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Abstract

Green roofs are increasingly promoted for urban biodiversity conservation, but the value of these novel habitats is uncer-
tain. We aimed to test two hypotheses: (i) green roofs can support comparable invertebrate family and order richness, com-
position and abundances to ground-level habitats and (ii) green roofs planted with native species from local habitats will
support a richer invertebrate community at family and order level than other green roofs. We sampled the invertebrate
community on green roofs dominated by native grassland or introduced succulent species in Melbourne, Australia, and
compared these to the invertebrate community in ground-level sites close by, and sites with similar vegetation types. The
only significant differences between the invertebrate communities sampled on green roofs and ground-level habitats were
total abundance and fly family richness, which were higher in ground-level habitats. Second hypothesis was not supported
as invertebrate communities on green roofs supporting a local vegetation community and those planted with introduced
Sedum and other succulents were not detectably different at family level. The per cent cover of green space surrounding
each site was consistently important in predicting the richness and abundance of the invertebrate families we focussed on,
while roof height, site age and size were influential for some taxa. Our results suggest that invertebrate communities of
green roofs in Melbourne are driven largely by their surrounding environment and consequently the effectiveness of green
roofs as invertebrate habitat is highly dependent on location and their horizontal and vertical connection to other habitats.
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Introduction

Increasing urbanisation is associated with the loss of urban
green space as natural areas and parks are often destroyed by
new or infill developments (Jim 2004). However, in many cities
the area of green or vegetated roofs, a new and elevated form of
urban green space, is rapidly increasing. The area of green roofs
in some cities is already substantial. For example, Stuttgart has
more than 200 ha of green roofs, Dusseldorf has 73 ha

(Holzmuller 2009), Zurich 87 ha (Mayrand and Clergeau 2018),
Tokyo 55 ha (Carter and Fowler 2008) and Paris 44 ha (Mayrand
and Clergeau 2018). It is therefore not surprising that green
roofs are increasingly being considered as sites for urban biodi-
versity conservation. Cities are places of frequent disturbance,
which can prevent the successional development of plant com-
munities, remove important habitats, feeding and breeding
resources and disrupt animal behaviour, making otherwise
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suitable habitat inhospitable. The relative isolation of a green
roof may allow for plant species and animals sensitive to distur-
bance, or prone to competitive exclusion, to persist. Green roofs
have therefore been proposed as components of urban bio-
sphere networks (Kim 2004), as sites that could support metapo-
pulations of endangered butterflies in urban areas (Snep,
WallisDeVries, and Opdam 2011) and replacement habitats for
biodiverse areas destroyed by development (Lorimer 2008).
They are also included in biodiversity policy recommendations
and strategies in cities around the world, for example London
(Greater London Authority 2010), Toronto (Torrance et al. 2013)
and Basel (Kazmierczak and Carter 2010).

The majority of green roofs being constructed in cities are
classified as extensive green roofs because they have relatively
shallow, low nutrient, growing media and typically require low
levels of management input. This design limits the types of veg-
etation that can be grown to low growing, often drought-
tolerant species and prevents the establishment of taller vege-
tation. This means that most green roofs cannot have a com-
plex vegetation structure of multiple strata, which at ground
level are consistently associated with higher biodiversity levels
(Tews et al. 2004; Threlfall et al. 2017). Green roofs specifically
designed to improve biodiversity outcomes are often planted
with species native to the local area, because it is assumed na-
tive plants will attract more fauna species than exotic plants.
For example, 60% of the 105 green roof papers, Butler, Butler,
and Orians (2012) identified as advocating the use of native
plant species cited provision of habitat as a reason for doing so.
Policies in cities, such as Basel and Toronto also encourage the
planting of native species to increase the biodiversity value of
green roofs (Kazmierczak and Carter 2010; Torrance et al. 2013),
and green roof researchers often use a habitat-template ap-
proach to identify potentially suitable local native species for
evaluation (Lundholm 2006; Sutton et al. 2012; Van Mechelen,
Dutoit, and Hermy 2014). Other design features utilised to in-
crease the biodiversity on green roofs include using a variety of
different substrate materials, including transplanting ground-
level brownfield habitats to green roofs, introducing microtopo-
graphic variation to create different habitats and incorporating
structural diversity in the form of rocks, tiles or branches
(Gedge et al. 2010).

