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A systematic review of variables used to assess clinically 

acceptable alignment of unilateral transtibial amputees in 

the literature. 

 

Abstract 

Objectives: Prosthetic alignment is a subjective concept which lacks reliability. The 

outcome responsiveness to prosthetic alignment quality could help to improve subjective 

and instrument assisted prosthetic alignment. This study was aimed to review variables 

used to assess clinically acceptable alignment in the literature.  

Methods: The search was done in some databases including: Google Scholar, PubMed, 

EBSCO, EMBASE, ISI Web of knowledge and Scopus. The first selection criterion was 

based on abstracts and titles to address the research questions of interest. The American 

Academy of Orthotics and Prosthetics checklists were used for paper risk of bias 

assessment. 

Result: Total of 25 studies were included in this study. Twenty-four studies revealed the 

critics of standing position or walking to locate clinically acceptable alignment, only one 

study measured outcomes in both situations. Total of 253 adults with transtibial 

amputations and mean age of 48.71 years participated in included studies. The confidence 

level of included studies was low to moderate, and before-after trial was the most 

common study design (n=19).  

Conclusion: The joint angle, load line location with respect to joints and COP related 

parameters were reported as sensitive outcomes to prosthetic alignment quality in 

standing posture. The amount of forces at various parts of gait cycle and time of events 

were sensitive to prosthetic alignment quality during walking.  

Clinical relevance: Standing balance and posture and temporal parameters of walking 

could help to locate clinically acceptable alignment.  

 

Keywords: COP, temporal-spatial, kinetic, kinematic, clinically acceptable alignment, 

transtibial prosthesis,  
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Introduction 

Prosthetic alignment is a key part of lower limb prosthetic fitting, and is defined as the 

relative spatial position of prosthetic components to socket and amputee’s anatomical 

segments (1). In current clinical practice, prosthetic alignment is assumed to be optimum 

when a) no obvious gait deviation is seen by a prosthetist and b) the prosthesis is 

considered comfortable by the user. In a 2 body system, like a transtibial prosthesis 

(where foot and socket are the 2 bodies of interest), there are 6 degree of freedom (3 in 

translation, 3 in rotation) that describe all possible orientations of the parts with respect to 

each other. Prosthetic alignment is a time consuming process which depends on 

experience of prosthetic user and the practitioner and lacks inter- and intra-rater 

reliability (2). Previous studies have shown that final optimal alignment may 

considerably vary (2, 3).  

The subjective perception of the amputee and practitioner is the most frequent criterion to 

uphold acceptable alignment assessment in clinical situations (2, 4). Although the sagittal 

socket alignment could affect socket reaction moment in both of sagittal and frontal 

planes, the amputee’s perception from prosthetic alignment is less reliable in this plane 

(5-7). Though in clinically acceptable alignment prosthetic foot is aligned toward an 

invariant roll-over shape, it is unclear that the shape would match to that of a healthy 

physiologic system (8). There are many significant biomechanical differences between 

sound and prosthetic limbs even in clinically acceptable alignment (9-12). The prevalence 

of hip and knee osteoarthritis is significantly higher at lower limb amputees, particularly 

sound side of unilateral amputees is significantly more subjected (13-17); improper 

prosthetic alignment could worsen the risk (18). Practitioners have a critical need to 

evidence on relationship between alignment and outcomes responsiveness, which would 

help for objective prosthetic alignment (1). 

Lots of studies have tried to determine clinically acceptable alignment through 

quantifying the biomechanical effects of prosthetic alignment adjustment. The clinically 

acceptable alignment is not the optimal situation for all lower limb muscles (16). The 

prosthetic alignment adjustment may lead to significant changes in muscle activity 

pattern, walking symmetry, standing balance, energy expenditure, muscle activity of 

lower limbs and sub maximum tissue loading of residual limb, pain and potential tissue 

breakdown (11, 12, 15-17, 19-24). The outcome measure condition and the value, 

direction and component of prosthetic alignment adjustment differ in various studies; it is 

unclear that how each prosthetic alignment adjustment could affect the amputee 

biomechanics.  

The objective of the current study was to review variables used to assess optimal 

alignment in the literature systematically. This would help to access the responsiveness of 

various outcomes to prosthetic alignment which would help to improve subjective and 

instrument assisted prosthetic alignment. 
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Methods 

The search was done from the beginning of electronic databases until 05/2017 in 

some databases including: Google Scholar, PubMed, EBSCO, EMBASE, ISI Web of 

knowledge and Scopus. The search key words were below knee or transtibial amputee, 

prosthetic alignment, kinetic, kinematic, interface pressure, plantar pressure, balance, 

electromyography, validity and reliability. We followed the steps and guideline suggested 

by Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) (25) 

The first criteria to select the papers was based on the following items: 1) studies 

examining properties of the optimal or clinically acceptable alignment, 2) measuring the 

outcomes for the optimal or clinically acceptable alignment, 3) evaluating validity/ 

reliability/ accuracy/ sensitivity/ repeatability of any alignment device/s used for 

measuring alignment changes or alignment adjustment on unilateral or bilateral transtibial 

amputees and 4) with any cause of amputation. The exclusion criteria were papers on 

amputation level other than transtibial, participants with less than 6 months of prosthetic 

use (i.e., immature residual limb), sample size less than 5 and papers in languages other 

than English were excluded (figure 1). After deleting duplicated records, two reviewers 

evaluated title and abstracts of records based on inclusion criteria. Then, both reviewers 

evaluated full texts of included studies as stated in figure 1. To avoid influential bias, 

each reviewer did the process independently. Also, papers which were cited in other 

papers and not reported in search results were added. 

