edge gateway) and the extranet. The cloud facility is a perfect example of this
layer [5]

The primary purpose of the edge network-enabled IIoT architecture is to exchange
and ensure data privacy, integrity, and availability for actionable insights in an indus-
trial application such as the Metaverse ecosystem[11]. For instance, an IIED 2, will
supply data with a very high level of precision. This data will be useless until it is
aggregated and locally trained, before being fed into the Metaverse database. This
method makes it essential to safeguard the privacy and transmission security of the
trained model[20].

Lu et al. [17] developed a secure blockchain-enabled data sharing architecture
for multiple distributed devices. This method reveals only the data model, not the
actual data. While Fu et al.[8], proposed verifiable federated learning with privacy-
preserving method for big data in industrial IoT, Ruzafa-Alcázar et al [26] applied the
differential privacy technique to the industrial IoT. This research was inspired by the
realization that updated gradients and sizes in the training process also have the poten-
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tial to compromise privacy. Another popular method of privacy preservation is Multi-
Party Computation (MPC) [4], a cryptographic technique that allows multiple parties
to jointly compute a function or perform a computation on their private data with-
out revealing their inputs to each other. In industrial IoT (IIoT) applications, MPC
can enable secure and privacy-preserving data sharing and analysis among multiple
parties devices, such as sensors of manufacturers, suppliers, and customers, while
preventing unauthorized access and data leakage.

However, ensuring the correctness of the results and addressing security and pri-
vacy concerns is challenging for MPC in IIoT. As a result, Olakanmi and Odeyemi
[24] introduced a new secure offloading scheme that uses reputation and morphism
for perfect verification of results and provides security requirements for effective
MPC. Despite the successes of FL in IIoT, most of the existing privacy preserva-
tion methods often add extra computational costs. This is because these techniques
require additional computations to be performed during the training process to en-
sure that the privacy of the participating devices’ data is preserved. For example, to
preserve privacy, the differential privacy-based approaches add noise to the training
data to prevent an attacker from being able to infer on the individual data points. This
noise addition requires additional computations during the training process, which
can increase the overall computational cost. Similarly, encryption-based techniques
require a centralized server and additional computational resources to encrypt and de-
crypt the data. Such additional costs can be a limiting factor for some organizations
edge network, particularly those with limited computational resources. Thus, it is im-
portant to balance the privacy concerns with the computational costs to ensure that
sensitive data remains protected while still allowing for effective machine learning
[22].

Aiming to tackle the above mentioned challenge, this research proposes a feder-
ated learning-enabled information masking technique for Industrial IoT edge network
systems (FLEPNS). This is designed to enhance privacy preservation while optimiz-
ing training efficiency, as the approach incorporates the Paillier algorithm to imple-
ment an information masking mechanism and a shared token system, ensuring secure
and obfuscated multi-device data sharing. FLEPNS achieves robust privacy protec-
tion without compromising model training accuracy or imposing substantial compu-
tational overhead. Additionally, a novel ”set” algorithm is introduced to counter ad-
versarial attacks and ensure data integrity during sensor deployment and transmission
between edge servers and devices. This research is highly significant as it addresses
critical challenges in the rapidly evolving field of the Industrial Internet of Things
(IIoT), as it represents a breakthrough by combining privacy preservation with op-
timized training efficiency and ensuring robust data security while maintaining high
accuracy and minimal computational overhead.

The major contributions of this research are highlighted as follows;

– Propose a secure Federated Learning privacy method for Industrial IoT edge net-
work systems (FLEPNS) to enhance privacy preservation and optimize training
efficiency.

– The integration of the Paillier algorithm for information masking and shared to-
kens ensures secure data sharing while minimizing the computational burden
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– A novel algorithm designed to safeguard data integrity against adversarial attacks
during edge device operations

– Comprehensive Efficiency Metrics to demonstrates significant improvements in
accuracy, efficiency, privacy preservation, and bandwidth usage compared to ex-
isting methods.

The rest of the paper is organized as follows; Section 2 presents a review of re-
lated works. Section 3 describes the secure Federated Learning privacy method for
Industrial IoT edge network systems (FLEPNS). Experiments and analysis are dis-
played in Section 4. Section 5 concludes the paper, with a future research focus.

2 Related Works

Federated learning is a machine learning technique that enables the training of models
on decentralized data, without requiring data to be collected and sent to a central
server. This technique is particularly relevant in the context of Industrial IoT, where
large amounts of sensitive data are generated and stored by edge devices, such as
sensors and smart machines. In recent years, studies on privacy protection, [17]- [26],
[14]-[34] have explored the potential of federated learning as a privacy-preserving
solution for Industrial IoT. This section includes a review of several pertinent works
in this field, as shown in Table 1.

