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Abstract. We prove existence of compact spacelike hypersurfaces with prescribed k -
curvature in de Sitter space, where the prescription function depends on both space and

the tilt function.

1 Introduction

We consider the existence problem for embedded compact spacelike hypersur-
faces Σ in de Sitter space Sn+1

1 satisfying a prescribed curvature equation of
the form

(1) H
1
k

k (λ[A]) = ψ.

Here 1 ≤ k ≤ n is fixed, A is the second fundamental form of Σ, λ[A] =
(λ1, . . . , λn) are the eigenvalues of the shape operator Aij , and Hk is the k-th
normalised symmetric polynomial in λ, that is

Sk(λ) :=
∑

1≤i1<···<ik≤n

λi1 · · ·λik , Hk :=

(
n
k

)−1

Sk.

Furthermore, we will choose our prescription function ψ to depend on both
position in Sn+1

1 and the tilt, τ , which is a measure of how spacelike Σ is at the
position, see (8) below. We note that, as every compact embedded spacelike
surface in Sn+1

1 may be written as a graph, (1) may be rewritten as a fully
nonlinear elliptic second order partial differential equation in the graph func-
tion. Our main result is that, assuming some natural structural assumptions
on ψ, the prescribed curvature equation (1) has a smooth spacelike solution
Σ.

The existence of solutions of such equations was studied in [5] by L. Caf-
farelli, L. Nirenberg and J. Spruck. In [6], they proved the existence of star-
shaped hypersurfaces in Euclidean space with prescribed k-symmetric curva-
ture using an priori C2,α estimate needed to carry out the continuity method.
Curvature estimates for starshaped hypersurfaces with given k-symmetric cur-
vature have been established for various ambient Riemannian manifolds. For
hypersurfaces in the sphere, the lower order and the curvature estimate are
given in [3] by M. Barbosa, L. Herbert and V. Oliker. These were used to
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prove the existence result by Y. Li and V. Oliker in [17] via a degree theory
argument. The curvature estimate and the existence result for prescribed cur-
vature hypersurfaces in the hyperbolic space was proved by Q. Jin and Y. Li
in [14] using similar arguments of W. Sheng, J. Urbas and X. Wang in [18].

For spacelike hypersurfaces in Lorentz manifolds, less is known. The case
of prescribed mean curvature was studied by C. Gerhardt [9,10] and R. Bart-
nik and L. Simon [4]. C. Gerhardt [8] also studied more general curvature
functionals, but was forced to only consider a comparatively restrictive class
of curvature functionals due to a problematic sign on a term in the curva-
ture estimates (in particular all of these functionals are zero on the boundary
of the positive cone, Γ+). Urbas [19] obtained curvature estimates for pre-
scribed symmetric curvature under the assumption that the mean curvature
was in Lp for sufficiently large p. Y. Huang [13] noted that over compact do-
mains Minkowski space, if the prescription function is additionally required
to depend on the tilt and satisfies certain structural assumptions, then the
problematic term in the curvature estimates may be cancelled and curvature
estimates may be obtained. D. Ballesteros-Chávez [2] extended this result to
compact domains in de Sitter space. We note that similar prescribed curva-
ture problems with prescription function depending on the normal have also
been studied in Eulidean spaces by P. Guan, J. Li and Y. Li [11] and by P.
Guan, C. Ren and Z. Wang [12].

We will prove the following:

Theorem 1 Suppose that ψ : Sn+1
1 × R+ → R is a smooth positive func-

tion satisfying the structural conditions A)–E) and let 1 ≤ k ≤ n. Then
there exists a smooth embedded k-admissable spacelike hypersurface Σ ⊂ Sn+1

1

satisfying (1).

In Section 2 we will collect all required definitions and some preliminary
calculations. In Sections 3 and 4 we will prove the required C0 and C1 esti-
mates respectively. In Section 5 we extend earlier results [2, 13] to give the
curvature estimates (and therefore C2 estimates). In Section 6 we prove ex-
istence of a solution via regularity result of Evans and Krylov [7, 15] and the
degree theory of Y. Li [16].

We now state our structural assumptions on the prescription ψ:

Assumptions on ψ We impose the following structural assumptions on
ψ : Sn+1

1 × [1.∞)→ R:

A) (Barrier conditions) There exist constants 0 < R1 < R2 <∞ such that

tanh(r) > ψ(Y (r, ξ), cosh(r)) for all ξ ∈ Sn, r < R1,

tanh(r) < ψ(Y (r, ξ), cosh(r)) for all ξ ∈ Sn, r > R2.

where Y is as in equation (4).
B) (Differential inequality) For all x ∈ Sn+1

1 and τ ∈ [1,∞),

ψτ (x, τ)τ ≥ ψ(x, τ)
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C) (Asymptotics) ψ(x,τ)
τ →∞ as τ →∞ for all x ∈ Sn+1

1 .

