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Abstract. A scaled power product recurrence is examined here via

a matrix approach which both recovers and extends some recent re-
sults found using standard difference equations theory alone. Closed

forms for the associated sequence terms are derived for a range of re-

cursion parameter conditions in which so called Catalan polynomials
are integral to the process.

1. Introduction

1.1. Background. Let c ∈ Z+ be an arbitrary scaling variable. Consider,
given z0 = a, z1 = b, the scaled power product recurrence

(1.1) zn = c(zn−1)p(zn−2)q, n ≥ 2,

which defines a sequence {zn}∞n=0 = {zn}∞0 = {zn(a, b, p, q; c)}∞0 with first
few terms

{zn(a, b, p, q; c)}∞0
= {a, b, aqbpc, apqbp

2+qcp+1, ap
2q+q2bp

3+2pqcp
2+p+q+1,

ap
3q+2pq2bp

4+3p2q+q2cp
3+p2+p(2q+1)+q+1, . . .}.(1.2)

The non-scaled c = 1 version {zn(a, b, p, q; 1)}∞0 has its origins in an ob-
servation by M. W. Bunder from the mid-1970s. The reader is referred to
background information on this, and subsequent related work, in a forerun-
ner article by the present authors [4].

This paper enhances [4] in which closed forms for zn(a, b, p, q; c) were
found, using standard difference equations theory, according to root types
of the characteristic equation 0 = λ2 − pλ− q associated with the variable
tn = ln(zn) that was introduced to underpin a formulation process. We
summarize these as follows:

Case I. For non-degenerate characteristic roots (p2 + 4q 6= 0) it was shown
that, subject to the constraints p+ q = 1, q 6= −1 (or p 6= 2), then writing
p(q) = 1− q,

(1.3) zn(a, b, p(q), q; c) = aNa(q,n)bNb(q,n)cNc(q,n), n ≥ 0,
1



where

Na(q, n) =
q + (−q)n

1 + q
,

Nb(q, n) =
1− (−q)n

1 + q
,

Nc(q, n) =
1

1 + q

(
n− [1− (−q)n]

1 + q

)
.(1.4)

Case II. The degenerate characteristic roots case (p2 + 4q = 0) was shown
to correspond to particular values q = −1 and p = 2 (with the Case I
condition p + q = 1 still holding), whereupon the sequence delivered by
(1.1) has

(1.5) zn(a, b, 2,−1; c) = aDa(n)bDb(n)cDc(n), n ≥ 0,

as its general term, for which

Da(n) = 1− n,
Db(n) = n,

Dc(n) = n(n− 1)/2.(1.6)

1.2. This Paper. It was shown in [4] how—subject to the balanced-power
condition p + q = 1—recurrence parameters dictate the nature of each so-
lution type, as indicated, and a fundamental link between them was high-
lighted (that is to say, the exponent functions of (1.6) are the limiting case
q → −1 of those in (1.4)). In this paper we adopt an entirely different
approach to the analysis of the sequence {zn(a, b, p, q; c)}∞0 using matrices.
In doing so Cases I and II are recovered naturally by the methodology,
and a new case is also examinable which is subject only to the constraint
p + q 6= 1; the form of zn(a, b, p, q; c) in this instance emerges in terms
of so called Catalan polynomials, and its derivation provides a framework
for the rest of the paper in which the results of Cases I and II follow in
consequence. We will see, therefore, that the work presented in [4] is both
validated and extended here.

2. Results and Analysis

2.1. Basic Formulation. We write

(2.1) zn(a, b, p, q; c) = aαn(p,q)bβn(p,q)cγn(p,q), n ≥ 0,

as the solution to (1.1) at the outset, and proceed accordingly. Our aim is
to provide as complete a description of the power functions αn(p, q), βn(p, q)



and γn(p, q) as possible. Combining (1.1) and (2.1) then

zn = c(zn−1)p(zn−2)q

= c[aαn−1(p,q)bβn−1(p,q)cγn−1(p,q)]p[aαn−2(p,q)bβn−2(p,q)cγn−2(p,q)]q,(2.2)

in turn giving individual recurrences

αn(p, q) = pαn−1(p, q) + qαn−2(p, q),

βn(p, q) = pβn−1(p, q) + qβn−2(p, q),

γn(p, q) = pγn−1(p, q) + qγn−2(p, q) + 1,(2.3)

which we express as

(2.4) Fn(p, q) = H(p, q)Fn−1(p, q) + K,

where

Fn(p, q) =

(
αn(p, q) βn(p, q) γn(p, q)
αn−1(p, q) βn−1(p, q) γn−1(p, q)

)
,

K =

(
0 0 1
0 0 0

)
(2.5)

are 2× 3 matrices, and H(p, q) is the 2-square matrix

(2.6) H(p, q) =

(
p q
1 0

)
.