Invertebrates are one of the most frequently reported groups
of organisms to utilise green roofs. Numerous studies have sur-
veyed invertebrates on green roofs and commonly record a di-
versity of orders, including Araneae (spiders), Coleoptera
(beetles), Collembola (springtails), Lepidoptera (butterflies) and
Hymenoptera (bees, wasps and ants) (Coffman and Davis 2005;
Gedge and Kadas 2005; Baumann 2006; Brenneisen 2006; Kadas
2006; Colla, Willis, and Packer 2009; MacIvor and Lundholm
2011; Schindler, Griffith, and Jones 2011; Tonietto et al. 2011;
Madre et al. 2013; Rumble and Gange 2013; Braaker et al. 2014;
Blank et al. 2017; Joimel et al. 2018). Green roofs also have the
potential to support pollinators as suggested by Tonietto et al.
(2011), Ksiazek et al. (2014) and MacIvor, Ruttan, and Salehi
(2015), all of whom found that green roofs are frequently uti-
lised by a diversity of bee species. This is of interest given con-
cerns about recent pollinator decline and our continued
reliance on them for pollination services (Potts et al. 2010; Hall
et al. 2017).

Many studies of green roof biodiversity have been conducted
in isolation. Few researchers have compared green roofs to
bare, non-vegetated conventional roofs (e.g. a negative control)
(Williams, Lundholm, and Scott Macivor 2014) presumably be-
cause there is little insight to be gained. The studies that have

found green roofs to be more biodiverse than conventional roofs
(Pearce and Walters 2012; Partridge and Clark 2018; Belcher
et al. 2019). Somewhat surprisingly, relatively few studies have
undertaken more conservation relevant comparison of inverte-
brate communities on extensive green roofs to those found in
nearby equivalent ground-level habitats that have similar vege-
tation (for exceptions, see Ksiazek, Fant, and Skogen 2012;
Braaker et al. 2014, 2017). There has also been little evaluation
of green roofs specifically designed for biodiversity (Butler,
Butler, and Orians 2012; Williams, Lundholm, and Scott Macivor
2014). The exceptions are Kadas (2006) who found that brown-
field sites at ground level had higher invertebrate diversity than
sedum green roofs and green roofs designed to replicate the
brownfield sites, although these were relatively new at the time
of the surveys. Pearce and Walters (2012) also found signifi-
cantly higher bat feeding activity over biodiverse roofs com-
pared to succulent and conventional roofs in London, perhaps
reflecting increased invertebrate prey abundance.

The aim of this article is to test two hypotheses, namely
that: (i) green roofs support family- and order-level richness,
composition and abundance of invertebrates comparable with
ground-level habitats and (ii) green roofs designed specifically
to support native organisms support greater family- and order-
level richness and abundance of invertebrates than green roofs
not specifically designed for this purpose. To evaluate these hy-
potheses, we compared the invertebrate community on green
roofs with communities from nearby ground-level vegetation
and also ground-level vegetation with similar composition to
the roofs. Because there had been no prior published studies of
invertebrates on Australian green roofs, we chose to examine
the broad range of invertebrates occurring on them. We com-
pared the abundance and richness of invertebrates at order
level and family level (Coleoptera, Diptera, Hemiptera and
Hymenoptera). We focussed particularly on pollinator species
(bees and hoverflies) due to their importance for ecosystem
services and as a means of comparison with northern hemi-
sphere green roof invertebrate studies.

Another aim is to determine the properties of the green roofs
that were most important in explaining any observed differen-
ces in the invertebrate assemblage between sites. This could
provide information critical for the effective siting and design of
the future green roofs and enable the development of general
ecological design principles. We investigated five factors likely
to influence invertebrate composition. Per cent cover of vegeta-
tion in the area surrounding the roof (Smith et al. 2006), green
roof age (Kadas 2006; Sattler et al. 2010), vegetation cover on the
roof and roof size were hypothesised to positively influence in-
vertebrate richness and abundance, while building height was
hypothesised to have negative effect (MacIvor 2016).