D) (C1 bound) Taking coordinates (x1, . . . , xn+1) = (r, ξ1, . . . , ξn) on Sn+1
1

as in (4) we have that there exists a uniform C > 0 such that for all
x ∈ Sn+1

1 and τ ∈ R, ∣∣∣∣∂ψ(x, τ)

∂xi

∣∣∣∣ ≤ Cψ(x, τ) .

E) (Convexity in τ) ψττ (x, τ) ≥ 0 for all x ∈ Sn+1
1 and τ ∈ [1,∞).

Remark 1 Assumption A) is simply to ensure the existence of suitable
barriers. The relevance of the rate tanh(r) is that this is curvature of the
natural foliation of totally umbillic hypersurfaces in de Sitter space.

Remark 2 We note that condition B) already implies that ψ(x, τ) ≥
τψ(x, 1), so C) may be considered as the smallest possible increase in growth
on top of this assumption.

Remark 3 Condition D) above is used to estimate the space derivative
of ψ with respect to a multiple of ψ. This is a necessary condition in our tilt
estimates as the derivative may be vastly larger with respect to τ , for example

if in local coordinates ψ(x, τ) = τ2 + x1eτ then at x1 = 0, ∂ψ(x,τ)
∂x1 cannot be

estimated by ψ.

Remark 4 There are an abundance of functions ψ which satisfy the
structure conditions A)–E) (see also Lemma 2). Our model function is
ψ(x, τ) = Ψ(x)τp where p > 1 and Ψ is a smooth bounded function satis-
fying the conditions of Lemma 2.

2 Preliminaries

2.1 Subspace geometry in Lorentzian manifolds

To avoid confusion with signs, we now collect some geometric formulae for
hypersurfaces in Lorentzian manifolds.

Let {∂1, ..., ∂n, N} be a basis for a Lorentzian manifold (M, ḡ) and M
a Lorentzian (not necessarily spacelike) hypersurface with induced metric g
such that {∂i} span TM , and let N be the unit normal field to M and put
ε = ḡ(N,N). When the induced metric is positive definite, then we say
that M is a spacelike hypersurface, then g can be represented by the matrix
gij = g(∂i, ∂j) with inverse denoted by gij .

The Gauss formula for X,Y ∈ TΣ reads

DXY = ∇XY + ε h(X,Y )N,

here D is the connection on M , ∇ is the induced connection on M and the
second fundamental form h is the normal projection of D. In coordinate basis
we write

hij = h(∂i, ∂j).
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The shape operator obtained by raising an index with the inverse of the metric

hij = gikhkj .

The principal curvatures of the hypersurface Σ are the eigenvalues of the
symmetric matrix (hij). The tangential projection of the covariant derivative

of the normal vector field N on Σ, ∇jN = (D∂jN)>, is related to the second
fundamental form by the Weingarten equation

(2) ∇jN = −hij∂i = −gikhkj∂i.

The curvature tensor is defined for X,Y, Z ∈ TΣ as

R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z.

Contracting with the metric

Rijkl = g (R(∂i, ∂j)∂k, ∂l) = glmR
m
ijk.

To relate curvature and second fundamental form, we have the Codazzi equa-
tions 〈

Rijk, N
〉

= ∇jhik −∇ihjk.

and the the Gauss equation,

Rijkl = Rijkl − ε (hikhjl − hilhjk) .

Note that if T is a symmetric tensor, then the following Ricci identity holds

(3) ∇k∇lTij −∇l∇kTij = RkljrTir +RklirTrj .

2.2 The geometry of de Sitter space

We now consider manifolds Σ ⊂ Sn+1
1 ⊂ Rn+2

1 where

• Rn+2
1 = (Rn+2, ḡ) is Minkowski space with metric

¯̄g = −dx2
1 + dx2

2 + · · ·+ dx2
n+2

and covariant derivative D̄.
• Sn+1

1 is de Sitter space, defined by

Sn+1
1 =

{
x ∈ Rn+2

1 : −x2
1 + x2

2 + · · ·+ x2
n+2 = 1

}
with the induced Lorentzian metric g, covariant derivative D, unit nor-
mal N and second fundamental form h.

• Σ ⊂ Sn+1
1 is a embedded spacelike hypersurface of Sn+1

1 with induced
Riemannian metric g, covariant derivative ∇, unit normal ν and second
fundamental form A.

