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ABSTRACT 

Inspiratory Muscle Training (IMT) whilst adopting body positions that mimic exercise 

(functional IMT; IMTF) improves running performance above traditional IMT methods in 

unloaded exercise. We investigated the effect of IMTF during load carriage tasks. Seventeen 

males completed 60 min walking at 6.5 km·h-1 followed by a 2.4 km load carriage time-trial 

(LCTT) whilst wearing a 25 kg backpack. Trials were completed at baseline; post 4 weeks IMT 

(consisting of 30 breaths twice daily at 50% of maximum inspiratory pressure) and again 

following either 4 weeks IMTF (comprising four inspiratory loaded core exercises) or 

maintenance IMT (IMTCON). Baseline LCTT was 15.93 ± 2.30 min and was reduced to 14.73 ± 

2.40 min (mean reduction 1.19 ± 0.83 min, P<0.01) after IMT. Following phase two, LCTT 

increased in IMTF only (13.59 ± 2.33 min, P<0.05) and was unchanged in post-IMTCON. 

Performance was increased following IMTF, providing an additional ergogenic effect beyond 

IMT alone. 

Practitioner Summary 

We confirmed the ergogenic benefit of Inspiratory Muscle Training (IMT) upon load carriage 

performance. Furthermore, we demonstrate that functional IMT methods provide a greater 

performance benefit during exercise with thoracic loads.  
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INTRODUCTION 

Carrying heavy loads in a military-style backpack (25 kg) presents a unique challenge 

to the respiratory system via impeded ventilatory mechanics (Dominelli, Sheel, and Foster 

2012). The placement of an external load in a backpack system that is worn upon the thorax 

imposes the lowest metabolic cost when compared with alternative load carriage methods such 

as double packs, satchels and hip belts (Knapik et al. 2012). The position on the thorax 

surrounds the respiratory pump, prompting a volume limiting action that inhibits ventilation 

(Shei et al. 2017). Sustained work in these conditions leads to the onset of inspiratory muscle 

fatigue and impaired load carriage performance, relative to an identical unloaded trial (Faghy 

and Brown 2014a). Accordingly, specific inspiratory muscle warm-up and training methods 

have been applied to unloaded (rowing and swimming) and load carriage tasks to attenuate the 

magnitude of inspiratory muscle fatigue and improve performance (Volianitis et al. 2001; 

Lomax, Grant, and Corbett 2011). However, inspiratory muscle warm-ups whereby the 

individual performs 2 x 30 sub-maximal (40% maximal inspiratory muscle pressure; PImax) 

inspiratory efforts prior to exercise in addition to a controlled whole body active warm-up was 

ineffective in eliciting an improvement in performance on a 2.4 km loaded time trial, despite 

transient increases in PImax, which is contradictory of unloaded performance tasks (Faghy and 

Brown 2017). However, six weeks of inspiratory muscle training (IMT), comprising 30 

inspiratory efforts completed twice daily (50% PImax), increased baseline PImax and provided an 

ergogenic effect when exercising with a 25kg load compared with a double-blind placebo 

control (Faghy and Brown 2016). A finding that was recently confirmed by others (Shei et al. 

2018), albeit with a lower load (10 kg). Despite the ergogenic effect, IMT has, to date, failed to 

attenuate inspiratory muscle fatigue, defined as a pre to post reduction in maximum inspiratory 

mouth pressure. Therefore, it is possible that the optimal ergogenic effect of IMT was not 

achieved. This could be related to the specificity of the training mode, which may fail to target 
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the length-tension characteristics of this muscle group during load carriage exercise tasks 

(Brown and McConnell 2012). This is an important consideration for exercise with load 

carriage as respiratory muscle recruitment is greater and length-tension relationships are 

different when thoracic loads are carried due to the imposed thoracic restriction and the need to 

provide augmented spinal stability due to excessive anterior trunk displacement and 

lumbosacral forces (Goh, Thambyah, and Bose 1998; Heller, Challis, and Sharkey 2009; 

Hodges, Heijnen, and Gandevia 2001). In addition, the presence of the load compromises 

respiratory muscle mechanics and accelerates respiratory muscle fatigue which has been 

suggested to lead to the development of the respiratory muscle metaboreflex, a sympathetically-

mediated reduction in limb blood flow that seeks to preserve diaphragmatic function (Harms et 

al. 1997), although this has yet to be determined with load carriage exercise. The unique 

challenge posed by load carriage activities alters respiratory muscle mechanics, which may 

mean that the previous IMT interventions may not load the respiratory muscles in a way that 

mirrors the demands of load carriage exercise. 