Methods
Study sites

Six extensive green roofs in Melbourne, Australia, were avail-
able for this study (Supplementary Table S1). Melbourne (37� 490

S; 144� 580 E) has a Mediterranean-type climate, with warm, dry
summers and cool, wet winters, with an average monthly rain-
fall of 54.1 mm (Australian Bureau of Meteorology 2018). The
Australian green roof industry is under-developed compared to
that of Europe and North America (Williams, Rayner, and
Raynor 2010) and as a result there were relatively few extensive
green roofs available to sample (<20).
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The selected green roofs were either planted with a range of
native forb and grass species from the critically endangered
grasslands to the north and west of Melbourne (sites 1, 2 and 3),
which are considered a habitat template for south-eastern
Australian green roofs (Williams, Rayner, and Raynor 2010;
Rayner et al. 2016), or with succulents, primarily introduced
Sedum species (sites 4, 5 and 6) (Supplementary Table S1). All
green roofs sampled had a scoria (lava rock)-based growing me-
dium, similar to that described by Farrell et al. (2012), that was
less than 300 mm deep. All roofs were un-irrigated. They were
also relatively new, with the youngest constructed in January
2013, and the oldest in 2006 (Supplementary Table S2).

Each green roof was paired with two types of ground-level
site, a ‘companion’ site and a ‘nearby’ site, to compare the in-
vertebrate communities (Supplementary Fig. S1 and
Supplementary Table S1). Companion sites were garden beds of
similar sizes and had similar vegetation to their matched green
roof with many of the same grassland or succulent species
planted at both the roof and its companion site. They were as
close as possible to their green roof; all were located within
900 m, except for sites 5 and 6 where the closest suitable sites
were 7.2 km and 6 km away, respectively. We restricted sam-
pling to vegetated areas of roofs for three reasons: (i) we are in-
terested in whether these new structures contain invertebrates;
(ii) unvegetated roof area provide extremely limited resources
and would only contain taxa fleetingly resident; and (iii) access
to vegetated roof areas is constrained by tight health and safety
regulation, and access to unvegetated areas was not possible at
most of our sites. As this is a natural experiment utilising exist-
ing sites, vegetation composition between green roofs and com-
panion sites could not be identical. Grassland green roofs and
companion sites had considerably more native plant species
than the succulent green roofs and their companion sites.
Nearby sites were vegetated areas close to the green roof—no
more than 200 m away—and of similar size. They were predom-
inantly small parks containing mown grass with scattered
shrubs and few trees. By pairing each green roof with two
ground-level sites, we were able to investigate the relative im-
portance of vegetation proximity and similarity to the structure
of invertebrate communities on green roofs. This design led to
data collection at 18 sites clustered around six green roofs (six
green roofs; six companion sites; six nearby sites).

Five site characteristics that have previously been shown to
influence invertebrate diversity were also measured, either in
the field or via aerial imagery using a Geographic Information
System (Supplementary Table S1). The vegetation cover in a
100-m radius around each site was calculated by using 100
points in i-Tree Canopy (USDA Forest Service 2013) a web-based
tool that facilitates measurement of landscape characteristics
using Google Map aerial photos. Roof age ranged from 1 to
7 years. Age was based on the year of construction and land-
scaping of the site and was determined by consulting records
held by local councils and building owners or managers. Roof
height ranged from 3.3 to 45 m and was measured using a cli-
nometer. Vegetation cover on the roof was the average cover of
three 50 cm � 50 cm quadrats, appropriate for low vegetation,
placed using a stratified random technique. The size of each
green roof was measured in the field to the nearest square me-
tre and vegetation cover was similar across the roofs.

Invertebrate sampling

Invertebrate communities were surveyed using two methods: (i)
pitfall traps, which collect ground-active taxa (Luff 1975) and (ii)

pan traps, which are widely used for sampling agricultural pests
(Southwood 1978), and to sample the abundance and diversity
of a variety of insect communities (Leong and Thorp 1999) pre-
dominantly sample flying invertebrates. This combination of
methods allowed us to survey diurnal and nocturnal inverte-
brates (Hill 2005). The sampling design aimed to capture a com-
parative sample between sites without assessing the full
assemblage composition within sites.