The data extraction table were prepared using the available forms such as the form 

provided by the Cochrane data collection and form for non-randomized studies (26). The 

American Academy of Orthotists and Prosthetists (AAOP) checklist of internal and 

external validity were used to access risk of bias (27). The form includes 18 potential 

threats to internal validity and eight potential threats to external validity that must be 

assessed for each article (Appendix A). Risk of bias was assessed by the first (N.T) and 

the second reviewer (F.H). Though there were some disagreements, the reviewers 

checked the risk of bias within studies by consensus strategy. The validity of studies 

assumed as low, moderate and high with regard to confidence level could be undertaken 

on findings of the investigation (28).  

Results 

A total of 37 studies were selected for systematic review. To avoid ambiguity and 

elongation, the studies were put in two groups: I) papers used variables to assess optimal 

alignment, II) papers define “acceptable prosthetic alignment”. Evaluation of group I is 

the subject of current paper and the group II would be described in another paper. 

Twenty-five studies were included to this study. Selection of papers is stated in the flow 

diagram (figure 1).  
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Characteristics of Included Studies 

Study design. Most of studies were before-after trial (about 76 %) (table 1). The majority 

of studies were on small samples (e.g. <15). The details of study design and sample size 

is stated in the table 1. 

Subject Characteristics. A total of 253 adults with transtibial amputations and mean age 

of 48.71 years participated in the included studies. Most of the participants were male 

(n=184), less were female (n=28) and the sex of 41 participants was not stated. The cause 

of amputation was mostly trauma (n= 126), other reasons were peripheral vascular 

disease (n=25), tumor (n=1) and infection (n=2); the cause of amputation was not 

specified for 99 participants. 

Intervention. Twenty-three studies analyzed the effects of prosthetic alignment 

adjustments (tables 2 and 3). The sagittal prosthetic foot or shoe alignment was changed 

in six studies (4, 15, 17, 20, 23, 30). The sagittal socket alignment was changed in one 

study (29). The effect of sagittal and frontal prosthetic alignment adjustments were 

analyzed in twelve studies (5-7, 9, 10, 16, 21, 31-35). The transverse prosthetic foot 

rotation was changed in three studies (11, 12, 36). Only one study analyzed the effects of 

prosthetic alignment adjustments in all plane (22). 

Comparison. The subject of 2 studies was analyzing outcomes in clinically acceptable 

alignment to better understanding the situation (37, 38) (table 3).  

Outcomes. The effects of adjustment on clinically acceptable prosthetic alignment or 

reports on clinically acceptable alignment with any outcome variables were collected. 

The data collection of twenty-four were in standing or walking situation. Only one study 

had data collection in both conditions (23). Therefore, we put studies in two groups: 1) 

studies with data collection in standing posture and 2) papers with data collection during 

walking.  

Risk of Bias Assessments. Based on the AAOP checklist, there were some recurrent issues 

affecting both internal and external validity. Issues of concerns for study validity are 

stated at tables 4 and 5 (based on AAOP assessment criteria, appendix A). Threats 

concerning internal validity ranged from 9 to 15; threats concerning external validity 

ranged from 4 to 9. No study was considered to have high quality. 

Results Narrative 

Due to lack of statement about measuring effect and homogeneity in study design, 

intervention, participants and outcome measure of included studies, meta-analysis was 

impossible. Therefore, a qualitative synthesis of results was performed.  
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Data collection in standing situation  

Standing balance 

Four studies reported the effects of prosthetic alignment adjustment on standing balance 

parameters. Luengas et al. reported that (±2°, 4° and 6°) sagittal socket adjustments 

changed the center of pressure (COP) location in prosthetic limb and the vertical 

component of COP showed significant correlation with socket position (29). The study 

also showed lower limb joint angle is a sensitive parameter to prosthetic alignment. Jia et 

al. reported by increase of heel height COP displaced toward forefoot, peak pressure 

increased at medial forefoot and decreased at hind foot but did not change at lateral 

border of forefoot (30). Janura et al. analyzed the effects of ± 5° of sagittal foot tilt and 

±1cm change of prosthesis length on standing balance (31). They found extra plantar 

flexion and 1cm lengthening decreased stability of sound limb significantly (31). 

Kolarova et al. analyzed the effects of ± 5° of sagittal foot tilt and ±1cm change of 

prosthesis length on stability parameters (21). They found significant decrease of end 

point excursion due to 1cm shortening and dorsiflexion adjustments (21). 

Electromyography 

Three studies reported the effects of prosthetic alignment adjustment on 

electromyography parameters. Jia et al. reported increase in the mean absolute value of 

EMG of rectus femuris, vastus medialis and lateralis and both heads of gastrocnemius 

muscles at prosthetic limb by increase of heel height from zero to 40 mm (15, 30). 

However, the activities of the same muscles on sound limb did not change a lot. Paráková 

et al. analyzed the effects of ±5° sagittal adjustment of foot and ±1cm change of 

prosthesis height on muscle activity, and selected posturographic parameters (16). Medial 

head of gasterocnemius, biceps femoris and tibialis anterior muscles of sound side were 

sensitive to adjustments (16). 

