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U.S. Monetary Policy and Herding: Evidence from Commodity 

Markets 

 

Abstract  This paper investigates the presence of herding behavior across a spectrum 

of commodities (i.e., agricultural, energy, precious metals, and metals) futures prices 

obtained from Datastream. The main novelty of this study is, for the first time in the 

literature, the explicit investigation of the role of deviations of U.S. monetary policy 

decisions from a standard Taylor-type monetary rule, in driving herding behavior with 

respect to commodity futures prices, spanning the period 1990-2017. The results 

document that the commodity markets are characterized by herding, while such herding 

behavior is not only driven by U.S. monetary policy decisions, but also such decisions 

exert asymmetric effects this behavior. An additional novelty of the results is that they 

document that herding is stronger in discretionary monetary policy regimes. 

Keywords: Herd behavior; commodity futures prices; U.S. monetary policy 
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Introduction 

Financial markets often appear to behave frantically, which indicates dramatic changes 

in investors’ behavior. The resulting price volatility is inconsistent with rational traders 

and informationally efficient markets and is attributed to investors’ ‘animal instincts’ 

(Bikhchandani and Sharma, 2001). Such a stylized fact is associated with herding 

behavior in which investors follow the crowd. This herding can occur when agents’ 

private information is swamped by the information derived from observing others and 

investors act against their private information and follow the crowd (Economou et al., 

2011).  
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The literature explored the impact of monetary policy decisions on asset prices, 

where such decisions provided an informational mechanism that transmits expectations 

about the future course of interest rates and allowed investors to constantly revise their 

expectations about the impact of interest rates on asset prices (Bernanke and Kuttner, 

2005; Rosa, 2013). Although a wide strand of the literature examined the impact of 

commodity prices on macroeconomic variables (Kilian, 2008, offered an excellent 

survey on evidence regarding the association between commodity prices and 

macroeconomic variables), less attention was spent on the impact of monetary policy 

decisions on asset commodity prices. According to theoretical arguments, monetary 

policy can affect asset pricing through four primary mechanisms/channels, i.e. the 

portfolio balance channel, the signaling or information channel, a confidence channel, 

and enhancing market liquidity and reducing risk premia. When it comes to commodity 

pricing, there exist additional channels, including through other financial variables, 

particularly interest rates and exchange rates, as well as additional channels, via 

(expectations of) inflation and economic growth (Barsky and Kilian,, 2004). These 

extra channels act in cooperation with the traditional for asset pricing channels since 

commodities are closely considered as substitutes to other assets (Rigobon and Sack, 

2004).  

This paper focuses, as this is the main novelty of this study, on exploring what 

is the role of deviations of U.S. monetary policy decisions from a standard Taylor-type 

monetary rule, in driving herding behavior in relevance to commodity futures prices. 

No study has explored so far the role of monetary policy deviations on forward 

commodity prices. In the presence of such deviations, the wrong signal is provided to 

the market participants and wrong portfolio decisions will be reached. Such wrong 

decisions have further repercussions for the course of the real economy as well, mainly 

through investment decisions and wealth distribution. This as explained below, is 
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expected to further excarcebate any herding type of investment behaviors. The 

perceived credibility of monetary policy strategies were expected to influence the 

expectation formation process by market participants and was likely to establish the 

degree of volatility in these expectations (Bernanke, 2004; Coenen and Wieland, 2005; 

Issing, 2005). Alternatively, deviations of monetary policy decisions from their 

expected paths could induce herd behaviors in asset markets which may arise as the 

result of an informational cascades (Bikhchandani et al., 1992) coming from the wrong 

informational signals from interest rate and inflation trends that ‘motivate’ market 

participants to invest in asset markets, regardless of the presence of their possible 

negative own private signals. Thus, herding may be arising as the result of certain 

monetary policy news about the future course of interest rates and/or inflation that 

eventually failed to materialize (Christiano et al., 2007).  

Over the recent years, commodities have played an increasingly significant role 

in the asset allocations of institutional investors. The investments in commodities take 

a variety of forms, including those in real assets, futures, indexes, equities, and hedge 

funds. In portfolio management, commodities can serve a variety of functions from 

volatility and/or inflation hedges to purely speculative plays. Based on this discussion, 

the paper truly emphasizes the investment approach when it comes to herding. When 

investors invest in the producers of commodities, rather than indexes or futures, they 

have a greater opportunity to confront social and environmental implications of their 

investment. In that respect, investments in the equities of commodities producers may 

actually, and counter-intuitively, turn out to be less correlated to the equities market as 

a whole than investments in the commodities themselves. The findings are expected to 

provide guidance for a monetary policy strategy that will be sufficient to monitor 

closely monetary, credit and financial developments as potential driving forces for 

inappropriate asset valuations.  
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Literature Review 

In relevance to the herding behavior, a number of studies highlight the tendency of 

investors to follow each other and trade the same assets at the same time (Chiang et al., 

2010). Herding examined in banking (Devenow and Welch, 1996), equity markets 

(Chiang and Zheng, 2010; Narayan et al., 2015; Economou et al., 2018), and analyst’s 

forecasts and food commodities (Gleason et al., 2003).  

A paper by Demirer et al. (2015) explores the role of stock markets in the 

presence of herding behavior in commodity futures markets. They test the presence of 

herding in a number of commodity sectors, while their findings document the presence 

of herding in grains only during the high volatility state. The literature has also tested 

the assumption of an efficient market, where all prices reflect the available information; 

this assumption was widely applied in the commodities market to explain whether 

prices were driven by fundamentals or sentiment (Hwang et al., 2018). In that sense, 

market traders could overreact and push prices away from fundamentals, with rational 

traders responding to imposing prices to equilibrium. Thus, prices may deviated from 

supply and demand fundamentals, but only momentary (Fishe and Smith, 2019). 

Recently, Gerson de Souza Raimundo Júnior et al. (2020) analyzed the behavior of food 

commodities between 2000 and 2018 to test the presence of herding. Their results 

suggested that betas herding may deviate from the fundamentals, although they tend to 

revert faster to stability between demand and supply disequilibrium conditions, which 

resulted in equilibrium in the long-run risk-return factor.  

Certain papers in the literature of monetary policy rules (Taylor, 1993; Kahn, 

2012) made use of policy interest rates as indicators of the monetary policy stance. 

Although such monetary rules have been a useful yardstick for assessing monetary 

policy behavior, policy rates have been away from the level implied by such rules, 
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rendering monetary policy systematically accommodative from the perspective of this 

benchmark, as between the early 2000s and the outbreak of the recent global financial 

crisis (Ahrend et al., 2008). Nevertheless, the literature has not reached a consensus on 

this issue (Taylor, 2007; Bernanke, 2010; Zhang and Pan, 2019). Taylor (2010, 2012) 

argued that the presence of deviations from a standard monetary policy rule reflected a 

significant change in the policy regime, which he dubbed the ‘Great Deviation’, albeit 

this was rejected by Bernanke (2010). 

In terms of the association between monetary policy and commodity prices, 

monetary conditions attracted attention as possible driving factors of commodity prices. 

Barsky and Kilian (2004) showed that monetary policy stance was a good predictor of 

commodity prices. They provided evidence that oil price increases in the 1970s could 

have been caused by monetary policy decisions. The majority of empirical studies in 

this strand of the literature attempt to assess the relationship between monetary policy 

and commodity prices, by making use of policy interest rates as the primary indicators 

of the monetary policy stance (Frankel and Rose, 2010). Hayo et al. (2012) analyzed 

the impact of U.S. monetary policy activities on commodity price volatility. Their 

results illustrated that U.S. monetary policy had a significant impact on price volatility. 