Let Sn be the standard round sphere. Then de Sitter space may be parametrised
by Y : Sn × R→ Sn+1

1 given by

(4) Y (r, ξ) = sinh(r)E1 + cosh(r)ξ

and in these coordinates, the induced metric is

g = −dr2 + cosh2(r)σ,
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where σ is the round metric on Sn. We note that as |Y |2 = 1 we have that
Y = N is a unit normal to Sn+1

1 and (as 0 = 〈Yαβ , Y 〉+ 〈Yα, Yβ〉)
(5) hαβ = −gαβ ,
(where 1 ≤ α, β ≤ n+ 1) and so using the Gauss equation we have

R
Sn+1
1

αβγδ = gαγgβδ − gαδgβγ ,

where we used that Minkowski space is flat. This implies that on Σ (which
has a timelike normal) we have that

(6) ∇ihjk = ∇jhik
and

(7) Rijkl = AilAjk −AikAjl + gikgjl − gilgjk .
We define the tilt function on Σ to be the function

(8) τ = 〈ν,E1〉,
where ν is a unit normal to Σ which has been chosen so that τ is positive.

We now represent Σ as a graph, that is we take u : Sn → R so that Σ is

parametrised by X : Sn → Sn+1
1 given by X(ξ) = Y (u(ξ), ξ). We will use ∇̃

to denote the standard covariant derivative for the metric σ on Sn, and our
indices ∂i, ∂j , ..., etc., take values from 1 to n, except for the vector field ∂r
which will be considered separately. The tangent space of the hypersurface at
a point Y ∈ Σ is spanned by the tangent vectors Yj = uj∂r+∂j , the covariant
derivative ∇ corresponding to the induced metric on Σ is given by

gij = −uiuj + cosh2(u)σij .

We write

τ̃ =
cosh2(u)√

cosh2(u)− |∇̃u|2
,

where ∇̃u = σijuj∂i and |∇̃u| := σijuiuj (we will see shortly that τ̃ = τ). Σ
is spacelike at a point if gij is invertable, which is equivalent to τ̃ being finite
at that point. Since Σ is spacelike, we calculate the inverse of gij to be

gij = cosh−2(u)

[
σij + τ̃2σ

ilulσ
jmum

cosh4(u)

]
(9)

A unit normal vector to Σ at the point Y can be obtained by solving the
equation g(Yα, n̂) = 0, and then we get

ν = − cosh2(u)∂r + ∇̃u√
cosh4(u)− cosh2(u)|∇̃u|2

= cosh−3(u)τ̃(cosh2(u)∂r + ∇̃u).

We note that

cosh(u)∂r = E1 + sinh(u)Y.

and so we see that

τ = 〈E1, ν〉 = τ̃ ,
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as claimed. The second fundamental form is the projection of the second

derivatives of the parametrisation DYαYβ on the normal direction. Writing Γ̃
for the Christoffel symbols of the metric σ, we have

D∂r∂r = 0; D∂r∂j = tanh(r)∂j ; D∂i∂j = cosh(r) sinh(r)σij∂r + Γ̃kij∂k,

and using these identities we compute

DYiYj = Dui∂r+∂i (uj∂r + ∂j)

= ujujD∂r∂r + uiD∂r∂j + uij∂r + ujD∂i∂r +D∂i∂j .

It follows that Aij = g(DYiYj , ν) is given explicitly by

(10) Aij = cosh−1(u)τ
(
∇̃2
iju− 2 tanh(u)uiuj + sinh(u) cosh(u)σij

)
.

Finally, we define a notion of partial derivatives for ψ on Sn+1
1 . Suppose we

have a function f : Sn+1
1 × R → R, then we define the partial derivative on

Sn+1
1 and Σ by

Dxf =
∂ψ

∂xα
gαβ∂β , ∇xψ = (Dxf)> .

Similarly, we may define second derivatives of f in the usual tensorial way.

2.3 Curvature functionals and admissability

Throughout this section we fix 1 ≤ k ≤ n. As described above we will consider
functions

F [A] := H
1
k

k (λ[A]),

where λ[A] = (λ1, . . . , λn) are the eigenvalues of the symmetric matrix A and

we will define f : Rn → R by f = H
1
k

k . We define the admissable cone of Hk to

be Γk which is defined to be the connected component of H−1
k ({x ∈ R|x > 0})

which contains the positive cone

Γ+ = {λ ∈ Rn |λi > 0,∀i = 1, 2, . . . , n}.

