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Abstract

The aim of this paper is to establish the stability results based on the approach of Linear Matrix Inequality (LMI) for the
addressed mathematical model using Caputo—Fabrizio operator (CF operator). Firstly, we extend some existing results of Caputo
fractional derivative in the literature to a new fractional order operator without using singular kernel which was introduced by
Caputo and Fabrizio. Secondly, we have created a mathematical model to increase Cytoplasmic Incompatibility (CI) in Aedes
Aegypti mosquitoes by releasing Wolbachia infected mosquitoes. By this, we can suppress the population density of A.Aegypti
mosquitoes and can control most common mosquito-borne diseases such as Dengue, Zika fever, Chikungunya, Yellow fever and
so on. Our main aim in this paper is to examine the behaviours of Caputo—Fabrizio operator over the logistic growth equation
of a population system then, prove the existence and uniqueness of the solution for the considered mathematical model using
CF operator. Also, we check the «-exponential stability results for the system via linear matrix inequality technique. Finally a
numerical example is provided to check the behaviour of the CF operator on the population system by incorporating the real
world data available in the known literature.

(© 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

Fractional order derivatives are extended from the integer order derivative to get the congenital characteristics
and memory property of some more complicated problems in scientific and engineering fields and also in fractional
order derivative we can use arbitrary order. Due to these properties the fractional order became more stronger and
useful than that of the integer order derivatives, please see Refs. [23,37,38,42]. In recent years, researchers take
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more interest to solve the initial and boundary value problems via fractional order derivatives. At first the fractional
order derivative is proposed by Riemann-Liouville [42] after that many people proposed a type of fractional order
derivatives like Caputo and Grunwald-Letnikov [37]. In recent years, there are some new fractional order operators
proposed by Caputo and Fabrizio without non-singular kernel [9] and Atangana and Baleanu with non-local and
non singular kernel [5]. The new Caputo—Fabrizio operator (or CF operator) is distinct from the classical Caputo
derivative in two aspects. One is, it only partially depends on the past and another one is, it is linearly increasing
and diverging. One can refer the article [29] to get lots of results and information of CF operator. Also it is more
useful to describe the real phenomena [6]. Because of these wide range of applications of CF operator we chose
this particular operator throughout this paper. In the existing literature [30,39,41], the stability results of various
types of neural network systems (integer and fractional order) were solved via linear matrix inequality techniques.
In our work, we aimed to introduce the LMI based stability results into the fractional order dynamical systems with
CF operator.

Our main aim is to check the behaviours of this CF operator on population systems. The characterization of
fractional derivative over a logistic growth equation is derived in [14]. In [26,28], using the CF operator the stability
results of fractional order system with delay and without delay are derived through Laplace transform and matrix
theory. They proved up to the asymptotic stability results of a CF operator. In our paper, we proved that the CF
operator is «-exponentially stable. In [12,22], some real world problems like pine wilt disease model and cancer
treatment model are solved and the existence and uniqueness of the solutions via CF operator were analysed.

In another part of the paper, we mainly focused to find the optimal control technique for mosquito borne diseases.
Mosquito borne diseases represent the vertical transmission of bacteria and viruses from mosquitoes to human while
taking a blood meal. Mosquito borne diseases such as Dengue, Chikungunya, Yellow fever, Zika virus, Japanese
encephalitis etc., cause over one million deaths per annum [7,10,17,18]. The primary vector for most of the mosquito
borne diseases is Aedes Aegypti and recently Aedes albopictus also added as a secondary vector. More than that,
Dengue causes 20000 deaths all over the world [16,19,24,35,48,49].

In recent years, there are several articles about to control vectors by genetic modifications. For instance, the
authors of [4,8,15,20,21,32,43,44] discussed some biological control methods to replace the wild mosquitoes by
releasing genetically modified mosquitoes. Those biological control methods are, sterilization of male mosquitoes,
genetic modifications and Wolbachia release (to reduce the reproduction) see [36]. There are some other methods
to control mosquito borne diseases. For example, bed nets, mosquito repellents, chemical insecticides, mosquito
traps, and so on. For instance, in [3,31,33], the authors tried some other type of control agents like, bed nets,
mosquito repellents, indoor residual spray, condoms during sex, by medically treating infected human, quarantine,
make modifications in feeding behaviours of a vector and so on. Our main aim is to control the mosquito borne
diseases via biological control. In our work, the Wolbachia pipientis an endosymbiotic bacterium is used to stop the
vertical and horizontal transmissions of viruses. This method is practically done by group of people in Australia
called World Mosquito Program (see [1]). The world mosquito program is first established in Australia in the year
2011. And this method is implemented in 12 countries including India. In [13], the authors considered the Wolbachia
bacteria as a biological control agent to increase CI. More than that, Wolbachia has a special quality that, it can block
the virus particles inside the salivary gland itself. Because of these properties, Wolbachia can be used as a biological
control to eradicate mosquito-borne diseases. Supriatna et al. in [46], used Wolbachia as a control agent for Dengue
fever and analysed the model via control theory. Along with this, in [27], the authors discussed the birth, death rate
impulsive model to control mosquito-borne diseases using Wolbachia via Stroboscopic map method. Furthermore,
via finding reproduction number of a mathematical model which depicts the virus transmission via human sexual
contact was analysed in [2]. The integer order mathematical model which describes the interplay among the wild
and wolbachia infected mosquitoes was analysed in [40]. In that work, the author divide the mosquito population
into two groups one is aquatic and another one is adult. In [11], the author used Wolbachia as a biological control
and created a delayed mathematical model, by using positive systems theory and spectrum analysis the author
proved the stability results of the proposed model. By practical results of [1], we can release the wolbachia infected
eggs, larvae, pupae and wolbachia infected adult mosquitoes. So to obtain a optimal control, we have to release
the wolbachia in all stages. Due to these conditions only, we have created a mathematical model which depicts the
full life cycle of Aedes aegypti mosquitoes. Motivated by the above arguments, the main aim of this paper is to
introduce the LMI approach to fractional order systems with CF operator and find the application for the proposed
methods.

The essential theme of this paper lies in the following aspects:
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(1) This paper is mainly concentrated on two concepts. One is to create an appropriate mathematical model
to control the mosquito borne diseases and another one is to derive and check the essential properties of
Caputo—Fabrizio operator. Some important theorems and lemmas are extended to Caputo—Fabrizio operator.

(i) New fractional order mathematical model which depicts the interplay among the wild mosquitoes and
wolbachia infected mosquitoes using CF operator is proposed. And examined the existence and uniqueness of
the solution of the created mathematical model.

(iii) There is no literature which considers the biological control in all stages. By world mosquito program, we
can release wolbachia infected eggs and larvae in the form of *Zancu kits’ and also we can release the adult
male and female wolbachia infected mosquitoes into the wild mosquitoes. By considering these reasons we
optimized the control by releasing wolbachia infection in all stages.

(iv) The a-exponential stability result of the created mathematical model is examined via LMI approach.

(v) Finally, by using real world data, we checked the stability results by MATLAB LMI tool box.

This paper is organized as follows: In Section 2, we provide some basic definitions and notations which are used later
in this paper. And also in this section we have extended some important theorems and lemmas to CF operator. In
Section 3, the fractional order mathematical model of wild mosquitoes and interplay among the wild and wolbachia
infected mosquitoes is proposed and the existence and uniqueness of the solution is also derived for the proposed
model. In Sections 4 and 5, we present existence and uniqueness of the solution respectively. In Section 6, the
a-exponential stability results are provided via LMI approach. The numerical examples are presented in Section 7.
Finally, we concluded this work in Section 8.