Hammoudeha et al. (2015) examined the effects of the U.S. monetary policy on sectoral 

commodity prices. Their reference documented that U.S. monetary contractions led to 

immediate rises in commodity prices, reflecting greater expected inflation and 

speculation, high production costs or some overshooting.  

However, in certain times, monetary policy revealed not the expected messages 

(i.e., deviations from expected decisions) and thus, investors may over- or under-

reacted to unexpected information changes (Bondt and Thaler, 1985), thus, leading to 

irrational investment choices. Galariotis et al. (2015) used the Fama-French three factor 

model, along with the momentum factor to reflect common risk factors in stock 
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valuation, while they decomposed the reactions of market participants into fundamental 

and non-fundamental information parts. In addition, any deviations of expected 

monetary policy announcements from their trend tended to exacerbate herding 

irrationality.  

 

Data 

This paper measures herding on a number of commodities from January 1990 to 

December 2017. Daily data on a number of commodities futures prices are obtained: 

sugar, corn, wheat, oats, cocoa, cotton, coffee, oil, natural gas, gold, silver, platinum, 

copper, nickel, and aluminium.  For the agricultural commodities the delivery months 

are January, March, May, July, and October), while for the remaining the delivery 

occurs across all months. Data were obtained from Datastream. 

The results are reported in terms of 1-, 2- and 3-months ahead in the month 

where such a contract is allowed. Data on the overall commodity futures market index, 

offered as the Goldman Sachs Commodity Index (GSCI) futures contracts for one 

month through three months are also obtained. The GSCI is a world production 

weighted index and contains many commodity futures, with the weight of energy 

commodities in the index being about 75%. Returns are measured as first percentage 

differences in logs, while data are obtained as daily closing prices. A total of 6,300 

observations (for each commodity) are considered. 

The reason the empirical analysis focuses on commodity futures prices rather 

than spot prices is manyfold. First, the (forward) monetary rule is based on expected 

(forecasted) variables and in that sense it is more rational to assume that this type of 

monetary policy (i.e., forward looking policy) should more explicitly impact futures 

than spot commodity prices. Second, according to Reeve and Vigfusson (2011), futures 

prices can outperform random walk forecasting schems, while they outperform those 
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schemes when there is a sizeable difference between spot and futures prices, third, 

commodity futures prices reveal useful information about global commodity demands 

and, thus, global economic strength (Sockin and Xiong, 2012), and fourth (a reason 

intrigued by a referee), financial investors almost entirely trade commodity futures, 

since they have no means to store physical commodities. The nearby futures contracts 

in particular are the most traded and most liquid futures contract. In particular, 

commodity exchange-traded funds (ETFs) that replicate commodity indices, such as 

the S&P Goldman Sachs Commodity Index (GSCI) or the Bloomberg commodity index 

are also long in nearby futures contracts; it is, therefore, natural to inspect the nearby 

futures contracts when looking at signs of herding behavior. 

The timeframe covers highly interesting phases in the history of the U.S. 

monetary policy. In each phase, the Fed was confronted with a different policy problem 

(Williamson, 2014). The analysis covers the 1990-1991 recession, the slow recovery, 

and the disinflation to the end of 1993, the case of the Fed’s preemptive tightening 

against inflation in 1994-1995, the long boom to 1999 and the near full credibility for 

low inflation and rising trend productivity growth, the tightening of monetary policy to 

slow the growth of aggregate demand in 1999 and 2000, the collapse of investment in 

late 2000 and the recession in 2001, the 2002-2007 new boom characterized by very 

low interest rates, and the 2007-2008 financial crisis, the strong recession, 

unconventional monetary policy and the stabilization phase. 

 We also obtain monthly real-time data on both U.S. real output gap and U.S. 

consumer price index forecasting prices (from Datastream), as well as on U.S. monetary 

policy interest rates, proxied by the federal funds rate. The federal funds rate is proxied 

by the shadow federal funds rate, calculated by Wu and Xia (2016), given that over the 

post 2008 crisis, interest rates were constrained by the lower zero bound and we need 

to maintain consistency across the time span under study.  
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Empirical Analysis 

Baseline Results: The Herding Behavior Effect 

The most common direction in the literature to explore herding is to study the collective 

behavior of all investors in addition to the market trend. The empirical analysis 

investigates the presence of herding through the cross-sectional absolute standard 

deviation (CSAD) methodology (Chang et. al, 2000) as a mesure of return dispersions: 

                                𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = (1 𝑁𝑁⁄ )∑ �𝑅𝑅𝑖𝑖,𝑡𝑡 − 𝑅𝑅𝑚𝑚,𝑡𝑡�𝑁𝑁
𝑖𝑖=1     (1) 

where 𝑅𝑅𝑖𝑖,𝑡𝑡 is the return on commodity price i on day t, 𝑅𝑅𝑚𝑚,𝑡𝑡 represents the returns on 

the corresponding market index and N is the number of commodity assets observations. 

The relationship between dispersion and market return is described through a non-linear 

equation (Demirer et al. (2015), which can easily detect herding, since it does not 

require large magnitudes of non-linearity. Thus, a new term was introduced in the 

CSAD methodology: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝑐𝑐0 + 𝑐𝑐1�𝑅𝑅𝑚𝑚,𝑡𝑡� + 𝑐𝑐2𝑅𝑅𝑚𝑚,𝑡𝑡
2 + 𝑒𝑒𝑡𝑡                                    (2) 

When herding is encountered during times of extreme market movements, the cross-

sectional dispersion of asset returns is expected to decrease or increase considerably 

less than proportional with market returns. The squared market return is introduced as 

an additional term in the regression to capture this non-linear relationship through a 

negative estimate of the coefficient c2.  

To assess the impact of the deviations of monetary policy on herding, we need 

to retrieve the time-varying nature of the herding coefficient (𝑐𝑐2). We avoid certain 

econometric drawbacks by assuming a representation with time-varying coefficients 

for each commodity. Specifically, we assume a time-varying coefficient version of 

model (2): 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛾𝛾0,𝑡𝑡 + 𝛾𝛾1,𝑡𝑡�𝑅𝑅𝑚𝑚,𝑡𝑡�+𝛾𝛾2,𝑡𝑡𝑅𝑅𝑚𝑚,𝑡𝑡
2 + 𝑢𝑢𝑡𝑡,  𝑡𝑡 = 1,2, … ,𝑇𝑇,                        (3) 

This time-varying modeling approach is motivated by the literature, which finds asset 

market return moments to be time-varying. In that sense, it is very likely that herding 

behavior, which actually is based on returns, is time-varying as well. This strand of the 

literature provided extensive empirical evidence of the presence of a time-varying 

market risk premium (Ferson and Harvey, 1991). This time-varying approach is based 

on the hypothesis that the level of aggregate risk aversion is time-varying. In a habit 

formation model, the representative agent’s risk aversion changes with the difference 

between consumption and the habit-level of consumption. This habit-level was based 

on past consumption (Constantinides, 1990; Campbell and Cochrane, 1999). The 

analysis will estimate model (3) using the local linear approach proposed by Cai (2007), 

which allows for heteroskedasticity and serially correlated errors. Model (3) yields: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝑋𝑋𝑡𝑡′𝛤𝛤𝑡𝑡 + 𝑢𝑢𝑡𝑡,                                                        (4) 

where, 𝑋𝑋𝑡𝑡 = (1, �𝑅𝑅𝑚𝑚,𝑡𝑡�,  𝑅𝑅𝑚𝑚,𝑡𝑡
2 )′, 𝛤𝛤𝑡𝑡 = (𝛾𝛾0,𝑡𝑡 , 𝛾𝛾1,𝑡𝑡 , 𝛾𝛾2,𝑡𝑡)′, 𝐸𝐸(𝑢𝑢𝑡𝑡 𝑋𝑋𝑡𝑡⁄ ) = 0, 𝐸𝐸(𝑢𝑢𝑡𝑡2 𝑋𝑋𝑡𝑡⁄ ) =