We have that for all λ ∈ Γk, fλi(λ) > 0 and f is concave in Γk. Since f ∈
C2(Γk)∩C0(Γk) it follows that F [A] is elliptic and concave if the eigenvalues
of A lie in Γk. A spacelike hypersurface Σ ⊂ Sn+1

1 will be called k-admissable

if for all p ∈ Σ the eigenvalues of the shape operator Aji = Aikg
kj are in Γk. A

function u ∈ C2(Sn) will be called k-admissable if the graph of u is a spacelike
admissable hypersurface. We note that this implies that u is positive, as if
there is a negative minimum of u at p ∈ Σ, the shape operator is negative
definite so λ[A] /∈ Γk. As is standard, and we will write

F ij :=
∂F

∂Aij
, F ij,kl :=

∂2F

∂Aij∂Akl
.
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3 A priori C0 estimate

Considering Σ graphically, any solution u ∈ C2 (Sn) of (1), the barrier condi-
tions (11) will ensure that R1 ≤ u(ξ) ≤ R2 for all ξ ∈ Sn. The proof follows
maximum principle arguments similar to [3, Lemma 3.1].

Lemma 1 Let 1 ≤ k ≤ n and let ψ : (0,∞) × Sn × [1,∞) → R is a
continuous positive function such that there exist constants 0 < R1 < R2 <∞
such that

tanh(r) > ψ(r, ξ, cosh(r)), for ξ ∈ Sn, r < R1,

tanh(r) < ψ(r, ξ, cosh(r)), for ξ ∈ Sn, r > R2.

(11)

Then u ∈ C2 (Sn) is a solution of (1) then for all ξ ∈ Sn, u satisfies

R1 ≤ u(ξ) ≤ R2.

Proof Suppose there is a point ξ0 ∈ Sn where the maximum of u is attained,

say R2 < r0 = u(ξ0). Then at the maximum we have ∇̃u=̇0 and ∇̃2u≤̇0.
Substituting these into the equations of the previous section Then the inverse
of the metric, the tilt and the second fundamental form at ξ0 are respectively

gij=̇
1

cosh2(r0)
σij , τ=̇ coshu(u) = cosh(r0), Aij≤̇ sinh(r0) cosh(r0)σij .

At ξ0, the shape operator therefore satisfies

Aij ≤ tanh(r0)δij ,

and so λi ≤ tanh(r0) for 1 ≤ i ≤ n. Substituting into (2),

ψ(r0, ξ0, cosh(r0))=̇F [Aij ] ≤ tanh(r0) < ψ(r0, ξ0, cosh(r0)),

which is a contradiction, and so u ≤ R2. An analogous argument at the
minimum completes the proof.

Observe that, we may impose a few fairly mild assumptions on ψr to ensure
that barriers exist.

Lemma 2 Let ψ : [0,∞)× Sn× [1,∞)→ R be a uniformly bounded in C2

which is positive for r > 0. We give conditions for upper and lower barriers:

Lower Barriers: If for all ξ ∈ Sn

ψ(0, ξ, 1) = 0 and ψr(0, ξ, 1) < 1

then a lower barrier exists, that is there exists an 0 < R1 such that for all
ξ ∈ Sn and r < R1,

tanh(r) > ψ(r, ξ, cosh(r)) .

Upper Barriers: Suppose ψ satisfies the structural condition ψττ > ψ and
let γ(r) be any smooth monotonic function s.t. γ(r)→∞ as r →∞. Suppose

additionally that for all ξ ∈ Sn and r > R̃,

ψr(r, ξ, cosh(r)) > [γ′(r)− tanh(r)]ψ ,
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then an upper barrier exists, that is there exists an 0 < R2 such that for all
ξ ∈ Sn and r > R2,

tanh(r) < ψ(r, ξ, cosh(r)) .

Proof We fix ξ and consider the function

Ψ(r, ξ) =
ψ(r, ξ, cosh(r))

tanh(r)
.