One of the earliest works on federated learning in IIoT was performed by Koch et
al.[14]. This study proposed a new approach called Federated Tensor Mining (FTM),
which allows multiple nodes to share data in a secure way for tensor-based min-
ing. FTM uses homomorphic encryption to enable mining from encrypted data, and
several experiments show that FTM performs better than existing privacy-preserving
methods. Specifically, FTM increases accuracy by up to 24 % compared to matrix-
based privacy-preserving compressive sensing (PPCS) techniques. Zhang et al. [33]
proposed privacy-preserving asynchronous deep learning methods, DeepPAR (privacy-
preserving and asynchronous deep learning via re-encryption) and DeepDPA (dy-
namic privacy-preserving and asynchronous deep learning), which can protect each
participant’s input privacy and enable backward secrecy of group participants in
a light-size manner. The proposed schemes are shown to be secure, efficient, and
effective through security analysis and performance evaluations on real datasets.
Arachchige et al. [2] proposed a framework called PriModChain that combines dif-
ferential privacy, federated ML, Ethereum blockchain, and smart contracts to ensure
privacy and trustworthiness in IIoT data. The feasibility of PriModChain was evalu-
ated using simulations in Python and tested on local and public blockchain networks.

Furthermore, Liu et al. [16] proposed a new communication-efficient on-device
federated learning (FL)-based deep anomaly detection framework for sensing time-
series data in IIoT. The proposed framework uses an FL strategy to enable decentral-
ized edge devices to collaboratively train an anomaly detection model, an attention
mechanism-based convolutional neural network-long short-term memory (AMCNN-
LSTM) model to accurately detect anomalies, and a gradient compression mecha-
nism based on Top-k selection to improve communication efficiency. The proposed
method was evaluated on four real-world datasets and it was shown to accurately and

5            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

6 John Owoicho Odeh[1][*] et al.

Table 1 Related Works in Federated Learning and Privacy Preservation Approaches

Title Year Techniques/Approach Key Contributions Reference
Federated Tensor Mining
(FTM)

2014 Homomorphic Encryp-
tion, Federated Learning

Secure data sharing via
tensor mining, Improved
accuracy compared to
PPCS techniques

[[14]

DeepPAR and DeepDPA 2020 Re-encryption, Privacy-
preserving asynchronous
deep learning

Protects input privacy, En-
ables backward secrecy,
Efficient and secure

[33]

PriModChain 2020 Differential Privacy,
Federated Learning,
Blockchain

Ensures privacy and trust-
worthiness in IIoT data,
Tested on blockchain net-
works

[2]

FL-based Deep Anomaly
Detection

2020 Federated Learning,
AMCNN-LSTM model,
Gradient compression

Communication-efficient
anomaly detection, Re-
duced overhead by 50%

[16]

Verifiable Federated
Learning (VFL)

2022 Lagrange Interpolation,
Privacy-preserving mech-
anisms

Verifiable aggregated gra-
dients, Blinding technol-
ogy for privacy protection

[34]

Privacy-Preserving and
Traceable FL (PPTFL)

2023 Hierarchical Aggregation,
Blockchain

Traceable and tamper-
proof model aggregation,
Combats model tampering

[6]

Hierarchical Federated
Learning

2020 Hierarchical Federated
Learning

Enhances privacy through
hierarchical aggregation,
Challenges with scalabil-
ity noted

[29]

RSA Algorithm for Data
Encryption

2013 RSA Encryption Basic data encryption and
decryption in network en-
vironments

[9]

Hybrid Deep Learning Ar-
chitecture

2020 Hybrid Deep Learning Privacy-preserving mobile
analytics

[25]

Intel Paillier Cryptosystem
Library

2022 Paillier Cryptosystem Homomorphic encryption
for privacy preservation in
IIoT

[13]

FLEPNS 2024 Information masking and
token

Privacy preservation
FL enabled Information
masking and token

Our Work

timely detect anomalies while reducing the communication overhead by 50 %. A ver-
ifiable federated learning approach with privacy-preserving mechanisms called VFL
was proposed by Fu et al.[34] to further address privacy issues in industrial IoT ap-
plications. VFL uses Lagrange interpolation to set interpolation points for verifying
the correctness of aggregated gradients and employs blinding technology to protect
privacy. The verification overhead of VFL remains constant regardless of the num-
ber of participants, and it guarantees that encrypted gradients of participants cannot
be inverted by a malicious aggregation server with less than n-2 participants collud-
ing. Experimental evaluations show that VFL performs well with high accuracy and
efficiency.