Functional inspiratory muscle training (IMTF), defined as performing IMT when 

adopting the body positions and movements that mimic the criterion performance, has 

demonstrated an ergogenic effect above that of traditional IMT for running exercise (Tong, 

McConnell, et al. 2014). This form of training provides a dual stimulus to both the ventilatory 

and core muscles which contribute to respiration and the control of posture during exercise 

tasks (Boussana et al. 2003; Tong and Fu 2006). Consequently, IMTF may have a greater effect, 

relative to traditional IMT methods and improve load carriage performance by specifically 

targeting the dual role of the respiratory muscles (i.e. sustaining ventilation and spinal stability). 

Accordingly, the aims of this study were to i) confirm the ergogenic effect of traditional IMT 

upon load carriage time trial performance and ii) investigate the ergogenic effect of IMTF 
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compared to traditional IMT. It was hypothesised that IMTF would attenuate respiratory muscle 

fatigue and improve performance above that of traditional IMT.  
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Methods 

PARTICIPANTS 

Following ethics approval from the host university, 17 non-smoking healthy males with 

previous experience of load carriage through regular recreational load carriage activities were 

recruited (Table 1). There were two experimental phases in this study (see Figure 1 below). 

Participants were pooled for phase 1 (4 wks. IMT) and then randomly split into two groups 

(matched for PImax) for phase 2 of the study (4 wks. IMTF or 4 wks. maintenance IMT hereon 

referred to as IMTCON). With the exception of body mass and core endurance in IMTCON there 

were no significant differences in physical characteristics between groups for phase 2 (see Table 

1). Initially 20 participants were recruited to the study; however, three withdrew throughout the 

process for personal reasons.  

** TABLE 1 AROUND HERE ** 

** FIGURE 1 AROUND HERE ** 

PRELIMINARY ASSESSMENT    

Prior to experimental trials, participants completed an incremental exercise test on a 

motorised treadmill (Desmo, Woodway, Germany) to determine V̇O2 peak, defined as the 

highest 30 s V̇O2 recorded during the test. Following a 5 min warm-up at 8 km·h-1 and 1% 

gradient, the gradient was subsequently increased to 4% and the speed increased by 1 km·h-1 at 

three-minute intervals until volitional exhaustion. Online breath-by-breath gas analysis (Cortex 

Biophysik, Metalyser II, Leipzig, Germany) was used to determine V̇O2, defined as the rate of 

oxygen consumption and subsequently V̇O2 peak. During the second preliminary trial, 

participants were fitted with a 25 kg military style backpack (Web Tex, 107, Bedford, UK). 

Measurements of all fastening straps were recorded to the nearest mm and replicated during 
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subsequent experimental trials. The mass of the load was comprised of sandbags that were 

evenly distributed within the central compartment of the backpack and worn in accordance with 

the manufacturer’s guidelines. After completing a sport-specific endurance plank test (SEPT, 

detailed below), participants completed a familiarisation protocol comprising of two separate 

elements. Firstly, 20 min constant load treadmill marching at 0% gradient and 6.5km·h-1, 15 

min seated recovery and secondly a self-paced 2.4 km time-trial. During the final preliminary 

trial, participants were familiarised with the experimental trial excluding the measurements of 

all dependent variables (see below for full details). This approach has been shown to increase 

the learning effect and maximise between session reliability of dependent variables and load 

carriage performance (Faghy and Brown 2014b).   

EXPERIMENTAL TRIALS  

Experimental trials were completed on three occasions including at ‘baseline’ prior to 

phase one, post-phase one and post-phase two; the post-phase one trial was used as the reference 

trial for any post-phase two changes in dependent variables. Due to the length of time between 

experimental trials in phase one and two (i.e., 4 wks.), participants repeated the familiarisation 

trial one wk. prior to the post-phase one and post-phase two experimental trials. As shown in 

Figure 1 and in line with previous work from our laboratory (Faghy and Brown 2014a; Faghy 

and Brown 2016), the experimental trial comprised 60 min exercise at 0% gradient and 6.5 

km·h-1 (hereon referred to as the load carriage trial: LC), which is consistent with the British 

