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Abstract 1 

Purpose 2 

The use of livestock manure as agricultural soil amendments is a significant source of ammonia emissions and nitrate 3 

leaching. Anaerobic digestion of manure can yield to solid and liquid by-products usable as fertilizers that can limit 4 

these negative impacts. They could be further supplemented with plant growth-promoting microorganisms (PGPM) 5 

to improve plant growth and yield. This study investigated the impact of PGPMs and anaerobic digestates on 6 

strawberry quality and rhizospheric microbial community.  7 

Methods 8 

Strawberry plants were grown in soils treated with PGPMs (pure culture of Azospirillum brasilense or a commercial 9 

product with effective microorganisms) along with either liquid or solid digestate. Effects of digestates and PGPMs 10 

were evaluated by measuring plant yield and nutraceutical values, while the rhizospheric microbial community was 11 

assessed through an eDNA metabarcoding approach.  12 

Results 13 

Results suggest using PGPMs combined with digestates enhances plant yield, with increases of up to 40-60% in fruit 14 

yield and 9-18% in nutraceutical value, compared to the controls. The rhizospheric microbial community was 15 

influenced only by digestates. Nevertheless, these alterations have not led to significant changes in the community, 16 

thus ensuring its long-term stability. Moreover, PGPMs were not detected into the rhizospheric community.  17 

Conclusions 18 

Our data pointed out that both PGPMs and digestates can represent a sustainable approach to increase strawberry plant 19 

yield. However, PGPMs require repeated inoculations in long-term projects to achieve and maintain desired outcomes. 20 

These findings emphasize the complexity of rhizospheric microbial interactions and underscore the importance of 21 

continued research to optimize agricultural practices while maintaining ecosystem stability. 22 

 23 

 24 

 25 

 26 

 27 
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1. Introduction 29 

The increasing demand for sustainable agricultural practices has prompted researchers and farmers to explore 30 

alternative methods for improving soil fertility and crop productivity while minimizing environmental impacts 31 

(Ferreira et al. 2022; Pe’er et al. 2020; Tahat et al. 2020). One effective approach is utilizing organic waste materials, 32 

particularly livestock manure, as agricultural amendments (Abbott et al. 2018; Goldan et al. 2023). Manure-based 33 

amendments not only provide essential nutrients to the soil but also contribute to the organic matter content, improving 34 

soil structure, water-holding capacity, and nutrient retention (Abbott et al. 2018; Goldan et al. 2023; Indraratne et al. 35 

2009). However, the excessive use of manures without appropriate management strategies has led to significant 36 

environmental concerns, including the contamination of soil and water bodies (Bijay-Singh & Craswell, 2021; 37 

Chadwick et al. 2011; Loyon et al. 2016; Zhang et al. 2017). The spreading of manures on agricultural soils represents 38 

one of the major sources of ammonia emission and nitrates leaching (Abbott et al. 2018; Bijay-Singh & Craswell, 39 

2021; Holm-Nielsen et al. 2009; Jones et al. 2014). To mitigate these issues, the European Union (EU) has introduced 40 

Directives 2001/81/EC and 91/676/EEC, which seek to regulate manure application on agricultural soils and reduce 41 

associated environmental impacts (Loyon et al. 2016). Consequently, livestock waste disposal has become an 42 

economic problem for farmers since the quantity of waste produced is often higher than the allowed usage (Petersen 43 

et al. 2007). To deal with these limitations and to find more sustainable alternatives, the conversion of manure into 44 

digestates has gained significant attention. Digestates, obtained through anaerobic digestion of manure, offer several 45 

advantages as agricultural fertilizers, including improved nutrient availability and enhanced stability (Doyeni et al. 46 

2021; Möller & Müller, 2012; Valentinuzzi et al. 2020). Moreover, integrating plant growth-promoting 47 

microorganisms (PGPM) with manure amendments may be a potential strategy to improve plant growth and nutrient 48 

uptake efficiency (Omara et al. 2022; Ren et al. 2021) and can significantly affect the rhizosphere microbial 49 

community, further enhancing the effects of these fertilizers on plants (Benbrik et al. 2021; Ren et al. 2020, 2021). 50 

PGPMs is a group of beneficial microorganisms that colonize the rhizosphere and enhance plant growth through direct 51 

or indirect mechanisms (Abbott et al. 2018; Basu et al. 2021; Shah et al. 2021). The indirect action is protection against 52 

soil-borne pathogens (mainly fungi), while the direct mechanisms are associated with producing substances that 53 

stimulate plants' growth (Abbott et al. 2018; Shah et al. 2021). This effect is achieved by increasing the growth of the 54 

root system, allowing plants to explore a higher volume of soil, thus greatly influencing the biogeochemical cycles of 55 

elements in the soil (Alegria Terrazas et al. 2016; Pii et al. 2015a). In addition, in recent works, we have also 56 
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highlighted that PGPMs such as Azospirillum brasilense (A. brasilense) can influence the molecular and biochemical 57 

mechanisms underlying the acquisition of nutrients (Marastoni et al. 2019; Pii et al. 2016, 2018, 2019). Among the 58 

plants that could benefit most from such an integrated approach are berry plants, such as strawberries, because of their 59 

economic importance and high phytochemical content. Strawberries are globally one of the most consumed fruits, not 60 

only for their excellent taste but also for their high content of bioactive compounds, which are known to have a positive 61 

influence on human health because of their antioxidant, anti-inflammatory and anticancer properties (Giampieri et al. 62 

2012). Many factors, such as genotype (Tulipani et al. 2011), environment, agriculture, and biofortification practices 63 

(Mimmo et al. 2017; Valentinuzzi et al. 2018) can significantly influence these peculiar properties as well as their 64 

quality features (e.g., elemental composition, pH, total soluble solids (TSS), total or titratable acidity, organic acids, 65 

anthocyanins). In addition, previous works highlighted that nutrient supply could influence strawberries' quality and 66 

phytochemical composition (Valentinuzzi et al. 2015a, 2015b). In a hydroponic experiment, was also observed that 67 

the inoculation of nutrient solutions with PGPMs could modify the quality of strawberry fruits by enhancing the 68 

sweetness index, the concentration of antioxidants, and inducing the accumulation of micronutrients (Pii et al. 2018). 69 

In this work, we aimed to assess the effect of liquid and solid digestates, both alone and combined with PGPMs, on 70 

the growth of strawberry plants, the quality of strawberry fruits, and the composition of the rhizosphere microbiota. 71 