Chen et al [6] considered that traditional federated learning may be vulnerable
to model tampering, which may result in inaccurate models. Therefore, a Privacy-
Preserving and Traceable Federated Learning (PPTFL) framework was proposed.
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PPTFL consists of two main components: Hierarchical Aggregation Federated Learn-
ing (HAFL) [29] and blockchain-based model aggregation. HAFL is applied for
privacy-preserving aggregation schemes to reduce the communication overhead and
computation cost associated with traditional federated learning approaches. The sec-
ond part combines federated learning with blockchain and IPFS to make the parame-
ters traceable and tamper-proof [9]-[25]. Nonetheless, as the proposed approach uses
HAFL, it may not be scalable for large-scale federated learning applications because,
as the number of clients increases, the hierarchical structure becomes complex and
the communication overhead also increases [13]. Also, the HAFL approach may lead
to delays in training since it requires synchronization of the model updates across
different levels, which can be challenging [22]. The proposed approach, described in
the next section, is scalable, can simultaneously enhance privacy preservation, opti-
mize training efficiency, and utilize less bandwidth to solve the above problem. It uses
the added mask to obfuscate the trained dataset and the twin token to communicate
among authorized edge devices. To the best of our knowledge within its scope, this
is a unique research. Accordingly, all symbols, main notations, and their descriptions
are displayed in Table 2.

Table 2 Symbols and Descriptions

Symbol Description
s(a,b,c) Sum of samples owned by IIED a, b, c. . . i.

IIED Industrial IoT Edge Device
FLag Aggregation gradient

θT Training model shared
R Round of training

BW Channel Bandwidth
TD Transmitted data
MT Transmission time
ESa Element of each edge network server

IIEDC Industrial IoT Edge Data Center
e Error bit of the cross entropy of label and output

Me Transmission Energy
I Iterations
T Training time

DT Local aggregation dataset
U Gateway network set

LIG Learning Integer Generator
TH Limit/threshold
ϑ Training output
ϕ Learning rate

DIN Data initialization node
K Constant (of IID in aggregation area)

{N,g}{λ ,µ} Public and private pair token

7            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

8 John Owoicho Odeh[1][*] et al.

3 FLEPNS

This section describes the secure Federated Learning privacy method for Industrial
IoT edge network systems (S-FLEPNS). The FLEPNS framework consists of three
main components: a network system model, edge resource Optimization, and model
aggregation that incorporates the information masking and unmasking technique.

3.1 Network System Model

This comprises a typical interconnected network system components represented in
figure 2 and processes that make a functional edge infrastructure service[10] . The en-
tities involved in this system include the Cloud Entity, edge network server, and edge
devices [30]-[15]. The Cloud Entity is responsible for the connection to the internet
for the upload, as well as updating of globally trained model during each training
cycle. It is connected to the IIEDC (gateway), which is an intermediary between the
cloud (storage) and the edge devices. Specifically, the IIEDC collects data from these
smart terminals, aggregates them, and uses them to train the model. The resulting
models are then uploaded to the cloud or downloaded to the edge devices. Finally,
the Edge Network nodes or IIED are heterogeneous sensors or intelligent terminals
that collect network and industrial data used for training. They play a crucial role in
defining the different parameters and formulas used in creating the models.

Data aggregation on gateway edge network devices is a means of collecting, fil-
tering, and approximating data from sensors and other embedded devices, for trans-
mission through a gateway edge server to a remote network (cloud). This aggregation
enables enhanced security and data privacy, as well as low latency, reduced band-
width usage, and energy consumption. In this work, the distributed aggregation is
utilized where the decentralized edge server, or IIEDC, selects a dataset from the
IIEDs, then generates a mask, and public and private token to enable trained model
secure transmission to the destination. This is achieved through federated learning
and synchronization among the devices. The IIEDs gather the data and upload it to
the gateway network device or the edge server (IIEDC) for dataset aggregation. These
datasets are then used in the training of the model by the gateway network device. As
a means of protection for the dataset, a mask is inserted, and the dataset is uploaded
to the cloud for model aggregation. During this stage, the cloud unmasks aggregated
modeled datasets and finally sends them back to the edge server for the next set of
training. This process is then repeated until the global model converges. To represent
this, we consider an edge network system S. For dataset and model aggregation, the
edge system S, lets the allowed IIED devices a,b, and c respectively with parameters
S(a,b,c), k be a constant, and A be the aggregation, allow( ) to define the constituent
of the dataset authorized to participate in the model training as shown in equation (1)
and in the information masking process, P(a,b,c).

S(a,b,c) = A.K.allow(IIEDa, IIEDb, IIEDc) (1)

The privacy protection technique begins when the DIN activates the A K get func-
tion, similar to the Paillier cryptosystem algorithm [13]-[10] for the generation of pri-
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Fig. 2 Edge Network system

vate and public twin token (N, g) and (λ ,µ) that are used for checking and verification
of messages. The IIEDC produces random integer z, q, where z-1, and q-1 are prime
numbers (set of bits more than 1024). To allow parameters in eqn. (1) to have protec-
tion parameters P, substituting eqn. (2) into the protection vector equation, thus; For
a token generation, let p and q = two large prime numbers. These primes are used to
generate the modulus n for the cryptosystem [30, 12].

