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Abstract— This paper explores the evolving landscape of 

Electromyogram (EMG) signal analysis, focusing on the growing 

prominence of deep learning (DL) algorithms for hand, wrist, and 

finger movement recognition. Such algorithms often come with 

high computational costs, potentially limiting clinical translation 

on resource-limited devices, and igniting more research on 

reduced complexity models. This prompts the question: is it time 

to shift the algorithmic focus in EMG pattern recognition, given 

the reported performance of some light-weight traditional or 

hybrid methods emphasizing synergy between different EMG 

signals? A comparative study is implemented between state-of-

the-art deep learning extension for time series classification, 

denoted as Random Convolutional Kernel Transform 

(ROCKET), and simple, yet effective pattern recognition methods 

tailored to exploit basic forms of EMG signal synergies—

Waveform Length Phasors (WLPHASOR), Root-Mean-Squared 

Phasor (RMSPHASOR), and the proposed novel Multi-Signal 

Waveform Length (MSWL). Tests are conducted on EMG data 

from 22 participants performing 11 hand and wrist movements 

using two EMG armbands (10 and 8 channels, respectively), 

utilizing the open-source LibEMG toolbox. Preliminary findings 

suggest that, while DL algorithms exhibit formidable capabilities, 

the performance gap with traditional EMG feature extraction 

methods may not be as substantial as anticipated. The 

observations of this study revealed no significant differences in 

average accuracies between ROCKET, WLPHASOR, and 

RMSPHASOR (87% average across participants). Furthermore, 

MSWL significantly enhances performance to 90%, and the 

combination of ROCKET+MSWL achieves 91% on average 

across all subjects. These findings challenge the narrative of DL 

dominance in EMG pattern recognition, urging a re-evaluation of 

the algorithmic focus and contributing valuable insights to the 

debate on effective approaches for extracting meaningful 

information from EMG signals. 

Keywords—Electromyography (EMG), Myoelectric control, 

ROCKET, Deep Learning 

I. INTRODUCTION  

Electromyogram (EMG) signals collected from human 
forearm muscles have long been investigated as a source of 
control for powered prostheses and assistive devices. In this 
approach, it is a common practice to utilize machine learning 
algorithms, including traditional feature engineering and Deep 

learning (DL) models, to extract the unique movement 
signatures from EMG signals to decode the user's intended hand 
movements or grasps [1]. Recent times have seen a huge rise in 
the adoption of DL models in many different applications, such 
as gesture recognition, where they have proven to be more 
effective than traditional machine learning algorithms because 
the former do not require domain expertise [2, 3, 4]. It is crucial 
to realize that Convolutional Neural Network (CNN) and the 
more general DL class of models have large computational 
costs, even in spite of the great successes of CNN models in 
EMG-based hand movement recognition. These expenses are 
ascribed to the very large number of parameters that must be 
optimized or learned, as well as the massive volume of data 
needed to train deep learning models like CNNs. According to 
earlier studies, there might be anywhere from thirty thousand to 
millions of parameters in DL models [2, 5, 6]. Allocating 
memory for weights, activations, gradients, data batches, and 
workspace is necessary for training deep learning models. This 
takes at least hundreds of MBs, if not GBs, of memory [7]. 
Adopting these models in clinical applications is severely 
hampered by the fact that they are hard to train on and difficult 
to install on devices with limited resources. Therefore, a crucial 
component of machine learning-driven prosthetic devices is 
creating a straightforward and effective model that can operate 
on platforms with limited computational resources. 