𝜎𝜎𝑡𝑡2(𝑋𝑋𝑡𝑡), {(𝑢𝑢𝑡𝑡 ,𝑋𝑋𝑡𝑡)} is strictly stationary α-mixing, but {𝜀𝜀𝑡𝑡} and {𝑋𝑋𝑡𝑡} may not be 

independent, with 𝜀𝜀𝑡𝑡 = 𝑢𝑢𝑡𝑡 𝜎𝜎𝑡𝑡2(𝑋𝑋𝑡𝑡)  ⁄ . To estimate 𝛤𝛤𝑡𝑡 assume that 𝛾𝛾𝑗𝑗(∙)  (𝑗𝑗 = 0,1,2) has a 

continuous second derivative and can be approximated by a first degree Taylor 

polynomial at any fixed time point 𝜏𝜏 ∈ [0,1]: 

𝛾𝛾𝑗𝑗(𝑡𝑡𝑡𝑡) ≈ 𝛾𝛾𝑗𝑗(𝜏𝜏) + 𝛾𝛾𝑗𝑗′(𝜏𝜏)(𝑡𝑡𝑡𝑡 − 𝜏𝜏),  𝑗𝑗 = 0,1,2,                                      (5) 

where 𝛾𝛾𝑗𝑗′(𝜏𝜏) the first derivative of 𝛾𝛾𝑗𝑗(𝜏𝜏) and 𝑡𝑡𝑡𝑡 = 𝑡𝑡 𝑇𝑇⁄ . Hence, model (3) can be 

approximated by a local linear model: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝑍𝑍𝑡𝑡′𝛩𝛩 + 𝑢𝑢𝑡𝑡, where            𝑍𝑍𝑡𝑡 = �
𝑋𝑋𝑡𝑡

𝑋𝑋𝑡𝑡(𝑡𝑡𝑡𝑡 − 𝜏𝜏)�      and 𝛩𝛩 = �
𝛤𝛤(𝜏𝜏)
𝛤𝛤′(𝜏𝜏)�. 

The locally weighted sum of squares is: 

 ∑ (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 − 𝑍𝑍𝑡𝑡′𝛩𝛩)2𝐾𝐾ℎ(𝑡𝑡𝑡𝑡 − 𝜏𝜏)𝑇𝑇
𝑡𝑡=1 ,                                         (6) 
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where 𝐾𝐾ℎ(𝜈𝜈) = 𝛫𝛫(𝜈𝜈 𝐶𝐶⁄ ), 𝛫𝛫(∙) is a kernel function, and 𝐶𝐶 is the bandwidth parameter. 

We obtain the local linear estimate of 𝛤𝛤𝑡𝑡 = (𝛾𝛾0,𝑡𝑡 , 𝛾𝛾1,𝑡𝑡 , 𝛾𝛾2,𝑡𝑡)′, by minimizing (6) with 

respect to 𝛩𝛩. We use the Epanechnikov kernel 𝛫𝛫(𝜈𝜈) = 0.75(1 − 𝜈𝜈2)𝛪𝛪(|𝜈𝜈| ≤ 1). Given 

that the  bandwidth selection is important, we employ a nonparametric version of 

Akaike criterion to select the optimal bandwidth: 

𝐶𝐶𝐴𝐴𝐶𝐶(𝐶𝐶) = log(𝜎𝜎�2) + 2(𝑇𝑇𝑆𝑆+1)
𝑇𝑇−𝑇𝑇𝑆𝑆+2

                                                   (7)  

where 𝜎𝜎�2 = (1 𝑇𝑇⁄ )∑ �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶� 𝑡𝑡�𝑇𝑇
𝑡𝑡=1 , �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶� 𝑡𝑡� is the fitted values of {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡}, 

𝑇𝑇𝑆𝑆 the trace of the smoother matrix, 𝐻𝐻𝑆𝑆 associated with the bandwidth 𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶� =

𝐻𝐻𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = (1 ,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2, … ,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇)′. The estimation results are shown in 

Table 1. The estimated coefficients are allowed to change over the course of the time 

span under consideration, while the reported estimates represent the average estimate 

over this time span. The negative and statistically significant estimates of 𝛾𝛾2 suggest 

the presence of herding across all commodity markets, as well as across the three 

frequency futures data. Cai’s (2007) test clearly rejects the null hypothesis of the 

constancy of the 𝛾𝛾2,𝑡𝑡 coefficient. 

[Insert Table 1 about here] 

 

Estimates of the Forward Monetary Rule 

The behavior of central banks could be assessed through deviations of the federal funds 

rate from a benchmark monetary policy rule (Kahn, 2012). A Taylor-type (1993) of rule 

implied that central banks targeted stabilising inflation around its target and output 

around its potential. Positive (negative) deviations of the two variables from their target 

were associated with a tightening (loosening) of monetary policy.   

The Fed, when announcing a decision, may change the target interest rate and 

also may hint at changes to the likely future trajectory of interest rates. Gürkaynak et 
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al. (2005) argued that signaling future interest rate changes was the more important 

channel through which Fed’s actions could affect bond prices. Moreover, we estimated 

the response of commodity futures prices to the deviations of monetary policy from a 

standard (forward) Taylor monetary rule. 

Monetary authorities generally made policy decisions based on economic 

conditions expected in the future. Accordingly, a number of researchers prefered 

forward-looking, or forecast-based interest rate rules than contemporaneous rules. It 

was argued that using forward-looking data could implicitly include information that 

was not reflected onto inflation and output measures (Rudebusch and Svensson, 1999). 

Batini and Haldane (1999) argued that given that the presence of lags between the 

implementation of monetary policy and its first effects on inflation and output was well 

known, one could design forecast-based rules, such that they were taking into account 

these transmission lags. Failure to recognise these lags could result in cyclical 

instability. Moreover, expectations of monetary authorities were in general formulated 

based on a broad spectrum of information. In this sense, forecast-based rules were 

information encompassing rules. This was not necessarily a characteristic shared by 

other types of rules, such as the contemporaneous rules. A forward-looking monetary 

rule is described by the following process: 

𝑖𝑖𝑡𝑡 = 𝛼𝛼1 + 𝛽𝛽1𝐸𝐸𝑡𝑡𝜋𝜋𝑡𝑡+𝑗𝑗 + 𝛿𝛿1𝑦𝑦𝑡𝑡+1 + 𝜌𝜌1𝑖𝑖𝑡𝑡−1 + 𝜖𝜖𝑡𝑡                            (8) 

where 𝑖𝑖𝑡𝑡 is the nominal policy rate and 𝑦𝑦𝑡𝑡+1 is the forecasted output gap, i.e., the 

deviations from trend output. 𝐸𝐸𝑡𝑡𝜋𝜋𝑡𝑡+𝑗𝑗 denotes the expectation or forecast formed today 

of inflation j periods in the future.  To respond to questions on whether it makes sense 

to discuss about the Taylor rule when interest rates were so low and inflation below the 

announced target, the paper considers a Taylor rule in which the policy rate is based on 

Wu and Xia (2016) “shadow interest rate”. This shadow policy rate accounts of the 

overall effect of diverse Fed instruments on the economy, including “forward guidance” 
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over the path of future interest rates (with the idea of lowering today’s real interest rate 

by raising the expectation of future inflation) and “quantitative easing” policies 

involving large-scale purchases of public and private bonds. These alternative tools, 

already battle-tested during the financial crisis, have been proven effective in stabilizing 

output and unemployment in a deep recession, following the crisis event. 