Equation (2.4) yields Fn(p, q) = H(p, q)[H(p, q)Fn−2(p, q) + K] + K =
H2(p, q)Fn−2(p, q)+H(p, q)K+K and, after another application, Fn(p, q) =
H2(p, q)[H(p, q)Fn−3(p, q) + K] + H(p, q)K + K = H3(p, q)Fn−3(p, q) +
H2(p, q)K + H(p, q)K + K. The procedure is exhausted after application
n− 2, at which point

(2.7) Fn(p, q) = Hn−1(p, q)S + Tn(p, q)K,

with

(2.8) S = F1(p, q) =

(
α1(p, q) β1(p, q) γ1(p, q)
α0(p, q) β0(p, q) γ0(p, q)

)
=

(
0 1 0
1 0 0

)
and (denoting the 2× 2 identity matrix as I2)

(2.9) Tn(p, q) = Hn−2(p, q) + Hn−3(p, q) + · · ·+ H2(p, q) + H(p, q) + I2.

With the fundamentals of our strategy finished, we partition results ac-
cording to cases alluded to in Section 1.2. First, however, we introduce
the Catalan polynomials on which our closed forms for the exponent func-
tions αn(p, q), βn(p, q) and γn(p, q) of a, b and c are based. They are a
particular family of polynomials—the initial ones being P0(x) = P1(x) = 1,
P2(x) = 1− x, P3(x) = 1− 2x, P4(x) = 1− 3x+ x2, P5(x) = 1− 4x+ 3x2,
P6(x) = 1− 5x+ 6x2 − x3, P7(x) = 1− 6x+ 10x2 − 4x3, and so on—with

Pn(x) =
∑bn/2c
i=0

(
n−i
i

)
(−x)i for n ≥ 0.



2.2. The Case p+ q 6= 1. From (2.9) we obtain almost immediately

(2.10) Tn(p, q) = [H(p, q)− I2]−1[Hn−1(p, q)− I2].

Now

(2.11) [H(p, q)− I2]−1 =
1

p+ q − 1

(
1 q
1 1− p

)
,

which requires H(p, q)−I2 be non-singular, or p+q 6= 1. With this in mind
we formulate the matrix Hn−1(p, q) as

Hn−1(p, q) =

(
p q
1 0

)n−1
= pn−1

(
Pn−1(−q/p2) (q/p)Pn−2(−q/p2)

(1/p)Pn−2(−q/p2) (q/p2)Pn−3(−q/p2)

)
(2.12)

by appeal to the fact that any matrix of the form
(
1 x
y 0

)
has an nth power

which is expressible in terms of Catalan polynomials as

(2.13)

(
1 x
y 0

)n
=

(
Pn(−xy) xPn−1(−xy)

yPn−1(−xy) xyPn−2(−xy)

)
, n ≥ 2.

Thus,

Hn−1(p, q)− I2

=

(
pn−1Pn−1(−q/p2)− 1 pn−2qPn−2(−q/p2)
pn−2Pn−2(−q/p2) pn−3qPn−3(−q/p2)− 1

)
(2.14)

which, together with (2.11), gives Tn(p, q) (2.10) as

(2.15) Tn(p, q) =
1

p+ q − 1

(
T1(p, q, n) T2(p, q, n)
T3(p, q, n) T4(p, q, n)

)
,

where

T1(p, q, n) = pn−1Pn−1(−q/p2) + pn−2qPn−2(−q/p2)− 1,

T2(p, q, n) = pn−2qPn−2(−q/p2) + q[pn−3qPn−3(−q/p2)− 1],

T3(p, q, n) = pn−1Pn−1(−q/p2) + (1− p)pn−2Pn−2(−q/p2)− 1,

T4(p, q, n) = pn−2qPn−2(−q/p2)

+ (1− p)[pn−3qPn−3(−q/p2)− 1].(2.16)

Remark 2.1. We note that (2.13) has been visible in some recent work by
the authors—see [1, Eq. (2.5), p. 351] where the result has been deployed
in a sufficiency argument for cross-family member equality within a certain
class of polynomial families, and [3, Eq. (I.1), p. 176] where it drives the
proof of an invariance property for the particular matrix characterizing such
families; it has proven to be a most useful result to have formulated.