Three 30-ml tube pitfall traps were installed in a line 50 cm
from each other at each site. Each trap was placed in a polyvinyl
chloride tube, with the upper edge of the pipe bevelled, so that
the test tube opening was flush with the soil surface. To limit
the ‘digging-in effect’ (increased catch due to the disturbance of
digging the pitfall trap hole) (Digweed et al. 1995) these were
inserted 1 week prior to each trapping period and were stop-
pered. Traps were filled with 15 ml of ethanol and ethylene gly-
col to preserve invertebrates and left open for 7 days in autumn
(19–26 April) and spring (23–30 September). The same trap loca-
tions were used during both trapping periods.

Three coloured pan traps (white, blue and yellow bowls,
15 cm in diameter, 4 cm deep) were placed haphazardly
throughout each site for a 24-h period. Traps were half-filled
with water and a drop of detergent to help break surface ten-
sion. Pan traps were left open for six 24-h periods at each site;
three times in autumn (2–11 April), and three times in spring (30
September–3 October) 2013.

All invertebrates were transferred to vials of 70% ethanol in
the field for storage. In the laboratory, all were sorted to order,
class (Collembola, Diplopoda) or superorder (Acari) using keys
in CSIRO Division of Entomology (1991). Samples were sorted
using a Nikon stereomicroscope. All Coleoptera, Diptera,
Hemiptera and Hymenoptera were sorted to Family using
Lawrence et al. (2000) for Coleoptera, Hackston (2015), McAlpine
(1958) and Cutter (2004) for the Diptera and CSIRO (2012) for the
Hymenoptera. We chose to focus on insect taxa that were abun-
dant in the samples, are highly diverse taxonomically and are
more likely to have arrived on the roofs independently, rather
than through passive transport (e.g. wind or in soil, which is
likely for, for example, the Collembola). All bee and hoverfly
specimens were then sorted to species where possible, and oth-
erwise to morphospecies. Larvae were excluded from analyses
because they were not the target of the trapping methods.
Representative bee and hoverfly specimens from each species
were air dried and pinned for taxonomic verification by Dr Ken
Walker, an expert entomologist from Museums Victoria,
Melbourne, and a reference collection assembled. Families iden-
tified were verified by staff from the Australian Museum. We
pooled data from each trapping method and used the average
per site across the two seasons sampled. With these data we
calculated (i) total invertebrate abundance, (ii) the number of
orders found per site (ordinal richness), (iii) Coleoptera family
richness, (iv) Diptera family richness, (v) Hemiptera
(Heteroptera, Auchenorrhyncha and Sternorrhyncha) family
richness, (vi) Hymenoptera family richness; and (vii) combined
richness and abundance of bee (Hymenoptera: Apidae) and hov-
erfly (Diptera: Syrphidae) (hereafter pollinator) species.

Analysis

To assess the richness and abundance of invertebrate orders,
richness of Coleoptera, Diptera, Hemiptera and Hymenoptera
families and species richness and abundance of pollinators we
used generalised linear mixed models (GLMMs) using the lme4
package (Bates et al. 2015) in R (R Core Team 2017), where ‘site’
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was considered a random effect (to indicate which of the six
site clusters each sample was associated with) and ‘type’ a fixed
effect. Type included green roofs, companion and nearby site
types. All response variables were continuous. Order abundance
and beetle family richness data were log transformed to im-
prove the normality of the data. Models were run using a
Gaussian distribution for total abundance (log), Coleoptera,
Diptera, Hemiptera and Hymenoptera family richness, pollina-
tor abundance (log) and a Poisson distribution for ordinal rich-
ness. Due to large abundance of Collembola in most sites, we
re-ran these analyses with and without Collembola to assess
their impact on the results. To test the effect of grassland versus
succulent vegetation types on roofs specifically, we compared
the mean of each of the invertebrate response variables using a
t-test. We then performed a series of one way analysis of simi-
larity (ANOSIM) using PRIMER (Clarke and Gorley 2006), to deter-
mine any differences in invertebrate assemblage composition
between green roofs and companion sites, green roofs and
nearby sites, and between grassland and succulent green roofs.
Analyses were based on log þ1 abundances, used to calculate a
Bray–Curtis similarity with 999 permutations for each test. To
evaluate the effect of site characteristics on the invertebrate as-
semblage, we again ran GLMMs. Due to small sample size, each
site characteristic was entered into a univariate model only,
where variables were standardised to have a mean of zero and
standard deviation of one. GLMMs were chosen here to allow
for the inclusion of ‘Site’ as a random effect. The fit of each
model was assessed using the Akaike Information Criterion cor-
rected for small sample size (AICc), using package ‘AICcmodavg’
(Mazerolle 2016). The model with the lowest AICc and highest
model weight (wi) were considered as the top model. Models
within two AICc points of the top model were also considered to
have strong support and are reported (Burnham and Anderson
2002).