Perception  

Boone et al. analyzed amputee’s perception from alignment adjustment by means of 

visual analogue scale and simultaneous evaluation of socket reaction moment (7). They 

found amputee's perception is a consistent indicator of mal-prosthetic alignment in all 

cardinal planes, but was less reliable in sagittal and transverse planes (p<0.001 and 

p<0.05, respectively). 

Stump-socket interface pressure 

Seelen et al. analyzed the effects of 0.5cm wedge to forefoot and heel on interface 

pressure during standing and walking (23). Sagittal adjustments had an inverse (un-) 

loading effect on sub-patellar region versus distal tibia and changed sub-maximal tissue 

loading of residual limb but did not have any significant effect on fibular head region 

(23). 
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Data collection in walking situation 

Spatiotemporal gait parameters 

Chow et al. analyzed symmetry of kinetic and spatiotemporal gait parameters in all 

acceptable alignments of each case (38). Although the locations of the most symmetric 

alignments had no obvious similarities in subjects, six parameters were consistently less 

asymmetric in all acceptable alignments (table 3).  

Five studies reported the effects of prosthetic alignment adjustments on spatiotemporal 

gait parameters (table 3). Fiedler et al. reported addition of 2° of foot plantar flexion 

would increase step length symmetry at low exertion levels; after increasing physical 

exertion level addition of 2° of foot plantar flexion increased the step length asymmetry 

significantly with respect to same condition at low exertion levels (20).  

Two studies compared three conditions of clinically acceptable alignment, 6° of extra 

internal rotation and external rotation; participants of both studies reported the internal 

rotation as less comfortable (11, 12). Fridman et al. investigated the effects of 18° and 36° 

of extra external rotation of prosthetic foot on kinematic parameters (36). Only 36° of 

external rotation had significant effects (table 2). VanVelzen et al. analyzed the effects of 

±15° adjustment of socket angle in all three planes on kinetic of amputated side and 

spatiotemporal parameters of walking (22). Only the socket external rotation experienced 

significant effects (table 2). 

Kinetic parameters during walking 

Eight studies reported the effects of prosthetic alignment adjustment on kinetic 

parameters. Pinzur et al. reported ±10° angular change of socket tilt in both anterior-

posterior and medial-lateral direction had no significant effect on kinetic and kinematic 

parameters (9). Fiedler et al. analyzed the correlation of subjective perception of 

amputees and objective effects of ±3°, 6° and 9° sagittal foot adjustments on step by step 

variability of ground reaction force during walking (4). The amputee’s perception was 

significantly correlated to prosthetic alignment quality. However, step by step variability 

showed weak correlation to these variables (4).   

Kobayshi et al. analyzed out-of-plane and in-plane effects of improper alignment on 

socket reaction moment in six studies. They found that both angular and translational 

changes have some significant out-of-plane and in-plane effects (table 3) (5, 6, 32, 35). 

They reported significant effects of prosthetic alignment adjustment in sagittal and frontal 

planes on forces and moments at base of the socket (referred as socket reaction moment) 

at various parts of the stance phase (33). Frontal plane adjustments were mostly compeer 

with changes of varus socket reaction moment impulse (6). However, another study 

showed that the effects of same adjustment on socket reaction moment may be less 

consistent between amputees (34). The effects of adjustments on socket reaction moment 

in sagittal plane were more complex.  

 



8 

 

 

Plantar pressure 

Geil et al. analyzed plantar foot pressure during dynamic prosthetic alignment (37). In 

non-optimal alignment of frontal plane plantar pressure shifted toward lateral border of 

sound limb; the effects of sagittal prosthetic alignment changes were less uniform (37).     

Energy expenditure 

Schmalz et al. analyzed the effects of 10° sagittal foot tilt and 2cm displacement of foot to 

anterior and posterior on biomechanics of walking and oxygen consumption during 

treadmill walking (17). Angular foot adjustments changed duration of action of sagittal 

moments, maximum sagittal moment at second half of stance phase and had significant 

effect on oxygen consumption.  

Walking stability 

Rossi et al. reported the effects of sagittal and frontal planes prosthetic alignment 

adjustment on gait initiation parameters (10). They reported sagittal and frontal foot 

alignment adjustment had no statistically significant effect on gait initiation parameters 

(10).  

Discussion 

The primary objective of the present systematic review was to review variables used to 

define clinically acceptable alignment. Studies low confidence on internal validity and 

moderate confidence on external validity revealed the COP related parameters and joint 

angle as sensitive outcomes to prosthetic alignment quality in standing position and the 

outcomes of socket reaction moment at various stages of stance phase, impulse of socket 

reaction moment and the time of moment action during walking as sensitive to prosthetic 

alignment during walking. Prosthetic alignment parameters related to socket and extra 

anteroposterior tilt and internal rotation of prosthetic foot were more affective. Four 

studies measured the COP related parameters in standing posture, with no controversy, 

they reported sensitivity of these parameters to improper prosthetic alignment (21, 29-

31). The socket alignment was significantly correlated to vertical component of COP 

(29). The sagittal prosthetic foot alignment could affect standing stability and change 

COP location (21, 30, 31). The sagittal prosthetic alignment could also change sagittal 

angle of hip and knee joints, load line location and the muscle activity around knee joint 

in standing position (29, 30). Parakova et. al. stated that when prosthetic length was 

extended about 1 cm weight bearing was more symmetric between two limbs (16). As a 

whole, a more robust study reported that in clinically acceptable alignment, with equal 

limb length, the weight bearing should be equal between two limbs (29). Therefore, 

evaluation in standing position could provide many critical information regard to 

prosthetic alignment quality. 