Based on the combined use of PGPMs and manure digestates in the soil of strawberry plants, we hypothesize that 72 

treated plants will show a significant increase in yield compared with the untreated control. Furthermore, we 73 

hypothesize that the application of PGPMs and manure digestates will affect the composition of the rhizosphere 74 

microbial community. 75 

2. Materials and methods 76 

2.1 Plant growth 77 

Strawberry frigo plants (Fragaria x ananassa cv. Elsanta) were purchased from Sant' Orsola Società Cooperativa 78 

Agricola (Pergine Valsugana, Trento, Italy), planted in individual 1.5 L plastic pots after one day of thawing, and 79 

grown in a climate chamber under the following controlled conditions: 14/10 h day/night ratio, 24°C during the day 80 

and 19°C at night, 70% relative humidity, and 250 µmol m-2s-1 light intensity. Pots were filled with a 2 cm granulated 81 

clay and approximately 900 g of air-dried soil (Table S1) and plants were grown for 78 days, maintaining 60% water-82 

holding capacity during the experiment by watering them twice a week. 83 
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 Plants were then fertilized with different strategies using digestates in solid and liquid forms, A. brasilense, and a 84 

preparation of effective microorganisms. Both digestates and effective microorganisms were obtained from third-party 85 

providers represented by the local Biogas Wipptal plant (Vipiteno, Italy) and the Multikraft manufacturer (Pichl bei 86 

Wels, Austria), respectively, while A. brasilense Cd (DSM-1843) was grown in LB medium and prepared for plant 87 

inoculation as described in Pii et al. (2016). Plants treated with A. brasilense were inoculated two weeks after planting 88 

in pots, reaching a final concentration of 106 cfu g-1 soil, while the inoculation of the effective microorganisms was 89 

carried out as specified by the manufacturer’s guideline, specifically once a week until flowering, and twice a week 90 

thereafter. Each biofertilizer has been applied alone or combined, leading to a total of nine different treatments (7 91 

independent pots per treatment) arranged as follows: 92 

1. Control: soil without any addition. 93 

2. Azospirillum brasilense (AZO): soil inoculated with A. brasilense. 94 

3. Effective microorganisms (EM): soil inoculated with effective microorganisms. 95 

4. Pellet: soil mixed with solid digestate at 300 mg N kg-1 soil concentration.  96 

5. Liquid digestate (LD): soil mixed with liquid digestate at a 75 mg N kg-1 soil concentration. 97 

6. A. brasilense + pellet (AZO+Pellet): soil mixed with solid digestate at 300 mg N kg-1 soil concentration and 98 

inoculated with A. brasilense. 99 

7. Effective microorganisms + pellet (EM+Pellet): soil mixed with solid digestate at 300 mg N kg-1 soil 100 

concentration and inoculated with effective microorganisms. 101 

8. A. brasilense + liquid digestate (AZO+LD): soil mixed with liquid digestate at a 75 mg N kg-1 soil 102 

concentration and inoculated with A. brasilense. 103 

9. Effective microorganism + liquid digestate (EM+LD): soil mixed with liquid digestate at a 75 mg N kg-1 soil 104 

concentration and inoculated with effective microorganism. 105 

2.2 Assessment of plant growth and fruit yield 106 

During the growing cycle of strawberry plants, leaf chlorophyll content was measured using a portable chlorophyll 107 

meter (SPAD-502; Minolta, Osaka, Japan). Measurements were carried out weekly on basal and apical leaves (at least 108 

two per plant), and five SPAD measurements per leaf were taken and averaged. The number of produced flowers was 109 

also counted during the growing cycle. At the end of the experiment, strawberry plants were harvested, and roots and 110 

leaves were separated and weighed to assess the fresh weight (FW). Strawberry fruits were harvested once they 111 
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showed at least 80% red on their surface. At harvest, the fresh weight (FW), yield per plant (g FW per plant), average 112 

yield (g FW), and the average number of fruits per plant were measured.  113 

2.3 Characterization of fruit quality 114 

The colour of all ripened strawberry fruits was determined at harvest using a portable Tristimulus Colorimeter 115 

(Chroma Meter CR-400, Konica Minolta Corp., Osaka, Japan). The colour index (CI) was calculated as CI=100 x a / 116 

(L x b), where L represents luminance (lightness), a represents the red/green coordinate, and b represents the 117 

yellow/blue coordinate, with higher values corresponding to a more intense red colour (Tezotto-Uliana et al. 2014). 118 

The total soluble solids (TSS), expressed as Brix degrees (°Bx), were measured using a refractometer (Atago, Tokyo, 119 

Japan) on freshly extracted fruit juice, while the titratable acidity (TA) was determined as previously described by 120 

Valentinuzzi et al. (2015a). Briefly, TA was assessed by adding 25 mL distilled water to 5 mL of freshly extracted 121 

fruit juice, and the mixture was automatically titrated to a final pH of 8.1 (Titration Unit Titro-Line easy; Schott 122 

Instruments, Mainz, Germany) with a solution of 0.1 mol L−1 NaOH; the final result was expressed as mmol L−1 citric 123 

acid. Fresh strawberries' firmness was assessed using a penetrometer (Modell PCE-FM200; PCE Instruments, 124 

Southampton, UK) equipped with a 3 mm-diameter cylindrical probe. 125 

2.4 Strawberry extracts and fruit elemental analysis 126 

Freeze-dried strawberry fruits were ball-milled (model MM400; Retsch, Haan, Germany) until a homogeneous 127 

powder was obtained; the ground samples were extracted with methanol (HPLC grade, Merck, Darmstadt, Germany) 128 

using a 1:10 (m:v) extraction ratio. The mixtures were then sonicated for 30 min in a thermostatic bath, cooled with 129 

ice water, and centrifuged at 14000xg for 30 minutes at 0°C. The supernatant was collected, filtered (0.2 µm nylon 130 

filter, Phenomenex Inc., USA), and stored at -80°C until the analyses have been carried out. 131 

From the ball-milled fruits, approximately 0.3 g of each sample was acid digested with concentrated ultrapure HNO3 132 

(650 ml L−1; Carlo Erba, Milano, Italy) in a single reaction chamber microwave digestion system (UltraWAVE, 133 

Milestone, Shelton, CT, USA). The macro- (phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca) and 134 

sulphur (S)) and micro-nutrient (iron (Fe), copper (Cu), zinc (Zn) and manganese (Mn)) concentrations were 135 

determined by Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES) (Arcos Ametek, Spectro, 136 

Germany) using tomato leaves (SRM 1573a) and spinach leaves (SRM 1547) as external certified reference material, 137 
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while total organic carbon (TOC) and total nitrogen (TN) of lyophilized samples were determined using a Flash EA 138 