Finding a lower barrier is equivalent to showing that for all ξ ∈ Sn there exists
a R1 > 0 such that for all 0 < r < R1, Ψ(r, ξ) < 1. By the assumptions, Ψ is
continuous up to r = 0, and so by compactness, there exists a δ > 0 such that
for all ξ ∈ Sn, Ψ(0, ξ) < 1 − δ. By continuity and compactness there exists
an R1 such that Ψ(r, ξ) < 1 for all 0 < r < R1 as claimed. Finding an upper
barrier is equivalent to showing that for all ξ ∈ Sn there exists a R2 > 0 such
that for all r > R2, Ψ(r, ξ) > 1. We calculate that

d

dr
Ψ(r, ξ) = − 1

sinh2(r)
ψ(r, ξ, cosh(r)) + coth(r)(ψr + ψτ sinh(r))

≥
[
1− 1

sinh2(r)

]
ψ + coth(r)ψr

≥ γ′(r)

tanh(r)
Ψ

for r > R̂(R̃) sufficiently large depending on R̃. Since tanh(r) < 1, we seee
that

d

dr
Ψ(r) > γ′(r)Ψ ,

which implies Ψ(ξ, r) > Ψ(R̂, ξ)eγ(r). Since Sn is compact, and γ(r)→∞ as
r →∞, this implies that the claimed upper barrier conditions are met.

Remark 5 A function ψ satisfying lower barrier conditions in Lemma 2
allows the solution to (2) given by u ≡ 0. As noted earlier, this solution is
inadmissable, as we require strictly positive u for the shape operator to be in
the admissable cone everywhere.

4 Tilt estimate

We now demonstrate a strict spacelikeness estimate by estimating the tilt
function τ . The height function is defined by

η := −〈Y,E1〉,

and we note that in terms of the graph function, η = sinh(u). We now
demonstrate the following identities.

Proposition 1 The tilt and height functions satisfy the following identi-
ties:

(1) ∇2
ijη = τAij + ηgij.
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(2) ∇jτ = Aij∇iη,

(3) ∇j∇iτ = ∇kAij∇kη + τA2
ij +Aijη,

where A2
ij := AkjA

k
i .

Proof Using (5) and the Gauss formula we have that

∇2
ijη = Yj(Yiη)− (∇YiYj)η

= Yj(Yiη)− (D̄YiYj − hijN +Aij n̂)η

= D̄2
YjYiη + (hijN −Aijν)η

= τAij + ηgij ,

where we used that X(η) = −〈X,E1〉 and D̄2η = 0. Using the Weingarten
equation (2) we obtain

∇jτ = 〈∇jν,E1〉 = −gikAkj〈Yi, E1〉 = −gikAkj∇i〈Y,E1〉 = gikAkj∇iη.
and from this we have

∇2
ijτ = ∇j(gmnAni∇mη)

= gmn∇jAni∇mη + gmnAni∇mjη
= gmn∇nAij∇mη + τAmjg

mnAni +Aijη

where we used (6) on the third line.

Proposition 2 Suppose that ψ : Sn+1×R→ R is smooth and positive and
satisfies assumptions C) and D) above. Suppose that u ∈ C3(Sn) satisfies
(1) so that there exist R1, R2 > 0 such that,

0 < R1 < u(ξ) < R2

for all ξ ∈ Sn. Then there exists a constant Cτ , depending only on n, k,
R1,R2 and ψ such that

τ < Cτ .

Proof We have that

F ij∇j∇iτ = ∇kF∇kη + τF ijAmjA
m
i + Fη

= 〈∇xψ,∇η〉+ ψτ 〈∇τ,∇η〉+ τF ijA2
ij + ψη

Due to structural assumption D) on ψ, we have that

| 〈∇xψ,∇η〉 | ≤ Cτ2ψ.

Furthermore, following [19, equation 3.8] and using Newton’s inequalities [20]
(which are valid for Sk outside Γk),

(12) F ijA2
ij ≥ H

1
k

k H1 ≥ H
2
k

k = ψ2 .

Substituting this into the above equation we see that at a maximum of τ , as
∇τ = 0 and ∇i∇jτ ≤ 0, we have that

0 ≥ −Cτ2ψ + ψη + τψ2
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which implies, by using the C0 estimates that

ψ ≤ Cτ .

The C0 estimates imply that the solution stays in a compact region of Sn+1
1

and so, due to structural assumption C) on ψ, there exists a uniform τ0
such that for all x in this region and for all τ > τ0, τ < ψ

2C . This yields a
contradiction to τ > τ0 and proves the Lemma.

5 A priori C2 estimate

From [2] we have the following curvature estimates over domains Ω ⊂ Sn.

Theorem 2 (Ballesteros-Chávez 2019) Let Ω ⊂ Sn be a domain in the
round sphere, and let u ∈ C4(Ω)∩C2(Ω̄) an admissible solution of the bound-
ary value problem{

F (A) = H
1
k

k (λ(A)) = ψ(Y, τ) in Ω
u = ϕ on ∂Ω

,

where A is the second fundamental form of a spacelike surface Σ in de Sitter
space given by (10) and ψ is a smooth positive function satisfying B) and E).
Assume additionally that there exists a R1, R2, Cτ > 0 such that

R1 < u(ξ) < R2, τ(ξ) < Cτ .