2. Preliminaries
In this section, we provide some basic tools of Caputo—Fabrizio operator. From this, we have extended some

properties, theorems and lemmas which were proposed by Podlubny [25] to Caputo—Fabrizio operator.

Definition 2.1. The Caputo—Fabrizio operator for the function g € H'(a, b), 0 < a < 1 is defined by Caputo &
Fabrizio in [9] (2015), as

Crprg(t) = Mi@) / ¢/ (T)exp [M]dr, (1)
l—aJ, l—«
and for g ¢ H'(a,b), <a <1 as
¢ pyrgay = M f (8(1) — g(x)exp [%}dr, @)

where, H is a Sobolev space; M(«) is a normalization function with M(0) = 1 = M(1). Normalization function
means, to make the value of the function takes between O to 1 for that we can add or multiply by constants in that
function. Here, the normalization function is not depending on t.

Throughout this paper, ¢¥' D* denotes the Caputo-Fabrizio operator of order o with the initial condition a, and
we use CF as an abbrev1at10n of Caputo—Fabrizio operator.

In [29], M(¢) = 57, 0 < @ < 1. By considering this, the author modified the CF operator as

t —
CFDYg(r) = —/ [ — t)} dr . 3)

l—«a

Definition 2.2. Nieto et al. [29], derived the integral of CF operator as,
2(1 — ) 20 /"
CF ya

Fet) = ——ult) + —— ds,t >0, 4
S0 = G O T G [, S99 @)

and 0 <« < 1.

The general form of the Laplace transform of CF operator is defined by Caputo et al. in [9], as

prLg(t) — p"g(0) — p"~'g'(0) — g"(0)
p+a(l—p) '

e{§Drte(n)) = ®)
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The Mittag Leffler function with two parameters is defined as [25]

o k

z
Eyp(z) = kg(; T@k+ B (6)

where, z € C, C =set of all complex numbers, « > 0, and § > 0. If 8 = 1 then E,(z) = Z/fio H;Tkﬂ) If both
a=1and g =1, then E; 1(z) = €°.

Next, we prove some important theorems, properties and lemmas which are newly introduce the concepts of
Lyapunov and LMI into the Caputo—Fabrizio operator.

Property 2.3. The CF operator is linear, that is, for constants p and q,

o Df (pf(t) + qg(t)) = pS§TDYf(t) 4+ q §TDg(0). %)

Proof. For 0 < « < 1, by Definition 2.1

0t =122 [ e 7 as
fo

50t (pf0) + 430)) =1 / (p7 @ +450) Grexp ]
fo

M _
) / pf(1) + 48/ (1) <s>exp[ (t ”]
ds

M
= (a) pf’(t)exp[ il )]

l—aJ,
+ L qg'(t)(s)exp [M} ds
l—a/, l -«
_p M@ /t F(t)exp [M] ds
1-— l—«a
Fg @ [ giwexp [M} d
—al, —a

=p STDYf(1) +q ST Dg ).

Hence, the linearity property is true for Caputo—Fabrizio operator. [J

Lemma 2.4. Let z(t) € R (R = set of all real numbers) be a continuous and derivable function. Then for any
time instant t > ty the following inequality holds,

20 FDY2(t) < z()§F DPz(t), for all a € (0, 1). @®)

Proof. It is equivalent to prove that

1
Z(I)OFDO[Z(I) CFDaZZ(l) > 0. 9)
By using Definition 2.1, {¥ Dz(t) = 1;4_#";) 7Z/(s)exp [ = S)] ds and
ler a2 1 M) [ —a(t —5)
Da = — 2 / — 71d
20 ) 2T—a ), z(8)Z'(s)exp —
M ! —a(t —
- M) / 2(8)Z'(s)exp [M} ds.
l—aJ, l—«

4



J. Dianavinnarasi, R. Raja, J. Alzabut et al. Mathematics and Computers in Simulation xxx (xxxx) xxx

Substituting these expressions in (9), we have

M(a) f {O()exp [—a(t - s)} s M(@) / W(5) (s)exp [M] ds > 0, (10)
l—a l —« I—a/, l—«a
M(a) alt —s)
(Z(t) —z2(8))7'(s)exp ﬁ ds > 0. an
Let us define a new variable by x(s) = z(t) — z(s) = x'(s) = —Z(s). Therefore, (11) becomes,

M) —x(s)x'(s)exp [M} ds>0
I—a/, 11—«
M) (! , —a(t —s)

/ x(s)x'(s)exp [—:| ds < 0. (12)
I—a /g, -«

By using the integration by parts, let u = M("‘) T exp [M] this implies
du = YDexp[ =20 (£2) (—1)ds, dv = x()x'(s)ds and v = $x*(s). Then substitute in the following
equation,

/udv:uv—/vdu

O J— J—
LG x(s)x'(s)exp [M} ds <0
I—a g, l—«

[ M) etf(ta”xz(s)]

_/ 2( ) OlM(O[) a(tas)xz(s) ds <0
Ip

20 —a) . (I—ap®
M(a) =) , B M(a) —at—1) 2_/’l 5, . aM(a) =) ,
e )| e - | g e T s <o
Now, we find the first term of the above equation
L M@)o M) = _
lim me [x(2) — x(s)] = N-w glgge R [X(t) x(s))?
_ M(x) =at=1) _ 2
= i O = x0)
=0
M) e 2_/’1 2 oM(@) et
= —2(1 _a)e T X0 . 2x (s)(1 _a)ze o x2(s)ds <0
M(x) *Ofl(f_;’o) 2 ! 2 aM(a) ot(tas) )
—2(1 _a)e xp + /ro (s )( )2 e T-o x“(s)ds > 0. (13)

Therefore, Eq. (13), is true.

1

EgFDf‘zz(t) <z§FD*z(t), for alla € (0,1). O
Lemma 2.5 ([45]). Let z(t) € R" be a continuous and derivable function. Then for any time instant t > ty, the
following inequality holds
1
ngD“zT(t)Pz(t) <z ()PSEDz(t), for all a € (0, 1), (14)
where P € R"™" is a constant positive definite matrix.
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Lemma 2.6. Let z(t) € R" be a continuous and piecewise smooth function, and z'(t) is piecewise continuous.
Then for any time instant t > 0

1
gFDf‘zzz(t) <z(OSFDY2(t) forall 0 < a < 1. (15)

Proof. The proof is obvious. [

Theorem 2.7. Let us consider the equilibrium point of z as 0 for the system g FDez(t) = g(t, z) and the domain
D is a subset of R", it contains the origin and 0 < a < 1. Now, let us consider the continuously differentiable
function as V(t, z) : [0, 00) x D — R which is also a locally Lipschitz with respect to z such that

Billzll* < V(. z(0) < Ballz)®? (16)

6" DV, 2(n) = —Bsllzll, a7
where, B1, Ba, B3, a and b are positive constants. And t > 0. Then the equilibrium point is globally «-exponential
stable.
Proof. Let us consider the following expressions from Egs. (16) and (17),

6 DFV( 2(1) < —Bsllz]

and

\%

Ballzl*” = V(1. z()
-1
—lzlI” < —V(t, 22)).
B2
This implies that,
SFDIV (1, 2(1)) < _ﬂ—’%va, 2(0)).
2
Then there exists a non-negative function S(¢) such that
SEDV (L, 2(1) + S(1) = _ﬁ—'%vu, z(0)). (18)
2
By finding the Laplace transform of (18), we get the following

ef§ prva, 2o} + gfsw) = 2{_ﬂ—’j3va, )

pe{ve.zn} - v By
S(P)= -2y
prai-—p TRV
V() = V(O B
D L s(Py = —2vp).
prai—p TRV

B2pV (D) + B3V (p)(p +all = p)) = B2V(O) + B2S(p)(p + (1 = p)) = 0.
B2+ B3 = aps)p +aBs [V(p) = B2V (©) = B2S(p)(p + a1 = ).
For simplicity, we denote 8, + 83 — aff3 as y.