1112 elemental analyzer (Thermo Scientific, Germany). 139 

2.5 Organic acid, sugars, and phenolic compounds analyses 140 

The separation of both organic acids and sugars was performed by high performance liquid chromatography (HPLC) 141 

through an isocratic elution using a cation exchange column Aminex 87-H column (300 x 7.8 mm, 9 mm, Bio-Rad) 142 

and 10 mM H2SO4 as mobile phase, at a flow rate of 0.6 mL min-1. Organic acids were detected at 210 nm with a 143 

Waters 2998 photodiode array detector (Waters Spa, Italy), while sugars were detected by a refractive index detector 144 

(Waters Spa, Italy). Standard acids and sugars were prepared as individual stock solutions and combined to give 145 

diluted reference standards, and then identified by comparing the retention times of the unknown samples to pure 146 

compounds with known retention times; finally, the sweetness index (SI) was calculated as in Mahmood et al. (2012) 147 

according to the formula: 148 

SI=1×[Sucrose]+0.74×[Glucose]+1.73×[Fructose] 149 

The content of total phenols of strawberry extracts was determined following the Folin-Ciocalteu method (Atanassova 150 

et al. 2011; Folin & Ciocalteu, 1927), while the concentration of flavonoids and flavonols was determined by a 151 

pharmacopeia method, using rutin hydrate as reference compound (Miliauskas et al. 2004). 152 

2.6 Soil elemental analysis  153 

Soil pH was determined in agreement with Sparks et al. (1996). The inorganic nitrogen (N) was extracted with a 1 M 154 

KCl (1:10, w:v) solution and determined colorimetrically using a flow analyzer (AA3, Bran Lubbe, Germany). DTPA-155 

extractable fractions of nutrients (Cu, Fe, Mn and Zn) were extracted from approximately 10 g of soil with 20 mL of 156 

extracting solution (0.005 M DTPA, 0.01 M CaCl2, and 0.1 M TEA adjusted to pH 7.3) according to Lindsay and 157 

Norvell (1978). Nutrient concentrations were subsequently determined by inductively coupled plasma optical 158 

emission spectrometry (ICP-OES) (Arcos Ametek, Spectro, Germany). 159 

2.7 Microbial community assessment - DNA Extraction, Amplification, and Sequencing 160 

At the end of the experiment, soil samples were collected from each pot and molecular analyses were conducted for 161 

the taxonomic identification of the rhizospheric microbial communities. The DNA was extracted from 0.25 g (wet 162 

weight) of each sample using the DNeasy® PowerSoil® DNA Isolation Kit (Qiagen, Hilden, Germany) according to 163 

the manufacturer instructions, and the DNA concentration was assessed with the Qubit (Invitrogen, Milan, Italy).  164 



8 

 

Bacterial and fungal diversity was determined for all samples. The fungal internal transcribed spacer region 2 (ITS2) 165 

was amplified using ITS3 and ITS4 primers (Op De Beeck et al. 2014), while the bacterial 16S rRNA gene was 166 

amplified using the primer pair 341F/805R (Herlemann et al. 2011; Takahashi et al. 2014). PCR reactions were 167 

conducted following the thermocycling conditions reported by Bani et al. (2019), in a final volume of 25 μL. Reaction 168 

mix included 12.5 μL of AppTaq RedMix (Appleton Woods Limited, Birmingham, UK), 0.4 μL of each primer (10 169 

μM), 2,5 μL of template DNA and 9.2 μL of Invitrogen UltraPure™ DNase/RNase-Free Distilled Water 170 

(ThermoFisher Scientific, UK). Amplicons were then purified and multiplexed as reported by Signorini et al. (2021) 171 

and sequenced using 300+300 bb paired end reads and an Illumina MiSeq platform at the University of Essex 172 

(Colchester, UK). Raw data have been submitted to the National Center for Biotechnology Information (NCBI) under 173 

accessions numbers PRJNA1108168. 174 

2.8 Bioinformatics 175 

Fungal and bacterial raw data were checked using FastQC (Andrews, 2010) and then pre-processed, quality-filtered, 176 

and trimmed using DADA2 within QIIME2 (Bolyen et al. 2019; Callahan et al. 2016). Chimeras were removed using 177 

the “consensus” method (Callahan et al. 2016). Filtered amplicon sequence variants (ASV) were clustered into 178 

operational taxonomic units (OTUs) using VSEARCH and applying a cut-off of 97% (Rognes et al. 2016). The 179 

taxonomic assignment of the resulting OTUs was performed within QIIME2 by using the Naïve-Bayes classifier 180 

trained on SILVA (Quast et al. 2013) for bacteria and on UNITE-INSD (Nilsson et al. 2019) for fungi.  181 

2.9 Statistical Analysis 182 

All datasets were analyzed using statistical software to determine significant differences between the treatments and 183 

the control. The results of the chemical measurements are presented as means of at least five replicates ± standard 184 

error (SE). Statistical analysis was performed using GraphPad Prism version 10 for Windows (GraphPad Software, 185 

San Diego, California, USA), and the Shapiro-Wilk's test was used to check for the normality of the data. For normally 186 

distributed data, differences among samples were tested using analysis of variance (ANOVA), followed by Tukey´s 187 

post hoc test (p < 0.05), while when normality was not met, data were analysed using the non-parametric Kruskal-188 

Wallis test, followed by Dunn’s test for pairwise comparisons. 189 

For community dissimilarity, the resulting OTUs were filtered, the final datasets were subsequently rarefied with all 190 

rarefaction curves reaching the plateau, and statistical analyses were performed using statistical multi-packages 191 
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implemented in R (R Core Team, 2020). The differential abundance analysis of bacterial and fungal taxa between 192 

treatments and control was estimated with MaAsLin2 (Mallick et al. 2021), while to assess bacterial and fungal 193 

diversity among different treatments, alpha- and beta-diversity were calculated using ‘vegan’ (Oksanen et al. 2022), 194 

‘agricolae’ (de Mendiburu & Yaseen, 2020), and ‘ggplot2’ (Wickham, 2016) packages. Alpha-diversity based on 195 

OTUs was calculated using the Chao1 index to characterize the richness of the communities and the Shannon index 196 

to characterize their diversity. The normality of the data was checked using Shapiro-Wilk test, and differences were 197 

tested using ANOVA or the Kruskal-Wallis test, followed by Tukey’s or Dunn’s post hoc test, respectively. Canonical 198 