Moving on,

(2.17) Tn(p, q)K =
1

p+ q − 1

(
0 0 T1(p, q, n)
0 0 T3(p, q, n)

)
by (2.5) and (2.15), with

(2.18) Hn−1(p, q)S =

(
pn−2qPn−2(−q/p2) pn−1Pn−1(−q/p2) 0
pn−3qPn−3(−q/p2) pn−2Pn−2(−q/p2) 0

)
by (2.12) and (2.8), so that (2.7) reads

Fn(p, q) =(
pn−2qPn−2(−q/p2) pn−1Pn−1(−q/p2) T1(p, q, n)/(p+ q − 1)
pn−3qPn−3(−q/p2) pn−2Pn−2(−q/p2) T3(p, q, n)/(p+ q − 1)

)
(2.19)

from which, by term comparison with Fn(p, q) in (2.5), we can write down
the desired exponent functions αn(p, q) and βn(p, q) of (2.1) (beyond those
of the initial value terms z0, z1) immediately as

αn(p, q) = pn−2qPn−2(−q/p2),

βn(p, q) = pn−1Pn−1(−q/p2), n ≥ 2,(2.20)

while

γn(p, q) = T1(p, q, n)/(p+ q − 1)

= [pn−1Pn−1(−q/p2) + pn−2qPn−2(−q/p2)− 1]/(p+ q − 1)

= [αn(p, q) + βn(p, q)− 1]/(p+ q − 1),(2.21)

by (2.16) and (2.20). With reference to (2.1) it is interesting to see that
αn(p, q) and βn(p, q) have seemingly independent closed forms, but γn(p, q)
(that functional exponent of the recurrence scalar multiplier c) exhibits de-
pendency on both. This has not been observed before.

Example 2.1. By way of an example we verify these representations for
value n = 5. Noting that P3(x) = 1−2x and P4(x) = 1−3x+x2 it is readily
seen that, from (2.20), α5(p, q) = p3qP3(−q/p2) = p3q ·(p2+2q)/p2 = p3q+
2pq2 and β5(p, q) = p4P4(−q/p2) = p4 · (p4 +3p2q+q2)/p4 = p4 +3p2q+q2,
which agree with those powers of a, b in the term z5(a, b, p, q; c) of (1.2).
Furthermore, from (1.2) we find that (p+ q − 1)γ5(p, q) = (p+ q − 1)[p3 +
p2+p(2q+1)+q+1] = · · · = τ1(p, q)+τ2(p, q)−1 after a little algebra, where
τ1(p, q) = p3q+2pq2 = α5(p, q) and τ2(p, q) = p4+3p2q+q2 = β5(p, q); this
confirms that that (p + q − 1)γ5(p, q) = α5(p, q) + β5(p, q) − 1 as required
by (2.21).

Some Further Remarks. Returning briefly to (2.19) then, as a mat-
ter of completeness, we need to check that T3(p, q, n) = T1(p, q, n − 1),
which reduces to showing 0 = pn−3qPn−3(−q/p2) + pn−1Pn−2(−q/p2) −



pn−1Pn−1(−q/p2) using (2.16). This is readily forthcoming from the known
linear recurrence equation

(2.22) 0 = xPn(x)− Pn+1(x) + Pn+2(x)

for the Catalan polynomials [2, Eq. (A1), p. 116] when evaluated at x =
−q/p2.

We remark also that recursions for Catalan polynomials give rise to ana-
logues for the exponent functions αn(p, q), βn(p, q) and γn(p, q) (or combi-
nations thereof) in the light of (2.20) and (2.21). A simple illustration is
provided by the non-linear identity [2, Eq. (A4), p. 116]

(2.23) xn = P 2
n(x)− Pn+1(x)Pn−1(x)

which, on using the relations of (2.20) separately, yields recurrences

(2.24) α2
n(p, q)− αn+1(p, q)αn−1(p, q) = (−q)n

and

(2.25) β2
n(p, q)− βn+1(p, q)βn−1(p, q) = (−q)n−1,

both having been validated extensively by computer for n ≥ 1. As an ex-
ample of these, for n = 4 (i) α2

4(p, q) − α5(p, q)α3(p, q) = (p2q + q2)2 −
(p3q + 2pq2)(pq) = · · · = q4 = (−q)4, and (ii) β2

4(p, q) − β5(p, q)β3(p, q) =
(p3 + 2pq)2 − (p4 + 3p2q + q2)(p2 + q) = · · · = −q3 = (−q)3.

We now proceed to recover, from our methodology, those (balanced-
power) Case I and Case II formulations described in Section 1.1.