B2V()  BS(p)(p +al — p))

yp +afs yp +apfs
__ BVO)  BS(p)(p+ald—p)

] v [p+]
B2V (0) 1 _ B | S(p)p +aS(p)d — p)
v o Lp+] vy p+2
6

V(p) =
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_BvOo[ 1 ] s p ] s -p)
v o+ v p+ yip -+
vy = BYO[ 1 ] g [P+5 -5 apsip [
Y _p"'ayﬂ_ Yo L P+ayﬁ Y p+°‘yﬁ

LabS(p) [P~
4 p+%

_pvo[ 1 ] psof,_ P ] _asm| 1
v |p+ 1 P+ v lp+

ap

aBaS(p) -
t— ' =
Y p+ f

AZOY ! _[ﬁQS(m_aﬂZS(p)} . 21 s 1
Y p—i—o‘yﬁ 14 y p—i—o‘yﬁ y p—l—% .

Let us take the inverse Laplace transformation for the last expression,

aps
e ] efpan ] 2]

Iy N ,
14 p—i—"‘yﬁ

where '+" is the Convolution operator.

vy = 2V O p (_ta_ﬂs> ~ [ﬂzS(t) ~ aﬂzS(t)] <8(I) B [_ta_mD
Y Y Y Y Y 4

afaS(1) [ aﬂﬂ
exp|—t—|.
14 14

Then,
Vi, z(t) = wexp I:—ta—'33j| — [(1 — a)’BZS(t):| <B(t) — a—ﬂSexp [—t%iD
14 14 Y 14

14
aBaS(1) [ Olﬁs:|
, exp | —t—|.

Here, S(¢) and exp(—t%) are non-negative functions. Now, (1 — a)@ > 0 whenever, 1 — a > 0. That is,
a<1. (19)

And §(t) — %exp [—t%] should be greater than 0. For the conditions @ < 1 and 6(¢) > O‘Vﬁexp [—t“yﬁ], we get,

V() < (20)

B2V (0, z(0)) |: afs :|

——exp|—t—|.
14 14

Substitute Eq. (20) in (16), we get

1
2l < {—ﬂ V020D, ) [—t“—m”a
By Y
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where, B1, > > 0, V(0,z(0)) > 0 for z(0) # 0. ¢ = %ﬁ” > 0 whenever y > 0. That is, B, + B3 — B3 > O.
Therefore,
o<1+ 1)
3

Combining Egs. (19) and (21) we geta < 1 < 1+ % Therefore it is enough to consider that @« < 1. Therefore,

1
Izl < {c exp [—t“—’%]}” ,
Y

where, ¢ = 0 is true iff z(0) = 0. Also, V(0, z(0)) = 0 iff z(0) = 0 and V is locally Lipschitz with respect to z. This
implies that, ¢ is also locally Lipschitz with respect to z and ¢(0) = 0 iff z(0) = 0, This implies the «-exponential
stability of the system §¥ D%z(1) = g(t,2). O

Remark 2.8. Put a =2 and b = 1 in the above theorem, the derived result matches the result of [45].

3. System formulation

In this section, the novel fractional order mathematical model to picturize the life stages of Aedes Aegypti
mosquitoes in both aerial and aquatic is proposed. The population dynamics of wild mosquitoes are structured as
follows:

dW.(t) _wan] _
= A W1 0] =, W) =y W)
dw,

dlt(t) = Ywe We(t) - )le Wl(l) — Yuy Wl(t)
AW,

dr Yy Wl(t) - )\wp Wp(t) - pr Wp(t)
(22)

AW, (1)
T = PYuw, Wp(t) - )‘wfl. Wfi @) — wai Wf}' ®)
AW, (1)
T = wai sz ([) — )wam me(t)
d W, (1)
ds = (1 - P)Vw,, Wp(t) - )\wa Wa(t)»

with initial conditions as, W.(0) = W, , W;(0) = W, W,(0) = W,,, W;(0) = Wfio, Wi, (0) = meo and
W, (0) = W,,. Where W is used to denote the wild Aedes Aegypti mosquito population and W with the subscripts
such as W, W;, W,, Wy, W, , and W, are population densities of eggs, larvae, pupae, female immature, female
mature, and adult male mosquitoes respectively. The description of parameters are given in Table 1.

In particular, Aedes aegypti mosquito population is a main host for some major mosquito-borne diseases such
as Dengue, Zika virus, Yellow fever, and Chikungunya. The spread dynamics of these viruses can be visualized by
the following block diagram Fig. 1: In this environment, our main aim is to control the vector population that, do
not transmit the virus to the uninfected human while taking a blood meal. There is a life shortening bacteria called
Wolbachia which will be very useful to reach our aim. Wolbachia is a gram negative bacteria and it is first reported
in the tissues of the mosquito culex pipients (Hertig and Wolbach, 1924). In recent results, they found that Yellow
fever virus can also blocked by Wolbachia [1].

If the mosquito carry this bacteria, then the virus inside the mosquito cannot be transmitted to the uninfected
human (see Fig. 2). It blocks the virus inside the mosquito at salivary gland. Here, the process of releasing wolbachia
bacteria into mosquito population can be framed with the following stages:

(1) In laboratory the Wolbachia pipients are injected into eggs, larvae, and pupae of Aedes aegypti via micro
injection.

(2) Cytoplasmic Incapability: The adult wolbachia infected mosquitoes which are reared at laboratory are released
to the wild mosquito population of Aedes aegypti. Throughout this process there exist three types of
possibilities which are
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Table 1

Description of parameters.

Ay, The reproduction rate of wild mosquitoes

K The environmental carrying capacity

A, The natural mortality rate of wild mosquito eggs

Ay The natural mortality death rate of wild mosquito larvae population

A, The natural mortality death rate of wild mosquito pupae population

)wai The natural mortality death rate of immature female wild mosquito population
Ay, The natural mortality death rate of mature female wild mosquito population
Awg The natural mortality death rate of adult male wild mosquito population
Ywe The corresponding part of the wild mosquito eggs population from which

the next life stage(Larvae) merge at time t

Yy The corresponding part of the wild mosquito larvae population from which
the next life stage(Pupae) merge at time t

Yw, The corresponding part of the wild mosquito pupae population from which
the next life stage(female immature and male) merge at time t

Yuy, The corresponding part of the wild mosquito female immature population from which
the next life stage(mature female mosquitoes) merge at time t

P The probability constant

v

Bites the infected

Uninfected wild Human
mosquito 'y Y
population 10 to 12 days its not
ready to transmit
the virus

Infected Human ]
Infected mosquito

bites the uninfected

Human
4.13 days the
human is not ready
to transmit

Fig. 1. Dynamics of virus infection before wolbachia.

} —

(i) If the Wolbachia infected female mosquitoes mate with the Wolbachia infected male then the progeny
should have the Wolbachia by birth which is compatible.
(ii) If the Wolbachia infected female cross with Wolbachia uninfected male then the progeny face the same
problems as in (i).
(iii) If Wolbachia uninfected female cross with Wolbachia infected male then there is no viable progeny.

