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Abstract 

This thesis investigates the issue of the application of cognitive analysis techniques 

for Western art music to folk dance melodies for violin, with a view to enabling the 

development of a computer tool that can aid in the identification and exploration of 

the stylistic characteristics of the origin of the melodies. The following questions are 

addressed: Can cognitive music analysis techniques for Western art music be applied 

successfully to folk dance melodies for violin? Is it possible to define an integrative 

analysis approach in this context drawing from existing approaches? To what extent 

can decision tree induction aid in the classification and interpretation of the analysis 

results? How might the musical data for analysis be represented on computer? What is 

the best approach to program development for an automated music analysis tool in 

this context? 

A series of experiments using samples of American and Irish melodies are presented 

that verify the use, in this context, of the cognitive analysis approaches of Lerdahl and 

lackendoff and Narmour. Statistical approaches have also been investigated, since 

research has shown that such methods can reflect the way in which listeners mentally 

organise the music that they hear. To enable the analysis to be carried out in an 

algorithmic way, an experiment using human subjects to further the work of Lerdahl 

and lackendoff was required. An integrative analysis approach has been identified 

that can be carried out in an algorithmic way therefore lending itself to future 

implementation on computer. 

In order to interpret the results of the analysis process, a decision tree induction tool 

(SeeS) based on Quinlan's CS algorithm was employed. SeeS was able to classify the 

melodies based on the attributes derived from the analysis. The decision trees and 

rules derived by the tool enabled the identification of features of the melodies that 

pertain to their origins, thus enabling a deeper understanding of the stylistic variations 

of the melodies. 

A further experiment indicated that the cognitive analysis approaches and subsequent 

classification with SeeS compares favourably with the classification abilities of 

human subjects after a small amount of training in the musical context. 
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Further inductive learning techniques (decision tree induction using Friedman's 

CART, and neural networks) have been applied to the problem of classification and

interpretation of the analysis results, and although the neural network classified the 

musical samples with greater accuracy (illustrated using ROC analysis), decision tree 

induction has been shown to be a more appropriate method in this context. 

Approaches to music representation and subsequent program development have been 

investigated, reSUlting in a proposal for future computer implementation of a music 

analysis tool using the Humdrum toolkit as a means of representation, and a 

declarative language for the program development. 
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CHAPTER 1 - Introduction 

1.1 Background 

This chapter introduces the PhD thesis, and also gives an account of the approach 

taken to the research. The aims and contributions to knowledge are identified in 

Sections 1.2 and 1.3, and the structure of the thesis is presented in Section 1.4. 

The work is about identifying and interpreting the difference in styles of music. This 

is a very broad area and so the focus has been on music of particular interest to the 

author - that of western violin (or fiddle) melodies, and in particular those from 

Ireland and America. It is an interesting area because it is not just about comparing 

two types of melodies from different origins, but it also enables us to discover 

something about how melodies develop and evol ve as the people who play them 

travel and migrate. There was considerable movement of people from Ireland to 

America particularly during the potato famines and as a result of this there are many 

communities descending from Irish immigrants in America. Settlements were made 

in various parts of America and the music of those groups of people lived on and is 

still played today. However there are noticeable changes to many of the melodies, in 

particular in the Southern regions of America where the African influence is greater; 

here many of the tunes have evolved in such a way that they now include such 

features as syncopation, different approaches to slurring, different contours in the 

musical surface and so on. As a fiddle player it is possible to notice these differences 

(sometimes unconsciously) and to incorporate them into ones own playing when 

aiming to sound more 'American' or more 'Irish', and of course a music theorist 

might well be able to give more specific and accurate interpretations of the 

differences and similarities. In order to study musical features of this nature fully, it 

would be beneficial to have a computer system to carry out the analysis and to aid in 

the understanding or interpretation of the different groupings of melodies according to 

their origins. This became the motivation for the study presented in this thesis. 

In order to develop such a system a number of areas need to be investigated. The first 

is to find or develop a suitable approach to music analysis. Music analysis is used 

extensively by musicologists and there are well tested existing techniques available 
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for this purpose. In general such techniques are developed for work with Western art 

music though there have been studies to investigate their effectiveness when applied 

to other types of music. Some of these studies have looked at oral folk music and 

some other areas such as jazz. However, none have attempted to combine analysis 

approaches and none have applied them to instrumental folk dance music. 

Other issues raised by a study of this nature are possible approaches to the 

interpretation of the analysis results, representation of the musical information on 

computer and approaches to program development. The following section therefore 

lists the aims of the study as means of addressing these issues. 