Army Infantry Basic Combat Fitness Test where soldiers carry a 25 kg load at 15 min∙mile-1 

pace (6.4 km.h-1; Rayson, Holliman, and Belyavin 2000).  Following 15 mins of seated recovery 

participants completed a self-paced 2.4 km time-trial (hereon referred to as LCTT), a test used 

to determine the physical and physiological responses to acute changes in British Army infantry 

training programs (P. E. H. Brown et al. 2007; P. E. H. Brown et al. 2010). Throughout LCTT 

the speed of the treadmill was manually adjusted by the participant in order to complete the 
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distance in the quickest time possible; the time elapsed was blinded from participants. We have 

previously demonstrated that this protocol provides a reliable tool for assessing load carriage 

performance and physiological parameters before and after IMT (Faghy and Brown 2014b; 

Faghy and Brown 2016).  

Participants completed the sport-specific endurance plank test (SEPT) prior to the 

experimental trial, which was conducted without the external load. The SEPT has been shown 

to be a valid and reliable assessment tool of core endurance described previously by Tong, Wu 

& Nie  (2014). Briefly, participants maintained a continuous prone bridge position with 

maximum effort and correct form, contact points with the ground where hands/feet only.  There 

was no rest between each transition: (1) hold the prone bridge position for 60 s, (2) lift the right 

arm off the ground and hold for 15 s, (3) return the right arm to the ground and lift the left arm 

for 15 s, (4) return the left arm to the ground and lift the right leg for 15 s, (5) return the right 

leg to the ground and lift the left leg for 15 s; (6) lift both the left leg and right arm from the 

ground and hold for 15 s, (7) return the left leg and right arm to the ground, and lift both the 

right leg and left arm off the ground for15 s; (8) return to the prone bridge position for 30 s. 

Each stage was repeated until the maintenance of the prone bridge failed. Participants were 

given two verbal warnings to maintain the prone bridge position and the time to the limit of 

tolerance that provided an index of global core muscle function was recorded. Following the 

completion of the SEPT, participants were given 10 minutes of seated recovery prior to 

completing preload carriage measurements.  

Respiratory muscle strength and pulmonary function were measured whilst standing 

still and wearing the backpack on the treadmill at rest and immediately after the cessation of 

exercise. Measures of maximal inspiratory (PImax) and expiratory (PEmax) mouth pressure was 

assessed using a hand-held mouth pressure meter (Micro R.P.M.; Micro Medical, 

Buckinghamshire, UK) and baseline pulmonary function was assessed using a handheld 
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spirometer (MicroPlus; Micro Medical). The results were interpreted in accordance with 

published guidelines (American Thoracic Society and European Respiratory Society 2002). 

Heart rate (Polar, Kempele, Finland) was measured continuously throughout load carriage and 

averaged over the final 30 s of exercise. Capillary blood sampling was conducted pre and post 

LC and LCTT. Samples were taken from the distal phalanx of the index finger and collected in 

20 μl end-to-end capillary tubes which were placed into a 1 μl cuvette with a haemolysing 

solution to assess blood lactate ([Lac-]B; Biosen, EKF Diagnostics, Barleben, Denmark). 

Perceptual responses were measured using visual analogue scales at immediately pre-exercise, 

immediately post LC and post LCTT and included discrete measures of whole-body perceived 

effort (6-20; Borg 1982), leg discomfort and breathing discomfort (measured on a scale of 0-

10; Faghy and Brown 2014a; Verges et al. 2007). 

TRAINING INTERVENTIONS: IMT – PHASE ONE 

 During phase one of the study, all participants were provided with an IMT device 

(POWERbreathe® classic series, HaB International, Warwickshire, UK) and completed a 4-wk 

IMT intervention consisting of thirty dynamic inspiratory efforts, at home, twice daily, against 

a pressure-threshold load of 50% PImax. This method has been shown to increase diaphragm and 

chest wall muscle strength (Brown, Johnson, and Sharpe 2014; HajGhanbari et al. 2013) and 

improve LCTT performance (Faghy and Brown 2016); for a systematic review see Illi, Held, 

Frank, & Spengler, 2012). PImax was assessed bi-weekly throughout the interventions and used 

to re-calibrate the relative intensity of the training device (Faghy and Brown 2016). 