Analysis of Principal Coordinates (CAP) based on Bray-Curtis’s dissimilarity distance was performed to evaluate 199 

bacterial and fungal beta-diversity by applying the forward selection to identify the explanatory variables (Monte 200 

Carlo permutation test with 9999 randomizations, p < 0.05), which were then fitted on the CAP plots. Variance 201 

(ANOVA) was analyzed to establish significant differences between the treatments and the control. 202 

3. Results 203 

3.1 Plant growing parameters and yield 204 

The growing parameters evaluated to assess the effect of the different treatments on strawberry plants are shown in 205 

Table 1. Shoot biomass measured at the end of the experiment displayed significant differences between treatments, 206 

with the highest values in treatment AZO+LD (35.67 ± 1.24 g), and the lowest measured in Control plants (21.53 ± 207 

1.67 g). To evaluate the effect of the applied treatments on the chlorophyll content of strawberry leaves, the SPAD 208 

index was measured weekly (data not shown). At the end of the experiment, the observed SPAD values did not differ 209 

among the treatments. 210 

Plant productivity was assessed by measuring the number of flowers per plant, the number of fruits per plant, and the 211 

average yield per plant (Table 1). Plants inoculated with PGPMs only did not differ from the control while all the 212 

other treatments were statistically different. Similarly, the number of fruits per plant was the highest in all plants 213 

treated with LD (alone and combined) and with AZO+Pellet, while all the other treatments showed values like those 214 

from Control plants. Finally, the average yield per plant was significantly enhanced in all treatments (except for EM 215 

plants), with the highest productivity obtained in plants amended with LD and subsequently inoculated with PGPMs.  216 

3.2 Fruit quality parameters 217 
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Strawberry quality parameters such as color index, firmness, total soluble solids, and titratable acidity were determined 218 

in fresh fruits at harvest (Fig. 1). Concerning color index, the fruits with the most intense red coloration were those 219 

produced by AZO (Fig. 1a), while treatments did not affect fruit firmness (Fig. 1b). In contrast, significant differences 220 

were measured in the total soluble solids concentration (expressed as °Brix): the highest concentration was detected 221 

in not combined treatments, while the lowest values were determined in strawberry juices of fruits collected from 222 

plants inoculated with PGPMs and amended with LD (Fig. 1c). Regarding titratable acidity, the treatments did not 223 

significantly modify this parameter, being only slightly higher in EM+Pellet fruits (Fig. 1d). 224 

3.3 Organic acids, sugars concentration, and phenolic compounds 225 

The concentration of sugars, organic acids, and the sweetness index of strawberry fruits are shown in Fig. 2, while 226 

Fig. 3 presents the data on bioactive compounds. Whereas the concentration of citric acids was unaffected by the 227 

treatments (Fig. 2a), the concentration of malic acid (Fig. 2b) presented some differences, being the highest in 228 

AZO+LD plants. Among sugars, the highest sucrose concentration was measured in strawberries inoculated with each 229 

PGPM (Fig. 2c), while fruits harvested from all the other treatments were not significantly different from Control 230 

plants. The concentration of both glucose (Fig. 2d) and fructose (Fig. 2e) showed a similar trend, with the lowest 231 

concentration of both sugars found in Control, Pellet, and LD plants, which also had the lowest sweetness index values 232 

(Fig. 2f). In comparison, bioactive compounds were less affected by the treatments, with only minor changes observed 233 

in total phenols (Fig. 3a), where a significant decrease was noted only in plants inoculated with AZO; no differences 234 

were found in flavonoids and flavonols (Fig. 3b and 3c) among the treatments.  235 

3.4 Strawberry nutrient concentration 236 

The concentration of nitrogen (N), carbon (C), and macro- and micronutrients in strawberry fruits is shown in Table 237 

2. N concentration was significantly reduced only in fruits harvested from AZO and EM samples and in the 238 

combinations of PGPMs with LD. Strawberry P concentration was the highest in Control, Pellet, and LD, while it 239 

significantly decreased in all the other treatments in which PGPMs were inoculated. The concentration of cations such 240 

as K, Mg, and Ca was only slightly affected by the different treatments, with K and Ca being the highest in AZO+LD 241 

plants and Mg in Pellet plants. In contrast, S concentration was significantly affected, with the highest concentration 242 

detected in AZO+LD fruits and the lowest in Control and all EM plants (combined or not with digestates). Concerning 243 

micronutrient concentration, similar trends could be observed. In all plants treated with digestates, both in the form of 244 
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pellet and liquid digestate, the concentration of Fe, Cu, Mn, and Zn was significantly higher than in Control plants or 245 

plants treated with PGPMs only.  246 

3.5 Soil analyses 247 

The measurement of extractable soil metals (Table 3) revealed significant variations only for copper and manganese, 248 

both of which showed significant reductions in the treatments compared to the Control plants. Specifically, the 249 

concentration of Cu slightly decreased in soils amended with both digestates and inoculated with A. brasilense, and 250 

Mn concentration decreased in the same treatments as well as in Pellet and LD samples. Regarding the other 251 

parameters, soil pH remained relatively stable across all treatment groups by the end of the experiment (Fig. 4a), while 252 

nitrate and ammonium exhibited different trends: nitrate was highest in liquid-amended plants but remaining 253 

comparable to the Control plants (Fig. 4b), whereas inoculated and Pellet-amended soils had similarly low nitrate 254 

levels. For ammonium levels (Fig. 4c), the only significant difference was observed in the Pellet-treated samples, 255 

where ammonium concentrations were significantly higher.  256 

3.6 Rhizosphere microbial community diversity 257 

After bioinformatic analysis, 218240 and 306354 raw reads were generated for the 16S rRNA and the ITS2, resulting 258 

in 538 bacterial and 371 fungal OTUs. The alpha diversity of both fungal and bacterial communities (Table S2), 259 

assessed using the Chao1 richness and the Shannon Diversity Index, indicated no significant differences between 260 

Control and treated plants. The community structure of bacteria (Fig. 5) and fungi (Fig. 6) in relation to treatments 261 

and environmental parameters was investigated using the Canonical Analysis of Principal Coordinates (CAP). The 262 

envfit function showed that both bacterial (p < 0.001) and fungal (p < 0.001) communities diversified accordingly to 263 

the amendments, while only for the fungal community we observed a diversification of the structure following the 264 

inoculation of PGPMs (p < 0.05). No correlation was highlighted between the communities and the environmental 265 

parameters.  266 

3.7 Soil Microbial community composition  267 

The analysis of the 16S rRNA gene showed that the dominant phyla (Fig. 7a) in the bacterial community were 268 