Then

sup
Ω
|A| ≤ C,

where C depends on n, |ϕ|C1(Ω̄),R1, R2, Cτ , |ψ|C2([R1,R2]×Ω×[1,Cτ ]) and sup∂Ω |A|.

We will now extend this result to all of Sn, or equivalently obtain estimates
on all of Σ.

Theorem 3 Suppose that ψ is a smooth positive function which satisfies
B) and E). Suppose u ∈ C4(Sn) is a solution of (1) such that there exist
constants 0 < R1 < R2 and Cτ > 0 such that for all ξ ∈ S2,

R1 < u(ξ) < R2, τ(ξ) < Cτ .

Then there exists a constant CA = CA(k, n,R1, R2, Cτ , |ψ|C2([R1,R2]×Sn×[1,Cτ )))
so that

|A| < CA .

Proof Suppose first that k = 1. In this case (9) and (10) imply that if we
write (1) in terms of the graph function u, we obtain a quasilinear equation
which is uniformly elliptic if we have a uniform bound on τ . Therefore if we
have the assumed bounds, we see that this equation is uniform ellipticity with
uniform C1 estimates on the solution. We may therefore apply De Giorgi–
Nash–Moser estimates and Schauder estimates to imply uniform C2 estimates.
In this case, the theorem is therefore proven.
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Suppose now that k ≥ 2. We begin by proving a Simon’s-type identity for the
second fundamental form. At an arbitrary point p ∈ Σ, we choose coordinates
so that Aij is diagonal and gij = δij . In these coordinates F ij is also diagonal.
The Codazzi equation (6) and the Ricci identity (3) imply that

∇i∇jAkk =∇i∇kAkj
=∇k∇iAkj +RikkrA

r
j +RikjrA

r
k

=∇k∇kAij +RikkrA
r
j +RikjrA

r
k.

where we only sum over indices where one is raised and one is lowered. Choos-
ing i = j in the above, and applying the Gauss equation (7) we obtain

∇j∇jAkk =∇k∇kAjj +RjkkrA
r
j +RjkjrA

r
k

= ∇k∇kAjj + (AjrAkk −AjkAkr + gjkgkr − gjrgkk)Arj

+ (AjrAkj −AjjAkr + gjjgkr − gjrgkj)Ark
= ∇k∇kAjj +A2

jjAkk −AjkA2
kj + gjkAjk −Ajjgkk

+A2
jkAkj −AjjA2

kk + gjjAkk −Akjgkj
= ∇k∇kAjj +A2

jjAkk −Ajjgkk −AjjA2
kk + gjjAkk .

We therefore see that

F ij∇i∇jAkk =

n∑
j=1

F jj∇j∇jAkk

= F ij∇k∇kAij +AkkF
ijA2

ij − F ijAijA2
kk +AkktrF ij − F ijAij

= F ij∇k∇kAij +AkkF
ijA2

ij − ψA2
kk +AkktrF ij − ψ

and so writing H = nH1 =
∑n
k=1Akk we have that

F ij∇i∇jH = F ij∆Aij +HF ijA2
ij +HtrF ij − ψ

(
n+ |A|2

)
where ∆ is the Laplace–Beltrami operator. To estimate the first term on the
right hand side we note that by differentiating (1) twice gives

∆ψ = F ij∆Aij + F ij,kl∇tAij∇tAkl ≤ F ij∆Aij

where we used the well known concavity of F . We have that

∇l∇kψ = ∇xl ∇xkψ +∇xkψτ∇lτ +∇xl ψτ∇kτ + ψτ∇l∇kτ + ψττ∇lτ∇kτ
= Dx

l D
x
kψ −AlkDx

n̂ψ +∇xl ψτ∇kτ + ψτ∇l∇kτ + ψττ∇lτ∇kτ .

Since H2 = 2S2 + |A|2, so if λ[A] ∈ Γk, |A| < H and so

∆ψ = gklDx
l D

x
kψ −HDx

n̂φ+ 2 〈∇xψτ ,∇τ〉+ ψτ∆τ + ψττ |∇τ |2

= ψτ
[
〈∇η,∇H〉+ τ |A|2 +Hη

]
+ ψττ |∇τ |2

−HDx
n̂ψ + 2 〈∇xψτ ,∇τ〉+ gklDx

l D
x
kψ

≥ ψτ 〈∇η,∇H〉+ ψττ |A|2 − C1H − C2 ,
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where used structural assumption E) of ψ and we estimated using the bounds
on τ and u in compactness arguments to estimate derivatives of ψ. Overall
we have that

F ij∇i∇jH ≥ HF ijA2
ij +HtrF ij + (ψττ − ψ)|A|2

+ ψτ 〈∇η,∇H〉 − C1H − C2 − nψ .