TRAINING INTERVENTIONS: FUNCTIONAL IMT (IMTF) – PHASE TWO 

The IMTF group performed functional IMT sessions three times per wk. for 4 wks. Each 

session comprised four inspiratory loaded core muscle training exercises repeated twice per 

session. One session per wk. was conducted in the laboratory to monitor progress and technique 
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and the remaining two were conducted either at home or in the laboratory. Whole body 

exercises performed during IMTF were specific to running and included raised alternating 

crunches, swiss ball crunches, prone bridge and finally dynamic bird dog, all of which have 

been used and described previously (McConnell, 2011; Tong and McConnell, et al., 2014). 

Participants were required to inhale forcefully through the device as they initiated the required 

body actions from the starting position and exhaled slowly when returning to the starting 

position. Session volume increased weekly from 12 repetitions per exercise in wk. 1 to 18 

breaths in wk. 4 (an increase of 2 additional breaths per wk.) in line with recommendations 

from previous work (McConnell 2011; Tong, McConnell, et al. 2014). The device was set at 

50% of PImax and adjusted weekly throughout the intervention, to calibrate the relative intensity 

of the training device (Johnson, Sharpe, and Brown 2007). 

TRAINING INTERVENTIONS: TRADITIONAL IMT (IMTCON) – PHASE TWO 

The control group (IMTCON), completed a maintenance IMT intervention which 

consisted of 30 inspiratory efforts at 50% PImax, twice daily 3 times per wk. for 4 wks. which 

has been shown previously to preserve IMT-induced improvements in PImax (Romer and 

McConnell 2004). PImax was assessed bi-weekly throughout the interventions and used to re-

calibrate the relative intensity of the training device (Faghy and Brown 2016). In all aspects of 

the training intervention, adherence was monitored by the completion of a training diary. 

STATISTICAL ANALYSIS 

 Normal distribution was confirmed using a Kolmogorov–Smirnov test. Within-group 

differences and interaction effects for dependent variables were assessed using a 3 (trial time 

point: pre-exercise, post-LC, post-LCTT) x 3 (study time point: baseline vs. post phase 1 vs. post 

phase 2) ANOVA with Tukey’s post hoc analysis. All analysis was conducted using SPSS 

version 24 for Windows (Chicago, IL, USA). Between-group differences (IMTF vs. IMTCON) 
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were assessed using independent samples T-Tests. A-priori α was set at 0.05 and all results are 

presented as mean ± SD. Effect sizes were calculated using Cohen’s d (d=(𝒙̅1–𝒙̅2)/pooled σ).   
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RESULTS 

TIME TRIAL PERFORMANCE 

Baseline LCTT was 15.93 ± 2.30 min and mean speed was 9.5 ± 1.5 km·h-1
. Post-phase 

1, LCTT improved by 1.19 ± 0.83 min (mean time 14.73 ± 2.40 min; P<0.01, effect size: d=0.56, 

Figure 2) and mean speed increased to 10.2 ± 1.47 km·h-1 (absolute increase 0.7 km·h-1, 7.5 ± 

6.6%, P<0.05, effect size: d=0.43). Post-phase 1 when the groups were randomly split, there 

was no difference in LCTT time prior to the intervention (IMTF, 14.11 ± 2.14 min and IMTCON 

14.75 ± 1.74 min; P>0.05). Relative to post-phase 1, Post-phase 2 LCTT improved in IMTF only 

(13.59 ± 2.33 min, absolute change 0.58 ± 0.65 min, 4.2 ± 4.4%, P<0.05, effect size: d=0.24) 

and was unchanged in the IMTCON group (14.86 ± 2.83 min, P>0.05, effect size: d=0.12). There 

was a between-group difference between IMTF and IMTCON following phase two (absolute 

difference of 0.73 ± 0.85 mins, 9.3±3.6%, effect size d= 0.48, P<0.05, Figure 2). Post-phase 

two mean speed increased in IMTF only (10.9 ± 1.9 km·h-1, absolute increase: 0.5 km·h-1, 4.5 ± 

3.7%, P<0.05, effect size: d=0.27). 