Results

In total 32 489 organisms were collected, but most of these were
from the Collembola (25 457 samples). The majority of the speci-
mens were collected from companion sites (20 980 individuals),
followed by nearby sites (9360 individuals) and green roofs (2149
individuals). There was no significant difference in the abun-
dance of individuals caught between seasons (P¼ 0.9).Thirteen
orders of invertebrates were collected: Amphipoda, Araneae,
Coleoptera, Collembola, Dermaptera, Diptera, Hemiptera,
Hymenoptera, Isopoda, Lepidoptera, Orthoptera, Thysanoptera
and Trichoptera (Table 1).

Effects of site type and vegetation type

Total invertebrate abundance and composition
Companion sites and nearby sites both had a significantly
greater abundance of individuals than green roofs (P< 0.001 and
P¼ 0.01, respectively). No significant differences were found be-
tween sites types for ordinal richness. There was no difference
between abundance and ordinal richness on grassland or succu-
lent roofs (P> 0.05). The composition of ordinal assemblages did
not significantly differ across site types or roof types, P> 0.05 for
all tests. Results for abundance and richness did not change af-
ter removing Collembola from the dataset.

Families: Coleoptera, Diptera, Hemiptera and Hymenoptera
We found Diptera to be the most family rich group in this study,
followed by Hymenoptera and Coleoptera (Table 2). Nearby sites

had a significantly greater richness of Diptera (flies) than green
roofs (P¼ 0.02), however companion and green roof sites had
comparable Diptera richness (P> 0.05). No other significant dif-
ferences were found between site types for Coleoptera (beetles),
Hymenoptera (bees, wasps, ants) or Hemiptera (true bugs) fam-
ily richness (P> 0.05 in all cases). There was a marginally greater
Coleoptera family richness on grassland roofs than succulent
roofs (P¼ 0.047), where only one of the three succulent roofs
were found to contain beetles. No differences between family
richness on grassland or succulent roofs were found. ANOSIM
analysis revealed the composition of Diptera families differed
significantly between ground-level habitats and green roofs,
where green roofs had a significantly different Diptera composi-
tion to companion sites (P¼ 0.028) and nearby sites (P¼ 0.006).
Ground-level sites had more individuals within the Sciaridae,
Cecidomyiidae, Ephydridae and Phoridae families while the
Chironomidae were abundant on green roofs. The composition
of Coleoptera, Hemiptera and Hymenoptera families did not sig-
nificantly differ across site types or roof types.

Pollinators: bees and hoverflies
We collected 137 individual bees (Hymenoptera: Apidae) and
hoverflies (Diptera: Syrphidae) across all site types. Seven bee
species (or morphospecies) were collected. These included the
introduced European Honeybee Apis mellifera (Linnaeus 1758),
and six native Australian bee species all within the Halictidae:
Homalictus (Homalictus) sphecodoides (Smith 1853), Lasioglossum
(Chilalictus) brunnesetum Walker, 1995, Lasioglossum
(Parasphecodes) hilactum (Smith 1853), Lasioglossum (Chilalictus)
cognatum (Smith 1853) and two morphospecies of Homalictus
Cockerell 1919 (hereafter Homalictus sp. 1 and 2). Homalictus
(Homalictus) sphecodoides, Homalictus sp. 1 and 2 and Apis mellifera
all occurred on at least one green roof. One native hoverfly spe-
cies Melangyna (Austrosyrphus) viridiceps (Macquart 1847) was
detected on three of the green roofs. Due to the low number of
species detected, we analysed total abundance and species rich-
ness only. There was no difference in the abundance or richness
of pollinator species between green roof and both types of
ground-level sites. There was no difference in pollinator abun-
dance or richness between grassland and succulent roofs or
grassland and succulent ground-level sites.