In eggs, larvae, and pupae population, we can micro inject the wolbachia and release this in patches. And the adult
mosquitoes which are reared at lab can also be released into wild mosquito population. Our main aim is to increase

9
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v

Bites the infected

Uninfected wild Human
mosquito A4
opulation with
P \[I)Volbachia 10 to 12 days its not
ready to transmit
the virus
Infected mosquito
bites the uninfected
i Human
Remains as

Uninfected human

Fig. 2. Dynamics of virus infection after wolbachia.

the Wolbachia infection in the wild mosquito population. First, if we release the artificially Wolbachia injected
mosquitoes into the wild mosquitoes then naturally wolbachia can spread into the wild mosquito population.

d W, (¢

dt( ) = Ay, W(t) [1 - @] — A, Wo(t) — Y, We(t) + Q1
d Wi (1)

TR We(t) — du, Wi(t) — yu, Wi(t) + Q2
de(t)
d— = )/w]M(t)—)»prp(l)— prWp(t)"f' 03

! (23)

de,.(t)
T = wp Wp(t) - )‘wfl. Wf,- ) — wai Wfi ()
dWwg, (¢
%() = wai Wf,- @) — )‘“’fm me () + Q4
dW,(¢
T() = (1- /O)pr Wp(t) — Auyg W.(t) + QOs,

Let Q1 = S, I.(1), Q> = S;L;(1), O3 = Sipl,,(t), 04 = Sifm I1,(t), and Qs = S;,1,(t) denoting the control
inputs corresponding to the life stages of a mosquito are given into that corresponding compartments. Where,
Si.s Sips S,p, S and §;, are the survivability constant of the corresponding compartment. And 1.(t), I;(¢), I,(1),
Ir(), 1y, (1) and 1,(t) denote the Wolbachia infected population density of corresponding compartment. Let
Ny =E+ L+ P+ F; + Fy + A be the total population. In addition to that, consider N, = Fj; + A be the
total population which are ready to mate. (i.e.,) No = Wy, + Iy, + W, + I,. Assume that the sex ratio is 1:1.
Therefore, we get that % = % = 1. This implies that, the wolbachia infected eggs population is generated in
two ways. They are,

(1) If the wolbachia infected female (I, ) mated with the non wolbachia male (W,).
(2) If the wolbachia infected female (I, ) mated with the wolbachia infected male (1,).

Ag([fm Wa+1fm I
Ny

Therefore, the eggs with wolbachia infection are generated in the reproduction rate A, is ). By using

Ao gy, Wa+1g, 1 Al
W, + I, = 22, we get that M = =5/ Then, the population dynamics of the mosquitoes in that
wolbachia released environment can be visualized by the following mathematical model:

10
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Assume that, the reproduction rate, natural mortality rate, and the rate at which the current compartment moved
into the next compartment all are same in both wild(W) and Wolbachia infected(I) mosquitoes.

w = AW (1) [1 — @] + S, (1) — Ae<We(z) + 16(,)> — 7 ( W.(1)
+Ie(t)) A1) [1 _ IeT(’)} n Ae%

AW + ”(”> = 7 (We®) + 1) + S 110y = i (Wit + 1) = 7 (Wito) + 1))

= (W) + 10)) + 8, 1,0) = 3, (W) + 1,0)) = 7 (WD) + 1,0))

(
d(Wp 0+ 1,0)) <r) +1,0)
(

(

(24)
d{ Wy, (l‘()j;i— If,(t)) = ,pr(Wp(l) + Ip(l)) —Afr (Wfi(t) + If,.(t)) — Y (Wfl(t) + Ifi(t))
d(wy, (t()i:r Ifm(f)) =y (Wfl- )+ 1y, (t)) + b (me(t) + Ifm([))na + Sip 11, (1)
g (Wi 0+ 15,0)
w =1 =Py (Wp(f) + Ip(t)> + bz(Wa(t) + Ia(t))nfm NAG)

iy (Wa(t) + Ia(t)).

Let E0) = (W) + L)), L) = (W) + L), PO = (W) + L,0), Fi) = (W40 + 1)),

Fult) = (Wp, (0 + 15,(0), and A = (Wa(®) + 1u(0)).
Then, Eq. (24) becomes
ddEt(’) = AE@) - AEQ L5 1)+ L E(1) — 1 E)
dL(r)
T = VeED) = ML)+ Sy () — L)
dP(t)
= L= PO+ S, 1,0 — v, P()
dF,@t) (25)
1
T = PYP() =g Fi) =y Fi0)
d Fy (1)
TR Fi(t) + b1 Fy(Ona + iy, 11, (8) — Ay, Fiu(2)
dA®)
i1 = (I = p)yp P(t) +b2sA(t)ny, + Si,1.(t) — A A2).
Now, to

get the memory property, we replace the ordinary integer order derivative by Caputo—Fabrizio operator.

Then Eq. (25) becomes

0

0

0

STDYFI(t) = py,P(t) — Ay Fi(t) — vy, Fi(t)

o JE? Aelf,,
STDYEM) = AE() — 22O 4§, 1) + 252 — W E(1) — v.E(1)
STDEL(t) = yeE(t) — ML)+ Sy Ii(1) — i L(1)
SEDYPt) = yL(t) — Ay P(t)+ S;,1,(t) — v, P(1)

(26)

6 DY Fu(t) =y Fi(t) + b1 Fu(tng + Sty 11, (1) = A, F(2)
§TDIAM = (1= p)ypP)+ brAlDng, + Si,1a(t) — Ao A(D).

11
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4. Existence of a solution

In this section, we analysed the existence of solution for the proposed model (26). Let us find the fractional
integral of (26) using Caputo—Fabrizio fractional integral operator

_ 2l-a) A E2(1) A Iy, ()
E@t) — Eo(t) = 2= M@ {AeE(t) - + Sp Le(t) + — e E(t) — VeE(f)}
2a
e oM@
: 2
{/nQLE@%—mi‘”+SQQGV+£1%92—ME@)—WE@Od4
0
L(t) — Lo(t) = M{ E(t) = ML(t) + Sy 1i(1) — v L(1))
ol7) = 2 —a)M(a) Ye 1 1l Vi
2 t
Sy A(nE@%—Muﬂ+Sﬂm0—wM®)®}
21 — a)
P(t) — Py(t) = m {J/ZL(I) —ApP(1) + Sp,1,(1) — J/pP(f)}
2 1
+m /0(VZL(S)_)‘-,DP(S)"‘Slplp(s)_ypp(s)> ds}
Fi(t) — Fr(t) = —0—%) P(t)— A F F
() — 10(1)—m{,07/p (1) = Ay Fi(t) — vy, Fr(0)}
2 t
+m /(;(prP(S)_)Lf,-FI(S)_Vf,-FI(S)) dS}
F Fy(t) = =) F b F, S0 a F
m(t) — Fy,(t) = m{yﬁ 1(s) + b1 Fu(Ona + Sip, 1, (s) — A, n(s)}
2 t
—l-m /0 <7/f,- Fi(s) + b1 Fu(ng + Si; 15, (s) — Ag, Fm(S)> ds}
A — Ao = 4=y P(1) + brA S L(1) — oA
() — Ao(®) = m{( — P)YpP@) + by Atn g, + S;,1u(1) — L A1)}
2 t
+m /0 ((1 — P)YpP(s) + b2A(t)n g, + Si, 1a(s) — )»aA(S)) ds}
For simplicity, we choose our kernels as
L EX(1)

Ay,
g1t E@M) = AE(W) — ——— + S L(t) + —7 — A E(1) — v E(1)
g1t, L(1)) = v E(t) — M L(1) + Sy, (1) — y1 L(1)
gi(t, P(1)) = yiL(t) = Ap P(t) + S1,1,(1) — v, P(1)
gi1(t, Fi(t)) = pyp, P(t) — Ag Fi(t) — vy Fi(2)
81(t, Fu (1)) = vy, F1(t) + b Fp(Ona + Si, 15, (8) — Ay, Fiu(t)
g1, A@) = (1 = p)yp P(t) + by A(t)n g, + Si,1a(t) — 2o A1)
First, we need to be able to identify an operator and then show that this operator is compact. So that, the operator
v :H — H. Then, we get

E(t)—M (tE[))_|_2—a/t (s, E(s))d
VEO = o aom@® " FO T e s om@ [, & EOD
Ly = 1= (tLu»+———33———/” (s. L(s))d
G N Y0 R C—aM@) J, &P
Py = —1 =9 (tP@»+———i§¥——/” (5. P(s))d
= oM@ Q—aM@) Jo S" T

12
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F,(t) = —(1 ) t, Fi(t)) + —/I s. F d
v 1( (2 )M( )gl( ) 1() (2 )M( ) 0 gl( ) I(S)) S
( (Z—Q)M(Ol)gl( L A®) Q2—-—a)M(x) 0 gl(s’ (s))ds

Lemma 4.1. The mapping v : H — H is completely continuous.