**FIGURE 2 HERE** 

RESPIRATORY MUSCLE PRESSURES AND PULMONARY FUNCTION 

Training compliance was above the set criteria (>85%) during phase 1 (94 ± 7%) and in 

both groups during phase 2 (IMTF 94 ± 5% and IMTCON 94 ± 9%). Resting PImax was reduced 

post LC (absolute reduction 16 ± 23 cmH2O, 11 ± 14% P<0.05), with no further reduction post 

LCTT (P>0.05). Post-phase 1 (i.e., after 4 wk. IMT) PImax was greater at rest (15 ± 5%,), post-

LC (19 ± 13 %) and post-LCTT (11 ± 12%, P<0.05). When the groups were split (post phase 1), 

there were no between-group differences in PImax (P>0.05). Within group, PImax was greater at 

each time point in IMTF (P<0.05) and similar in IMTCON (P>0.05). Baseline PEmax was 

unchanged post-LC and post LCTT during phase 1 and was not different between groups during 
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phase 2 (Tables 2 and 3 P>0. 05).  Pulmonary function values were not different between 

groups or at any time point (P>0.05). There were also no within trial changes in any 

experimental trial (P>0.05, see Tables 2-4). 

SPORT-SPECIFIC ENDURANCE PLANK TEST (SEPT) 

Baseline SEPT was 4.13 ± 1.24 min and post-phase 1 improved to 5.06 ± 1.65 min 

(absolute increase 0.58 ± 1.36 min P<0.05). Post-phase 1 there was a between-group difference 

(IMTF 4.61 ± 1.45 min vs IMTCON 5.73 ± 1.75 min, P<0.05). Post-phase 2, SEPT increased in 

IMTF only (5.13 ± 1.86 min, absolute increase 0.94 ± 1.74 min P<0.05) and was unchanged in 

IMTCON (5.44 ± 1.70, P>0.05; see Table 2).  

PHYSIOLOGICAL AND PERCEPTUAL RESPONSES 

 Physiological and perceptual responses are shown in Tables 3 and 4. Responses in all 

variables were identical in all trials (P>0.05) and there were no within or between-group 

differences in perceptual responses at any time point. 

 

** TABLES 2,3 AND 4 AROUND HERE**
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DISCUSSION 

The key findings of this study were fourfold. First, 4 wks. IMT improved LCTT 

performance confirming the findings of previous work from our group. Second, IMTF further 

improved LCTT performance. Third, maintenance IMTCON maintained LCTT performance with 

over 50% reduction in IMT volume and finally, neither IMT, IMTF or IMTCON attenuated 

respiratory muscle fatigue following load carriage exercise. 

TIME-TRIAL PERFORMANCE 

 Time-trial performance improved by 7.5% following 4 wks. IMT, which is similar to 

our previous work (Faghy and Brown 2016). It is also similar to recent work by Shei et al (2018) 

who adopted a fixed paced, sub-maximal trial to the limit of tolerance with a 10kg load and 

observed a 9% improvement in time to exhaustion. To date, these studies provide the only 

studies demonstrating a change in load carriage performance following IMT. However, the 

current study extends previous knowledge demonstrating that performance can be further 

enhanced after a period of IMTF by approximately 4%. To date, this mode of training has only 

been used with unloaded exercise demonstrating improvements in endurance running 

performance (Tong, McConnell, et al. 2014). In their study, recreational runners completed 4-

wk IMT before completing either interval training plus IMTF or just interval training. Following 

6 wks. of concurrent interval training and IMTF, performance on a 60 min treadmill test was 

improved in both groups, but to a greater extent in the IMTF group (3.1%) compared with the 

control (1.5%). Improvements in IMTF are attributed to increased respiratory muscle strength, 

which has a role in contributing to core stability, as this muscle group are essential for running 

performance (Tong, McConnell, et al. 2014). It is possible that the greater improvement in 

performance observed in the present study was due to a greater activation/adaptation of 

respiratory muscles during load carriage exercise, thus reducing the work of breathing and 
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thereby releasing, in part, the primary respiratory muscle contribution and energy expenditure 

dedicated to core stability. It is possible that the post IMT response attenuated the respiratory 

muscle metaboreflex, a sympathetically-mediated reflex reduction in limb blood flow 

presumably in favour of the fatiguing respiratory muscles (Harms 2007). However, during load 

carriage tasks respiratory muscle fatigue occurs at a lower relative exercise intensity (~59% 

V̇O2 peak) compared to previous literature and it is therefore likely that energy requirements 

would be met via increased oxygen extraction as opposed to a re-distribution of limb blood 

flow; however, future study is warranted in a load carriage setting. 

Another important finding of this work is that the ergogenic effect of IMT is preserved 

following a period of maintenance IMT where the training frequency is reduced by 57%. 