Proteobacteria (35.11%), Acidobacteriota (24.47%), Bacteroidota (10.27%), and Actinobacteriota (9.50%), while only 269 

the 1.60% of taxa remained unclassified. Among the identified genera (Fig. 7b) belonging to Proteobacteria, the most 270 

abundant were Bradyrhizobium (3.28%) and Acidobacter (3.04%). However, the vast majority of Proteobacteria’s 271 
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genera remained unclassified, and A. brasilense was detected in only one sample, with a total abundance of 14 reads. 272 

Among the Acidobacteriota, the most abundant genera were represented by RB41 (Acidobacteria bacterium; 5.23%), 273 

Vicinamibacter (4.96%), and the aerobic taxa Gaiella (2.67%). 274 

In all samples, the fungal community was dominated by Ascomycota (50.32%), followed by Mortierellomycota 275 

(29.53%), and Basidiomycota (9.66%) (Fig. 7c). Only 5.87% of taxa remained unclassified at the phylum level. 276 

However, as for bacteria, the most abundant Ascomycota genera remained unclassified, while the identified ones were 277 

represented by Exophiala (1.60%), Fusarium (1.11%), and Tetracladium (1.06%) (Fig. 7d). On the other hand, the 278 

results showed that almost all taxa belonging to Mortierellomycota were classified as Mortierella (27.12%).  279 

The Masslin2 analysis revealed significant differences in three bacterial phyla and one fungal phylum (Fig. 8). 280 

Bacteroidota was significantly increased in samples treated with Pellet and LD, while Firmicutes increased only in 281 

samples fertilized with LD (Fig. 8a). In contrast, Proteobacteria decreased in treated samples, with a higher decrease 282 

in LD samples (Fig. 8a). At the genus level, Acidibacter showed trends similar to Bacteroidota, whereas RB41 283 

exhibited pattern similar to Firmicutes (Fig. 8b). For the fungal community, only Basidiomycota were affected by 284 

treatments, showing a decrease in samples treated with Pellet (Fig. 8c). 285 

4. Discussion 286 

This study explored the impact of various fertilizers and plant growth-promoting microorganisms (PGPMs) on 287 

strawberry plant performance, soil properties, and the microbial rhizospheric community. Our investigation covered 288 

the impact on plant growth and fruit quality, changes in soil nutrient dynamics, and variations in bacterial and fungal 289 

community diversity to gain a comprehensive understanding of how these treatments affect the overall plant grow and 290 

yield. Our results showed that using PGPMs and fertilizers promoted overall plant performance by increasing shoot 291 

biomass, flowers, and number of fruits. LD performed better than Pellet alone and combined, and the subsequent 292 

inoculation of PGPMs also improved the results. The reason for such performance could be attributable to the 293 

enhanced activity of PGPMs in increased N availability (Fan et al. 2017; Lovaisa et al. 2015; Sangakkara & Higa, 294 

1994). Indeed, LD contains higher amounts of N immediately available (Valentinuzzi et al. 2020), while N is bound 295 

to organic matter in the Pellet. Concerning PGPMs, their improved performance in the presence of greater N 296 

availability has already been observed in previous experiments. For instance, the inoculation of A. brasilense in tomato 297 

plants grown in soil fertilized with high amounts of N resulted in higher tomato yields (Fan et al. 2017). Similarly, a 298 
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significant improvement in crop yields was obtained by combining EM with organic fertilizers (Sangakkara & Higa, 299 

1994). The increased strawberry growth and yield can be related to the ability of these bacteria to produce auxin and 300 

cytokine, fix N2, solubilize phosphates, and produce antimicrobial substances (Aslantaş et al. 2007; Esitken et al. 2010; 301 

Karlidag et al. 2007; Pirlak et al. 2007). These improvements have been emphasized by the combined use of EM with 302 

digestates, most likely due to the increased availability of N.  303 

Among commercially essential parameters, we evaluated fruit color, TSS, titratable acidity, and fruit firmness, all of 304 

which showed similar or greater values than Control plants. A more detailed analysis of organic acids (citric and 305 

malic) and sugars (glucose, fructose, and sucrose) was carried out, and the fruit sweetness index was calculated. In 306 

general, it was seen that the use of digestates alone significantly reduced glucose and fructose, and consequently the 307 

sweetness index, while no significant differences were shown for the other treatments. A different trend was observed 308 

for sucrose, for which no significant differences were shown in any of the treatments, except for AZO and EM, 309 

characterized by a significant increase in sugars. This trend in sugar content could be related again to the amount of 310 

available N. In previous works, it has been observed that higher N availability can lead to higher mobilization of 311 

sugars (Lemoine et al. 2013); indeed, our results showed higher N concentrations mainly in plants (Control, Pellet, 312 

LD and, EM+Pellet) showing the lowest sugar concentrations.  313 

Among other elements, bioactive compounds recognized as beneficial to human health (Giampieri et al. 2012; Tulipani 314 

et al. 2008), macronutrients, and micronutrients were considered in this work. Several studies already pointed out that 315 

inoculation of PGPMs increases the bioactive compounds of strawberries (Aaby et al. 2007; Pesakovie et al. 2016; Pii 316 

et al. 2018). However, no significant differences were shown in this experiment for phenolic compounds, except for 317 

a decrease in total phenols in plants inoculated with A. brasilense. Regarding micro- and macronutrients, it was shown 318 

that plants inoculated with AZO and EM were among those with a significant reduction in most nutrients. This could 319 

be explained by the ability of some PGPMs to induce changes in root exudate release (Pii et al. 2015b), which is 320 

relevant for nutrient mobilization and in the molecular and biochemical activities underlying nutrient acquisition (Pii 321 

et al. 2016). 322 

Moving on to soil analysis, we measured soil parameters such as pH, nitrate, ammonium, and elements like Fe, Cu, 323 

Mn, and Zn. Our results showed that pH did not change significantly following treatments. Although both digestates 324 

presented pH values of 9 or higher (data not shown), the soil maintained a pH of around 6.2 until the end of the 325 
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experiment, ensuring high nutrient availability. This phenomenon may be related to the high buffering capacity of the 326 

soil, attributed to the high content of organic matter (3%) (Curtin & Trolove, 2013; Zheng et al. 2022). 327 