Proof. Let B C H be bounded. There exist some constants [; > 0, (i=1,2, ...,6) such that ||E| < [, |[L] < I,
1P < I3 I1F1ll < la, |Full < Is and ||Al| < ls, where Xy = E; Xo = L; X3 = P; X4 = Fi; Xs = Fy; and
X6 = A;

Let

M; = max g](t X;(t), i=1,2,...,6.
0<r<1;0<X; <

For every X; € B, we have

X)) = . Cnl) I ( X‘(l))-l-z—a/t (s, X;(s))ds
’ "@—)M(f"’ @M@ Jo &

2(1

< mgl(f X(f))‘ ‘m/ g1(s, X;(s))ds
2(

< m‘ lg1(z, X(t))|+'(2—a—a ; gl(&Xi(S))dS

< |20 mwrxxn»+)——¥@2—— ai 1g(t, X))

T2 -a)M(a) T Q-a)M@)| ' T

< w lg1(t, X:(0))|

— (Z—a)M(ot) gl k] 1

- 2M; ! A

< m( — o+ aa;).

This implies that,
vX;(t)] < L(l —a+aaq),i=1,2,...,6.
Q—-a)M(a)
Therefore, v is bounded.

Now, in the following part we will consider #; < #, and X; € B,i =1,2,...,6, and then for a given € > 0, if
|t — 1] < &, we have

2(1 — a)

WXi(t) —vXi®)l = 2—aM@ {81(t2, Xi(12)) — g1(t1, X;(11))}
+——31——ft< Xi(s))d
Q- aM@ Jo TS

M| 1, Xi(12)) (t1, Xi(1)|

= 2 wM@) 81, Xi()) — gi1(f1, X;(11))

%—31——]Q< X(s)d ——ﬁi——/”< X(s)d
Te=om@ b 8T T am@ Jy ST

< 2029 X)) — i, Xin)
— (2 a)M( ) 102, A2 1T, A
‘m‘ M [g1(t2, Xi(12)) — g1 (11, Xi(11))] (27)

Hence, the mapping v : H — H is completely continuous. [J

13
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Theorem 4.2. Let f : [E;, E2] X [0, 00) — [0, 00), then f(t,.) is non-decreasing for each t in [E, E;]. Then there
exist positive constants, E1 and E», so that b,y; < g(t, E1), byy» = fi(t,12), 0 < y1(t) < »u(t), E1 <t < E,.

Thus, the equation has a positive solution.

Proof. We only need to consider the fixed point for the operators of f;. Here we considered that v : H — H is
completely continuous. Let Ey < E», Ly < Ly, Py < P, F;y < Fy,, Fyy < Fu,, and A < A; and the chosen

variables are arbitrary.

E0= "9 Byt 2 [ s Espa
YR = T M +(2—oz)M<a>/ogl s Eids
A=) o B+ —2 [l Ex(s)d
= mgl(, 1(1) m A g1(s, Ex(s))ds
< vE)().
L= 2379 L 20 1. Lis))d
v 1()—mg1(, 1( ))+m/o g1(s, Li(s))ds
2(1 — o) L 2 ! L d
< mé’l(ls l(f))‘f‘m/; g1(s, La(s))ds
< vLy(2).
vPi(t) = M (t P(t))+2—a/t (s, Pi(s))ds
T e —om@® T T e —oM@ S, S
- t, Py(1)) e t(p))d
< (2_0[)M(a)gl(’ 1( +(2—a)M(a)/0 g1(s, Px(s))ds
< vh(®).
Fry= 24— t, Fp (t 20 t F; (s))d
% 11()—m81(, 1 ( ))+m‘/(; gi(s, Fr,(s))ds
21 —a) CE G 200 ! . d
< mgl(, 1 ( ))+m[{) g1(s, Fp,(s))ds
< vFL ().
_ 2l-w) 2a f
VP (0) = Gt st Fin(0)+ s [ 1G5 o) ds
20 =9t Fa () + —22 /T Fu(s))d
= méﬁﬂ M.()) m A gi(s, Mz(S)) S
< VFMZ(t)~
and
_ 2-a) 20 ’
VA = Gt M) + s [ Ao ds
A=) oA+ — /I Ax(s))d
= mgl(’ 1(1) m A g1(s, Aa(s))ds
< vAy(1).

Hence, v is non-decreasing operator, so that the operator v :
Lemma 4.1. This implies that the solution exists.

5. Uniqueness of the solution

O

(y1, 2) = (y1, y2) is compact and continuous via

In this section, we analysed the Uniqueness of the solution for the proposed model (26).

14
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Let us assume that, we can find six special coupled solutions (E1, E»), (L, L), (P1, P2), (Fy,, F,), (Fu,, Fu,),
and (A1, Ay). Then the uniqueness of the solution is presented as follows:

2(1 — )
[VE () — vEy ()| < ‘m(gl(t, E () — g1(¢, Ez(l‘)))
2a !
+m/® (81(5, E((s)) — g1(s, Ez(s))) ds
2(1 — o)
< 2 —a)M(@) (gl(t, Ey(1)) — &1, Ez(;)))‘
2a !
+m /(; (gl(s, E](S)) — g](s7 E2(S))) ds
< 20O B )~ B+ g Ev0) — B0
2—-a)M(a) 2 — a)M(@)
< { 2(1 — ) n 2 }|E 0 Exo)
= (Z_Q)M(a)m (Z—a)M(a)pl 1 2(0)].
Similarly,
VL@ = vE2(0] < ‘M(gl(r, Li) = gi(t, L))
2—-a)M(x)
200 !
+m /(; (gl(s, L](S)) — g](s’ L2(S))> ds
2(1 — )
= m (gl(l, Li(t)) — g1(¢, LZ(I))N
200 t
+m /O (gl(s, L](S)) — gl(s’ L2(s))> ds
20— ) 2a
< mmlb(r) — L) + mpzwla) — Ly(1)|

B { 20-0) 2a
“le—oM@” T 2-aM@)

:02}|L1(t) — Lo (@)l

WP =P = | == (o1, PLt) — g1, Po(1))
2—-—a)M(x)
20 4
+(2 _ Ol)M(Ol) /(; (gl(sv P](S)) - g1(S, PZ(S))) ds
21 —
= (2_(0[—)13()0[) (gl(f, Pi(1)) — g1(2, Pz(t)))'
2 t
+m ./o (81(& Pi(s)) — gi(s, Pz(S))) ds
< 2(1 —a) p p 20 p »
= mpﬂ 1) — P(0)| + mpﬂ (1) — Pr(1)|
- 2(1 —a) 20 -
“\e—omnw” + oM@ | Pi(1) — Pr(1)].
2(1 —
WF, (1) — vFL(1)] < '%(gl(t, Fr, (1) — gi(t, Fzz(t)))

20 !
+m/0 (81(S, Fr,(s)) — gi(s, FQ(S))) ds

15
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21 — o)
= 2 oM@
20

oM@

< =D R - Faol +

= 2—aom@™'" :