1.2 Aims 

• To evaluate the effectiveness of music analysis techniques for western art music, 

in particular those of Lerdahl & lackendoff (1983, 1996) and Narmour (1977, 

1990, 1992), when applied to the field of western folk dance melodies for violin. 

• To propose an integrated method for the analysis of folk dance melodies, drawing 

from existing key music analysis methods with a view to finding the key 

characteristics that describe such sets of melodies, hence highlighting any 

differences that accord to their cultural background. 

• To evaluate the suitability of inductive learning techniques as classifiers for the 

problem domain. 

• To propose a suitable representation scheme for the melodies for future 

automation of the analysis. 

• To propose an appropriate approach to program development with a view to 

automating the integrated approach to folk dance music analysiS. 
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1.3 Contribution to knowledge 

The novel elements proposed for this work are identified below: 

• An integrative application of existing music analysis techniques designed for 

Western art music in the context of folk dance music for violin. 

• Verification of the ability for human listeners to classify folk dance melodies 

to a similar level of accuracy as that resulting from the analysis and 

classification using existing music analysis techniques and decision tree 

induction software. 

• Further development of Lerdahl and lackendoffs order of preference for 

grouping preference rules when applied to folk dance melodies for violin. 

• Application of decision tree induction as an approach to classification and also 

as an appropriate method for interpretation of the analysis results in the 

context of folk dance melodies for violin. 

• An indication of how certain types of ornamentation might be represented 

using the CHARM framework for music representation, and a demonstration 

of how representations in the CHARM framework might be translated into 

Kern Code (part of the Humdrum syntax). 

1.4 Structure 

The work undertaken as part of this work is explorative in nature, and therefore the 

methodology has taken the form of a 'road map'. This means that in attempting to 

meet the aims of the project a flexible approach was taken enabling ideas to develop, 

and additional experiments to be undertaken that were not previously anticipated. 

Specific examples of this occurring are identified in the thesis. 

The following paragraphs describe the structure of the thesis and an overview diagram 

of the Chapters and how they relate to each other is provided in Fig 1.1. 
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Figure 1.1 An overview of the content of thesis, showing the relationships between 

the elements of the work 

Chapter 2 investigates existing analysis methods, and looks at their reported 

applications. The later sections of the Chapter focus on folk dance music and 

discusses in more detail how this has evolved, with particular reference to the dance 

melodies of Ireland and America. 

Chapter 3 describes preliminary experiments that were carried out in order to test the 

effectiveness of existing music analysis techniques on Irish and American dance 

melodies for violin. The experiments used two well tested methods of analysis, the 

Generative Theory of Tonal Music (GTTM) of Lerdahl and lackendoff and the 

Implication Realisation Model (IR model) of Narmour, and a more general statistical 

method. In all cases inductive learning software was used to aid in the interpretation 

of the results. The software was able to identify the distinguishing features that the 

music analysis made apparent. A further experiment involved human listeners. This 

was carried out in order to determine if the human listeners, after listening to a sample 
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of the melodies as training data, could classify a further sample as being either Irish or 

American (giving their reasons) with a similar level of accuracy to the formal music 

analysis and subsequent classification using inductive learning software. The 

preliminary experiment using GTIM were revisited on completion of the first 

experiment described in Chapter 4. 

Chapter 4 develops the work from Chapter 3, initially presenting an experiment that 

determines the order of preference of listeners where there are conflicts in the 

potential group boundaries. The text of Lerdahl and Jackendoff goes some of the way 

to providing the order of preference but is not complete. Only a small number of 

conflicts occurred that could not be resolved according to Lerdahl and lackendoffs 

text, but if the analysis is to be carried out in a fully algorithmic way then a method of 

handling such conflicts is required. Lerdahl and Jackendoff indicate that researchers 

interested in developing computer related tools might want to find ways of 

quantifying the rules in order resolve conflicts. They state that this is not their 

intention however and they therefore prefer to report adequate information concerning 

the order of preference for most situations, and to leave any further decisions relating 

to this to the judgement of the analyst. The experiment therefore furthers the work of 

Lerdahl and Jackendoff in this respect and is valid in the context of Western folk 

dance music for violin. On completion of this experiment, the preliminary work using 

GTTM analysis in Chapter 3 was revisited and the results revised in order to 

accommodate the new information about the order of preference. 

The next part of Chapter 4 reports further analyses according to Lerdahl and 

Jackendoff and to Narmour using larger samples of musical data. This part of the 

Chapter concludes by proposing an integrated approach to analysis in the context of 

folk dance melodies for violin based on the results of the experiments. 