Using (12) and the structural assumption B) on ψ we have that

F ij∇i∇jH ≥
1

n
H2ψ +HtrF ij + ψτ 〈∇η,∇H〉 − C1H − C2 − nψ .

Using the bounds on u, there exists a small constant δ > 0 such that ψ > δ,
and so at a maximum point of H,

0 ≥ F ij∇i∇jH

≥ δ

n
H2 − C1H − C3,

and so H is bounded. This implies a uniform bound on H and a uniform
bound on |A| now follows as k ≥ 2.

6 Proof of existence

We now prove existence of solutions to (1), following the proof of V. Oliker
and Y. Li [17]. Throughout this section Σ will be considered in graphical
coordinates with graph function u. Consider for 0 < α < 1, the subset of
functions in C4,α(Sn) which are k-admissible, denoted by C4,α

ad (Sn).The idea
is to consider a one parameter family of prescription functions ψt where

ψt(ξ, u, τ) := tψ(ξ, u, τ) + (1− t)Ψ(ξ, u, τ),

where Ψ(ξ, u, τ) is to be chosen shortly. We define Φ : C4,α
ad (Sn)×[0, 1]→ C2,α,

by

(13) Φ(u, t) := H
1
k

k (ut)− ψt(ξ, ut, τ(ut))

for all t ∈ [0, 1]. We will apply degree theory to ensure that there exists at
least one solution to Φ(ut, t) = 0 for all t ∈ [0, 1]. As in [17], to be able to
apply the beautiful degree theory of Y. Li [16], we need to verify the following
three steps:

Step 1a): Show that there exists a unique solution to

H
1
k

k (u0) = Ψ(x, u0, τ(u0)) .

Step 1b): Show that at u0 the linearisation of Φ is invertible.
Step 2: Define a suitable set of admissable functions and show that all solu-

tions of (13) stay in this set.
Step 3: Verify that we may apply degree theory to ensure that the degree of

Φ(·, 1) is not zero, and so a solution exists as claimed.
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We choose Ψ to be

Ψ(ξ, u, τ) = τpu tanh(u) .

for some p > 1.

Proof of Step 1a) We may easily verify that a solution exists to Φ(u0, 0) =
0, by considering constant functions. The hypersurfaces corresponding to

u0 = λ are totally umbillic with principal curvatures tanh(λ), and so H
1
k

k =
tanh(λ). We may see that on such a hypersurface, τ = cosh(λ) and so if
λ satisfies λ coshp(λ) = 1 then u0 is a solution. Clearly such a λ exists as,
writing the continuous function ϕ(x) := x coshp(x), ϕ(0) = 0 and ϕ(1) > 1.
Suppose that there exists another u ∈ C4,α

a (Sn) satisfying Φ(u, 0) = 0. Sup-
pose furthermore that maxu = u(ξ0) = λ0 > λ. As in the proof of the C0

estimates we have that at ξ0,

ψ(ξ0, u(ξ0), τ(ξ0)) = coshp(λ0)λ0 tanh(λ0) = H
1
k

k |ξ0 ≤ tanh(ξ0)

which is a contradiction as x coshp(x) is a monotonically increasing function.
Therefore maxu ≤ λ. An identical argument implies minu ≥ λ, implying
that u(ξ) = u0.

Proof of step 1b) Considering τ , Aki as algebraic functions of ξ, u, ∇̃u,

∇̃2u, which we will write with the variables x, r, pi, zij respectively then
Aki = Aki (x, r, p, z) and τ = τ(x, r, p). Then the linearisation of the above in
direction v is given by

0 =
d

ds

([
H

1
k

k − ψt
]

(u+ sv)
)

= F ik
∂Aki
∂zij
∇̃ijv +

[
F ik
∂Aki
∂pk

− ψτ
∂τ

∂pk

]
∇̃kv +

[
F ik
∂Aki
∂r
− ψr − ψτ

∂τ

∂r

]
v ,(14)

From equations (9) and (10) we have that

Aki = τ

(
σij + τ2ulσ

liumσ
mj

cosh4(u)

)
∇̃iju− 2 tanh(u)uiuj + sinh(u) cosh(u)σij

cosh3(u)

and so we see that

∂Aki
∂r

∣∣
(x,u,∇̃u,∇̃2u)

=
∂τ
∂r

τ
Aki − 3 tanh(u)Aki + τ

cosh2(u) + sinh2(u)

cosh3(u)
δki

+ ulum [ bounded terms ] ,

and
∂τ

∂r

∣∣
(x,u,∇̃u,∇̃2u)

= tanh(u)τ + |∇̃u|2 [ bounded terms ] .