Let lambda (λ ): The Carmichael function, also known as the least common mul-
tiple of p − 1 and q − 1. It is used in various calculations within the Paillier cryp-
tosystem [30], particularly for generating public and private tokens.

λ = LCM(z−1,q−1) (2)

Let the plaintext message x be transformed using L(x) before being masked, set

L(x) =
(x−1)

N
,where,N = zq (3)

9            
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To obfuscate the trained dataset model, select a token

g ∈ (Z ∗N2) (4)

Then, let g = LIG, the learning integer generator
Let the public and private pair token be (N, g) and (λ ,µ)
Choose a random integer r from the set of invertible elements modulo N, denoted

as Z*N, such that gcd(r, N) = 1
Let Pr = information mask

Pr = LIGn ∗ rNmodN +Sa(rNmodN)+Sb(rNmodN)+Sa(rNmodN). (5)

where ∆ = rN mod N.
Let the sum of all random values and modulus = 1

Pr =LIG(IIED1,2,3)∗∑
1

i(rNmodN)(IIED1,2,3)IIED1,2,3=∆a,b,c∗LIG(IIED1,2,3..n))

(6)
Then the ciphertext mask results as follows:

Pr(a,b,c) = ∆(a,b,c)∗LIG
(
IIED(a,b,c)

)
(7)

3.2 Edge Resource Optimization

Federated learning with dataset size can be calculated by the training time difference
between when one edge device, uploads a trained dataset model (as compared to the
sum of the sample of the learning node), and downloads corresponding dataset gradi-
ents [10]. It is known that federated learning represents a decentralized learning, scal-
able system, in which several edge devices contribute to model training after rounds
of optimized updates. Here, the edge nodes request for download (black arrows) of
the latest version of the parameter model from the edge server and update (brown
arrows) the edge server with the latest round of gradient information as shown in Fig-
ure 3, this represents the parameter optimization and shows the gradients’ staleness,
which is parameter upload – gradient download process.

Therefore, the updating rules of the shared model are:

θ = Ri+1
∑θ(T ) (8)

where the amount of transmitted data TD in T training, having a channel band-
width, BW; the model transmission time is given as:

MT =
T D
BW

(9)

For the energy used, where P is the transmission power of T training;

Me =
T D(P)

BW
(10)

10            
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Fig. 3 Periodic Update Strategy[22]

To ensure the workablity of the process, some functions are deployed. The A.K.element
() is used to secure constant k to generate related elements of the DH (Diffie-Hellman)
token exchange protocol. SET( ) adopts the Paillier algorithm [25] to generate the
private and public token twins. A.K.allow ( ) is based on the Paillier algorithm. It
permits the edge parameters involved in utilizing the private and public tokens of
the twin gateway. Unm( ) allows for the execution of a Secret reconstruction in the
algorithm is based on the Lagrange interpolation [24]. It utilizes a connected pri-
vate token to generate a secret share. TT.recon ( ) maximizes the use of shares for
secret reconstruction, significantly reducing the computational complexity of secret
reconstruction. ZIG.sign ( ) authorizes the public token twin with a private token for
personal signature, and ZIG.verf ( ) verifies the signature public token set informa-
tion. If the value of ZIG.verf (set information) = 1, it passes verification. We give a
summary of each of them in Table 3.

3.3 Model Aggregation And Privacy Process

This section describes the federated learning process of the proposed FLEPNS.

3.3.1 The Initialization Stage:

Let S (a, b, c . . . i) = Sa, Sb, Sc,. . . . Si denote a set of IIED, having a dataset ag-
gregated to smart edge devices or IIED. If at least L devices participate, one IIED is
chosen as the dataset initialization node (DIN).

11            
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Table 3 Various Functions For Algorithm

Function() Meaning

A.K.element() Function to Public element generation in the
algorithm

SET( ) Function to generate Private and public
token twin in the algorithm

A.K.allow() Function to permit Private shared token
generation in the algorithm

TT.share() Function to execute the Secret sharing
algorithm

Unm( ) Function to execute a Secret reconstruction
in the algorithm

ZIG.sign()
Function to activate timestamp and
signature of the public token in the
algorithm

ZIG.verf() Verification of the token in the algorithm

End End the gradient generation processes in the
algorithm

These nodes operate using the Paillier cryptosystem to get (q, LIG, e): G1 *G1
→ G2. The public and private token pair Let the public and private pair token

(N, g) and (λ ,µ)
g0 is an element of G1, g1 is an element of Z*N
Choose a random integer r from the set of invertible elements modulo N, denoted

as Z*N, such that gcd(r,N) = 1. This process is carried out as follows:

– Acquisition of a channel, F for algorithm sharing;
– Opening of a transmission channel for inter-level communication;
– Get a value n and TH limit for secret sharing protocol.
– Lastly, the gateway (IIEDC) utilizes z to generate parameters for the DH token

exchange protocol.This exchange protocol is used by the z prime number to ac-
quire data from the edge network devices through the transmission channel, F to
the gateway device for storage.