Table 2 reports the estimates of the forward-looking rule [Equation (8)]. The 

estimations are derived through the Generalized Method of Moment (GMM) 

methodological approach (Clarida et al., 2000; Castro, 2011). The instrument list 

contains lagged values of inflation, the output gap, and interest rates. The empirical 

findings document an activist policy rule as the coefficient of inflation (𝛽𝛽) exceeds one 

and that of the output gap (𝛿𝛿) exceeds zero, while they are both statistically significant. 

As the estimated coefficient of the output gap is positive and significant, the Fed has 

implemented a stabilising policy for the economic outlook. Table 2 points out that the 

monetary authorities have reacted more strongly to the market participants’ perceptions 

about inflation compared to output stabilization. 

[Insert Table 2 about here] 

 

Herding Behavior and Monetary Policy Deviations 

To measure the deviations of monetary policy, we follow the approach recommended 

by Smales and Apergis (2016). In particular, such deviations of monetary policy (DEV) 

are measured as the difference between actual interest rates and their fitted values from 

(3). Next, the analysis explores whether Taylor-type monetary rule deviations drive 

asset commodity prices. However, we can also ask whether asset prices drive these 

deviations, which may reflect the central bank’s reaction to asset price movements. 

Kuttner and Bernanke (2005) found that a typical unanticipated Fed funds rate cut of 

25 basis points was associated with an increase of roughly one percent in the level of 
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stock prices, while Rigobon and Sack (2003) found that a 5 percent decrease (increase) 

in the S&P500 over the course of a week raises the probability of a 25-basis-point 

interest rate cut (hike) by 64%. Although the data indicated that the Fed reacted directly 

to the stock market, statistical regressions did not reveal the motives behind this 

behavior. One possibility was that forward-looking policymakers viewed movements 

in the asset market as useful predictors of future economic activity. Similarly, forward-

looking policy makers may view movements in commodity prices as useful predictors 

of future inflation. Therefore, the following model is considered: 

     𝛾𝛾�2,𝑡𝑡 = 𝑘𝑘0 + 𝑘𝑘1𝐶𝐶𝐸𝐸𝐷𝐷𝑡𝑡 + 𝑒𝑒𝑡𝑡                                                    (9) 

where 𝛾𝛾�2,𝑡𝑡 is the estimate of 𝛾𝛾2,𝑡𝑡 from (4), DEV = it - 𝚤𝚤̂𝑡𝑡, with 𝑖𝑖𝑡𝑡 being the observed 

(actual) interest rate and 𝚤𝚤�̂�𝑡 the fitted interest rate from estimated rule (3).   

To take explicitly the interdependence between the variables in Equation (9), as 

well as to avoid the presence of heteroskedasticity (Roodman, 2011), the equation is 

estimated through the maximum likelihhod methodological approach. This particular 

methodology generates heteroscedasticity consistent standard errors. To match monthly 

monetary policy deviations to the daily frequency of futures contracts we make use of 

the day of the month the contract is traded in relevance to the month that monetary 

policy deviations are considered. Moreover, since the asymptotic distribution of the 𝛾𝛾�2,𝑡𝑡 

estimator is not known, we cannot readily provide the standard errors for the estimated 

parameters. Therefore, we need to resort to bootstrap approximation for the distribution 

and subsequently obtain the bootstrap standard errors for the estimated parameters (a 

procedure as outlined in De Angelis et al., 1993).  

The results are reported in Table 3. The findings in Panel A document that 

deviations from planned monetary policy provide ‘informational’ caskades/spillovers 

to market participants in commodity markets, leading them to behave as members of 

the herd. More specifically, for example in the case of gold futures prices, the estimates 
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indicate that over the next month a 10-basis point surprise/deviation in interest rates 

increases gold futures prices by about 0.73%, while for the 2-month contracts this 

increase turns out to be 0.78%. However, for the case of the 3-month contracts the 

increase falls to 0.55%. Overall, the responses are higher for the case of precious 

commodities, vis-à-vis the case of agricultural commodities. 

As emphasized by the longstanding hedging pressure theory of commodity 

futures prices, the stronger effects across the futures price frequencies occur with 

respect to the first two months, indicating an ‘overshooting’ effect (Hirshleifer, 1988), 

with the impact dissipating over longer time horizons. This observation received 

statistical support from the Z statistics, recommended by Clogg et al. (1995), which 

tested the null hypothesis that the coefficients k1 and k3 were equal across maturities 

for the same commodity. 

Due to the important roles played by commodity prices in a range of policy 

issues, running from price inflation to energy security and to economic and political 

stability, policy makers across the globe have become increasingly concerned with 

greatly increased commodity price changes. Within such an environment, it is even 

more pressing to fully understand information contained in commodity futures prices 

and how this informational content affects deviations of monetary policy decisions 

from a forward-looking monetary rule. The findings in Panel B display a negative 

association between herding behavior and the reaction coming from the central bank. 

Such results support an active response of the monetary authorities to a ‘herding’ or 

‘bubble’ trend coming from the commodity markets, which makes these results aligned 

to the rationale recommended by Bernanke and Gertler (1999). Once again, the 

estimates of the Zs statistic point out that the estimations are not equal across maturies 

for the same commodity. 

[Insert Table 3 about here] 
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Robustness Checks: The Separation Between Rules- and Discretionary-Based 

Eras 

In this part of the empirical analysis, we make use of the Nikolsko-Rzhevskyy et al. 

(2014) methodology who explicitly divided monetary policy into ‘small’ and ‘large’ 

deviations periods. Based on this methodological approach, we consider the periods 

1990:1-1999:4 and 2006:3-2017:4 as rule-based eras and the period 2000:1-2006:2 as 

a discretionary era. Therefore, we investigate the behavior of the model described in 

Equation (9), across the three time windows mentioned above, along with the maximum 

likelihood methodological approach. The new results are reported in Table 4 and 

illustrate that deviations from planned monetary policy over the discretionary period 

provide stronger ‘informational’ spillovers to market participants in commodity 

markets than corresponding deviations over the rule-based eras. For instance, for the 

case of one-month gold futures contracts, the estimates clearly illustrate that a 10-basis 

point deviations of interest rates from their formal path initiate a 0.49% and 0.52% 

increase in the prices of those contract, while, by contrast, the same basis point 

deviations initiate a 0.84 increase in the same contracts. The results remain consistently 

robust across all commodity futures contracts, as well as across time (i.e., for 2- and 3-

month contracts). Such findings imply a stronger herding behavior and indicate that 

rule-based eras seem to be characterized by signaling ‘more accurate’ monetary policies 

that transmit less uncertainty to commodity market participants.  

Although the results display a negative association between herding and the 

reaction coming from the central bank in both monetary policy eras, supporting an 

active response of the monetary authorities to a ‘herding’ or ‘bubble’ trend in the 

commodity markets, the reaction of the monetary authorities is stronger over the 

discretionary-based era. Following a monetary rule in a more restrictive manner seems 
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to constrain the monetary authorities from reacting excessively to herding in 

commodity markets. Finally, the estimates of the Zs statistics denote that the estimates 

are not equal across monetary policy eras for the same commodity. 