With low internal validity and moderate external validity, the impulse of socket reaction 

moment and socket reaction moment at 30% and 75% of stance phase were sensitive to 

angular and translational changes of prosthetic alignment (6, 32, 35). With a higher level 
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of validity, excessive or insufficient shoe heel height may increase residual limb loading 

duration during walking (23). Angular changes of prosthetic in the sagittal plane on had 

statistically significant effects on the oxygen consumption; however, the adjustment  had 

not significant effects on spatial gait parameters such as walking speed, walking cadence 

and symmetry of ground reaction force (17, 20). Parameters such as duration of action of 

flexion or extension moments, maximum knee extension moment at the second half of 

stance phase and step duration were sensitive to prosthetic alignment quality (4, 17). 

Therefore, both of evidences with moderate level of confidence and lower, revealed time 

related characteristics of kinetic and kinematic gait parameters are more sensitive to 

prosthetic alignment quality than spatial gait parameters. 

With moderate level of confidence symmetry of some gait parameters such as first and 

second peak of vertical ground reaction forces, minimum of vertical ground reaction 

force between two peaks, stance duration, step length and time to maximum flexion 

during the swing phase was stated to be higher at the clinically acceptable alignment (11, 

12, 38). However, with similar level of confidence, Fiedler et. al. reported the effects of 

sagittal foot angle on kinetic and kinematic parameters may vary (20).Some evidences 

with low internal validity and moderate external validity supported the sensitivity of 

duration of action of sagittal moments or the amount of moments at various parts of 

stance phase to sagittal prosthetic alignment quality (17, 35). The significant effects of 

internal foot rotation on kinetic parameters of hip and temporal gait parameters was also 

reported (11, 12). The usefulness of kinetic and kinematic gait symmetry to locate 

clinically acceptable alignment had some controversies.  

With low confidence level, prosthetic alignment quality did not show any significant 

effects on gait initiation, step-by-step variability, vertical component of ground reaction 

force, impulse and stance phase duration during walking (4, 9, 10). It may be due to 

adaptation to mal prosthetic alignment or walking with self-selected velocity (39). With 

better level of confidence, evidences reported the effects of prosthetic alignment 

adjustments were more visible at higher walking velocities, walking cadence was also 

sensitive to prosthetic alignment adjustment (5, 17, 20). An evidence with low confidence 

level reported 10° of sagittal adjustment had no significant effect on ground reaction 

force impulse during walking with self-selected cadence; however, an evidence which 

was excluded from this systematic review reported only 4° of foot anterior tilt changed 

ground reaction force impulse significantly for fast running amputees (9, 40). The 

responsiveness of kinetic outcomes to prosthetic alignment quality may need to data 

collection with higher walking speed instead of self-selected walking speed which needs 

more investigation.  

The validity of included studies was considered as low to moderate. About 76 % of 

included studies were uncontrolled before-after trial, and the design was intrinsically 

weak. There was no randomized control trial, the sampling method of all participants was 

sampling of convenience method. The inclusion criteria were not reported in majority of 

studies and some others had not proper inclusion criteria due to broad amputation 

etiology or age range. About 80% of studies had no statement on exclusion criteria or had 

improper exclusion criteria due to improper socket fit quality or ignoring it and the 
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possible existence of gait pathologies. In addition, the sample characteristics were not 

adequately described in fourteen studies. The sample size of 88% of studies were less 

than 15 participants, the participants of three studies were limited to experienced 

amputees and use of conventional foot and liners were also common. 

Blinding was mentioned only by two studies, which their intervention were blinded to 

participants only (4, 7). Lack of blinding affects the consistency, value of outcome 

assessment and internal validity (41). Though, exhaustion could alter the kinematics of 

amputee walking, the protocol of about 84% of included studies did not notice to fatigue 

(42). However, most of studies randomized the intervention order which substitutes the 

lack of blinding and tiredness of participants somewhat. Lack of outcome measure 

reliability was concerned with all of studies. The nominally clinically acceptable 

alignment seems to replicable only in two studies (17, 38). Although prosthetic alignment 

is a subjective concept, only two study reported the subjective statements of prosthetist 

and amputee about prosthetic alignment (4, 7). The measurement tool calibration is 

specified at three study protocols (29, 35, 38). Seven studies had statements about the 

quality of instrumentation (4, 5, 20, 29, 32, 33, 38). Therefore, the internal validity, 

instrument reliability and comparison to gold standard was unclear.  

An accurate judgement on socket fit and prosthetic alignment quality needs to an 

acclimation period. The recommended adaptation time is not consistent between studies. 

For example Safari et al designated the adaptation time to a new prosthesis as 2 weeks or 

more (43). Though the AAOP check list was used for quality assessment with current 

study, the adaptation time to a new prosthetic alignment adjustment assumed to be more 

than 5 minutes (28, 44). The protocol of 64% of included studies did not mention about 

adaptation time to prosthetic alignment adjustment and the adaptation time of 5 studies 

was 5 minutes or less. The statistical analysis of included studies were student t-test, 

ANOVA, MANOVA and non-parametric tests. Four studies had no statement about the 

used statistical analysis (6, 12, 32, 35). The objective measure of various measurements 

should be consistent, which could be assessed by reliability analysis (45). However, the 

study protocol of many participants did not address this. Though statistical significance is 

at least of interest and does not support the clinical significance, it was the most common 

reported result (46, 47). No analytical study reported statistical power and the effect size 

which emphasizes the effects of size of differences on results.  