- 2(1 — @) 20

= { 2—omM@™ T - oM@

(16t Py ) - 10, wm)‘

/0 (8165 Fiy (5 = 15, Fry(s) ds

200
mpﬂﬂl(ﬂ — Fp, (1)

p4}|F11(t) — Fp, (1)l

2(1 — @)
2 — a)M(a)

2u !
i | (@6 i) = a6, P ) s

21 — a)
= - aM@)
200
e oM@
2(1 — )
<
= M@

[0 Fay () = vFuy (0] < (8100, Far, ) = 168, Fary 1)

(160 Fuy ) = 161 FM2<t)>)‘

| (165 Fu(s)) = . Funton) as
0

ps|Fy (1) — Fi, (D] + s Fa, (1) — Firy (1)

2a
Q2 —-a)M(a)

<{ M-y }|F (1) — Fy, (1)
“le—oM@” T a—am@™] " My
2(1 — @)
A1) = vA(0)] < ‘m(m, A0) = 10, A1)
2 t
o [, (616 A1) = 6165, Ax) s
2(1 —
< =t A1) - st 4x()
2 t
+m /0 (8165 A1) = 8105, Aa(5))) ds
< 207D A0 — A+ ——2— pel Ayt — As(D)]
= 2— oM@ 2 - a)M(@)
2(1 —a) 20
< {(2 — a)M(a)'o6 + oz a)M(a)Pﬁ}Ml(f) — As()].
Therefore, if the following conditions hold:
2(1 — @) 2a |
oM@ T e om”| =
2(1 — @) 20 )
2@ T e am@ ™| =
2(1 — @) 2a |
C_oM@” T e am@”| =
2(1 — @) 20 )
C—aoM@ T e om@™| ~
2(1 — @) 2a |
oM@ T e—au@”| <

16
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and

2(1 — o) 2 1
{(2—a)M(a)p6+(2—oz)M(cx)'06} h

then the mapping v is a contraction, we can say that the model has a unique positive solution using fixed point
theorem.

6. Stability results

In this section, the stability results for the proposed model (26) are analysed by using the results from Section 2.
In order to prove the stability results, we need the following assumption.

Assumption 1. The function f(g(z)) is continuous and satisfying the Lipschitz condition || f(g(®))|| < |Hq@)||
where, H € R"*" is a constant matrix.

Consider the system of equations (26), and let E*, L*, P*, F}, F;;, and A* are equilibrium points of the
corresponding stages E(t), L(t), P(t), Fi(t), Fy(t), and A(z).

Define Z = [E(t), L(t), P(t), F1(t), Fu(t), A(t)]" and Z = [E*, L*, P*, F}, F},, A*]". By the definition of
equilibrium point

AeE* _ Agfz* + SIeIe + A"% _ )"eE* _ yeE* —
)/eE*—)»lL*+S][I] —)/IL* =0
J/IL*—)\[,P*-FSIPI[,—)/I,P* =0 (28)
pypP* — A Ff —yr F} =0
yf,F]*"i_blF;nu"i_SlfmIfm_)\fmFy: =O
(1 - p)]/pP* + bzA*nfm + Slala - )‘-aA* =0.
To construct a vector function, we define a new variable
q=72-27"
and the control is defined by
w(t) = [Le(0), 1), Ip(0), 17,(0), T, (1), L(D)]
Then,
SED2q(ty = §F DX (Z — 7¥). (29)
By using Property 2.3, one can get
SED2q(ty = §F DY Z(t) — §F D2 Z*(1).
This implies that, we get the following error system
§ D2q(t) = Wa() + f(g(t) + Cu(t) (30)
Ae - )\e - Ve O O 0 O O
Ye A=V 0 0 0 0
where, W = 0 " R 0 0 0 ;
0 0 PYp —As — VY5 0 0
0 0 0 Yfi b]l’la — )‘fm 0
9 0 (I =p)yp 0 0 bong, — Ay
_ Aeay S, 0 0 0 4 o0
0 0 S, 0 0 0 0
_ 0 oA o o0 S, 0 O 0
flq@) = 0 C=19 0o o 0 o0 o
0 o o0 0 0 S, O
0 o 0 o0 o0 o0 S,
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In the next theorem, we investigate the «-exponential stability results for system (26), via LMI approach.

Theorem 6.1. [f there exist a positive definite matrix P, real matrix Z and a positive scalar w, satisfying the
following LMI:

_ T
Q:|:2PW+2CZ+a)1H H P ]<0. 31
* —a)ll

Furthermore, the control gain matrix is designed as K = P~'Z. Then, the system (30) is a-exponentially stable.

Proof. Let us consider the following Lyapunov function
V(t,q(0) = q' 1)Pq(). (32)
By taking the Caputo—Fabrizio fractional operator for (32), and by using Lemma 2.4, we sustain
§EDEV (. q@) = §F DA q(t)Pq (1)
< 2" (1)P§" Diq(1)
=2¢" (P [Wq@) + fq(t) + Cu(®)]
=2¢ () PWq(t) +2q (1)Pf(q(t) +2q " (1)PCu(r) (33)
Put u(t) = Kq(@t), 2¢T(0)PWq(t) < q"(t)(PW + WT P)q(t). By Assumption 1, we get 2q' (t1)Pf(g(t)) <
qT(t)[wl_lPPT +w H Hlg(). By substituting these expressions into (33), we get
6 DIV, q) < ¢ PW +WTPHq(t) +q (12K PCq(t) + ¢ )lw; ' PPT +w H' Hlg(1)
Put KP = Z,
6 DyVt, q) < g (M2PW + o HTH + o' PPTg(t) +2¢ (DICZ1q(1)
=q (ORPW+wH'H+o'PPT +2CZ1q(t)

Therefore,

SEDV(1, q(1) < q(0)" (1) 2q(1)

where,

_ T
Q=|:2PW+2CZ+a)1HH P ]<0. (34)

* —w 1

§ DIV, q(1) < max (g T (1)q(1)
= hnax(Dlg@)|

According to Theorem 2.7, the system (30) is a-exponentially stable. Hence the proof is completed. [J

7. Numerical example

In this section, we apply the real world data into our proposed model (26) and check the stability properties
using the derived results.

Let us consider the data: the reproduction rate of wild mosquitoes A,, = 0.95 is reduced after the release of
Wolbachia infected mosquitoes to A, = 0.56. Furthermore, K = 1, p = 0.5 and the natural mortality death rates
are Ay, = 0.1285; &, = 0.1285; A, = 0.1285; k = 0.0714; A = 0.0714; 1, = 0.0714. Maturation rates
of Wild mosquitoes are y,,, = 0.1499; y,,, = 0. 1499 yw , = = 0.1499; yu, = 0.1499. The survivability rates (Fitted)
of Wolbachia infected mosquito population are §;, = 0.1; §;, = 0.23; S =0.56; S;, = 0.89; S;, = 0.56; with the
following initial release rate (Fitted) of Wolbachia infected mosquito population I, =0.01; [; = 0.10; I, = 0.02;
Iy, =0.03; I, =0.019; and b; = 0.012; b, = 0.367; n, = 0.036; ny, = 0.002 for instance, refer Table 2,

18
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Table 2
List of parameters.
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The reproduction rate of both wolbachia and
non-wolbachia mosquitoes

The death rate of the aquatic stages like egg, larvae, pupae
of both wolbachia and non-wolbachia mosquitoes

The death rate of the adult stages like male, female mature
and female immature of both wolbachia and non-wolbachia
mosquitoes

The maturation rate of the aquatic stages like egg, larvae,
pupae and female immature of both wolbachia and
non-wolbachia mosquitoes

The transmission rate in which the current compartment
moved into the next compartment

K= environmental carrying capacity

Ay, =095

Ay, = hwy = )“Wp = ﬁ/day

Moy = g,

Ywe = Yuy

0.9

1
= )Wua =1

= Yu, = ge7/day

[34,47]

(501

[50]

[50]

[34,47]

[34]

For the above values, we get the following parameters which satisfies the derived LMI (31).