[Insert Table 4 about here] 

 

Conclusion 

This paper investigated the presence of herding across major commodity markets, as 

well as the hypothesis that U.S. monetary policy could be a major driver for such a 

behavior. The empirical findings provided favorable evidence that herding was present 

in major energy, agricultural, metals and precious metals commodity markets, with the 

U.S. monetary policy potentially driving such a behavior. Additionally, the empirical 

analysis provided supportive evidence of stronger herding over a discretionary-based 

monetary policy era, probably reflecting higher uncertainty associated with the 

performance of the economy in such a period.  

The empirical results highlighted that potentially extraordinary monetary policy 

decisions both on tranquil or distressed times, such as the recent financial crisis, are 

substantially likely to inflict commodity prices. The findings that the deviations of 

monetary policy from a standard rule impact commodity forward prices also indicates 

the presence of information asymmetry in investment markets, which makes herding 

behaviors more intense, since intensify the possibility of informational cascades, as 

well as of reputation and compensation based herding. What is needed is more and 

better disclosure rules, timely provision of data and better designed compensation 

contracts that are expected to make markets and institutions more transparent. This is 

expected to bring more and better information about market expectations into the public 

domain. Greater transparency will make it more likely that prices will closely track 

fundamentals. 
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The findings also point out that commodity prices could be used as an indicator 

for monetary policy; in that respect, policymakers could take commodity prices as 

signals for future inflation and real economic activity. This discussion implies that 

commodity price rises, as those occurred back in 2008, need not be necessarily taken 

as temporary, while potential swings in commodity markets do not necessarily reflect 

a speculative behavior of market participants. Finally, an interesting venue for future 

research could be the extension of this current work to investigate monetary policy 

schemes implemented in other primary monetary policy centers, i.e. the U.K., China, 

Japan, and the Eurozone. 
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Table 1 Herding estimates between futures commodity prices and deviations of monetary 

policy from a Taylor’s rule: January 1990 to December 2017 (1-, 2-, 3-month futures prices)  

Commodity 𝜸𝜸𝟎𝟎,𝒕𝒕 𝜸𝜸𝟏𝟏,𝒕𝒕 𝜸𝜸𝟐𝟐,𝒕𝒕     R2 Cai test 

Futures prices: 1-month      

Gold 0.236 

[0.00] 

0.374 

[0.03] 

-0.476 

[0.00] 

0.35 [0.00] 

Silver 0.216 

[0.00] 

0.297 

[0.01] 

-0.459 

[0.00] 

0.27 [0.00] 

Platinum 0.155 

[0.01] 

0.251 

[0.01] 

-0.409 

[0.00] 

0.26 [0.01] 

Natural gas 0.126 

[0.05] 

0.580 

[0.02] 

-0.677 

[0.00] 

0.43 [0.00] 

Copper 0.125 

[0.03] 

0.458 

[0.00] 

-0.592 

[0.00] 

0.39 [0.00] 

Aluminium 0.146 

[0.00] 

0.483 

[0.00] 

-0.598 

[0.00] 

0.44 [0.00] 

Nickel 0.124 

[0.01] 

0.396 

[0.00] 

-0.564 

[0.00] 

0.33 [0.01] 

Sugar 0.135 

[0.02] 

0.386 

[0.01] 

-0.561 

[0.00] 

0.35 [0.00] 

Corn 0.139 

[0.01] 

0.395 

[0.00] 

-0.552 

[0.00] 

0.37 [0.00] 

Wheat 0.141 

[0.02] 

0.418 

[0.00] 

-0.573 

[0.00] 

0.35 [0.00] 

Oats 0.154 0.473 -0.562 0.39 [0.00] 
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[0.01] [0.00] [0.00] 

Cocoa 0.166 

[0.00] 

0.493 

[0.00] 

-0.580 

[0.00] 

0.40 [0.00] 

Cotton 0.142 

[0.03] 

0.511 

[0.00] 

-0.563 

[0.00] 

0.38 [0.00] 

Coffee 0.157 

[0.00] 

0.536 

[0.00] 

-0.572 

[0.00] 

0.39 [0.00] 

Futures prices: 2-month        

Gold 0.239 

[0.00] 

0.381 

[0.02] 

-0.482 

[0.00] 

0.36 [0.00] 

Silver 0.220 

[0.00] 

0.299 

[0.00] 

-0.463 

[0.00] 

0.29 [0.00] 

Platinum 0.158 

[0.00] 

0.255 

[0.00] 

-0.416 

[0.00] 

0.28 [0.00] 

Natural gas 0.128 

[0.04] 

0.586 

[0.01] 

-0.681 

[0.00] 

0.44 [0.00] 

Copper 0.129 

[0.02] 

0.462 

[0.00] 

-0.596 

[0.00] 

0.41 [0.00] 

Aluminium 0.149 

[0.00] 

0.487 

[0.00] 

-0.602 

[0.00] 

0.46 [0.00] 

Nickel 0.128 

[0.00] 

0.399 

[0.00] 

-0.568 

[0.00] 

0.35 [0.01] 

Sugar 0.139 

[0.02] 

0.458 

[0.00] 

-0.539 

[0.00] 

0.32 [0.00] 

Corn 0.146 0.477 -0.516 0.34 [0.01] 
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[0.01] [0.00] [0.00] 

Wheat 0.155 

[0.01] 

0.462 

[0.00] 

-0.539 

[0.00] 

0.36 [0.00] 

Oats 0.142 

[0.02] 

0.483 

[0.00] 

-0.551 

[0.00] 

0.41 [0.01] 

Cocoa 0.139 

[0.02] 

0.466 

[0.00] 

-0.548 

[0.00] 

0.37 [0.00] 

Cotton 0.157 

[0.00] 

0.493 

[0.00] 

-0.586 

[0.00] 

0.39 [0.00] 

Coffee 0.142 

[0.01] 

0.474 

[0.00] 

-0.571 

[0.00] 

0.38 [0.00] 

Futures prices: 3-month       

Gold 0.234 

[0.00] 

0.379 

[0.01] 

-0.468 

[0.00] 

0.35 [0.00] 

Silver 0.221 

[0.00] 

0.295 

[0.00] 

-0.461 

[0.00] 

0.28 [0.00] 

Platinum 0.152 

[0.00] 

0.253 

[0.00] 

-0.414 

[0.00] 

0.26 [0.01] 

Natural gas 0.124 

[0.05] 

0.582 

[0.00] 

-0.678 

[0.00] 

0.43 [0.00] 

Copper 0.123 

[0.04] 

0.460 

[0.00] 

-0.591 

[0.00] 

0.39 [0.00] 

Aluminium 0.141 

[0.00] 

0.479 

[0.00] 

-0.602 

[0.00] 

0.45 [0.01] 
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Nickel 0.122 

[0.00] 

0.394 

[0.00] 

-0.562 

[0.00] 

0.33 [0.00] 

Sugar 0.144 

[0.02] 

0.462 

[0.00] 

-0.563 

[0.00] 

0.38 [0.00] 

Corn 0.150 

[0.01] 

0.474 

[0.00] 

-0.559 

[0.00] 

0.35 [0.01] 

Wheat 0.159 

[0.00] 

0.481 

[0.00] 

-0.593 

[0.00] 

0.40 [0.00] 

Oats 0.138 

[0.02] 

0.460 

[0.00] 

-0.574 

[0.00] 

0.36 [0.01] 

Cocoa 0.169 

[0.01] 

0.485 

[0.00] 

-0.597 

[0.00] 