Using randomly initialized convolutional kernels, the 
Random Convolutional Kernel Transform (Rocket) was recently 
proposed and demonstrated to attain great overall accuracy on 
various time series data with impressively short training time 
[8]. Rocket employs a single layer of a large variety of kernels 
without kernel weights learning, which dramatically reduces the 
computing cost of CNN compared to learnt convolutional 
kernels as used in CNN. Usually, two features are derived from 
the Rocket kernels: the proportion of positive values (PPV) and 
the maximum values. Rocket was subsequently refined into a 
compact variant known as MiniRocket, which, on large datasets, 
may outperform Rocket up to 75 times quicker and be nearly 
deterministic (using a small, fixed set of kernels) while retaining 
nearly same accuracy [9]. While been relatively new, the Rocket 
class of models was applied in different time series classification 
problems using the Photoplethysmography (PPG) [10], 
Electroencephalography (EEG) [11], EMG [12], and Speech 
[13], with performance superiority against many other models. 
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Unlike the traditional hand-crafted feature engineering methods 
utilized in EMG classification [14], one of the main benefits of 
CNN and thereby Rocket/MiniRocket is the ability of the 
convolution technique to capture the spatial relationships 
between the activation patterns of the different time series from 
multiple muscles. Conversely, the conventional method for 
extracting features from EMGs does not prioritize spatial focus 
because it treats each muscle separately and concatenates the 
features obtained before sending them to the classification stage 
[15] (unless explicit projection techniques such as Nonnegative 
Matrix Factorization are applied [16]). Nonetheless, a few recent 
developments in multi-signal EMG feature extraction have been 
made, such as the Recursive Multi-Signal Temporal Fusions 
(RMTF) [18] and the phasor represented EMG feature space 
[17]. Compared to CNN, MiniRocket and Rocket models 
require a lot less computing power. 

The evolution of this field of research suggests the 
dominance of convolution-based methods, with recent literature 
indicating significant outcomes from new implementations of 
traditional and hybrid methods [17,18]. This raises the question 
of whether it's time to shift the algorithmic focus in EMG pattern 
recognition, given reported performance of lightweight 
traditional or hybrid methods emphasizing multi-signal synergy 
relationships. This paper compares MiniRocket, representing 
Rocket, with waveform length phasor (WLPHASOR) and root-
mean-square phasor (RMSPHASOR) from [17], and a novel 
Multi-Signal Waveform Length (MSWL) method (inspired by 
our earlier work on RMTF [18]). 

II. METHODOLOGY 

A. Multi-Signal Waveform Length (MSWL) 

The Waveform Length (WL) feature is described intuitively 
as the cumulative length of the signal of the time segment of 
interest [19,20]. It specifies a measure of waveform amplitude, 
frequency, and duration in a single parameter as follows. 

𝑊𝐿𝑥 =  ∑|𝑥𝑖 − 𝑥𝑖−1|

𝑁

𝑖=2

 (1) 

where xi is the i’th sample of the EMG signal x, with i =2, 3, 
…, N, and N is the total number of samples within the signal 
segment, or simply the window size. The WLPHASOR [17] 
adopts this WL concept into a phasor represented EMG feature 
space (Similarly for RMSPHASOR, with the root-mean-square 
(RMS) feature). The phasor representation is a distance-based 
modelling applied on all channels. In this model, the residual 
limb is depicted as a cylindrical part with Ch channels so that 
Ch phasors (P0, P1, P2, ….,Pch-1) with π/5 radian spacings are 
constructed (see Fig.1 for the demonstration of electrodes 
phasors with 10 channels as an example). The phasor form of 
WL feature is given as 

𝑃𝑊𝐿 = [𝑊𝐿0, 𝑊𝐿1𝑒𝑗
𝜋
5 , 𝑊𝐿2𝑒𝑗

2𝜋
5 , … . , 𝑊𝐿𝐶ℎ−1𝑒𝑗

9𝜋
5  ] 

                                                                                       (2)  

Pairwise Euclidean distances are formed between the phasors 
above for the original EMG signals resulting in Ch (Ch-1)/2 

features and their derivatives (another set of Ch (Ch-1)/2 
features) [17]. 

 
Fig. 1. Phasor representation for a problem with 10 EMG channels 

Unlike the work in [17] focusing on single EMG channels 
WL representations, we focus in this paper on the phasor 
representations of multi-signal waveform length (≥ 2 channels). 
A range spatial filter (RSF) [21] is adopted to construct a 
combined signal representation across the samples of the 
considered channels. As an example of two channels ChX and 
ChY, the RSF filter is given below using the range equation.    