All of studies were concerned with threats to clinical relevance or significance of 

findings. The most common threat was lack of recommendation regard to acceptable 

alignment. High cost of instrumentation in majority of studies was another threat for 

clinical relevance of reports. The results of four studies contradicted to previous studies 

or result of same study (4, 16, 29, 36). For example, the prosthetic alignment adjustment 

led to significant increase of stance time and decrease of step length of sound limb at the 

same time (36). Due to threats related to validity of included studies, confidence on 

results should regard cautiously. 
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Conclusion 

Twenty-five studies included to this systematic review. The confidence level was low to 

moderate. The joint angle, load line location with respect to joints and COP related 

parameters were sensitive to prosthetic alignment quality in standing posture. The amount 

of forces at various parts of gait cycle and time of events were sensitive to prosthetic 

alignment quality during walking. 
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Table 1: Demographic characteristics of included studies 

 

 

 

 
First Author Setting Design IV* EV** n 

Years Since 

Amputation 

O
u

tc
o

m
e 

m
ea

su
re

 i
n

 s
ta

n
d

in
g

 

1 
Luengas 

(29) 

Hospital Militar Central, 

Colombia 

One grouped before 

after trial 
Low Moderate 7 NS 

2 Seelen (23) Outpatient clinic, Netherlands 
One grouped before 

after trial 
Moderate Moderate 17 NS 

3 Jia (15) Laboratory, China Case series Low Low 5 6.8 

4 Jia (30) Laboratory, China Case series Low Low 5 6.8 

5 Janura (31) Laboratory, Czech Republic 
One grouped before 

after trial 
Low Moderate 13 NS 

6 
Kolarova 

(21) 
Laboratory, Czech Republic 

One grouped before 

after trial 
Low Moderate 10 NS 

7 
Paráková 

(16) 
Laboratory, Olomouc 

One grouped before 

after trial 
Low Moderate 13 11.5 

8 Boone (7) Clinic hallway, China 
One grouped before 

after trial 
Low Moderate 11 NS 

O
u

tc
o

m
e 

m
ea

su
re

 d
u

ri
n
g

 w
al

k
in

g
 

9 
Schmalz 

(17) 

Department of Research, 

Germany 

One grouped before 

after trial 
low Moderate 7 23 

10 Fiedler (20) Laboratory, USA 
One grouped before 

after trial 
Moderate Moderate 8 NS 

11 Fiedler (4) Clinic hallway, USA 
One grouped before 

after trial 
Moderate Moderate 12 NS 

12 Pinzur (9) Laboratory, USA 
One grouped before 

after trial 
Low Low 14 NS 

13 Rossi (10) 
Department of Orthopaedic 

Surgery, USA 

One grouped before 

after trial 
Low Low 7 NS 

14 Boone (32) Orthocare Innovations, USA 
One grouped before 

after trial 
Low Moderate 11 NS 

15 
Kobayashi 

(5) 
Orthocare Innovations, USA 

One grouped before 

after trial 
Low Moderate 11 NS 

16 
Kobayashi 

(33) 
Orthocare Innovations, USA Case series Low Moderate 11 NS 

17 
Kobayashi 

(34) 
Orthocare Innovations, USA Case series Low Low 10 NS 

18 
Kobayashi 

(35) 
Orthocare Innovations, USA 

One grouped before 

after trial 
Low Moderate 11 17 

19 
Kobayashi 

(6) 
Orthocare Innovations, USA 

One grouped before 

after trial 
Low Moderate 10 17 

20 
Fridman 

(36) 
Laboratory, Israel 

One grouped before 

after trial 
Low Moderate 8 13.5 

21 Beyaert (11) Laboratory, France 
One grouped before 

after trial 
Low Moderate 17 16.7 

22 
Grumillier 

(12) 
Laboratory, France 

One grouped before 

after trial 
Low Moderate 17 NS 

23 
VanVelzen 

(22) 
Laboratory, Netherlands 

One grouped before 

after trial 
Low Moderate 5 21 

24 Geil (37) Atlanta, Georgia, USA Case series Low Moderate 6 13.16 

25 Chow (38) 

Department of Health 

Technology and Informatics, 

China 

Cross sectional study Moderate Moderate 7 11 

Abbreviations: *IV: Internal Validity; **EV: External Validity, NS: Not specified 
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Table 2. Summary of studies with data collection in standing position 

Pla

ne 
(s) 

Adjustme
nt 

Descriptio

n 

 
First 

author 
n Selected outcome variables 

Mean (S.D) 
at clinically 

acceptable 

alignment 

Result summary 

S
ag

it
ta

l 

±[2°, 4°, 
6°] 

(sagittal 

socket 
angle) 

1 
Luengas 

(29) 
7 

X component of COP 
(mm) 

Sound limb 55.7 (1.9) 

The adjustments caused statistically 
significant changes of the joint angles and 

COP in the antero-posterior direction. The 

adjustment also increased loading on sound 
limb. 

Prosthetic limb 28.9 (1.5) 

Y component of COP 
(mm) 

Sound limb 95.9 (19.09) 

Prosthetic limb 
138.7 

(14.14) 

Knee joint angle 
Sound limb 2(1.43 

 Prosthetic limb 2.16(3.88 

Heel and 

forefoot 
wedge 

(0.5 cm) 

2 

 

Seelen* 

(23) 

17 

Mean peak 

stump/socket interface 

pressure (in % body 
weight/cm2)  

Subpatellar  23 (0.05) 

By addition of heel wedge submaximal 
tissue loading significantly decreased at the 

end of tibia and increased in patellar tendon 

region, the effects of forefoot wedge was 

the opposite on same regions. 