Effect of habitat variables

The per cent cover of green space surrounding each site was the
most consistent predictor of many of the invertebrate commu-
nities’ biodiversity indices. Increases in green space cover sur-
rounding each site were positively correlated with the richness
and abundance of all aspects of the invertebrate community
sampled (Table 3). Higher green roofs were associated with a de-
crease in total invertebrate abundance and fly family richness
(Table 3). Increasing site size positively influenced beetle family
richness, and increasing site age positively influenced fly family
richness (Table 3).

Discussion

We found that green roofs in Melbourne have lower inverte-
brate abundance than their respective nearby and companion
sites. Other studies have also established that green roofs have
a lower abundance of invertebrates when compared with
ground-level sites (e.g. Colla, Willis, and Packer 2009; MacIvor
and Lundholm 2011; Tonietto et al. 2011). Only Kadas (2006) has
found that green roofs had equivalent or greater abundance of
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invertebrates and she notes this was probably due to a high
number of snails introduced on the pre-grown sedum mats.

We found no difference in the order-level composition of
green roof invertebrate communities when compared to adja-
cent ground-level vegetation and similar ground-level vegeta-
tion nearby. Of the four orders identified to family level, only
the composition of fly families differed significantly between
green roofs and both nearby and companion ground-level habi-
tats. This may be driven by a greater abundance of individuals
in certain Diptera families at ground level, but three of four
green roofs also had a greater proportion of individuals in the
family Chironomidae than the ground-level sites. Most species
in this family have aquatic larvae and short-lived adults that
eat nectar and pollen. Their relatively high abundances on roofs
may be due to colonisation of, and probable breeding in, stand-
ing water stored in the green roof drainage layers by individuals
originating from nearby ground-level water bodies, which in-
cluded ornamental ponds at two sites and ephemeral wetlands
at a neighbouring brownfield development site. This highlights
the influence of the surrounding landscape on the composition
of green roof invertebrate communities.

Low numbers of native bees and hoverflies were found to
use both succulent and grassland green roofs. However, no sig-
nificant difference in pollinator richness, abundance or compo-
sition between green roof and ground-level sites and succulent
and grassland sites was detected. This result differs from other
studies, such as Ksiazek, Fant, and Skogen (2012) who found
that green roofs supported a lower abundance of bees than
nearby urban green space but may reflect the low abundance

and richness of native bees found in central Melbourne (Mata
et al. 2015) where most of the green roofs sampled were located.

Few studies have compared the biodiversity of green roofs
with different types of vegetation with the exceptions being
Madre et al. (2013), who investigated arthropods and Joimel
et al. (2018), who sampled Collembola. Apart from marginally
greater beetle family richness, the invertebrate communities on
the native grassland green roofs, that theoretically should fa-
vour Melbourne’s endemic invertebrate biodiversity, were not
substantially different from the succulent green roofs domi-
nated by introduced sedum species and other exotic succulents.
We expected to see a greater influence of green roof vegetation
type across all invertebrate groups sampled because increased
vegetation complexity and high proportion of native plant spe-
cies is associated with higher biodiversity at ground level (Tews
et al. 2004; Threlfall et al. 2017) and on green roofs (Madre et al.
2013). The relatively young age of all the green roofs sampled
could mean that differences are yet to develop and long-term
monitoring may produce different results. Alternatively, be-
cause there are very few areas of native grassland remaining in
Melbourne, and most of these are on the city’s outskirts distant
from the green roofs (Williams, McDonnell, and Seager 2005),
specialist native grassland invertebrates may be unavailable to
colonise the green roofs or the small patches of grassland we
sampled. In addition, the ground-storey vegetation in most ur-
ban parks is dominated by exotic grasses and herbs meaning
that native invertebrates, particularly specialist species that uti-
lise native ground-storey plants, may be absent from large parts
of the urban landscape. Confirming this is difficult due to the