Previously, the protocol adopted in this study has demonstrated preserved inspiratory muscle 

strength following 9 and 18 wks. of maintenance IMT after a period of 9 wks. traditional IMT 

although performance was not measured in this work (Romer and McConnell 2003). Reduced 

training volume following periods of intense overload has long been linked with sustained 

performance outcomes (Spilsbury et al. 2015) and this study demonstrates for the first time that 

the ergogenic effect of IMT can also be maintained after initial conditioning. Whether this 

would be preserved after a maintenance phase or even after cessation of IMT remains to be 

determined especially since changes in PImax and performance are not correlated (Johnson et 

al., 2007) and the increase in PImax afforded by IMT is reduced following 9 wks. of detraining 

(Romer and McConnell 2003). 

RESPIRATORY MUSCLE FUNCTION 

  PImax increased by 14% following phase one which is lower than previously observed 

from our group (31%, Faghy and Brown 2016), however this used a 6 wk. training intervention. 

Previous work has demonstrated the efficacy of a 4 wk. training intervention as Brown, 
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Johnson, and Sharpe (2014) demonstrated a 19% increase in PImax using an identical approach 

to the one used here. A further consideration is the importance of baseline levels of PImax when 

considering the response to an IMT intervention. Brown et al. (2014) demonstrated that higher 

baseline PImax limits IMT-mediated improvements, as the opportunity for physiological 

adaptation is reduced. Notwithstanding this, the four wk. period was chosen to replicate the 

methodology of Tong et al. (2014) who observed a 21% increase in inspiratory muscle strength 

post 4 wk. IMT. PImax was unchanged following both IMTF and IMTCON interventions when 

compared to post IMT values. However, PImax was unchanged which is different from Tong et 

al. (2014) who observed an improvement of 3% following IMTF. This may be due to a reduction 

in the training volume and a constant inspiratory load may be responsible for the plateau in 

PImax. Training intensity here was adjusted weekly to maintain relative training stimuli 

throughout IMTF and training volume increased weekly which may explain why PImax was 

unchanged post IMTF. 

Neither IMT nor IMTF attenuated the level of respiratory muscle fatigue observed throughout 

the study. We hypothesised that targeting the non-respiratory roles of the primary and accessory 

ventilatory muscles with the use of actions that challenge stability via deliberate core 

perturbations might protect against the volume limitation of the thorax during load carriage 

activities. However, this was ineffective despite the increased performance on the SEPT. This 

could be partly explained by the subjective measure of the assessment of PImax, which, despite 

extensive familiarisation, is a volitional measure. Additionally, this could also be due to the 

lung volumes targeted during IMT sessions; individual breaths are initiated from residual 

volume with participants seeking to maximise tidal volume during all efforts (McConnell 

2011). Therefore, the lung volumes during IMT may not reflect the reduced operational lung 

volumes that are seen when the load is being worn, therefore targeting an inappropriate 

component of the length-tension curve of the respiratory muscles. The exercises undertaken 
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during IMTF were selected due to their specificity for running (Tong et al, 2012), and also 

because of the possibility that they may reduce operational lung volumes. Although reductions 

in end-inspiratory lung volume alter the length-tension relationship of the respiratory 

musculature and mimic the imposed volume limitation on the thoracic cavity during load 

carriage activities (Brown & McConnell, 2012), more work is needed to fully understand this. 

The exercises primarily reduced end-expiratory lung volume rather than end-inspiratory lung 

volume, which is constrained by the presence of a thoracic load. Consequently, the training 

stimuli may be targeting and strengthening the inspiratory muscles throughout an operational 

range, which may not be utilised during exercise with load carriage. Importantly, previous work 

has identified that fatigue of the expiratory muscles is not an influencing factor in determining 

operational lung volumes despite reduced end-expiratory time and increased peak gastric and 

oesophageal pressures and it may be more appropriate to assess influences that inhibit flow 

(Taylor, How, and Romer 2013). In relation to this study, IMTF sessions were designed to 

challenge both breathing and core stability concurrently but across an entire range of movement 

where limited flow would only occur at the termination of each exercise. Therefore, it might be 

possible the selected exercises adopted might not adequately account for the shift in the 

boundaries of their length-tension curve (Romer & McConnell, 2004) as it is also noted for 

example that the parasternal intercostals optimal length-tension curve is at a greater lung 

volume (Verges, Notter, and Spengler 2006). The resulting adaption could, therefore, be 

insufficient in deterring respiratory muscle fatigue. Future research should seek to conduct IMT 

and IMTF under conditions similar to those imposed by the presence of the load essentially by 

wearing a heavy backpack throughout training sessions. 