Tibia end 0.20 (0.04) 

Fibular head  0.20 (0.03) 

Mean pressure level 

over 80% of peak 

pressure 

Subpatellar  0.53 (0.09) 

Tibia end 0.63 (0.11) 

Fibular head  0.62 (0.14) 

time percent in which 

pressure exceeded 80% 
of peak pressure 

Subpatellar  20.6 (3.9) 

Tibia end 24.3 (3.6) 

Fibular head  31.3 (3.6) 

Shoe heel 
height of 

zero, 20 

mm and 
40 mm 

3 Jia (15) 5 
mean absolute value of EMG of 4 muscles of 

both sides 
Not 

specified 

By increasing heel height to 40 mm, the 

activity of knee extensors at prosthetic limb 

increased. 

4 Jia (30) 5 
mean absolute value of EMG (same as stated at 

row 6), plantar pressure, load line location 
Not 

specified 

All outcomes were affected by the 

adjustment. At the heel height of 20 mm 

the outcomes were optimal. 

S
ag

it
ta

l 
an

d
 f

ro
n

ta
l ± 5° 

(sagittal 

foot 
angle), 

±1 cm 

(prosthesi
s length) 

5 
Janura 

(31) 
13 

Fluctuation of COP in medio-lateral and 

anterior-posterior directions Not 

specified 

Plantar flexion and 1cm lengthening 

increased load distribution on sound limb 

and load differences between two limbs 
exceeded physiological limit 

Area of the confidence ellipse 

6 
Kolarova 

(21) 
10 

Anterior 

direction 

End point excursion % 59.9 (18.32) 

5° of foot posterior tilt changed the 
endpoint excursion in backward direction 

significantly; the adjustment was more 

effective than changing prosthetic length. 

Direction control % 89.5 (6.88) 

Movement velocity (°/s) 3.48 (1.80) 

Reaction time (s) 1.04 (0.43) 

Posterior 
direction 

End point excursion % 60.7 (16.1) 

Direction control % 80.71 (9.99) 

Right 
direction 

(prosthetic 
limb) 

End point excursion % 76.11 (10.76) 

Direction control % 2.48 (0.9) 

Movement velocity (°/s) 3.72 (1.63) 

Reaction time (s) 0.86 (0.37) 

Left direction 

(sound limb) 

End point excursion % 79.71 (19.42) 

Direction control % 86.12(8.13) 

Movement velocity (°/s) 4.72 (2.05) 

Reaction time (s) 0.9 (0.36) 

7 
Paráková 

(16) 
13 

Latency of motor reactions, reactivity pattern 

of muscles 
Ns 

1 cm extending of prosthetic length and 5° 

of foot posterior tilt changed the latency of 

postural reactions and muscle reaction time 
significantly. 

 

± 3°, 6° 
(frontal and 

sagittal 

socket 

angles) 

± 5 and 10 

mm 
(frontal 

and 

sagittal 
socket 

translation

) 

8 
Boone 

(7) 
11 

The parameters of sensitivity, specificity and 

likelihood ratio were not special to clinically 
acceptable alignment  

Not 

applicable  

The interventions showed amputees 

perception is a good indicator of clinically 

acceptable alignment in frontal plane; 
however their perception was less reliable 

in sagittal and frontal planes. 

Abbreviation: Vgrf means vertical component of ground reaction force,  

*This study had two conditions walking and standing for data collection  
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Table 3. Summary of studies with data collection in standing position 

P
la

n
e(

s)
 

Adjustment 
Description 

 
First 

author 
n Selected outcome variables 

Mean (S.D) 

at clinically 
acceptable 

alignment 

Result summary 

S
ag

it
ta

l 

± 10° (sagittal 

foot angle), ± 

2cm (sagittal 
foot 

translation) 

1 
Schmalz 

(17) 
7 

Stride length 0.73 (0.05) 

10 degree of extra dorsiflexion led to 

significant increasing of oxygen 
consumption 

O2 rate at speed of 4 kmm/h 13.9 (1) 

O2 rate at speed of 4.8 kmm/h 16.3 (1.6) 

Knee extension moment 
Not 

specified 

± 2° (sagittal 

foot angle) 
2 

Fiedler 

(20) 
8 

step length, stance phase duration, flexion 

angle (knee, ankle), flexion moment (knee, 

ankle), rotation moment, pelvis tilt, and pelvis 
obliquity. 

Not 

specified 

The effects of intervention on symmetry of 
kinematic and kinetic parameters were 

inconsistent 

±[3°, 6°, 9°] 

(sagittal foot 

angle) 

3 
Fiedler 

(4) 
12 

Perceived prosthetic alignment quality, step 

variability, peak GRF in horizontal plane, axial 

torsion moment 

Not 

specified 

Step by step variability had weak 

correlation to amputee’s perception and 

alignment quality 

S
ag

it
ta

l 
an

d
 f

ro
n

ta
l 

±10° (frontal 

and sagittal 
socket angles) 

4 
Pinzur 

(9) 
12 

Peak Force 

Sound limb 
865.37 (15 

.6) 

The GRF* values of the sound limb were 
significantly higher than prosthetic limb at 

clinically acceptable alignment. The 
intervention had no significant effect on 

GRF and impulse. 