0.42 [0.00] 

Cotton 0.142 

[0.01] 

0.448 

[0.00] 

-0.552 

[0.00] 

0.37 [0.00] 

Coffee 0.154 

[0.00] 

0.426 

[0.00] 

-0.541 

[0.00] 

0.36 [0.00] 

      

Notes: 1-, 2- and 3-month results indicate the next three months such contracts are allowed to negotiate. 
Estimated equation is:. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝛾𝛾0,𝑡𝑡 + 𝛾𝛾1,𝑡𝑡�𝑅𝑅𝑚𝑚,𝑡𝑡�+𝛾𝛾2,𝑡𝑡𝑅𝑅𝑚𝑚,𝑡𝑡

2 + ut. The model has been estimated using 
the local linear approach proposed by Cai (2007), which allows for heteroskedasticity and serially 
correlated errors. Figures in brackets denote p-values. The Cai test examines the validity of the null 
hypothesis of the constant parameter of 𝛾𝛾2,𝑡𝑡. 
Source: Data come from the Thomson Reuters database 
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Sensitivity: Internal 

Table 2 Forward-looking monetary policy rule estimates (output is measured as GDP): 

January 1990 to December 2017 

𝜶𝜶𝟏𝟏 𝜷𝜷𝟏𝟏 𝜹𝜹𝟏𝟏       𝝆𝝆𝟏𝟏        Adj. R2 J-statistic 

0.097*** 

[0.00] 

3.682*** 

[0.00] 

0.058*** 

[0.00] 

    0.296*** 

    [0.00] 

       0.67     [0.98] 

Notes: The estimations were derived through the Generalized Method of Moment (GMM) methodology.  
The instrument list contained lagged values of inflation, the output gap, and interest rates. The J-statistic 
indicates that the employed instruments are valid. Figures in brackets denote p-values. *** denotes 
significance at the 1% level. 
Source: Data come from the Thomson Reuters database 
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Sensitivity: Internal 

Table 3 Estimates of the effect of monetary policy deviations on futures commodity prices: 

January 1990 to December 2017 

_____________________________________________________________________  

Panel A 

Equation: γ�2,t = k0 + k1DEVt + et 

Commodity 𝒌𝒌𝟎𝟎 𝒌𝒌𝟏𝟏 𝑨𝑨𝑨𝑨𝑨𝑨.𝑹𝑹𝟐𝟐      Zs-statistic 

1-month     

Gold -3.314 [0.03] 7.019 [0.02] 0.07 [0.00] 

Silver -2.346 [0.01] 5.875 [0.00] 0.10 [0.00] 

Platinum -2.006 [0.03] 5.472 [0.01] 0.12 [0.01] 

Oil  -1.764 [0.02] 5.146 [0.01] 0.08 [0.00] 

Natural gas -1.498 [0.04] 5.072 [0.01] 0.11 [0.00] 

Copper -1.543 [0.03] 5.084 [0.01] 0.12 [0.03] 

Aluminim -1.374 [0.03] 5.092 [0.00] 0.13 [0.01] 

Nickel -1.089 [0.05] 3.963 [0.01] 0.09 [0.01] 

Sugar -1.148[0.04] 4.281 [0.00] 0.13 [0.00] 

Corn -1.179[0.03] 4.274 [0.01] 0.12 [0.01] 

Wheat -1.167[0.03] 4.651 [0.00] 0.13 [0.00] 

Oats -1.238[0.03] 4.352 [0.00] 0.14 [0.03] 

Cocoa -1.156[0.03] 4.658 [0.01] 0.12 [0.01] 

Cotton -1.164[0.04] 4.349 [0.00] 0.15 [0.00] 

Coffee -1.251[0.03] 4.568[0.01] 0.14 [0.01] 

2-month 

Gold -3.034 [0.01] 7.429 [0.00]            0.09                   [0.01] 

Silver -2.096 [0.04] 6.466 [0.01]            0.10                   [0.00] 
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Sensitivity: Internal 

Platinum -1.675 [0.04] 5.664 [0.01] 0.14              [0.00] 

Oil  -1.613 [0.05] 5.618 [0.01] 0.11              [0.00] 

Natural gas -1.364 [0.04] 5.149 [0.01] 0.15              [0.00] 

Copper -1.175 [0.05] 5.493 [0.01] 0.16              [0.01] 

Aluminim -1.045 [0.05] 5.491 [0.01] 0.15              [0.00] 

Nickel -1.148 [0.04] 4.682 [0.01] 0.10              [0.01] 

Sugar -1.062[0.05] 4.952 [0.00] 0.16              [0.01] 

Corn -1.207[0.04] 4.576 [0.01] 0.14              [0.01] 

Wheat -1.173[0.05] 4.718 [0.01] 0.15              [0.00] 

Oats -1.263[0.04] 4.563 [0.01] 0.13              [0.01] 

Cocoa -1.016[0.05] 5.067 [0.00] 0.14              [0.01] 

Cotton -1.066[0.05] 4.485 [0.01] 0.16              [0.00] 

Coffee -1.032[0.05] 4.671[0.01] 0.15              [0.00] 

3-month 

Gold -2.378 [0.03] 5.409 [0.01] 0.06            [0.01] 

Silver -1.896 [0.04] 5.644 [0.00] 0.09            [0.00] 

Platinum -1.315 [0.05] 5.062 [0.01] 0.11            [0.01] 

Oil  -1.279 [0.05] 5.146 [0.00] 0.09            [0.00] 

Natural gas -1.086 [0.07] 5.095 [0.01] 0.12            [0.01] 

Copper -1.059 [0.06] 5.168 [0.00] 0.13            [0.00] 

Aluminim -1.063 [0.06] 5.117 [0.01] 0.12            [0.01] 

Nickel -1.048 [0.05] 4.052 [0.01] 0.09            [0.00] 

Sugar -1.053[0.06] 4.375 [0.01] 0.13            [0.00] 

Corn -1.144[0.04] 4.126 [0.01] 0.11            [0.01] 

Wheat -1.126[0.05] 4.419 [0.01] 0.10            [0.01] 
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Sensitivity: Internal 

Oats -1.013[0.06] 4.286 [0.01] 0.10            [0.01] 

Cocoa -0.953[0.08] 4.582 [0.01] 0.11            [0.01] 

Cotton -1.058[0.05] 4.129 [0.01] 0.13            [0.01] 

Coffee -1.078[0.05] 4.316[0.01] 0.11            [0.00] 

 

Panel B 

Equation: 𝐶𝐶𝐸𝐸𝐷𝐷𝑡𝑡 = 𝜅𝜅2 + 𝜅𝜅3𝛾𝛾�2,𝑡𝑡 + 𝜈𝜈𝑡𝑡  

Commodity 𝜿𝜿𝟐𝟐 𝜿𝜿𝟑𝟑 𝑨𝑨𝑨𝑨𝑨𝑨.𝑹𝑹𝟐𝟐      Zs-statistic 

1-month     

Gold 0.037 [0.32] 0.083 [0.02] 0.17 [0.01] 

Silver 0.116 [0.24] 1.065 [0.01] 0.12 [0.00] 

Platinum 1.048 [0.08] 1.175 [0.01] 0.07 [0.01] 

Oil  -0.048 [0.17] 0.078 [0.01] 0.07 [0.01] 

Natural gas -1.005 [0.10] 0.647 [0.02] 0.10 [0.01] 

Copper -0.062 [0.26] 2.185 [0.01] 0.12 [0.02] 

Aluminim -1.002 [0.10] 0.713 [0.01] 0.12 [0.01] 