In the preliminary experiments inductive learning software was used to aid the 

classification and subsequent interpretation of the results, but there are other methods 

available for tasks such as these. The concluding part of Chapter 4 explores the 

suitability of other approaches to this, in particular comparing a neural network 

approach with that of inductive learning. 
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Having detennined the integrative analysis approach, the next stage in the 

development of a computerised system is to decide how the music is to be 

represented. Representation is an important part of any computer system and it is 

important to use the most appropriate method for the subsequent processing. This 

point is supported by the following statement from Huron (1992, 10) ''The essential 

point is that in order to represent something, its properties must be interpreted 

according to some proposed utility". Chapter 5 examines the approaches to music 

representation on computer and concludes with a proposal for representing the 

musical data. The practical implementation of this system is not within the scope of 

this project, however Chapter 5 concludes with a discussion of approaches to program 

development and identifies the most appropriate method for the development of the 

analysis tool. 

Chapter 6 provides a general discussion of the findings of project and the approach 

taken, and Chapter 7 concludes and makes recommendations for further work. 
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CHAPTER 2 - Music Analysis 

2.1 Introduction 

In this chapter the historical development and the contemporary approaches and 

applications of music analysis are reviewed. The early sections give an overview of 

music analysis, beginning with a historical background that addresses the reasons why 

musicologists find this a useful process. Analysis has become more structured (as 

opposed to textual) as time has progressed, and there is added drive for developments 

of this nature now that the computer is proving to be a useful tool for a variety of 

musical projects. 

Musicologists have been carrying out music analysis for many years though the 

structured approaches only started to appear early in the twentieth century. Music 

analysis continues to be a fundamental part of music study; but why do musicologists 

do this, and what can the analysis of a piece of music tell them? There are many 

answers to these questions. For example, the analysis of a piece of music can give a 

greater insight into the ideas underlying a composer's work, it can also aid other 

composers in their search for new ideas or developments of their own, or it can aid the 

study of music ethnicity, and so on. Nicholas Cook (1987, 1) observes that music 

analysis is about " ... the practical process of examining pieces of music in order to 

discover, or decide how they work"; and Dunsby (1988, 4) that "the main aim of the 

analyst is, [to achieve] through study, the enhanced understanding and enjoyment of 

particular compositions". In a later work, Cook (1998) discusses the role of music as a 

means of cross-cultural communication, commenting that we listen to music of other 

cultures and subcultures to gain insight into them and not just to experience pleasing 

sounds. He concludes by observing: " .. Music has unique powers as an agent of 

ideology. We need to understand its workings, its charms, both to protect ourselves 

against them and, paradoxically, to enjoy them to the full" (Cook, 1998, 132). It could 

be argued that music analysis enables a greater understanding and therefore greater 

enjoyment of a piece of music. Listening to music can be a passive activity, for 

instance the music regularly heard in supermarkets or other public places is often 

received in a passive way. While attending a live musical concert or listening to some 

chosen music at home the listener is often more involved in the listening process, and 
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may be analysing what is heard to some extent in a personal way. Formal analysis 

techniques enable this to be taken further, by providing ways of finding out more 

about the music, in a rigorous way. Approaches to music analysis have primarily been 

devised for work with Western art music, and often rely on scored notation, though 

often the analysis recognises performance features such as phrasing, accentuation, etc. 

as well as note pitches and lengths. 

The following sections of this Chapter review the most important approaches to music 

analysis, focussing on those of Lerdahl and lackendoff (1983) and Narmour (1977, 

1990, 1992). This is followed by a discussion of applications of such analysis 

techniques to music other than Western art music. In order to do this though it is 

necessary to have a general discussion of the subject of folk music, in particular fiddle 

tunes of the type studied in this work. Section 2.6 therefore addresses the folk music 

genre, initially by looking at attempts to define the term and then by discussing the 

way that folk music has evolved and moved geographically as people migrate. The 

geographical movement of dance melodies for violin originating in Ireland are the 

focus here. Projects involving the analysis of folk music are discussed in some detail. 

Section 2.7 summarises the Chapter and outlines the proposal for some preliminary 

experiments, which are detailed in Chapter 3. 

2.2 Overview of approaches to music analysis 

Approaches to music analysis have developed substantially during the last century. 

This section gives a historical background to these developments, focusing on the 

more recent approaches. 