Prosthetic limb 
792.76 
(12.3) 

Impulse 

Sound limb 538.57 (10.9) 

Prosthetic limb 
468.93 (7 

.62) 

Stance Time 
Sound limb 0.88 (0.10) 

Prosthetic limb 0.82 (0.08) 

± 5° (frontal and 

sagittal foot 

angles), ± 2 cm 
(prosthesis 

length) 

5 
Rossi 

(10) 
7 Force parameters related to gait initiation 

Not 

specified 

The gait initiation parameters significantly 

differed between sound and prosthetic 

limbs and the effects prosthetic alignment 
adjustment on the parameters was not 

statistically significant. 

± 3°, 6° 

(frontal and 

sagittal socket 
angles) 

± 5 and 10 

mm (frontal 
and sagittal 

socket 
translation) 

6 
Boone 

(32) 
11 

Minimum moment -0.15 (0.12) 
The adjustments had significant in-plane 

effects on socket reaction moment in both 

of sagittal and frontal planes. 

Maximum moment 0.72 (0.18) 

Moment at 30% of stance phase -0.08 (0.08) 

Moment at 75% of stance phase 0.013 (0.05) 

7 
Kobayas

hi (5) 
10 

Moment at 45% of stance phase 0.22 (0.14) 3° and 6° of socket anterior tilt changed 

frontal plane socket reaction moment 
significantly, but the opposite did not 

occur. 

Maximum moment 0.72 (0.18) 

moment at 30% of stance phase -0.08 (0.08) 

moment at 75% of stance phase 0.013 (0.055) 

8 
Kobayas

hi (33) 
11 

Mean moment-moment 

interactions when 

maximum frontal socket 
reaction moments are 

observed at early stance 

Stance (%) 31 
3° and 6° adduction and 10 mm medial 

translation changed the time of peak 
frontal socket reaction moment. 

Frontal moment (Nm) -0.08 (0.08) 

Sagittal moment 
(Nm) 

- 0.034 (0.16) 

9 
Kobayashi 

(34) 
11 

Maximum sagittal moment (Nm/kg) 
108.91 

(15.61) 

The correlation of maximum sagittal 

moment and cadence was statistically 
significant at clinically acceptable 

alignment 
Cadence (step/ minute) 0.72 (0.18) 

± 2°, 4°, 6° 
(frontal and 

sagittal socket 

angles) 
± 5, 10 and 

15mm 

(frontal and 
sagittal socket 

translation) 

10 
Kobayas

hi (6) 
10 

Valgus moment impulse (Nm.s/kg) 
0.0032 

(0.0039) 
Angular and translational prosthetic 

alignment adjustments had significant in-

plane effects on socket reaction moment 

impulse. 

Varus moment impulse (Nm.s/kg) 
-0.03 

(0.017) 

Extension moment impulse (Nm.s/kg) 
0.17 

(0.051) 

Flexion moment impulse (Nm_s/kg) -0.0090(0.02) 

11 
Kobayas

hi (35) 
10 

Moment at 45% of stance phase 0.25 (0.16) The sensitivity of moments to adjustments 

in sagittal and frontal planes varied at each 
quarters of stance phase 

moment at 30% of stance phase −0.081 (0.06) 

moment at 75% of stance phase 0.046 (0.082) 

 

18°, 36° (foot 

external 

rotation) 

12 
Fridman 

(36) 
8 Stance time 

Sound limb 0.78 (0.09) Only 36° of extra external rotation led to 

significant decrease in stance time, 

increase in swing time and step length of 
Prosthetic 

limb 
0.77 (0.08) 
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P
la

n
e(

s)
 

Adjustment 
Description 

 
First 

author 
n Selected outcome variables 

Mean (S.D) 

at clinically 
acceptable 

alignment 

Result summary 

Step length 

Sound limb 63.06 (7.08) prosthetic limb. 

Prosthetic 

limb 

67.36(10.26

) 

± 6° (foot 
internal or 

external 

rotation) 

13 
Beyaert 

(11) 
17 

Stride length (m) 

Sound limb 1.51 (0.18) 

The uncomfortable foot internal rotation 

led to significant change of the sound side 

knee kinematic. 

Prosthetic 
limb 

1.51 (0.19) 

Single support phase (s) 

Sound limb 0.44 (0.03) 

Prosthetic 

limb 
0.42 (0.03) 

14 
Grumillie

r (12) 
17 

Stride length (m) 

Sound limb 1.51 (0.18) 

The uncomfortable foot internal rotation 
led to significant change of the kinematic 

and kinetics of sound side hip joint. 

Prosthetic 

limb 
1.51 (0.19) 

Single support phase (s) 

Sound limb 0.44 (0.03) 

Prosthetic 
limb 

0.42 (0.03) 

A
ll

 p
la

n
es

 

±15° (frontal, 

sagittal and 
transverse 

pylon angles) 

1
5 

VanVelz
en (22) 

5 

Step length 

Sound limb 0.72 (0.1) 

Socket alignment adjustments revealed 

some significant effects on GRF and ankle 

moment. 

Prosthetic 

limb 
0.69 (0.1) 

Step duration 

Sound limb 52.8 (3.4) 

Prosthetic 

limb 
48.9 (0.9) 

N
o

n
e 

None 

1

6 
Geil (37) 6 Plantar pressure 

Not 

specified 

Frontal shifts in socket alignments caused 
lateral shift in plantar pressure of sound 

limb. 