3.3.2 Data Collection and Training Stage

The recurrent neural network is used as the training model. The calculation of the
gradient depends on the data output of the previous step and the forecasts of the future
output of the learning process. Although the input and the output are not related,
the RNN shares the standard elements or parameters at every layer of the training
process. With a learning rate of ϕ , the training process uses the bidirectional phases;
straightforward and backpropagation. The straightforward phase computes the output
of the layers and checks any error bit, e of the cross entropy of label and output. The
backpropagation computes the gradient of each parameter as related to e and;

ϑ = ϑ − ϕδe
δϑ

(11)

After this set of training iterations, each gateway will send an updated dataset to
the cloud. The trained local model at the gateway will have an update of;

12            
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Fig. 4 Privacy Preservation Masking Flowchart

θ(T, I +1) = θ(T, I)−ng(θ(T, I)) (12)

This trained model is then uploaded to the cloud. The data output becomes the
predicted output of;

θI+1 =
1
R ∑θT (13)

The various processes and resource utilization are represented in a flow chart as
shown in Figure 4.

3.3.3 The Protection Stage

Since an adversary can attack the dataset or trained model by through eavesdropping
during transmission of the model, or change of model size, the “get-mask, Pr( )”

13            
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Fig. 5 Federated Learning Masking technique for FLEPNS

function is designed as a protection algorithm to input a mask to obfuscate the data
set being transmitted. To obfuscate, the algorithm inserts a mask, adds tokens to the
aggregated dataset, and makes it semantically the same as the original dataset [31],
but less readable or hard to decipher by any adversary (as shown in Figure 5). It is
important to note that this drastically hides the file so that data upload/ download
between the edge server and IIED will be fast and secured[23]. This method holds
for preservation as it concerns the use of three S.ID variables, a,b, and c, as recalled
in the equation. (1) and (4) respectively.

S(a,b,c) = A.K.allow(IIEDa, IIEDb, IIEDc) (14)

Pra,b,c = g ·∆(IIEDa + IIEDb + IIEDc) (15)

Hence, the insertion of IIED, mask and Unmask parameter in the algorithm 1.
The “locate-size” function from the masking matrix algorithm gives an integer

matrix that has a similar measurement as the size matrix of the model by calling the
interger.rand () in the package. The simple act of masking ensures that the model
size being delivered by the gateway (IIEDC) is well protected from malicious at-
tacks and involves little or no computational burden, as compared to other protection
techniques.

3.3.4 Aggregated Model and Unmasking Stage

When the authentication signature information of the model received by the cloud
is confirmed, the cloud server unmasks the public and private masks to get the ag-
gregated trained model and secures the updated model. After this complete model

14            
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Algorithm 1 Masking Algorithm
1: function SET(mine, sharedtoken, IIED)
2: mine.token = sharedtoken
3: mine.ID = IIED
4: size = GET.COPY(mine.size)
5: for each sid in sharedtoken do
6: if S.ID ≥ IIED then
7: size= ORDERDICT.TENSOR.INCLUDE(size,mine.shi f t.part.s,(sharedtokens[S.ID]mine.secrettoken)%mine.mod)
8: else
9: size= ORDERDICT.TENSOR(size,mine.shi f t.part.s,(sharedtokens[S.ID]mine.secrettoken)%mine.model)

10: end if
11: Check consistency = A.K.allow
12: if U ¡ TH then
13: Do Mask = Pr(a,b,c) = ∆(a,b,c)∗LIG

(
IIED(a,b,c)

)
Output model training at Source

14: end if
15: Check consistency = A.K.allow
16: Undo Mask = Unm(Pr(a,b,c)) = L

(
g∗∆(Sa,+Sb+Sc)

)
(−1) Output model training at desti-

nation
17: terminate process
18: end for
19: end function

training process, the aggregated model is transmitted to the respective edge network
devices (IIED), where the information unmasking process using the private token as
represented in eqn. (11). The information is updated and prepared for the next round
of model training.

To unmask the aggregated dataset from the IIEDC, the IIED makes use of the
private token.

Unmask = L(Pλ modN2)∗µmodNFromµ = (L(LIGλ modN2))1modN (16)

Unm(Pr(a,b,c)) = L
(
g∗∆(Sa,+Sb+Sc)

)
−1 (17)

4 Analytical Procedure And Experiment

In this section, is a description of the configuration settings is provided, which in-
cludes the data sets and the compared methods. The results of the experiments are
then presented, along with the analysis drawn from them.