Nickel -0.226 [0.20] 0.734 [0.01] 0.08 [0.01] 

Sugar -0.835[0.09] 1.382[0.01] 0.13 [0.02] 

Corn -0.915[0.07] 1.329[0.01] 0.14 [0.01] 

Wheat -0.835[0.09] 1.396[0.02] 0.12 [0.01] 

Oats -0.895[0.07] 1.452[0.01] 0.14 [0.02] 

Cocoa -0.874[0.07] 1.448[0.01] 0.13 [0.00] 

Cotton -0.753[0.10] 1.446[0.01] 0.14 [0.01] 

Coffee -0.867[0.07] 1.461[0.01] 0.12 [0.00] 

2-month     
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Sensitivity: Internal 

Gold -0.502 [0.21] 0.509 [0.00] 0.13                   [0.00] 

Silver -0.335 [0.28] 0.615 [0.01] 0.15    [0.01] 

Platinum -0.411 [0.24] 0.565 [0.01] 0.17 [0.00] 

Oil  -0.915 [0.17] 1.242 [0.01] 0.16 [0.01] 

Natural gas -0.914 [0.08] 1.348 [0.01] 0.19 [0.00] 

Copper -0.416 [0.25] 1.632 [0.01] 0.22 [0.01] 

Aluminim -0.373 [0.28] 0.621 [0.01] 0.17 [0.02] 

Nickel -0.212 [0.44] 0.608 [0.01] 0.14 [0.01] 

Sugar -0.483[0.23] 0.909 [0.01] 0.21 [0.00] 

Corn -0.304[0.42] 0.725 [0.01] 0.22 [0.01] 

Wheat -0.486[0.22] 0.903 [0.01] 0.19 [0.01] 

Oats -0.227[0.43] 0.792 [0.01] 0.22 [0.01] 

Cocoa -0.327[0.28] 1.049 [0.01] 0.19 [0.00] 

Cotton -0.426[0.23] 1.005 [0.01] 0.24 [0.01] 

Coffee -0.322[0.38] 1.001[0.01] 0.23 [0.02] 

3-month     

Gold -0.314 [0.25] 0.429 [0.01] 0.10 [0.00] 

Silver -0.115 [0.54] 0.584 [0.01] 0.13 [0.01] 

Platinum -0.231 [0.36] 0.514 [0.01] 0.14 [0.01] 

Oil  -0.125 [0.45] 1.013 [0.01] 0.15 [0.00] 

Natural gas -0.329 [0.23] 1.071 [0.01] 0.19 [0.01] 

Copper -0.242 [0.28] 1.084 [0.00] 0.20 [0.00] 

Aluminim -0.302 [0.25] 0.513 [0.01] 0.14 [0.01] 

Nickel -0.225 [0.42] 0.414 [0.01] 0.12 [0.01] 

Sugar -0.342[0.25] 0.639 [0.01] 0.18 [0.02] 
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Sensitivity: Internal 

Corn -0.215[0.33] 0.606 [0.01] 0.19 [0.01] 

Wheat -0.224[0.35] 0.653 [0.01] 0.18 [0.01] 

Oats -0.226[0.34] 0.539 [0.01] 0.19 [0.00] 

Cocoa -0.235[0.35] 0.832 [0.00] 0.16 [0.00] 

Cotton -0.326[0.30] 0.864 [0.01] 0.20 [0.01] 

Coffee -0.257[0.34] 0.731[0.01] 0.22 [0.01] 

___________________________________________________________________________________ 

Notes: Estimations were obtained through the three stage least squares (3SLS) methodological approach. 
The endogenous variables estimates are built on the maximum–likelihood estimator (MLE), while it 
generates heteroscedasticity consistent standard errors. The Zs statistic tests the null hypothesis that the 
coefficients k1 and k3 are equal across maturities for the same commodity. Figures in brackets denote p-
values based on bootstrap standard errors coming from 1000 bootstrap replications.  
Source: Data come from the Thomson Reuters database. 
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Sensitivity: Internal 

Table 4 Estimates of the effect of monetary policy deviations (across both rule-based 1990:1-

1999:4 and 2006:3-2014:4, and discretionary-based 2000:1-2006:2, eras).  

_____________________________________________________________________ 

Equation: γ�2,t = k0 + k1DEVt + et 

1-month 

Commodity k1(1990:1-1999:4)   k1(2006:3-2014:4) k1(2000:1-

2006:2) 

    Zs-statistic 

Gold 4.775 [0.00] 5.139 [0.00] 8.175 [0.00] [0.01] 

Silver 4.255 [0.00] 5.774 [0.00] 8.052 [0.00] [0.00] 

Platinum 3.065 [0.00] 5.615 [0.00] 8.148 [0.00] [0.01] 

Oil  2.764 [0.00] 5.524 [0.00] 9.043 [0.00] [0.01] 

Natural gas 2.519 [0.01] 5.193 [0.01] 8.205 [0.00] [0.01] 

Copper 2.358 [0.00] 5.264 [0.00] 9.291 [0.00] [0.01] 

Aluminim 2.548 [0.00] 5.586 [0.00] 8.259 [0.00] [0.00] 

Nickel 3.179 [0.00] 4.665 [0.00] 8.248 [0.00] [0.00] 

Sugar 3.163[0.00] 5.139 [0.00] 9.186 [0.00] [0.04] 

Corn 2.639[0.00] 4.714 [0.00] 9.005 [0.01] [0.01] 

Wheat 2.658[0.00] 5.149 [0.00] 8.763 [0.00] [0.00] 

Oats 3.295[0.00] 4.782 [0.00] 8.351 [0.01] [0.02] 

Cocoa 2.548[0.00] 4.681 [0.00] 9.072 [0.00] [0.02] 

Cotton 3.174[0.00] 5.274 [0.00] 8.437 [0.01] [0.01] 

Coffee 3.154[0.00] 4.752 [0.01] 8.784 [0.01] [0.01] 

2-month     

Commodity k1(1990:1-1999:4)   k1(2006:3-2014:4) k1(2000:1-

2006:2) 

     Zs-statistic 

Gold 4.758 [0.00] 5.263 [0.00] 8.447 [0.00] [0.01] 
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Sensitivity: Internal 

Silver 4.542 [0.00] 6.084 [0.00] 8.271 [0.00] [0.01] 

Platinum 3.177 [0.00] 5.752 [0.00] 8.594 [0.00] [0.01] 

Oil  2.785 [0.00] 5.516 [0.00] 9.187 [0.00] [0.01] 

Natural gas 2.785 [0.01] 5.437 [0.01] 8.554 [0.01] [0.01] 

Copper 2.524 [0.01] 5.437 [0.01] 9.452 [0.00] [0.01] 

Aluminim 2.582 [0.00] 5.675 [0.01] 8.662 [0.01] [0.01] 

Nickel 3.291 [0.01] 4.872 [0.01] 8.493 [0.01] [0.02] 

Sugar 3.216[0.01] 5.065 [0.01] 9.264 [0.01] [0.01] 

Corn 2.537[0.00] 5.036 [0.01] 9.321 [0.00] [0.02] 

Wheat 2.674[0.01] 5.244 [0.00] 9.081 [0.01] [0.00] 

Oats 3.569[0.00] 5.073 [0.00] 8.615 [0.01] [0.02] 

Cocoa 2.854[0.01] 4.688 [0.01] 9.374 [0.01] [0.01] 

Cotton 3.447[0.01] 5.392 [0.00] 8.679 [0.01] [0.01] 

Coffee 3.285[0.01] 5.042 [0.01] 9.256 [0.01] [0.00] 