17 
Chow 
(38) 

7 

Asymmetry index£ of first peak of vertical GRF 0.107 The clinically acceptable alignment was 
not a unique situation with maximum 

inter-limb symmetry.  Six parameters were 

consistently more symmetric: first and 
second peak of vertical GRF, tough of 

vertical GRF stance duration, step length 

and time to maximum flexion during the 
swing phase 

Asymmetry index of tough of vertical GRF 0.068 

Asymmetry index of second peak of vertical GRF 0.077 

Asymmetry index of stance duration 0.094 

Asymmetry index of step length 0.115 

Asymmetry index of time to maximum flexion 

during the swing phase 
0.271 

*GRF: ground reaction force 

£ Asymmetry index: the value assessed by dividing the absolute difference between the values of sound and prosthetic limbs by their mean 
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Table 4. Threats for internal validity of included studies 

  

First author 

Internal validity 

Sum 

6 7 8 9 10 11 12 13 

1

4 15 16 17 18 19 

O
u

tc
o

m
e 

m
ea

su
re

 i
n

 s
ta

n
d

in
g

 

1 Luengas 

(29) 

a  b a a  NA a, c, d a a  a a  11 

2 Seelen (23) a b, c b a a  NA a, c, d, e, f  a  a a  9 

3 Jia (15) a a a a b NA NA a, c, d, e, f N

A 

NA NA NA a a 12 

4 Jia (30)  a a a a a NA NA a, c, d, e, f N

A 

NA NA NA a  11 

5 Janura (31) a a a a a NA NA a, c, d, e, f a a  a a b 15 

6 Kolarova 

(21) 

a b, c b, 

c 

b  NA NA a, c, d, e, f a a  a a  15 

7 Paráková 

(16) 

a a a a a NA NA a, c, d, e, f a a  a a  14 

8 Boone (7) c  a a a NA NA a, b, e, f a a  a a  12 

O
u

tc
o

m
e 

m
ea

su
re

 d
u

ri
n
g

 w
al

k
in

g
 

9 Schmalz 

(17) 

a a b   NA NA c, d, e, f  a  a a  10 

10 Fiedler (20) a b, c  a N

A 

NA NA a, c, d, e  a  a   10 

11 Fiedler (4) c b, c   a  NA a, e a a  a   9 

12 Pinzur (9) a  b, c, 

d 

a b NA NA a, c, d, e, f a a  a a a 15 

13 Rossi (10) a a a a a NA NA a, c, d, e, f  a  a a  13 

14 Boone (32)  a  a a a NA NA a, c, d, e b a  a a  12 

15 Kobayashi 

(5) 

a b, c a a a NA NA a, c, d, e a a  a a  14 

16 Kobayashi 

(33) 

a a a a a NA NA a, c, d, e N

A 

NA NA NA b  10 

17 Kobayashi 

(34) 

a a a a a NA NA a, c, d, e, f N

A 

NA NA NA b  11 

18 Kobayashi 

(6) 

a a a a a NA NA a, c, d, e, f b a  a b  13 

19 Kobayashi 

(35) 

a a a a a NA NA a, c, d, f b a  a b  13 

20 Fridman 

(36) 

a a  a b NA NA a, c, d, e, f  a  a a  13 

21 Beyaert (11) a b, c  a b NA NA a, c, d, e, f a a  a   13 

22 Grumillier 

(12) 

a b, c  a b NA NA a, c, d, e, f b a  a   13 

23 VanVelzen 

(22) 

a a a a, 

b 

a NA NA a, c, d, e, f a a  a a  15 

24 Geil (37) a a a a a NA NA a, c, d, e, 

f, h 

N

A 

NA NA NA a a 12 

25 Chow (38) a b, c a   NA NA c, d  a  a a  9 

NA is the abbreviation of not applicable to this study. 
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Table 5. Threats for external validity of included studies 

  First author 
External validity 

Sum 
1 2 3 4 5 6 7 8 

O
u

tc
o

m
e 

m
ea

su
re

 i
n
 

st
an

d
in

g
 

1 Luengas (29)   c a, b a b, c  c 7 

2 Seelen (23)    a, b a c   4 

3 Jia (15)  b a a, b a b, c  b 9 

4 Jia (30) a b a a, b a b, c  b 9 

5 Janura (31) a  a a, b a b   6 

6 Kolarova (21) a   a, b a b, c   6 

7 Paráková (16) a a a a, b a b b  8 

8 Boone (7) a b  b a c   5 

O
u

tc
o

m
e 

m
ea

su
re

 d
u

ri
n
g

 w
al

k
in

g
 

9 Schmalz a a  a a b   5 

10 Fiedler (20) a b a a a c   6 

11 Fiedler (4)  a a b  b, c  c 6 

12 Pinzur (9) a b  a, b a b  b, c 8 

13 Rossi (10) a b c a, b a b, c   8 

14 Boone (32)  b  a a b, c, d   6 

15 Kobayashi (5)  b  a, b a c   5 

16 Kobayashi (33)  b  a, b a b, c, d   7 

17 Kobayashi (34) a b  a, b a b, c, d  b 9 

18 Kobayashi (6)    a, b a b, c, d   6 

19 Kobayashi (35)    a, b a b, c, d   6 

20 Fridman (36) a b  a, b a b b c 8 

21 Beyaert (11) a   a, b a b, c   6 

22 Grumillier (12) a   a a b, c   5 

23 VanVelzen (22)  a  a, b a, b b, c   7 

24 Geil (37)    a, b a c   5 

25 Chow (38) a b b a  b, c   6 

 