There were also no significant changes for ammonium, except for Pellet-amended plants. In contrast, for nitrate, 328 

significant reductions were shown in almost all treatments, except for all plants amended with LD. These trends can 329 

be explained by the different availability of N in soils Pellet- or LD-treated. Indeed, it is known that soils fertilized 330 

with solid digestates have higher rates of immobilized N when compared with the positive mineralization balance 331 

observed for those fertilized with liquid digestate (Laboski et al. 2010; Möller & Müller, 2012). Regarding metals, Fe 332 

and Zn did not change significantly, while slight changes were observed in Cu and Mn, particularly in samples treated 333 

with AZO+Pellet and AZO+LD. However, these differences did not affect the availability of micronutrients in the 334 

soil, thus not representing a problem for plant performance.  335 

Lastly, we investigated the effects of PGPMs and fertilizers on the microbial rhizospheric community. Beta-diversity 336 

showed significant differences after using fertilizers, while alpha-diversity remained constant across the different 337 

samples. This is not surprising, as microbial communities display remarkable resilience to environmental changes, 338 

often outperforming individual species in complex environments (Mejias Carpio et al. 2018; Shade et al. 2012). 339 

Consequently, while beta-diversity may change in response to environmental changes, microbial alpha-diversity tends 340 

to remain relatively stable, thanks to the adaptation of both fungal and bacterial communities to the new environmental 341 

conditions (Signorini et al. 2021, 2023; Tian et al. 2015).  342 

The use of fertilizers had the most significant impact on the structure of the bacterial community, leading to its division 343 

into three distinct groups, while no effect was observed from the use of PGPMs. This subdivision can be directly 344 

linked to the different availability of nutrients in the treated and untreated soils. Nutrient availability is indeed known 345 

to be one of the major drivers of soil microbial community structure and assembly (Fierer et al. 2007; Leff et al. 2015). 346 

In our study, this correlation is reflected by alterations in taxa that exhibit either copiotrophic or oligotrophic nature 347 

(adapted to nutrient-rich or nutrient-poor soils respectively). 348 

Being copiotrophic phyla (Fierer et al. 2012; Guo et al. 2019; Ling et al. 2022), significant variations were observed 349 

among Bacteroidota, Proteobacteria, and Firmicutes. Bacteroidota exhibited higher abundances in soils treated with 350 

Pellet and LD, in which soil nutrients (e.g., N) were more abundant than Control. Conversely, Proteobacteria and 351 

Firmicutes displayed contrasting abundance patterns. The highest abundance of Firmicutes was observed in LD-352 

treated soils, while Proteobacteria increased in Control and Pellet-treated pots. This unusual behavior is in line with 353 
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the results of Li et al. (2020), which suggest a complementary relationship between Firmicutes and Proteobacteria 354 

based on soil nutrient availability. LD is known to be richer in nutrients (N, P, Ca, K, Mg) than pellets (Valentinuzzi 355 

et al. 2020), which are also rapidly released into the environment. This phenomenon could, therefore, make more 356 

nutrients available for the entire bacterial community, facilitating the proliferation of taxa that, in the case of lower 357 

nutrient availability, would have difficulty competing. In the pellet, especially N is often found in an immobilized 358 

form, making release times longer and nutrient availability low (Valentinuzzi et al. 2020). These findings could imply 359 

higher soil fertility with LD treatment. Yet, its rapid nutrient release poses long-term inefficiency and substance 360 

volatilization risks. In contrast, pellets offer nutrient stability and long-term availability to plants and microorganisms 361 

due to their slow release (Valentinuzzi et al. 2020). Similar trends in nutrient availability were observed at the genus 362 

level, with changes seen in the bacterial genera RB41 and Acidibacter. Given their copiotrophic nature, they were 363 

more abundant in samples treated with Pellet and LD due to the enrichment of organic matter and N provided by these 364 

amendments (Ai et al. 2018; Tang et al. 2023). As for bacteria, the fungal community exhibited differences only in 365 

beta-diversity, with Basidiomycota being less abundant in Pellet-treated samples. This may be linked to their 366 

oligotrophic nature (Guo et al. 2019; H. Zhang et al. 2021), indicating adaptation to substrates with low or limited 367 

nutrients. In contrast to bacterial observations, the use of PGPMs affected fungal beta diversity, suggesting their 368 

influence on fungal phyla without, however, causing significant alterations in the main taxa. 369 

Despite the changes in the communities, no alterations in the development and yield of the plants were highlighted. 370 

The genera and phyla in question are widespread throughout agricultural soils and play a fundamental role in 371 

promoting good crop yields, including effects on organic matter turnover, compound degradation and biocontrol 372 

(Fierer et al. 2007; Hashmi et al. 2020; Mhete et al. 2020; al., 2020; Spagna et al. 2009; Wieczorek et al. 2019). 373 

A final important aspect is the non-detection of PGPMs in these communities. None of the PGPM taxa used were 374 

identified in the inoculated soils. Despite their positive effects on plants and fruits, it can be hypothesized that these 375 

organisms, once inoculated, performed their function but could not compete with the pre-existing microbial 376 

community, leading to their disappearance at the end of the experiment. This aspect is crucial in such treatments, as it 377 

underlines the temporary nature of PGPMs inoculations. It is essential to consider the costs and benefits of treatment, 378 

as it will not permanently alter soil communities and will need to be periodically repeated. 379 

5. Conclusions 380 
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Our results have shown how biofertilizers based on Azospirillum brasilense (A. brasilense) and effective 381 

microorganisms, or deriving from anaerobic digestion of manures, can represent a sustainable approach to improve 382 

the growth and yield of strawberry plants. In general, all treatments showed an enhanced growth and yield of 383 

strawberry plants, improving or maintaining fruit nutraceutical values such as macro- and micro-nutrients, while the 384 

phenolic compounds concentration remained mostly unchanged. Combinations between plant-growth promoting 385 

microorganism (PGPMs) and liquid digestate were the best performing, presumably due to a higher amount of 386 

nutrients directly available to plants and soil organisms. Regarding the rhizospheric microbial community, its structure 387 

changed following the use of the fertilizer and the supply of nutrients in different quantities and forms, while an effect 388 

following the inoculation of A. brasilense or effective microorganisms was highlighted only for the fungal community. 389 

However, these alterations did not drastically affect the microbial community, which was only slightly altered by the 390 

treatments, and maintained stable phyla of fundamental importance for plant development, such as Proteobacteria, 391 