4.1 Experimental Setting

EdgeCloudSim v4.0 [27] is used to depict the IIoT system enabled by the edge net-
work adopting the Hierarchical Edge Computing architecture as shown in Figure 2,
as well as the basic Python language for testing purposes on the Windows 10 oper-
ating system. To evaluate the effectiveness of the proposed method, experiments are
performed using the MNIST dataset. The MNIST dataset is a huge database of [1, 0]
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Fig. 6 Accuracy of FLEPNS

digits that is used as a benchmark for image classification tasks in machine learning.
It has 12,000 images of [0, 1] digits, with 7,000 images used for model training and
5,000 images used for sampling. Each image is 28 pixels wide and 28 pixels high,
and is grayscale, with each pixel having a value between 0 and 255 indicating the
intensity of the gray color. The digits in the images range from 0 to 9, with each digit
appearing roughly the same number of times.

4.2 Results And Analysis

In this subsection,is a comprehensive analysis of the results obtained from experi-
ments conducted and the methods used to perform each experiment. An instance,
is the accuracy level of FLEPNS as seen in Figure 6, then a comparison between
the performance of the proposed FLEPNS with that of PAFLM and the Differential
Privacy methods. These evaluation metrics focused on, in these comparison include;
compute overhead, bandwidth utilization, privacy preservation assessment, perfor-
mance accuracy, and the operational efficiency of the edge network system’s data
processing. Furthermore, while keeping track of time used in training , bandwidth
consumption, and number of iterations or rounds (epoch), we investigate federated
learning approaches for edge network intelligence with privacy protection in edge
network systems.
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4.2.1 Comparison of Accuracy

The level of FLEPNS accuracy of model training, measured in Table 4 is highlighted
in Figure 7, which depicts the outcomes of the other methods, after applying the fed-
erated learning privacy preservation technique on the MNIST dataset. It was observed
that during the initial stages of training, PAFLM achieves an accuracy of 62% while
FLEPNS obtains an accuracy of 70%. Also, we noticed that when the learning rate
is high the training passes the steepest point of the gradient descent process. And by
the 18th iteration, the accuracy had improved significantly, reaching approximately.

Table 4 Comparison of Accuracy of FLEPNS,DP, PPAFLM Using MNIST

FLEPNS Differential Privacy PPAFLM
Epoch Accuracy(%) Epoch Accuracy(%) Epoch Accuracy(%)
0.12 67 4.693 11.1 0.15 66
0.5 76 4.761 11.5 0.8 72
0.9 79 5.181 11.7 3.4 73

3.087 79 5.195 14.5 3.8 73
3.669 79 5.917 16.6 3.95 76
3.816 81 6.01 17.9 3.99 78
3.879 77 6.446 18.2 4 76
3.983 76 6.547 22.4 3.991 75
4.023 80 6.788 25.9 4.2 78
4.086 84 7.175 28.4 4.3 81
4.202 85 7.51 29.4 4.4 86
4.272 86 7.673 33.7 4.2 86
4.296 87 7.712 37.2 4.6 86
4.451 85 7.952 40.1 4.5 87
5.87 86 11.484 43.4 6.1 93
6.058 87 11.571 45.7 6.3 95
6.308 89 12.167 44 6.34 95
6.334 89.3 12.313 45.1 6.454 96
6.543 89.7 12.625 47.3 6 96
6.627 90 14.696 51.3 5.8 96
6.689 90.3 14.856 55.6 9.846 89.3
6.945 91 15.324 60.1 10.918 90
7.138 91.1 16.262 63 11.557 90.1
7.229 91.7 17.312 66.7 11.585 90.7
7.44 92 18 68.9 11.931 92
7.731 93.5 18.4 70.2 12.336 92.7
7.766 94.3 18.9 73.1 12.624 93.2
8.227 94.5 19.5 71.4 15.086 94.3
8.527 95.2 19.6 70.6 16.843 95
9.954 96.4 19.9 70.4 19 95.6

4.2.2 Comparison for Efficiency

The efficiency of the systems is measured by assessing the time it takes to execute
the model training. To evaluate the efficiency of the proposed method, it is compared
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Fig. 7 Accuracy of FLEPNS,Differential Privacy and PALFM

Fig. 8 Efficiency of FLEPNS, Differential, and PAFLM

with the PALFM algorithm and differential privacy, monitoring their performance
when sampled under the same model training time T, as shown in Table 5.

As can be measured in Table 5 and displayed in Figure 8, the efficiency rate of
the proposed FLEPNS is infinitesimally higher during the starting training time, than
PAFLM method, but higher 77% compared to 74% within the 800th to 900th seconds
respectively. In addition, PALFM’s privacy protection technique shows a risk of some
degree of privacy exposure, and our FLEPNS shows its efficiency in handling privacy
lapses in the edge network system.