There are a number of ways of carrying out music analysis, and the main purpose of 

such methods has traditionally been the analysis of Western art music. Analysis has 

taken various forms; the work of Donald Tovey (1875-1940) for example, consisted 

of extensive written analyses of many classical works. Although his work was and 

still is important, its narrative style limits the ways in which it could be developed, 

and in particular it does not provide a transferable method of analysis that can be used 

on pieces of music other than those for which it is written. Tovey himself would not 
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see this as a limitation; his discussion on the integrity of music, Tovey (1941), seeks 

to highlight the differences between science and art, drawing particular attention to 

the ideas of intuition and aesthetics as elements of the artistic process that must be 

absent from that of science. Such a view might well be valid, and is no doubt held by 

a significant number of people, however, from the scientists' point of view, if art is 

beyond the scope of their domain of study, they would first have to prove it to be so 

before excluding it. 

Tovey wrote for the ordinary listener and concert goer, and in fact his work became 

very popular and was much more widely known. However his style of analysis is still 

viewed as limited, and although it aims to be exhaustive, it could be also described as 

incoherent in many ways, and unrecognisable as a particular theory. This is because it 

is made up of a series of essays describing pieces of music in Tovey's own words for 

potential listeners. Such an approach is not repeatable or testable and it doesn't 

provide a method with which new analysts could continue to work. 

Heinrich Schenker (1868-1935), probably one of the most influential theorists in the 

field of musicology, devised a method for music analysis that takes an approach 

similar to that of Chomsky in the study of language (1968). The extent of the 

similarities and the differences are discussed extensively in The Musical Mind 

(Sloboda, 1985), this section also addresses them briefly. 

Schenker's method was devised for the analysis of Western tonal music or more 

specifically Western art music, and it aims to consider the abilitieslknowledge of the 

experienced listener in its approach. Both Schenker and Chomsky are interested in the 

surface and deep structures of music and sentences respectively. Surface structure in 

linguistics is the sequence of words as it is spoken and in music would be the musical 

sequence of notes. Deep structure in linguistics refers to the underlying meaning of a 

sentence (which could be verbalised using many different surface structures). This is 

illustrated by Sloboda, (1985) with the sentences 'John phoned up Mary' and 'John 

phoned Mary up' which have the same meaning (i.e. deep structure) but different 

surface structure. Schenkerian analysis proposes that most pieces of music can be 

reduced to a deep structure, referred to as the Ursatz, and that there are in fact very 

few of these. It is in the lengthening of the Ursatz that the composer is able to express 
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elements of meaning and mood in a piece of music (rather than the deep structure in 

itself) and hence the analogy with linguistics breaks down here. The deep structure 

found by the reduction of a piece of music does not contain the meaning of the music 

whereas, as illustrated above, Chomsky's deep structures of sentences do contain the 

meaning, and the different surfaces illustrate the different ways that such meaning can 

be expressed. 

Linguists aim to produce a set of rules that generates all acceptable sentences of a 

language. Schenker did not derive a set of rules that enable only good or acceptable 

music to be generated from an Ursatz, and hence it can be said that his approach is 

analytical rather than generative. 

The term 'generative' does need some clarification however as we see it used with 

respect to music theories later in the text and this could be considered to conflict with 

the statement in the previous sentence. "A generative linguistic theory attempts to 

characterise what a human being knows when they know how to speak a language", 

Lerdahl and lackendoff (1983). A generative grammar doesn't provide an algorithm 

for the manufacture of sentences rather it is a means of describing some set in a 

formal way. The formal system of rules, known as a grammar, that models 

unconscious knowledge, is said to describe (or generate) the possible sentences in a 

language. Hence 'generative' can be used in relation to theories of music since by the 

process of analysis we hope to describe the characteristics of the musical surface. 

Schenker's work is not as formally expressed as that of Chomsky which makes it 

difficult to apply in general to music other than the mainstream classical works for 

which it was intended. However it is nevertheless a significant contributor to the field 

and was the first to move towards greater formalisation of the process. As such 

Schenker has provided a foundation for more recent approaches to music analysis, 

inspiring a number of variations and developments by other musicologists in more 

recent years. The most significant theory that draws on the ideas of both Schenker and 

Chomsky is that of Lerdahl and lackendoff (1983), known as a Generative Theory of 

Tonal Music. This is described more fully in the next subsection. 
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2.3 Cognitive approaches to music analysis 

This section examines the two most prominent theories developed over the last two 

decades. The first is Lerdahl and lackendoff's Generative Theory of Tonal Music 

(1983, 1996), and the second Narmour's Implication Realisation Model (1977, 1990, 

1992). The two theories have different foundations and as a result offer different 

views on the approach to cognitive music analysis. In some senses they can be seen to 

contradict each other but a more useful interpretation is to view them as being 

complementary . 

Lerdahl and Jackendoff developed a method of music analysis based on a cognitive 

theory; it draws from Schenkerian theory and is fully described in A Generative 

Theory o/Tonal Music (1983). This work will be referred to as GTTM henceforth. 