𝐶 = [𝐦𝐚𝐱(𝐶ℎ𝑋, 𝐶ℎ𝑌) − 𝐦𝐢𝐧(𝐶ℎ𝑋, 𝐶ℎ𝑌)] (3) 

Once the combined signal is formed, the WLXY of the combined 
signals is then calculated as shown below, where the WL of the 
generated signal is normalized by the logarithm of the integral 
squared values of the samples in each of the channels been 
combined. 

𝑊𝐿𝑋𝑌 =  
∑ |𝐶𝑖 − 𝐶𝑖−1|𝑁

𝑖=2

log (∑ 𝐶ℎ𝑋
2𝑁

𝑖=1 + ∑ 𝐶ℎ𝑌
2𝑁

𝑖=1  )
 

(4) 

The phasor representing MSWL is then give by  

𝐷𝑊𝐿 = [‖𝑊𝐿01 (1 − 𝑒𝑗
𝜋

5)‖ , ‖𝑊𝐿02 (1 − 𝑒𝑗
2𝜋
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‖𝑊𝐿12 (𝑒𝑗
𝜋
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2𝜋

5 )‖ , … , ‖𝑊𝐿89 (𝑒𝑗
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9𝜋

5 )‖]                                                                           

                           (5) 

Similarly, the above analysis is repeated on the derivatives of 
the EMG signals to generate ∇𝐷𝑊𝐿  . A set of logarithmically 
scaled final feature vector is generated by the following equation  

Ϝ =  [log(𝐷𝑊𝐿) , log (𝐷𝑊𝐿/∇𝐷𝑊𝐿) ] (6) 

This is the extracted feature set that is then supplied to the 
classifier stage. For the analysis in this paper, an LDA classifier 
is utilized from within the LibEMG toolbox [14]. Several feature 
extraction methods are considered in the experiments, including 
WL, normalized WL, denoted as WLN (by dividing by the total 
sum of WL from all channels), the proposed MSWL, 
WLPHASOR, RMSPHASR, Rocket, Rocket concatenated with 
RMSPHASOR (Rocket+RMSPHASOR), Rocket concatenated 
with WLPHASOR (Rocket+WLPHASOR), and Rocket 



 

concatenated with MSWL (Rocket+MSWL). We have further 
added an implementation of MiniRocket [9] from the sktime 
library (https://www.sktime.net/en/stable/index.html). For the 
Rocket class of methods, our experimental results showed that 
no significant differences were found when using 10000 kernels 
(default value for Rocket methods) versus 500 kernels, and 
hence we stick with 500 kernels for MiniRocket. It is also 
important to mention here that an overlapping windows scheme 
is utilized for feature extraction on the 3DC datasets with a 
window size of 200 ms and increments of 100 ms. The Wilcoxon 
Signed Rank test is applied to test the statistical significance of 
the results of different methods. All analyses were carried out 
using Anaconda Spyder 5.4.2, Python=3.9, LibEMG=0.0.2, on 
a laptop with 16 GB RAM. 

B. 3DC Dataset Description 

 The EMG data was collected using a bespoke 3DC armband 
that has a 9-axis Inertial Measurement Unit (IMU) and 10 EMG 
recording channels at a 1000 Hz sampling frequency [5]. In 
parallel, MYO armband with 8 EMG channels sampled at 200 
Hz was also utilized to verify the MSWL performance across 
different sampling rates. In this study, only EMG data were 
used. The armbands were affixed to each participant's dominant 
arm prior to recording as shown in Fig. 2. Eleven hand/wrist 
movements seen in Fig. 2 are included in the proposed dataset. 
Following an auditory cue, subjects began with neutral gestures 
and held each one for five seconds. For 55 seconds, a full cycle 
consisting of all eleven movements was captured. A total of 220 
seconds without any breaks were recorded during four 
consecutive cycles. After that, participants had five minutes to 
unwind without taking off their armbands. Subsequently, four 
additional cycles were recorded, forming the test dataset, while 
the initial four cycles constituted the training dataset. 
 