3-month     

Commodity k1(1990:1-1999:4)   k1(2006:3-2014:4) k1(2000:1-

2006:2) 

    Zs-statistic 

Gold 4.569 [0.01] 4.916 [0.01] 8.052 [0.00] [0.02] 

Silver 4.029 [0.01] 5.621 [0.00] 7.884 [0.01] [0.02] 

Platinum 3.064 [0.01] 5.268 [0.01] 8.144 [0.01] [0.02] 

Oil  2.586 [0.01] 5.421 [0.01] 8.879 [0.01] [0.02] 

Natural gas 2.544 [0.00] 5.132 [0.01] 8.254 [0.01] [0.04] 

Copper 2.194 [0.01] 5.064 [0.00] 9.109 [0.00] [0.04] 

Aluminim 2.375 [0.01] 5.276 [0.01] 8.199 [0.01] [0.05] 

Nickel 2.911 [0.01] 4.465 [0.01] 8.073 [0.01] [0.05] 

Sugar 3.065[0.01] 4.921 [0.01] 9.003 [0.01] [0.06] 
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Sensitivity: Internal 

Corn 2.293[0.01] 4.634 [0.01] 9.005 [0.01] [0.03] 

Wheat 2.385[0.01] 5.084 [0.01] 8.654 [0.01] [0.04] 

Oats 3.179[0.01] 4.762 [0.01] 8.092 [0.01] [0.05] 

Cocoa 2.274[0.01] 4.459 [0.01] 9.026 [0.01] [0.03] 

Cotton 3.135[0.02] 5.104 [0.01] 8.139 [0.01] [0.02] 

Coffee 3.052[0.01] 4.674 [0.01] 8.762 [0.01] [0.01] 

Equation: 𝐶𝐶𝐸𝐸𝐷𝐷𝑡𝑡 = 𝜅𝜅2 + 𝜅𝜅3𝛾𝛾�2,𝑡𝑡 + 𝜈𝜈𝑡𝑡 

1-month 

Commodity k3(1990:1-1999:4) k3(2006:3-2013:4) k3(2000:1-

2006:2) 

    Zs-statistic 

Gold -0.025 [0.01] -0.038 [0.02] -0.102[0.01] [0.01] 

Silver -0.023 [0.01] -0.049 [0.00] -0.101[0.00] [0.01] 

Platinum -0.032 [0.01] -0.043 [0.01] -0.077[0.01] [0.01] 

Oil  -0.036 [0.01] -0.053 [0.00] -0.078[0.00] [0.01] 

Natural gas -0.019 [0.02] -0.051 [0.00] -0.095[0.01] [0.01] 

Copper -0.042 [0.01] -0.080 [0.00] -0.113[0.00] [0.02] 

Aluminim -0.053 [0.02] -0.070 [0.01] -0.109[0.00] [0.03] 

Nickel -0.068 [0.00] -0.069 [0.00] -0.103[0.00] [0.01] 

Sugar -0.032[0.01] -0.071[0.01] -0.096[0.01] [0.03] 

Corn -0.059[0.01] -0.083[0.00] -0.109[0.00] [0.01] 

Wheat -0.042[0.02] -0.051[0.01] -0.081[0.00] [0.00] 

Oats -0.056[0.01] -0.081[0.00] -0.114[0.00] [0.03] 

Cocoa -0.049[0.02] -0.083[0.00] -0.116[0.01] [0.01] 

Cotton -0.042[0.02] -0.074[0.00] -0.107[0.01] [0.02] 

Coffee -0.045[0.01] -0.082[0.00] -0.112[0.00] [0.01] 
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Sensitivity: Internal 

2-month     

Commodity k3(1990:1-1999:4) k3(2006:3-2013:4) k3(2000:1-

2006:2) 

    Zs-statistic 

Gold -0.023 [0.00] -0.032 [0.00] -0.085[0.00] [0.01] 

Silver -0.022 [0.00] -0.046 [0.00] -0.079[0.01] [0.02] 

Platinum -0.027 [0.03] -0.038 [0.01] -0.072[0.00] [0.02] 

Oil  -0.034 [0.01] -0.045 [0.01] -0.070[0.00] [0.01] 

Natural gas -0.015 [0.03] -0.044 [0.02] -0.080[0.00] [0.01] 

Copper -0.036 [0.01] -0.073 [0.00] -0.092[0.01] [0.02] 

Aluminim -0.045 [0.01] -0.061 [0.00] -0.088[0.01] [0.03] 

Nickel -0.061 [0.00] -0.053 [0.01] -0.084[0.02] [0.01] 

Sugar -0.026[0.01] -0.065[0.00] -0.075[0.01] [0.03] 

Corn -0.051[0.00] -0.072[0.00] -0.086[0.02] [0.02] 

Wheat -0.035[0.01] -0.042[0.01] -0.069[0.01] [0.01] 

Oats -0.045[0.01] -0.064[0.00] -0.101[0.00] [0.02] 

Cocoa -0.041[0.01] -0.072[0.00] -0.097[0.01] [0.01] 

Cotton -0.036[0.01] -0.066[0.00] -0.085[0.01] [0.01] 

Coffee -0.042[0.01] -0.075[0.00] -0.092[0.01] [0.01] 

3-month     

Commodity k3(1990:1-1999:4) k3(2006:3-2013:4) k3(2000:1-

2006:2) 

     Zs-statistic 

Gold -0.020 [0.01] -0.031 [0.01] -0.078[0.00] [0.03] 

Silver -0.017 [0.02] -0.043 [0.00] -0.080[0.00] [0.02] 

Platinum -0.027 [0.01] -0.036 [0.01] -0.077[0.00] [0.03] 

Oil  -0.031 [0.01] -0.045 [0.00] -0.072[0.00] [0.02] 

Natural gas -0.016 [0.01] -0.043 [0.01] -0.092[0.01] [0.02] 
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Sensitivity: Internal 

Copper -0.035 [0.01] -0.074 [0.01] -0.090[0.00] [0.02] 

Aluminim -0.043 [0.00] -0.064 [0.00] -0.093[0.01] [0.02] 

Nickel -0.055 [0.00] -0.060 [0.00] -0.090[0.00] [0.02] 

Sugar -0.024[0.01] -0.058[0.01] -0.081[0.01] [0.03] 

Corn -0.052[0.00] -0.077[0.00] -0.083[0.01] [0.03] 

Wheat -0.035[0.01] -0.044[0.01] -0.074[0.01] [0.03] 

Oats -0.051[0.00] -0.064[0.00] -0.103[0.00] [0.05] 

Cocoa -0.046[0.00] -0.072[0.00] -0.105[0.00] [0.02] 

Cotton -0.035[0.01] -0.070[0.00] -0.102[0.00] [0.02] 

Coffee -0.042[0.00] -0.075[0.00] -0.093[0.01] [0.03] 

___________________________________________________________________________________ 

Notes: Estimations were obtained through the three stage least squares (3SLS) methodological approach. 
The endogenous variables estimates are built on the maximum–likelihood estimator (MLE), while it 
generates heteroscedasticity consistent standard errors. The Zs statistic tests the null hypothesis that the 
coefficients k1 and k3 are equal across maturities for the same commodity. Figures in brackets denote p-
values based on bootstrap standard errors coming from 1000 bootstrap replications. Here, the Zs statistic 
tests the null hypothesis that the coefficients k1 and k3 are equal across monetary policy eras for the same 
commodity.  
Source: Data come from the Thomson Reuters database. 
 

 

 

 

 

 

 