Table 1: Taxa sorted by total abundance

Site type Green roof Companion Nearby

Taxon Median (Min, max) Median (Min, max) Median (Min, max) Total

Collembola 31.5 (0, 690) 1580.5 (5, 11 496) 1134.5 (2, 2553) 25 457
Diptera 49.5 (19, 87) 90.5 (20, 153) 258 (69, 772) 2734
Hymenoptera 63 (7, 153) 89 (62, 498) 81.5 (21, 191) 1961
Hemiptera 37 (4, 185) 38.5 (5, 824) 25.5 (13, 45) 1485
Trichoptera 5.5 (0, 149) 0.5 (0, 11) 9.5 (0, 36) 285
Acari 2.5 (0, 14) 9 (3, 37) 7.5 (1, 44) 219
Coleoptera 1.5 (0, 7) 5.5 (0, 25) 5 (0, 21) 115
Araneae 3 (0, 6) 6 (1, 17) 7.5 (2, 12) 105
Diplopoda 0 (0, 2) 3.5 (1, 14) 1 (0, 7) 48
Lepidoptera 1 (0, 5) 0.5 (0, 4) 0.5 (0, 4) 25
Isopoda 0 (0, 0) 0.5 (0, 11) 0 (0, 2) 18
Dermaptera 0 (0, 0) 0 (0, 14) 0 (0, 0) 15
Orthoptera 0 (0, 1) 0 (0, 5) 0 (0, 2) 13
Gastropoda 0 (0, 1) 0 (0, 1) 0 (0, 1) 4
Thysanoptera 0 (0, 1) 0 (0, 0) 0 (0, 3) 4
Amphipoda 0 (0, 0) 0 (0, 1) 0 (0, 0) 1
Total 2149 20 980 9360 32 489

Table 2: Family richness of the most abundant invertebrate orders

Taxa Green roof Companion Nearby Total

Median Min Max Median Min Max Median Min Max

Coleoptera richness 1 0 2 3 0 5 3 0 9 12
Hymenoptera richness 3.5 2 5 5 1 5 4 1 6 19
Hemiptera richness 3.5 2 4 3 1 5 2 1 4 6
Diptera richness 11 10 16 15 7 21 18 12 24 35
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lack of research on the distribution and composition of
Melbourne’s invertebrate communities and the effects of urban-
isation on them, which are hampered by a lack of taxonomic ex-
pertise (Yen 2011).

We found that roof height negatively influenced ordinal
abundance and fly family richness. This result is similar to
other studies, such as MacIvor (2016), who found a decline in
the number of solitary bees and wasps utilising artificial nests
with increasing green roof height, and Madre et al. (2013), who
found height negatively affected the richness and abundance of
spiders and taxonomic composition of true bugs and beetles on
French green roofs. As green roof height increases, inverte-
brates, particularly those with limited dispersal ability, may
find them increasingly difficult to colonise, leading to less di-
verse invertebrate communities compared to ground level. Our
results also suggest that the insects that are able to disperse to
green roofs do not increase in abundance to numbers similar to
ground-level sites. This could be because the sampled green
roofs could not provide sufficient resources for a large abun-
dance of individuals due to low primary productivity caused by
the low nutrient inorganic substrates used. Similar processes
have been shown to influence invertebrate communities in
ground-level urban habitats (Shochat et al. 2004; Threlfall, Law,
and Banks 2012).

The per cent cover of surrounding green space was the most
frequent habitat variable affecting green roof invertebrate com-
munities in our study. It was positively correlated with all
measures of the assemblage–total abundance, ordinal richness,
richness of all families, and richness and abundance of pollina-
tor species (bees and hoverflies). This finding is consistent with
other studies which have found the abundance and/or richness
of bees (Tonietto et al. 2011; Braaker et al. 2014; MacIvor 2016;
Ksiazek-Mikenas 2018), beetles (Braaker et al. 2014; Ksiazek-
Mikenas 2018; Kyrö et al. 2018) and weevils (Braaker et al. 2014)
increased with greater proportions of green space in the sur-
rounding landscape.

The age and size of the green roofs did not consistently af-
fect the green roof invertebrate communities. Site age was
expected to increase habitat complexity leading to an enhance-
ment of invertebrate taxa richness, similar to findings from
ground-level urban green space (Smith et al. 2000; Sattler et al.
2010), and a recent study in Melbourne that demonstrated that
older green spaces with more native vegetation cover provided
habitat for a range of native bee species (Threlfall et al. 2015).
However, green roofs are relatively new in Australian cities

(Williams, Rayner, and Raynor 2010) and the oldest green roof in
this study was only 7 years old, and the others were between 1
and 3 years. Consequently, age effects may become more appar-
ent in the future. The abundance and richness of invertebrates
collected from green roofs was expected to increase with green
roof area, but area was not found to consistently influence in-
vertebrate communities, only affecting beetle family richness.
Similar to the roof age, the range of roof areas was quite narrow
due to the still limited number of extensive green roofs in
Melbourne. Braaker et al. (2014) also found that green roof area
was not an important determinant of their invertebrate com-
munities but we acknowledge that different invertebrate taxa
may respond to area differently.