 
Fig. 2. The 3DC EMG datasets collection hardware and gestures included 

(images adopted from [5], under the Creative Commons Attribution License). 

III. RESULTS AND DISCUSSION 

The classification results shown in Fig. 3 represent the 
average across 22 subjects, reporting results of the two 
armbands. These results depict a few important points. Firstly, 
both RMSPHASOR and WLPHASOR got an average of 
roughly 87% with the 3DC armband (83.4% for RMSPHASOR 
and 82% for WLPHASOR using MYO armband), with Rocket 
achieving an average of 87.7% and 82.8% with 3DC and MYO 
armbands, respectively (p > 0.5 indicating no statistically 
significant differences). However, it should be mentioned here 

that Rocket and MiniRocket are based on random initialization 
of a huge set of kernels without any optimization and for a 
randomly weighted method to achieve such results without any 
tweaking is an indicative of the power of the Rocket class of 
algorithms.  On the other hand, the proposed MSWL achieved a 
classification result of 90.3 and 85.4% on average across all 
subjects using 3DC and MYO armbands, respectively, 
outperforming all other individual features extraction methods 
(p < 0.1). The results also show the benefit of merging 
RMSPHASOR, WLPHASOR and MSWL with MiniRocket 
which clearly shows the benefit of MSWL (average of 91% on 
3DC and 86.2% on MYO) against that of RMSPHASOR 
(average of 89.7% and 84.9% for 3DC and MYO respectively) 
and WLPHASOR (average of 89.6% and 84.2% for 3DC and 
MYO, respectively). Hence, while the concatenation of 
RMSPHASOR and WLPHASOR with MiniRocket enhanced 
the average results on both armbands, considering MSWL with 
MiniRocket still outperformed all other individual and 
combined feature sets.  

 
Fig. 3. Average classification results for 3DC and MYO armbands with 

different methods across all 22 subjects. 

 While the latest developments of DL based kernel methods 
can extract features without tweaking the weights of the kernels, 
like in Rocket methods, it is apparent that light-weight feature 
engineering methods can still achieve comparable 
performances, or even better. Our findings, while only 
demonstrated here on 3DC dataset with 22 subjects and 2 
armbands, challenge the narrative of DL methods dominance in 
Biosignal classification problems. This in turn suggests a 
reevaluation of the algorithmic focus in EMG pattern 
recognition, especially when considering the huge 
computational cost savings offered by the traditional methods 
against DL models. This suggestion is applicable even with 
compact representations like MiniRocket, given the huge 
number of parameters in these models against that in MSWL. 

 It is understood that the findings might be preliminary, and 
that testing on more datasets may be required, especially those 
with a very large sample size. However, it is clear here that 
developing EMG feature extraction methods focused on synergy 
extraction, even if in simple form like that of MSWL, is effective 
in extracting the different movements signatures. Additionally, 
fusing this concept with long-and-short term temporal 
components, like that in our earlier development in RMTF [18] 
can further enhance the results here with an average 
classification result for RMTF on the 3DC datasets of 92% and 
87.2% for 3DC and MYO armbands, respectively [18], while we 
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achieved nearly similar results here with one hand crafted 
feature engineering concept based on synergistic multi signal 
waveform length. We argue here that research in this direction 
should also consider adopting concepts of DL methods and 
applying these, efficiently, on the light-weight traditional 
algorithms to have the benefits of both, simplicity of traditional 
and the power of DL methods. We continue our work in this 
direction to expand the experiments in our future research. 