A further consideration is the activation of the diaphragm during IMT sessions. Recent 

evidence suggests that the use of targeted IMT, achieved via audible cues during IMT sessions 

increases transdiaphragmatic pressure (Pdi) and reduces the electromyographic activity of the 
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accessory muscles (Ramsook et al. 2016). These findings are developed from previous work 

demonstrating increased surface electromyography amplitude of the diaphragm and intercostals 

following two sets of 30 inspiratory efforts at a load equivalent to 40% of an individual’s PImax 

(Hawkes, Nowicky, and McConnell 2007). To date, the work here has only been conducted 

over the course of a single IMT session and the benefits over the course of a chronic intervention 

(4-6 weeks) remains unknown. IMT has previously shown an increase in Pdi (Brown, Johnson, 

and Sharpe 2014) and it would be interesting to determine the extent to which exercise 

performance is affected, especially considering that during hard exercise the chest wall muscles 

and accessory muscle recruitment is elevated relative to the diaphragm (Johnson et al. 1993; 

Aliverti 2008) demonstrating a need to target both the obligatory and accessory respiratory 

muscles. Although the use of targeted IMT was not considered in the current study, it could 

have important considerations for IMT interventions and its combination with an IMTF 

intervention warrants further explorations.  

CORE MUSCLE FUNCTION 

Performance on the SEPT was improved following phase one and again following phase 

2 in IMTF and was unchanged in IMTCON. Improved performance is attributed to increased 

PImax, core endurance and the coordination between core muscle activation and breathing 

activities which are targeted during IMTF (Tong, McConnell, et al. 2014). These activities 

require the utilisation of similar muscle groups which are tasked with both thoracic excursions 

to assist with ventilation and trunk stabilisation during exercise (Hodges et al. 2005; Janssens 

et al. 2010; Tong and Fu 2006). Importantly, reduced stabilisation of the torso and fatigue of 

the abdominal complex has been identified as a limiting factor to both running and cycling 

performance (McDaniel, Subudhi, and Martin 2005; Tong, Wu, and Nie 2014). Fatigue of the 

muscles comprising the abdominal complex prior to endurance running exercise is associated 
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with a 31% and 39% reduction in both SEPT and time at 85% V̇O2 peak, respectively (Tong, 

Wu, et al. 2014). Mechanistically, this could be the result of the diaphragm’s dual role in 

powering ventilation and providing stability of the trunk during exercise tasks due to the 

insertion of the diaphragm on the thoracic (T12) and lumbar (L1 and L2) regions of the spine 

(Hodges et al. 2005). The authors acknowledge a between-group difference in core muscle 

endurance once the groups were split (post phase one) however this did not translate to a 

difference in performance. We suggest the exercises conducted as part IMTF is not solely related 

to increased performance however; this may be caused by the altered interaction of the 

diaphragm and the muscles that comprise the abdominal cavity. Further investigation is 

required to determine the contribution to both ventilatory tasks and stabilisation of the 

abdominal cavity during load carriage tasks and how this affects performance.  

CONCLUSION  

We have previously demonstrated that inspiratory muscle training techniques improve 

exercise performance with thoracic load carriage. Here the improvement in exercise 

performance is enhanced by incorporating IMTF, providing an additional ergogenic effect to 

2.4 km time-trial performance that is pre-loaded with 60 min sub-maximal exercise. We suggest 

that the performance enhancement is the result of improved coordination between the core and 

respiratory muscle groups that are tasked heavily via load carriage and IMTF, allowing the 

respiratory muscles to increase their non-respiratory contribution.   
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Figure Captions:  

Figure 1- Schematic detailing each phase of the study and the experimental load carriage (LC) 

protocol. Upward facing arrows depict the time point in which respiratory muscle pressure and 

lung volumes were assessed. The downward facing arrows depict the time point when 

physiological and perceptual responses were assessed. Inspiratory muscle training (IMT), 

Maintenance IMT (IMTcon), functional Inspiratory Muscle Training (IMTF).  

 

Figure 2 - Absolute time for LCTT performance, values are presented as mean ± SD. Solid lines 

refer to pooled data, open circle markers refer to IMTCon and open square markers refer to IMTF. 

A different from pre-intervention: B, different to post 4 wks. IMT in IMTF (P<0.05). 

 

 

 