We are interested in (14) when t = 0, that is when u = λ > 0 and ψ = Ψ =
τpu tanh(u). In this case, we have that

τ = cosh(u), Aki = tanh(u)δki , H
1
k

k = tanh(u), F ik =
1

n
δik .
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At such a u, the linearisation becomes

0 = aij∇̃ijv + bi∇̃iv + cv ,

where a is elliptic, b is bounded, and

c =
∂τ
∂r

τ
H

1
k

k − 3 tanh(u)H
1
k

k + τ
cosh2(u) + sinh2(u)

cosh3(u)
trF ij − ψr − ψτ

∂τ

∂z

= cosh−2(u)− u coshp−2(u)

− coshp(u) tanh(u)− p cosh(u)p−1u tanh(u) sinh(u).

We recall that u = λ was chosen so that λ coshp λ = 1, which implies that
u coshp−2 u = cosh−2(u), and so we see that c < 0. The strong maximum
principle now implies that the only solution v ∈ C4,α(Sn) of Φu(·, 0)(v) = 0 is
v = 0. This implies that ker(Φu) = {0} and so, the standard theory of second
order elliptic equations imply that Φu is invertable, as required.

Proof of Step 2 By assumption, we have that ψ(ξ, z, cosh(z)) < tanh(z)
for z < R1 and ψ(ξ, z, cosh(z)) > tanh(z) for z > R2. Similarly we see directly
that there exists RΨ

1 , R
Ψ
2 > 0 such that Ψ(ξ, z, cosh(z)) < tanh(z) for z < RΨ

1

and ψ(ξ, z, cosh(z)) > tanh(z) for z > RΨ
2 . Setting R1 = min{R1, R

Ψ
1 } and

R2 = max{R2, R
Ψ
2 }, then for all t ∈ [0, 1], ψt(ξ, z, cosh(z)) < tanh(z) for

z < R1 and ψt(ξ, z, cosh(z)) > tanh(z) for z > R2. Lemma 1, therefore yields
uniform C0 estimates

0 < R2 ≤ ut ≤ R2 <∞.

Proposition 2, in addition to giving a C1 estimate, implies uniform space-
likeness, and so we may apply Theorem 3 to yield |λi| < CA, which implies
uniform C2 estimates in this situation. Uniform parabolicity of the equation
now follows, and so due to the classical regularity theory for uniformly elliptic
equations and the Evans-Krylov theorem [7,15] we obtain

‖ut‖C4,α(Sn) < C,

for any admissible solution ut ∈ C4,α
ad (Sn), where the constant C depends on

k, n,R1, R2 and ‖ψ‖C2,α(Sn). Due to compactness and the above estimates,
there exists a constant δ > 0 such that δ < ψt(ξ, u(ξ), τ(u)) for all ξ ∈ Sn. We

define the bounded open set V := {λ ∈ Γk : H
1
k

k (λ) ≥ δ, |λ| <
√
nCA} ⊂ Γk

and we define the bounded set

B =
{
u ∈ C4,α(Sn)

∣∣∣
1

2
R1 < u < 2R2, ‖u‖C4,α(Sn) < C and λ(A[u(ξ)]) ∈ V ∀ ξ ∈ Sn

}
.

Clearly the arguments of the previous paragraphs imply that any admissable
solution ut ∈ C4,α

ad (Sn) is contined in B, and ∂B ∩ Φ−1(·, t) = ∅ for all
t ∈ [0, 1].
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Proof of Step 3 This step now follows exactly as in [17]. Due to Step 2
and [16, Definition 2.2, Proposition 2.2], the degree is defined and constant
for t ∈ [0, 1]. By [16, Proposition 2.3, Proposition 2.2],

deg(Φ(·, 0),B, 0) = deg(Φu(·, 0), B1, 0) ,

where B1 is the open unit ball in C4,α(Sn). However, Step 1 and [16, Propo-
sition 2.4] imply that deg(Φ(·, 0),B, 0) = ±1 = deg(Φ(·, 1),B, 1), and we con-
clude that a k-admissable solution u1 to Φ(u1, 1) = 0 exists. Standard elliptic
estimates imply that u1 is smooth and therefore the proof of Theorem 1 is
complete.
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