This study sampled invertebrates on all available extensive
green roofs in Melbourne in spring and autumn, using standard
methods (pitfall and pan traps) over adequate time periods [7
days (once per season) and 24 h (three times each season), re-
spectively]. We recognise that replication is low due to the rela-
tively few extensive green roofs in Melbourne and that using
additional sampling methods over longer time periods would
probably have collected a greater abundance and richness of
taxa. There is also potential sampling bias in our results as pan
traps may not effectively sample larger bees (Roulston, Smith,
and Brewster 2007) although it should be noted there are no
Bombus species on mainland Australia (Buttermore 1997).
Notwithstanding these limitations, our results are sufficient for
an initial comparison with ground-level sites sampled in the
same way. We found relatively few invertebrates utilising the
green roofs and the resulting small dataset has restricted the
explanatory power of some of our analyses. For example, we
have not been able to run multivariate mixed models that could
better elucidate the drivers of invertebrate responses. Similarly,
the level of taxonomic resolution we have been able to achieve
limits interpretation of our results. Rather than focussing on a
specific taxa inhabiting green roofs and identifying samples to
species level, because there have been no prior published stud-
ies of invertebrates on Australian green roofs, we chose to ex-
amine the broad range of invertebrate orders occurring on
them. The most abundant orders were further identified to fam-
ily level but resources did not allow species-level identification
which is problematic for many Australian insects due to the
large number of undescribed species (Yeates, Harvey, and
Austin 2003). However, higher levels of taxonomic resolution
can reflect patterns at lower taxonomic resolution in terrestrial
invertebrate communities (Timms et al. 2013).

Table 3: Strongest competing univariate linear mixed models of invertebrate communities on green roof, companion sites and nearby sitesa

Habitat characteristic Invertebrate metric AICc AICc weight

% Green space (þ) Ordinal richness 13.1255 0.5357
Ordinal abundance 69.878 0.2761
Pollinator richness 13.5341 0.835
Pollinator abundance 46.1642 0.913
Beetle family richness 86.2208 0.4454
Hymenoptera family richness 68.6346 0.8832
Bug family richness 63.6905 0.7732
Fly family richness 106.6914 0.4397

Height (�) Ordinal abundance 68.743 0.4869
Fly family richness 108.1221 0.215

Size (þ) Beetle family richness 87.6881 0.2139
Age (þ) Fly family richness 108.1915 0.2077

aOnly models within two AICc points of the top model are listed. The sign within parentheses indicate the direction of the relationship for each model parameter.
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Despite our small sample size and coarse taxonomic resolu-
tion, our results suggest that although invertebrate abundance
on green roofs in Melbourne is lower than nearby ground-level
sites their community composition is similar, and they are sig-
nificantly influenced by the amount of green space in the sur-
rounding landscape. We did not find that green roofs
specifically designed to support local biodiversity had greater
invertebrate habitat value than succulent green roofs, although
all of the green roofs sampled were comparatively young and
differences may become more apparent as the roofs age.

Our results suggest that green roofs in Melbourne largely
rely on the surrounding environment for their invertebrate bio-
diversity and that their effectiveness as invertebrate habitat is
highly dependent on location and their horizontal and vertical
connection to other habitats. This is consistent with studies in
Zurich, Toronto, Chicago and Helsinki (Tonietto et al. 2011;
Braaker et al. 2014; MacIvor 2016; Kyrö et al. 2018). When in close
proximity to green space and natural areas, and at low height,
green roofs have considerable habitat potential and could act as
stepping stones, linking otherwise isolated habitat pockets as
part of an urban habitat corridor for mobile invertebrates
(Braaker et al. 2014; Mayrand and Clergeau 2018). Long term and
species-specific studies will be necessary to further refine our
understanding of the biodiversity value of green roofs, verify
the long-term effect of vegetation type and the surrounding
landscape and to establish if green roofs are able to support the
colonisation of target species.

Supplementary data

Supplementary data are available at JUECOL online.
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