—0.3189 0 0
0.1499  —0.4349 0 0
0 0.1499 —0.4349 0
0 0 0.0899 —0.3213
0 0 0 0.1499
0 0 0.0600 0

—0.2710

0

0

0

0

0
—0.2707

Via MATLAB, we have plotted the solution of the system of equations (22) and (26) at various orders. Figs. 3, 5,
7,9 and 11, are the trajectories of the solutions of the system of equations (22) which describes the wild mosquito
population dynamics before the release of Wolbachia infected mosquitoes at « = 0.18, 0.28, 0.38,0.41 and o = 1
respectively. Along with this, Figs. 4, 6, 8, 10 and 12 all are the trajectories of the system of equations (26)
which describe the dynamics of wild mosquito population after the release of Wolbachia infected mosquitoes at
o =0.18,0.28, 0.38, 0.41 and o = 1 respectively. We can observe from the Figures that, the population is stable and
under control after the release of Wolbachia infected mosquitoes. From Fig. 13, one can observe that the dynamics of
wild mosquito population model are identical at « = 1 at integer order, « = 0.98 at Caputo derivative and o« = 0.28
at Caputo—Fabrizio derivative. Similarly, the dynamics of wild mosquitoes after the release of Wolbachia infected
mosquitoes are identical at o = 1 at integer order, @ = 0.98 at Caputo derivative and o = 0.28 at Caputo—Fabrizio
derivative (see Fig. 14). From this we can observe that Caputo—Fabrizio operator has higher rate of convergence

0.1000 0 0
0 0.5123 0
than that of Caputo derivative and integer order system. C = 8 8 0'5(? 00
0 0 0
0 0 0
0.0400 —0.0940 0.6090 0.0100 0 0
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and H — 0.0003 0 0.0900 0.0353 0 0 . the
0.6900 0.0058 0 0.2500 0 0 ’
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obtained as: K — 0.0110 —0.0002  0.0000 0.0000 —0.0015 —0.0005
0.4653 0.0269 —0.0000 —0.0000 —0.0910 —-0.0104
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0
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state feedback control gain matrix is
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These are the values obtained from LMI using the data provided in Table 2 and these figures depict the
effectiveness of the proposed theoretical results.

8. Conclusion

In this paper, we have proved that the fractional order system with Caputo—Fabrizio derivative can obtain only
global exponential stability results and not for Mittag-Leffler stability. For the first time the proven theoretical results
were justified with a real life model to control the mosquito borne diseases using Wolbachia as a biological control.
Moreover, by the release of Wolbachia infected mosquitoes into the wild one, we attained the optimal control of
mosquito borne diseases. Furthermore, by using Caputo—Fabrizio operator, we proved the a-exponential stability for
the considered population system. Finally, a numerical example was drawn to justify the usefulness of the obtained
main results. In future, the LMI based stability results can be extended to fractional order delay differential equations
and Impulsive differential equation based on CF operator and we aimed to find the application problems for CF
operator.

Acknowledgements

The article has been written with the joint partial financial support of SERB-EEQ/2019/000365, RUSA-Phase 2.0
grant sanctioned vide letter No. F 24-51/2014-U, Policy (TN Multi-Gen), Dept. of Edn. Govt. of India, UGC-SAP
(DRS-]) vide letter No. F.510/8/DRS-1/2016(SAP-I) and DST (FIST-Phase I) vide letter No. SR/FIST/MS-1/2018-17,
DST-PURSE 2nd Phase programme vide letter No. SR/ PURSE Phase 2/38 (G), the National Science Centre in
Poland Grant DEC-2017/25/B/ST7/02888 and J. Alzabut would like to thank Prince Sultan University for supporting
this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number
RG-DES-2017-01-17.

References

[1] World mosquito program, https://www.worldmosquitoprogram.org.

[2] EB. Agusto, S. Bewick, W.F. Fagan, Mathematical model for Zika virus dynamics with sexual transmission route, Ecol. Complex. 29
(2017) 61-81.

[3] EB. Agusto, S. Bewick, W.F. Fagan, Mathematical model of zika virus with vertical transmission, Infec. Dis. Model. 2 (2017) 244-267.

[4] L. Alphey, M. Benedict, R. Bellini, G.G. Clark, D.A. Dame, M.W. Service, S.L. Dobson, Sterile-insect methods for control of
mosquito-borne diseases: an analysis, Vector-Borne Zoonotic Dis. 10 (2010) 295-311.

[S] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer
model, J. Therm. Sci. 20 (2) (2016) 763-769.

[6] A. Atangana, J.F. Gomez-Aguilar, Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more
natural phenomena, Eur. Phys. J. Plus 133 (4) (2018) 22, 166.

[7] S. Bhatt, P. Gething, O. Brady, et al., The global distribution and burden of dengue, Nature 496 (2013) 504-507.

22


https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
https://www.worldmosquitoprogram.org
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb2
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb2
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb2
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb3
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb4
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb4
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb4
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb5
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb5
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb5
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb6
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb6
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb6
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb7

J. Dianavinnarasi, R. Raja, J. Alzabut et al. Mathematics and Computers in Simulation xxx (Xxxx) xxx

[8]
[91
[10]
(1]
[12]
[13]

[14]
[15]

[16]
[17]
[18]
[19]
[20]
[21]
[22]
(23]
[24]
(25]
[26]
[27]
(28]

[29]
[30]

(311
[32]
[33]
(34]
[35]

(36]
(371

[38]
[39]
[40]
[41]
[42]

[43]
[44]

J. Bouyer, T. Lefrancois, Boosting the sterile insect technique to control mosquitoes, Trends Parasitol. 30 (2014) 271-273.

M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl. 1 (2015) 73-85.
J.K. Chye, C.T. Lim, K.B. Ng, Vertical transmission of dengue, Clin. Infect. Dis. 25 (1997) 1374-1377.

J. Dianavinnarasi, Y. Cao, R. Raja, G. Rajchakit, C.P. Lim, Delay-dependent stability criteria of delayed positive systems with uncertain
control inputs: Application in mosquito-borne morbidities control, Appl. Math. Comput. 382 (2020) 125210.

M.A. Dokuyucu, E. Celik, H. Bulut, H.M. Baskonus, Cancer treatment model with the Caputo—Fabrizio fractional derivative, Eur. Phys.
J. Plus 133 (92) (2018).

H.L.C. Dutra, M.N. Rocha, FEB.S. Dias, S.B. Mansur, E.P. Caragata, L.A. Moreira, Wolbachia blocks currently circulating Zika virus
isolates in Brazilian Aedes aegypti mosquitoes, Cell Host Microbe 19 (2016) 771-774.

AM.A. El-Sayed, A.E.M. El-Mesiry, H.A.A. El-Saka, On the fractional-order logistic equation, Appl. Math. Lett. 20 (2007) 817-823.
G. Fu, R.S. Lees, D. Nimmo, D. Aw, L. Jin, P. Gray, T.U. Berendonk, Femalespecific flightless phenotype for mosquito control, Proc.
Natl. Acad. Sci. USA 107 (2010) 4550-4554.

R. Gibbons, D. Vaughn, Dengue: An escalating problem, BMJ 324 (2002) 1563-1566.

D.J. Gubler, Dengue and dengue hemorrhagic fever, Clin. Microbiol. Rev. 11 (1998) 480-496.

D.J. Gubler, Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century, TIM 10
(2) (2002) 100-103.