Firmicutes and Bacteroidota, and Basidiomycota. Therefore, we can conclude that both PGPMs and digestates can 392 

represent a sustainable alternative for the fertilization of horticultural crops, given that no negative effects on microbial 393 

community or plants have been highlighted and that their combination can lead to a further improvement of growth 394 

and yields of strawberry plants. However, no trace of the presence of PGPMs was found. This emphasizes the need to 395 

carefully weigh the costs and benefits of employing PGPMs, as their application does not lead to permanent changes 396 

in the microbial community and necessitates repeated treatments. 397 

 398 
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Table 1 Shoot biomass, SPAD index, number of flowers per plant, number of fruits per plant and yield per plant of strawberries harvested from plants grown 694 

in soils either without treatment (Control), either inoculated with Azospirillum brasilense (AZO), either inoculated with effective microorganisms (EM), 695 

either amended with pellet (300 mg N kg-1 soil) (Pellet), either amended with liquid digestate (75 mg N kg-1 soil) (LD), either combining AZO and pellet 696 

(AZO+Pellet), either combining AZO and LD (AZO+LD), either combining EM and pellet (EM+Pellet) or combining EM and LD (EM+LD). Data are 697 

reported as means and SE (n=5). The statistical significance was evaluated by means of ANOVA with Tukey post hoc-test. Different letters indicate 698 

statistically different values (p<0.05) 699 

 
Control AZO EM Pellet LD AZO+Pellet AZO+LD EM+Pellet EM+LD 

Shoot biomass 21.53±1.67d 27.56±2.65bc 29.40±2.51bc 23.32±3.76d 24.71±2.64cd 28.26±1.62bc 35.67±1.24a 25.91±2.55c 31.48±2.05b 

SPAD index 39.33±2.73 39.08±0.61 38.25±1.35 38.15±0.83 37.58±0.92 38.23±2.64 39.30±2.31 37.93±1.51 37.48±2.76ns 

N° flowers plant-1 16.83±4.07c 18.50±4.72c 20.33±6.77bc 24.60±5.02bc 28.40±3.57a 30.25±4.13a 26.33±5.12ab 18.00±3.11bc 31.17±4.07a 

N° fruits plant-1 11.33±1.44c 10.40±1.95c 12.70±2.24bc 12.60±1.95bc 14.75±5.91bc 15.00±1.16ab 16.14±2.82ab 12.80±1.09c 18.00±1.30a 

Yield plant-1 (g) 24.65±5.25e 37.92±6.36cd 30.27±4.05de 38.65±5.82cd 51.95±4.66b 55.74±6.07b 67.23±8.71a 44.77±8.71c 62.06±5.07ab 

700 
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Table 2 Macro- and micronutrients of freeze-dried strawberry fruits harvested from plants grown in soils either without treatment (Control), either inoculated 701 

with Azospirillum brasilense (AZO), either inoculated with effective microorganisms (EM), either amended with pellet (300 mg N kg-1 soil) (Pellet), either 702 

amended with liquid digestate (75 mg N kg-1 soil) (LD), either combining AZO and pellet (AZO+Pellet), either combining AZO and LD (AZO+LD), either 703 

combining EM and pellet (EM+Pellet) or combining EM and LD (EM+LD). Data are reported as means and SE (n=5). The statistical significance was 704 

evaluated by means of ANOVA with Tukey post hoc-test. Different letters indicate statistically different values (p<0.05) 705 

 
Control AZO EM Pellet LD AZO+Pellet AZO+LD EM+Pellet EM+LD 

C (%) 40.45±1.66 39.02±0.26 38.89±0.62 40.57±0.59 40.40±0.97 39.86±0.38 39.93±0.36 39.97±0.81 40.93±0.77ns 

N (%) 1.77±0.25a 0.77±0.11bc 0.70±0.09c 1.51±0.29ab 1.47±0.46ab 1.11±0.16b 1.03±0.30bc 1.43±0.57ab 0.91±0.21bc 

P (mg g-1) 4.84±0.24a 2.28±0.24c 2.66±0.23bc 4.59±0.31a 5.19±0.42a 3.22±0.28b 3.71±0.37b 3.06±0.44b 2.61±0.24bc 

K (mg g-1) 8.96±0.16ab 8.56±0.36b 8.82±0.45b 8.94±0.33ab 8.37±0.66b 8.70±0.54b 9.84±0.40a 8.44±0.50b 8.48±0.09b 

Mg (mg g-1) 2.60±0.05b 1.91±0.20d 2.27±0.11c 3.03±0.15a 2.75±0.15ab 2.09±0.12cd 2.50±0.13bc 2.41±0.16bc 1.86±0.10cd 

Ca (mg g-1) 7.10±0.26b 5.54±0.39c 6.39±0.53bc 7.25±0.38b 7.23±0.38b 7.00±0.23b 8.49±0.62a 6.65±0.64b 6.36±0.25bc 

S (mg g-1) 1.85±0.14d 3.22±0.15cd 5.82±0.23c 9.83±0.90b 9.12±0.13b 4.75±0.22c 18.26±1.83a 1.01±0.19d 0.71±0.08d 

Fe (µg g-1) 42.50±1.71b 28.79±0.51d 35.88±0.85c 47.82±1.53a 46.08±0.69ab 42.45±2.12b 39.90±2.10bc 50.30±0.75a 37.12±3.66c 

Cu (µg g-1) 7.62±0.49b 5.35±0.49c 5.10±0.07c 8.54±0.12ab 8.68±0.53a 5.97±0.35c 6.20±0.12c 7.18±0.61b 5.05±0.39c 

Zn (µg g-1) 15.35±1.94c 15.60±1.78c 15.70±1.99c 23.18±1.90b 22.06±1.10b 18.18±1.16bc 29.43±2.09a 22.77±1.22b 20.78±1.47b 

Mn (µg g-1) 30.08±1.43b 21.97±2.35c 23.32±1.75c 39.97±1.59a 27.22±0.27b 22.99±1.18c 23.53±1.13c 29.59±1.22b 19.85±1.18cd 

706 



31 

 

Table 3 Extractable concentration of metals in soils collected after 78 days of cultivation of strawberry fruits either without treatment (Control), either 707 

inoculated with Azospirillum brasilense (AZO), either inoculated with effective microorganisms (EM), either amended with pellet (300 mg N kg-1 soil) 708 

(Pellet), either amended with liquid digestate (75 mg N kg-1 soil) (LD), either combining AZO and pellet (AZO+Pellet), either combining AZO and LD 709 

(AZO+LD), either combining EM and pellet (EM+Pellet) or combining EM and LD (EM+LD). Data are reported as means and SE (n=5). The statistical 710 

significance was evaluated by means of ANOVA with Tukey post hoc-test. Different letters indicate statistically different values (p<0.05) 711 