Moreover, at the set and appropriate learning rate, it can be seen that the differ-
ential privacy method showed a decline at 600 seconds and 720 seconds, even as
FLEPNS continued to increase until 890 seconds. Although FLEPNS’s operational
efficiency was slightly lower than that of PAFLM at the 510th and 620th seconds,
it still outperformed major differential privacy schemes, providing an advantage in
real-time model training. Based on these findings, it can be deduced that FLEPNS is
better than other methods both in terms of achieving higher training efficiency and
ensuring network and data privacy. Therefore, FLEPNS is a reliable option for ensur-
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Table 5 Comparison of Efficiency of FLEPNS,DP, PPAFLM Using MNIST

FLEPNS Differential Privacy PPAFLM
Training Time (s) Efficiency (%) Training Time (s) Efficiency (%) Training Time (s) Efficiency (%)

47 67 0 11.1 20 66
54 76 25.9 11.5 30 72
55 79 40.2 11.7 54 73
56 79 45.7 14.5 83 73
70 79 49.9 16.6 88 76
82 81 55 17.9 92 78
82 77 60.1 18.2 94 76
91 76 80.9 22.4 100 75
99 80 73.9 25.9 103 78

107 84 79.9 28.4 106 81
148 85 89 29.4 112 86
170 86 125.6 33.7 113 86
186 87 182.9 37.2 121 86
221 85 258 40.1 134 87
531 86 585 43.4 542 93
534 87 623 45.7 544 95
543 89 637 44 593 95
554 89.3 640 45.1 624 96
558 89.7 654 47.3 634 96
586 90 686 51.3 656 96
598 90.3 699 55.6 669 89.3
607 91 717 60.1 743 90
622 91.1 723 63 747 90.1
624 91.7 726 66.7 798 90.7
642 92 786 68.9 799 92
645 93.5 815 70.2 815 92.7
691 94.3 823 73.1 863 93.2
692 94.5 892 71.4 868 94.3
750 95.2 931 70.6 869 95
825 96.4 934 70.4 969 95.6

ing efficient performance and protecting data privacy in such an unstable and insecure
environment as an industrial IoT edge network or sensor.

4.2.3 Evaluation of Privacy Technique

Figure 9 displays the experiment’s results to verify this privacy method’s effective-
ness. Here, it ensured that the masked IoT nodes that participated in the training pro-
cess received dataset samples in batches of 500 sets per training, with a subsequent
increase of 100% in volume. As observed from the results, it was discovered that
as the dataset sample size increased to 5000 items being trained by approximately
5 connected edge gateways, the level of privacy protection enhancement ability be-
came stronger, it protects 495 datasets per time from about 5 IIEDs. Conversely, when
as much as 40 nodes were processing over 1000 items per training time (secs.), the
level of protection decreased. For emphasis, integer mask were added to all partici-
pating node’s data in the simulated analysis of our privacy preservation model. Based
on the Diffie-Hellman(DH) token transfer protocol, the function A K.allow is used
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Fig. 9 Effectiveness of FLEPNS Privacy method

to get a random private token for each Sa, Sb, Sc, Si., for the edge gateway server.
This edge gateway device then makes the secret share through the secret sharing
algorithm (TT.share ()) and shares it among the connected edge servers, while the
obtained private token is used to get mask parameter Pr(a, b, c). This enables the
edge gateways to generate personal masks and add the public mask that would en-
sure that the global model gradient is protected from exposure during transmission
and upload to the cloud. In other words, our approach ensures that each edge gateway
(IIEDC) only knows its dataset and its uploaded local model gradient; thus, keeping
all other IIEDs’ information secure. Though this has been simulated, the (TT.share ())
algorithm will prevent any would-be collision or jamming attack, while the ZIG.sign
for timestamp, guarantees wholeness and confirmation of the uploaded information.
Besides, the added mask ensures the security of model gradient data. Furthermore,
even though some replay, man-in-the-middle, and other attacks might occur during
training, upload, and transmission processes, the edge server will always be in contact
with edge nodes that possess the token. Moreover, the timestamp will protect against
such attacks.

4.2.4 Evaluation of Computational Overhead

In analyzing the computational overhead of FLEPNS, as compared to Differential
privacy and the PALFM, where the dataset length = 100 the FLEPNS uses about 256
bits less computational overhead as compared to the other method. This results in
increased communication effectiveness. Although it was discovered that the higher
the number of IIEDs or the increase in the length of the dataset, the higher commu-
nication overhead in this method, however, when compared with other methods, it
performs better as can be seen in Figure 10.
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Fig. 10 Comparison of Communication Overhead

4.2.5 Evaluation of Bandwidth Usage

Lastly, in carrying out the model training as seen in Table 6 and the resultant out-
come Figure 11, we discovered that the bandwidth usage of the FLEPNS is slightly
lower during the different model upload and download, which in a way, has an im-
pact of the model’s accuracy. The outcome shows the resultant accuracy level dur-
ing the federated learning epoch and the cost of bandwidth after 1000 epochs. The
model configuration used the RNN b-directional and the MNIST dataset aggregated
to IIEDs. For randomly selected IIEDs to train models, size is constant, using the
backward regression where an accuracy of about 73% after 500 epochs is achieved
by the PALFM using about 4.122MBps, in contrast to an accuracy of 81% using RNN
after 500 epochs and 3.1MBps by our FLEPNS. This method utilizes less bandwidth
as compared to the other evaluated methods.