IV. CONCLUSION 

The findings of this paper urge the research community in EMG 

pattern recognition to consider reevaluating the direction of 

research and to move away from sole use of DL methods into a 

mixture of, traditional and DL, models. Several methods were 

evaluated including WL, WLPHASOR, RMSPHASOR, 

MiniRocket, against a proposed method denoted as MSWL that 

is focused on extracting the synergetic multi-signal waveform 

length. The justification is clear here as hand movements are a 

result of action from several muscles rather than individual ones 

working separately. While methods like Rocket or MiniRocket 

can capture the spatial relationship between the different EMG 

channels using the convolution kernels, the traditional methods 

mostly treat the channels individually when extracting the 

features. Hence, this paper proposed the MSWL to tackle this 

limitation using a phasor feature representation of multiple 

signals jointly. This approach proved effective when testing on 

the EMG datasets from 22 subjects using two armbands (3DC 

and MYO) with performance results outperforming 

WLPHASOR, RMSPHASOR and even MiniRocket. The 

findings also suggested benefits when concatenating 

MiniRocket with MSWL which further shines the light on the 

benefits of the traditional feature engineering approach which 

should not be yet overlooked, given that MiniRocket was not 

able to outperform MSWL or the mixture of 

MiniRocket+MSWL. More research is required in this 

direction that holds promise for edge implementation of 

clinically viable EMG-based controllers of prosthetic and 

miniaturized rehabilitation devices. 

  REFERENCES 

 
[1] A. Phinyomark and E. Scheme, “EMG Pattern Recognition in the Era of 

Big Data and Deep Learning”, Big Data and Cognitive Computing. vol. 
2, no. 3, 2018. https://doi.org/10.3390/bdcc2030021. 

[2] U. Côté-Allard, E. Campbell, A. Phinyomark, F. Laviolette, B. Gosselin, 
and E. Scheme, “Interpreting Deep Learning Features for Myoelectric 
Control: A Comparison With Handcrafted Features”,  Frontiers in 
Bioengineering and Biotechnology, vol. 8, 2020. 
https://doi.org/10.3389/fbioe.2020.00158 

[3] U. Côté-Allard et al., "Deep Learning for Electromyographic Hand 
Gesture Signal Classification Using Transfer Learning," in IEEE 
Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, 
no. 4, pp. 760-771, April 2019, doi: 10.1109/TNSRE.2019.2896269.  

[4] W. Geng et al. Gesture recognition by instantaneous surface EMG images. 
Scientific  Reports, vol. 6, np. 36571, 2016. 
https://doi.org/10.1038/srep36571 

[5] U. Cˆot ́e-Allard, G. Gagnon-Turcotte, F. Laviolette, and B. Gosselin, “A 
Low-Cost, Wireless, 3-D-Printed Custom Armband for sEMG Hand 
Gesture Recognition”. Sensors (Basel)vol. 19, no. 12, 2019, 
doi:10.3390/s19122811 

[6] D. Josephs, C. Drake, A. Heroy, and J. Santerre, ”sEMG Gesture 
Recognition with a Simple Model of Attention”, Proceedings of the 
Machine Learning for Health NeurIPS Workshop, PMLR, vol. 136, pp. 
126-138, 2020. 

[7] S. Dhar et al. “A Survey of On-Device Machine Learning: An Algorithms 
and Learning Theory Perspective”, ACM Transactions on Internet of 
Things, vol. 2, issue. 3, no.: 15, pp 1-49, 2021. 
https://doi.org/10.1145/3450494 

[8] A. Dempster, F. Petitjean, and G. I. Webb, “Rocket: exceptionally fast 
and accurate time series classification using random convolutional 
kernels”, Data Min Knowl Disc, vol. 34, pp. 1454–1495, 2020. 
https://doi.org/10.1007/s10618-020-00701-z  

[9] A. Dempster, D. F. Schmidt, and G. I. Webb, “MiniRocket: A Very Fast 
(Almost) Deterministic Transform for Time Series Classification”, 
Proceedings of the 27th ACM SIGKDD Conference on Knowledge 
Discovery & Data MiningAugust, pp. 248–257, 2021. 
https://doi.org/10.1145/3447548.3467231 

[10] Y. Su et al., "P2Auth: Two-Factor Authentication Leveraging PIN and 
Keystroke-Induced PPG Measurements," 2023 IEEE 43rd International 
Conference on Distributed Computing Systems (ICDCS), Hong Kong, 
Hong Kong, 2023, pp. 726-737, doi: 10.1109/ICDCS57875.2023.00074.  