2.3. The Case p+ q = 1, p 6= 2 (or q 6= −1): Case I. Consider the case
for which p + q = 1. Writing q(p) = 1 − p the matrix H(p) = H(p, q(p))
(2.6) is

(2.26) H(p) =

(
p 1− p
1 0

)
,

which may be decomposed conveniently as

(2.27) H(p) = U(p)D(p)U−1(p),

where

(2.28) U(p) =

(
p− 1 1

1 1

)
and D(p) is the diagonal matrix

(2.29) D(p) =

(
p− 1 0

0 1

)
.

Noting, therefore, that p 6= 2 (otherwise U(p) is singular) we are dealing
with Case I introduced at the start of the paper, the results from which we
will reproduce here.



First, from (2.9) we have Tn(p) = Tn(p, q(p)) =
∑n−2
i=0 Hi(p) =

∑n−2
i=0 [U(p)

D(p)U−1(p)]i (by (2.27)) = U(p)X(p)U−1(p), where

X(p) =

n−2∑
i=0

Di(p)

=

( ∑n−2
i=0 (p− 1)i 0

0
∑n−2
i=0 1

)
=

(
fn(p) 0

0 n− 1

)
,(2.30)

denoting by fn(p) the geometric series

(2.31) fn(p) =

n−2∑
i=0

(p− 1)i = [1− (p− 1)n−1]/(2− p).

Thus,

Tn(p) = U(p)X(p)U−1(p)

=

(
p− 1 1

1 1

)
·
(
fn(p) 0

0 n− 1

)
· 1

p− 2

(
1 −1
−1 p− 1

)
=

1

p− 2

(
T ∗1 (p, n) T ∗2 (p, n)
T ∗3 (p, n) T ∗4 (p, n)

)
,(2.32)

where

T ∗1 (p, n) = (p− 1)fn(p)− (n− 1),

T ∗2 (p, n) = (p− 1)[n− 1− fn(p)],

T ∗3 (p, n) = fn(p)− (n− 1),

T ∗4 (p, n) = (n− 1)(p− 1)− fn(p).(2.33)

Because the structure of the product matrix Hn−1(p)S = Hn−1(p, q(p))S
(2.18) remains unchanged (along with its entries save for the dependency
q(p) = 1− p here), then clearly, in this instance,

αn(p) = (1− p)pn−2Pn−2((p− 1)/p2),

βn(p) = pn−1Pn−1((p− 1)/p2), n ≥ 2,(2.34)



from the resultant matrix equation Fn(p) = Hn−1(p)S+Tn(p)K (equation
(2.7), with q = q(p)), which also gives (using (2.33) and (2.31))

γn(p) = T ∗1 (p, n)/(p− 2)

= [(p− 1)fn(p)− (n− 1)]/(p− 2)

=
1

p− 2

(
(p− 1)

[1− (p− 1)n−1]

2− p
− (n− 1)

)
=

1

2− p

(
n− [1− (p− 1)n]

2− p

)
(2.35)

after simplification. It is worth observing that equations (2.34) are, of
course, available directly from (2.20) but, on the other hand, that (2.21)
does not deliver (2.35) (since p+ q = 1), which latter demands the separate
formulation given.

Remark 2.2. In the same spirit as Section 2.2, we confirm that T ∗3 (p, n) =
T ∗1 (p, n − 1) for completeness here, so as to secure the general procedure
we have developed; from (2.33) this is merely equivalent to showing that
fn(p)− (p− 1)fn−1(p) = 1, being immediate by (2.31).

We end this subsection by remarking that we are in a position to recover
those precise results from Case I in the form expressed. Note that, in terms
of q, then from (2.35)

(2.36) γn(q) = γn(p(q)) =
1

1 + q

(
n− [1− (−q)n]

1 + q

)
= Nc(q, n)

of (1.4). Writing similarly (from (2.34))

αn(q) = αn(p(q)) = q(1− q)n−2Pn−2(−q/(1− q)2),

βn(q) = βn(p(q)) = (1− q)n−1Pn−1(−q/(1− q)2), n ≥ 2,(2.37)

we can reproduce Na(q, n) and Nb(q, n) but this requires some work and
for the sake of conciseness is devolved to the Appendix for any interested
reader.

2.4. The Case p+q = 1, p = 2 and q = −1: Case II. In this instance we
impose values for p and q, and formulate independently αn(2,−1), βn(2,−1)
and γn(2,−1) in line with those results for Case II given earlier.

Here H(p, q) (2.6) gives simply

(2.38) H(2,−1) =

(
2 −1
1 0

)
,

for which is it easy to show (by induction, for example) that

(2.39) Hn(2,−1) =

(
n+ 1 −n
n −(n− 1)

)
.