P. Hancock, S. Sinkins, H. Godfray, Population dynamic models of the spread of Wolbachia, Amer. Nat. 177 (2011) 323-333.

A.A. James, Gene drive systems in mosquitoes: rules of the road, Trends Parasitol. 21 (2005) 64-67.

F. Jiggins, The spread of Wolbachia through mosquito populations, PLOS Biol. 15 (2017) 1-6.

M.A. Khan, S. Ullah, K.O. Okosun, K. Shan, A fractional order pine wilt disese model with Caputo—Fabrizio derivative, Adv. Difference
Equ. (2018) http://dx.doi.org/10.1186/s13662-018-1868-4.

A.A. kilbas, H.M. Sirvastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The
Netherlands, 2006.

M. Kraemer, M. Sinka, K. Duda, A. Mylne, F. Shearer, C. Barker, The global distribution of the arbovirus vectors Aedes aegypti and
Ae. albopictus, eLife 4 (2015) 1-18.

Y. Li, Y. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized
Mittag—Leffler stability, Comput. Math. Appl. 59 (2010) 1810-1821.

H. Li, J. Cheng, H. Li, S. Zhong, Stability analysis of a fractional-order linear system described by the Caputo—Fabrizio derivative,
Mathematics 7 (2) (2019) 200.

Y. Li, X. Liu, An impulsive model for Wolbachia infection control of mosquito- borne diseases with general birth and death rate
functions, Nonlinear Anal. RWA 37 (2017) 412-432.

H. Li, S. Zhong, J. Cheng, H. Li, Stability analysis of fractional-order linear system with time delay described by the Caputo—Fabrizio
derivative, Adv. Difference Equ. (2019) http://dx.doi.org/10.1186/s13662-019-2024-5.

J. Losada, J.J. Nieto, Properties of the new fractional derivative without singular kernel, Prog. Fract. Differ. Appl. 1 (2015) 87-92.
C. Mabharajan, R. Raja, J. Cao, G. Rajchakit, Z. Tu, A. Alsaedi, LMI-based results on exponential stability of BAM-type neural
networks with leakage and both time-varying delays: A non-fragile state estimation approach, Appl. Math. Comput. 326 (2018) 33-55.
M.A. Masud, B.N. Kim, Y. Kim, Optimal control problems of mosquito-borne disease subject to changes in feeding behaviour of
Aedes mosquitoes, Biosystems 156-157 (2017) 23-39.

C.J. McMeniman, R.V. Lane, B.N. Cass, A.W. Fong, M. Sidhu, Y.F. Wang, S.L.O. Neill, Stable introduction of a life-shortening
Wolbachia infection into the mosquito Aedes aegypti, Science 323 (2009) 141-144.

A.A. Momoh, A. Fugenschuh, Optimal control of intervention strategies and cost effectiveness analysis for a zika virus model, Oper.
Res. Health Care 18 (2018) 99-111.

M.Z. Ndii, R.I. Hickson, A.G.N. Mercer, Modelling the introduction of Wolbachia into Aedes aegypti to reduce dengue transmission,
ANZIAM J. 53 (3) (2012) 213-227.

A. Ong, M. Sandar, M.I. Chen, L.Y. Sin, Fatal dengue hemorrhagic fever in adults during a dengue epidemic in Singapore, Int. J.
Infec. Dis. 11 (2007) 263-267.

I. Ormaetxe, T. Walker, S.L.O. Neill, Wolbachia and the biological control of mosquito-borne disease, EMBO Rep. 12 (2011) 508-518.
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods
of their Solution and Some of their Applications, Academic Press, 1999.

I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal. 5 (4)
(2002) 367-386.

A. Pratap, R. Raja, J. Cao, G. Rajchakit, C.P. Lim, Global robust synchronization of fractional order complex valued neural networks
with mixed time varying delays and impulses, Int. J. Control Autom. Syst. 17 (2) (2019) 509-520.

M. Rafikov, M.E.M. Meza, D.PE. Correa, A.P. Wyse, Controlling Aedes aegypti populations by limited Wolbachia-based strategies in
a seasonal environment, Math. Methods Appl. Sci. (2019) 1-10.

G. Rajchakit, P. Chanthorn, M. Niezabitowski, R. Raja, D. Baleanue, A. Pratap, Impulsive effects on stability and passivity analysis
of memristor-based fractional-order competitive neural networks, Neurocomputing 417 (5) (2020) 290-301.

S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon & Breach, Science
Publications, London-New York, 1993.

T.W. Scott, W. Takken, B.G.J. Knols, C. Bote, The ecology of genetically modified mosquitoes, Science 298 (2002) 117-119.

M. Segoli, A.A. Hoffmann, J. Lloyd, G.J. Omodei, S.A. Ritchie, The effect of virus-blocking Wolbachia on male competitiveness of
the dengue vector mosquito, Aedes aegypti, PLOS 8 (2014) 1-10.

23


http://refhub.elsevier.com/S0378-4754(21)00041-0/sb8
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb9
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb10
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb11
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb11
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb11
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb12
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb12
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb12
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb13
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb13
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb13
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb14
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb15
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb15
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb15
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb16
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb17
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb18
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb18
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb18
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb19
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb20
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb21
http://dx.doi.org/10.1186/s13662-018-1868-4
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb23
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb23
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb23
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb24
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb24
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb24
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb25
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb25
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb25
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb26
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb26
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb26
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb27
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb27
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb27
http://dx.doi.org/10.1186/s13662-019-2024-5
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb29
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb30
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb30
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb30
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb31
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb31
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb31
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb32
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb32
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb32
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb33
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb33
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb33
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb34
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb34
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb34
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb35
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb35
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb35
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb36
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb37
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb37
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb37
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb38
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb38
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb38
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb39
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb39
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb39
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb40
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb40
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb40
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb41
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb41
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb41
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb42
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb42
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb42
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb43
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb44
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb44
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb44

J. Dianavinnarasi, R. Raja, J. Alzabut et al. Mathematics and Computers in Simulation xxx (Xxxx) xxx

[45]

[46]

[47]
(48]
[49]

[50]

N. Sene, Stability analysis of the fractional differential equations with the Caputo—Fabrizio fractional derivative, J. Fract. Calc. Appl.
11 (2) (2020) 160-172.

A.K. Supriatna, N. Anggriani, Melanie, H. Husniah, The optimal strategy of Wolbachia- infected mosquitoes release program an
application of control theory in controlling Dengue disease, in: 2016 International Conference on Instrumentation, Control and
Automation, ICA, 2016, pp. 38—43.

T. Walker, P.H. Johnson, L.A. Moreira, The WMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations,
Nature 476 (2011) 450-453.

World Health Organization, Vector-borne diseases, 2017, https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases, 31
October.

L. Xue, C. Manore, P. Thongsripong, J. Hyman, Two-sex mosquito model for the persistence of Wolbachia, J. Biol. Dyn. 11 (2017)
216-237.

H.M. Yang, M.L.G. Macoris, M.T.M. Andrighetti, D.M.V. Wanderley, Assessing the effects of temperature on the population of Aedes
aegypti, the vector of dengue, Epidemiol. Infect. 137 (2009) 1188-1202.

24


http://refhub.elsevier.com/S0378-4754(21)00041-0/sb45
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb45
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb45
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb47
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb47
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb47
https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb49
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb49
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb49
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb50
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb50
http://refhub.elsevier.com/S0378-4754(21)00041-0/sb50

	Application of Caputo–Fabrizio operator to suppress the Aedes Aegypti mosquitoes via Wolbachia: An LMI approach
	Introduction
	Preliminaries
	System formulation
	Existence of a solution
	Uniqueness of the solution
	Stability results
	Numerical example
	Conclusion
	Acknowledgements
	References