5 Conclusion

The proposed FLEPNS framework introduces innovative techniques, including the
integration of the Paillier algorithm and a shared token system, to ensure secure multi-
device data sharing while maintaining high training accuracy and computational ef-
ficiency. Furthermore, the innovative masking algorithm (SET) greatly improves re-
silience against adversarial assaults and guarantees data integrity during transmission
between edge servers and devices. Based on the novel algorithm, experimental results
assessed for accuracy shows a value of 62% for PAFLM and 70% for FLEPNS. For
efficiency of privacy preservation, the FLEPNS has a higher value of 77% compared
to 74%.Further evaluation reveals computational overhead and bandwidth usage by
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Table 6 Comparison of Bandwidth Usage

FLEPNS Differential Privacy PPAFLM
Round Accuracy (%) BW (MB) Round Accuracy (%) BW (MB) Round Accuracy (%) BW (MB)

0 67 0.15 0 28.4 0.12 0 66 0.12
50 76 0.8 50 29.4 0.5 50 72 0.5
100 79 3.4 100 33.7 0.9 100 73 0.9
150 79 3.8 150 37.2 3.087 150 73 3.087
200 79 3.95 200 40.1 3.669 200 76 3.669
250 81 3.99 250 43.4 3.816 250 78 3.816
300 77 4 300 45.7 3.879 300 76 3.879
350 76 3.991 350 44 3.983 350 75 3.983
400 80 4.2 400 45.1 4.023 400 78 4.023
450 84 4.3 450 47.3 4.086 450 81 4.086
500 85 4.4 500 51.3 4.202 500 86 4.202
550 86 4.2 550 55.6 4.272 550 86 4.272
600 87 4.6 600 60.1 4.296 600 86 4.296
650 85 4.5 650 63 4.451 650 87 4.451
700 86 6.1 700 66.7 5.87 700 93 5.87
750 87 6.3 750 68.9 6.058 750 95 6.058
800 89 6.34 800 70.2 6.308 800 95 6.308
850 89.3 6.454 850 73.1 6.334 850 96 6.334
900 89.7 6 900 71.4 6.543 900 96 6.543
950 90 5.8 950 70.6 6.627 950 96 6.627

1000 90.3 6.1 1000 70.4 6.689 1000 89.3 6.689

Fig. 11 Comparison of Bandwidth Transmission Usage

PALFM of 4.122MBps, in contrast to 3.1MBps for FLEPNS), showing significant
advantage over compared techniques. Overall, this work demonstrates the effective-
ness of FLEPNS in addressing privacy and efficiency challenges in the operation and
deployment of the industrial Internet of Things within edge network systems.

6 Future Work

Further research work would be carried out in these areas;
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6.1 Scalability and Security Measures:

Develop model synchronization techniques to minimize latency maximize efficiency
and handle large-scale deployments with a high number of edge devices and partic-
ipants. Also, enhanced Security Measures with advanced cryptographic techniques
to fortify data privacy. This could involve exploring post-quantum cryptography, and
improved key management systems to protect against emerging threats. This will
strengthen defenses against adversarial attacks aimed at compromising data integrity
or privacy within federated learning frameworks. Design of privacy-preserving Ma-
chine Learning Algorithms that are more efficient and compatible with federated
learning settings. This could involve exploring differential privacy enhancements,
federated learning optimizations for specific types of data (e.g., time series, image
data), and federated transfer learning techniques.

6.2 Standardization and Framework Development:

The development of standards and frameworks for federated learning in industrial IoT
environments, which includes norms for interoperability, data governance, and ethical
concerns about data protection and utilization in federated learning environments. In
addition, designing frameworks to address ethical and legal difficulties associated
with data ownership, consent management, and regulatory compliance in federated
learning applications. This includes working with service providers, legal experts,
and others to ensure data is used responsibly and transparently.

6.3 Real-World Deployment and Validation:

Extensive validation and testing in real-world Industrial IoT settings is required to
evaluate the efficacy and scalability of federated learning techniques. This includes
working with industry partners to launch experimental initiatives, measure perfor-
mance metrics, and collect feedback for continual improvement. Further research
should include user-friendly interfaces and tools to create simple interfaces, toolkits,
and platforms for deploying and managing federated learning models in edge com-
puting environments, as this will enhance the integration of existing IoT frameworks
and cloud services to provide efficient data flow and administration. Focusing on
these aspects, future research in federated learning-enabled privacy preservation for
industrial IoT edge network systems can considerably improve the field, making it
more safe, efficient, and accessible for a wide range of applications.
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