 
Control AZO EM Pellet LD AZO+Pellet AZO+LD EM+Pellet EM+LD 

Cu (mg g-1) 2.99±0.18a 2.57±0.24ab 2.57±0.23ab 2.65±0.34ab 2.52±0.21ab 2.47±0.11b 2.46±0.23b 2.64±0.23ab 2.54±0.19ab 

Fe (mg g-1) 84.61±4.25 83.36±7.13 88.08±10.29 86.45±26.98 76.01±8.19 71.42±4.50 74.48±11.08 75.87±7.89 79.51±10.69ns 

Mn (mg g-1) 16.64±1.15ab 19.99±2.74a 19.99±2.75a 15.76±2.31b 15.51±1.78b 15.58±0.40b 12.81±1.20b 17.27±1.54ab 16.79±1.42ab 

Zn (mg g-1) 7.78±0.53 7.15±0.81 6.84±0.74 7.31±0.34 6.94±0.63 8.04±0.68 7.02±0.68 7.80±0.66 7.33±0.62ns 

712 
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 713 

Fig. 1 Color index (A), firmness (B), total soluble solids (C) and titratable acidity (D) of strawberry fruits 714 

harvested from plants grown in soils either without treatment (Control), either inoculated with Azospirillum 715 

brasilense (AZO), either inoculated with effective microorganisms (EM), either amended with pellet (300 mg 716 

N kg-1 soil) (Pellet), either amended with liquid digestate (75 mg N kg-1 soil) (LD), either combining AZO and 717 

pellet (AZO+Pellet), either combining AZO and LD (AZO+LD), either combining EM and pellet (EM+Pellet) 718 

or combining EM and LD (EM+LD). Data are reported as means and SE (n=5). The statistical significance was 719 

tested by means of ANOVA with Tukey post-test. Different letters indicate statistically different values (p<0.05) 720 



33 

 

 721 

Fig. 2 Citric acid (A), malic acid (B), sucrose (C), glucose (D), fructose (E) and sweetness index (F) of 722 

strawberry fruits harvested from plants grown in soils either without treatment (Control), either inoculated with 723 

Azospirillum brasilense (AZO), either inoculated with effective microorganisms (EM), either amended with 724 

pellet (300 mg N kg-1 soil) (Pellet), either amended with liquid digestate (75 mg N kg-1 soil) (LD), either 725 

combining AZO and pellet (AZO+Pellet), either combining AZO and LD (AZO+LD), either combining EM 726 

and pellet (EM+Pellet) or combining EM and LD (EM+LD). Data are reported as means and SE (n=5). The 727 

statistical significance was tested by means of ANOVA with Tukey post-test. Different letters indicate 728 

statistically different values (p<0.05) 729 
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 730 

Fig. 3 Total phenols (A), total flavonoids (B) and total flavonols (C) content of strawberry fruits harvested from 731 

plants grown in soils either without treatment (Control), either inoculated with Azospirillum brasilense (AZO), 732 

either inoculated with effective microorganisms (EM), either amended with pellet (300 mg N kg-1 soil) (Pellet), 733 

either amended with liquid digestate (75 mg N kg-1 soil) (LD), either combining AZO and pellet (AZO+Pellet), 734 

either combining AZO and LD (AZO+LD), either combining EM and pellet (EM+Pellet) or combining EM and 735 

LD (EM+LD). Data are reported as means and SE (n=5). The statistical significance was tested by means of 736 

ANOVA with Tukey post-test. Different letters indicate statistically different values (p<0.05) 737 
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 738 

Fig. 4 pH (A), nitrate concentration (B) and ammonium concentration (C) of soils collected after 78 days of 739 

cultivation of strawberry fruits either without treatment (Control), either inoculated with Azospirillum brasilense 740 

(AZO), either inoculated with effective microorganisms (EM), either amended with pellet (300 mg N kg-1 soil) 741 

(Pellet), either amended with liquid digestate (75 mg N kg-1 soil) (LD), either combining AZO and pellet 742 

(AZO+Pellet), either combining AZO and LD (AZO+LD), either combining EM and pellet (EM+Pellet) or 743 

combining EM and LD (EM+LD). Data are reported as means and SE (n=5). The statistical significance was 744 

tested by means of ANOVA with Tukey post-test. Different letters indicate statistically different values (p<0.05) 745 
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 746 

Fig. 5 Cap-scale analysis of soil bacterial community computed by fitting soil composition with microbial 747 

operational taxonomic unit (OTU) tables. Colors represent untreated or amended samples, while shapes indicate 748 

whether plant growth-promoting microorganisms (PGPMs) were inoculated. Control = control plants; Pellet = 749 

plants amended with pellet; LD = plants amended with liquid digestate; NO_PGPR = not inoculated plants; 750 

AZO = plants inoculated with Azospirillum brasilense; EM = plants inoculated with effective microorganisms 751 

 752 

 753 

 754 

 755 
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 758 

Fig. 6 Cap-scale analysis of soil fungal community computed by fitting soil composition with fungal operational 759 

taxonomic unit (OTU) tables. Colors represent untreated or amended samples, while shapes indicate whether 760 

plant growth-promoting microorganisms (PGPMs) were inoculated. Control = control plants; Pellet = plants 761 

amended with pellet; LD = plants amended with liquid digestate; NO_PGPR = not inoculated plants; AZO = 762 

plants inoculated with Azospirillum brasilense; EM = plants inoculated with effective microorganisms 763 

 764 

 765 

 766 

 767 

 768 

 769 
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 770 

Fig. 7 a. Bacterial taxonomy at the phylum level. b. Bacterial taxonomy at the genus level. c. Fungal taxonomy 771 

at the phylum level. d. Fungal taxonomy at the genus level. NO_PGPR = not inoculated plants; AZO = plants 772 

inoculated with Azospirillum brasilense; AZO+LD = plants amended with liquid digestate and inoculated with 773 

A. brasilense; AZO+Pellet = plants amended with pellet and inoculated with A. brasilense; EM = plants 774 

inoculated with effective microorganisms; EM+LD = plants amended with liquid digestate and inoculated with 775 

effective microorganisms; EM+Pellet = plants amended with pellet and inoculated with effective 776 

microorganisms; Control = control plants; LD = plants amended with liquid digestate; Pellet = plants amended 777 

with pellet 778 
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 779 

Fig. 8 Significant Multivariable Association between amendments and taxa. Only taxa with significant differences were reported; letters indicate statistical 780 

significance (p<0.01) obtained through Maaslin2 test. a. Bacterial taxa at the phylum level. b. Bacterial taxa at the genus level. c. Fungal taxon at the phylum 781 

level. Control = control plants; Pellet = plants amended with pellet; LD = plants amended with liquid digestate 782 
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