Thus, (2.9) delivers

Tn(2,−1) =

n−2∑
i=0

Hi(2,−1)

=

( ∑n−2
i=0 (i+ 1) −

∑n−2
i=0 i∑n−2

i=0 i
∑n−2
i=0 (1− i)

)
=

1

2
(n− 1)

(
n −(n− 2)

n− 2 −(n− 4)

)
.(2.40)

This time (2.7) reads Fn(2,−1) = Hn−1(2,−1)S+Tn(2,−1)K which yields
(omitting the details) γn(2,−1) = (n − 1)n/2 = Dc(n) of (1.6), together
with1

αn(2,−1) = −2n−2Pn−2(1/4),

βn(2,−1) = 2n−1Pn−1(1/4), n ≥ 2,(2.41)

or, finally,

αn(2,−1) = −(n− 1) = Da(n),

βn(2,−1) = n = Db(n),(2.42)

as expected, since it is known [2, p. 103] that Pn(1/4) = (n+1)/2n (n ≥ 0).

Remark 2.3. The keen reader may like to check—as a straightforward
but pleasing algebraic exercise—that the identities (2.24) and (2.25) hold
when, resp., αn(p(q), q) = Na(q, n) = [q+ (−q)n]/(1 + q) and βn(p(q), q) =
Nb(q, n) = [1 − (−q)n]/(1 + q) of Case I; the Case II forms αn(2,−1) =
Da(n) = 1− n and βn(2,−1) = Db(n) = n are trivial ones to verify.

3. Summary

The original power product recurrence of M. W. Bunder has been ana-
lyzed here in a more generalized form (that is, with scalar multiplier), and
some recent results both recovered and extended. Closed forms for the asso-
ciated sequence terms have been derived for a range of recursion parameter
conditions, in which the role of Catalan polynomials is a central one. It
is worth emphasizing that while results in [4] have been reformulated in
Sections 2.3 and 2.4 of this paper, those of Section 2.2 were inaccessible
from the line of enquiry taken in that precursory work due to the imposi-
tion of the ‘balanced-power’ constraint p+ q = 1 underpinning it. We also
mention an examination of the p = q = 1/2 (so called geometric mean)
version of (1.1) in [5] with c = 1—this work identifies connections between
Jacobsthal and Horadam numbers (and the condition on c is also relaxed
in an appendix).

1Also consistent with (2.34) for p = 2.



There is nothing in principle to prevent our approach being applied to
the deeper third order recurrence zn = c(zn−1)p(zn−2)q(zn−3)r (n ≥ 3 given
z0, z1, z2). There is, however, a practical problem in that the matrix H =
H(p, q, r) capturing the system power variables would—as the analogue to
H(p, q) (2.6)—be a 3-square matrix in this case and at present we know of
no delineation of such a matrix which, when raised to an arbitrary power,
has polynomial entries so as to give a compact realization of those functional
exponents of the general term of the sequence {zn(z0, z1, z2, p, q, r; c)}∞0 .
This is left as an open problem.

Appendix

Consider αn(q) = q(1− q)n−2Pn−2(−q/(1− q)2) of (2.37). To show that
this representation tallies with Na(q, n) of (1.4), we argue inductively.

Proof. It is trivially true for n = 2, 3 (where (2.37) and (1.4) give α2(q) =
Na(q, 2) = q and α3(q) = Na(q, 3) = q(1 − q)), so we assume the re-
sult holds for some n = k, k − 1 (k ≥ 3), which is to say αk(q) = q(1 −
q)k−2Pk−2(−q/(1 − q)2) = [q + (−q)k]/(1 + q) = Na(q, k) and αk−1(q) =
q(1−q)k−3Pk−3(−q/(1−q)2) = [q+(−q)k−1]/(1+q) = Na(q, k−1). Thus,

αk+1(q) = q(1− q)k−1Pk−1(−q/(1− q)2)

= q(1− q)k−1{Pk−2(−q/(1− q)2)

+ [q/(1− q)2]Pk−3(−q/(1− q)2)}
= (1− q) · q(1− q)k−2Pk−2(−q/(1− q)2)

+ q · q(1− q)k−3Pk−3(−q/(1− q)2)

= (1− q) · [q + (−q)k]

1 + q
+ q · [q + (−q)k−1]

1 + q
(P.1)

employing (2.22) and the inductive hypothesis. Continuing,

= {(1− q)[q + (−q)k] + q[q + (−q)k−1]}/(1 + q)

...

= [q + (−q)k+1]/(1 + q)

= Na(q, k + 1)(P.2)

after a little algebra, as required (upholding the inductive step). �

A similar process establishes that βn(q) = (1− q)n−1Pn−1(−q/(1− q)2) of
(2.37) corresponds to Nb(q, n) of (1.4) (reader exercise).
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