[11] M. E. O'Sullivan et al, “Development of an EEG artefact detection 
algorithm and its application in grading neonatal hypoxic-ischemic 
encephalopathy”, Expert Systems with Applications, vol. 213, part B, 
2023. https://doi.org/10.1016/j.eswa.2022.118917  

[12] Ovadia, Daniel and Segal, Alexander and Rabin, Neta, Classification of 
Hand and Wrist Movements Via Surface. Available at SSRN: 
https://ssrn.com/abstract=4440974, or 
http://dx.doi.org/10.2139/ssrn.4440974 

[13] S. H. Han, N. G. Kim, M. H. Ryu, “Cough classification of MEMS 
microphone signal using time-series and tabular machine learning 
algorithms”, Measurement and Control. Vol 56, no. 5-6, pp. 901-910, 
2023. doi:10.1177/00202940221101667 

[14] E. Eddy, E. Campbell, A. Phinyomark, S. Bateman and E. Scheme, 
"LibEMG: An Open Source Library to Facilitate the Exploration of 
Myoelectric Control," in IEEE Access, vol. 11, pp. 87380-87397, 2023, 
doi: 10.1109/ACCESS.2023.3304544. 

[15]  R. N. Khushaba, A. H. Al-Timemy, O. W. Samuel and E. J. Scheme, 
"Myoelectric Control With Fixed Convolution-Based Time-Domain 
Feature Extraction: Exploring the Spatio–Temporal Interaction," in IEEE 
Transactions on Human-Machine Systems, vol. 52, no. 6, pp. 1247-1257, 
Dec. 2022, doi: 10.1109/THMS.2022.3146053. 

[16] A. Ebied, E. Kinney-Lang, L. Spyrou and J. Escudero, "Muscle Activity 
Analysis Using Higher-Order Tensor Decomposition: Application to 
Muscle Synergy Extraction," in IEEE Access, vol. 7, pp. 27257-27271, 
2019, doi: 10.1109/ACCESS.2019.2902122. 

[17] F. Onay and A. Mert, “Phasor represented EMG feature extraction against 
varying contraction level of prosthetic control”, Biomedical Signal 
Processing and Control, vol. 59, 101881, 2020. 
10.1016/j.bspc.2020.101881. 

[18] R. N. Khushaba, A. Phinyomark, A. H. Al-Timemy and E. Scheme, 
"Recursive Multi-Signal Temporal Fusions With Attention Mechanism 
Improves EMG Feature Extraction," in IEEE Transactions on Artificial 
Intelligence, vol. 1, no. 2, pp. 139-150, Oct. 2020, doi: 
10.1109/TAI.2020.3046160. 

[19] M. Khairuddin, Ismail et al. “The classification of movement intention 
through machine learning models: the identification of significant time-
domain EMG features.” PeerJ. Computer science, vol. 7 e379. 25 Feb. 
2021, doi:10.7717/peerj-cs.379  

[20] A. Phinyomark, F. Quaine, S. Charbonnier, C. Serviere, F. Tarpin-
Bernard, and Y. Laurillau, “EMG feature evaluation for improving 
myoelectric pattern recognition robustness,” Expert Syst. Appl., vol. 40, 
no. 12, pp. 4832–4840, 2013. 

[21] A. A. Al Taee, R. N. Khushaba and A. Al-Jumaily, "Spatially Filtered 
Low-Density EMG and Time-Domain Descriptors Improves Hand 
Movement Recognition," 2019 41st Annual International Conference of 
the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, 
Germany, 2019, pp. 2671-2674, doi: 10.1109/EMBC.2019.8857289.

https://doi.org/10.1016/j.eswa.2022.118917


 

 