The work was partially inspired by Leonard Bernstein's Harvard Lectures (1973), 

where the search for a musical grammar that would "explicate human capacity", 

(Lerdahl et aI., 1996, ix) was suggested. In the development of their grammar, they 

aim to adopt a similar approach to that of Chomsky (and hence linguistics), and 

therefore the theory is concerned with the assignment and examination of musical 

hierarchies within the elements of the music being studied. However, they state that 

the main parallel between their work and that of Chomsky is that both have 

psychological concerns and both theories are of a formal nature. They comment that 

other applications of linguistic theory to music have failed due to too literal a 

translation. The purpose of GTTM is to analyse existing tonal pieces rather than to 

generate more music. "Lerdahl and Jackendoff are mainly interested in the analysis of 

existing pieces and the ability of the music grammar to assign proper structures to any 

tonal piece." (Robbie and Smaill, 1995, 92), 

GTTM has not only become widely used in the musicology community, but has also 

formed the basis of a number of works in computer based music analysis and 

composition. Although it bears some relation to the work of Schenker, it has greater 

structure and is therefore more appropriate for scientific application. A key feature of 

the method is that it aims to include at least some of the intuitions of the listener. It is 

described by DeBellis (1999, 56) as " .. an important contribution to cognitive science 

in the field of music cognition". A fuller description of GTTM follows. 
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GTIM proposes four hierarchical intuitions and these are: 

1. Grouping structure - models the way in which a listener intuitively divides a 

piece of music into moti ves, phrases, and sections. The structure of these 

groups is hierarchical. 

2. Metrical structure - identifying strong and weak beats in a metrical context 

3. Time span reduction - hierarchy of importance of pitches with respect to 

grouping and metrical structure. 

4. Prolongation reduction - assigns hierarchy to pitches expressing harmonic and 

melodic tension and relaxation, continuity and progression. 

There are two main rule types for each of these intuitions. These are described below. 

1. Well formedness rules - these establish the formal structure for each of the 

hierarchical intuitions, i.e. they define the possible interpretations. Some 

examples of well-formedness rules associated with grouping structures are: the 

end of a group must not overlap with the beginning of the next; there must not 

be any 'spare' notes left between the end of one group and the beginning of 

another; and there are others. They provide a framework within which the 

preference rules can be applied. 

2. Preference rules - these determine which of the structures that are formally 

possible (within the well-formedness rules), correspond to the intuitions of a 

listener, i.e. which of the possible interpretations are most likely to be selected 

by the listener. In complex music there may be ambiguity about which rules to 

apply as it is possible for them to conflict. If this happens it is necessary to 

decide on an approach to resolve the conflict. Ambiguities are to be expected 

in music and should be acknowledged where they affect the application of the 

preference rules. 

Further details of the rules are provided in Chapter 3. where a series of preliminary 

experiments are presented. 
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GTIM is described as " .. one of the best known attempts at a structural description of 

tonal music" (Robbie and Smaill, 1995,91) and for this reason there is a tendency to 

use GTIM particularly where the analysis is to be performed by a computer and 

quantifiable information is required. It has been applied to a number of musical 

research problems, as well as being tested in a variety of ways by researchers in the 

field. Horowitz (1995, 103) describes GTIM as significant because "it attempts to 

detail aspects of musical comprehension which are recognised as being matters of 

common sense, but which have not been explicitly enumerated previously." In the 

same work he describes how he used the theory as the basis for the analysis required 

in his computer based Jazz Improvisation System, discussed further in Section 2.5. 

Experiments have been carried out by researchers other than the original authors to 

determine how well the GTTM rules correspond to expert/non-expert listener 

perceptions of music. One frequently cited experimental verification was carried out 

by Deliege in 1987. Deliege reports two experiments in which the grouping behaviour 

of two categories of subjects, musicians and non-musicians, are compared. The 

experiments aim to explore the extent of the validity of the lower level (or local level) 

Grouping Preference Rules (GPRs) of GTTM. More specifically they aim to provide 

answers to the following four questions: "Can some of the rule definitions be 

ambiguously interpreted?", "Do the existing rules cover all the situations that occur in 

the development of music listening?", "If the theory effectively affects the 

experienced listener, the question is: to what extent does musical training modify the 

mechanisms of grouping?", and "Would some rules more than others make it easier to 

constitute groups, and could we imagine some dimensions to be more powerful, that 

is, to bear greater weight in the formation of groups?", (Deliege, 1987, 331-332). Her 

findings show the rules to be valid in that the percentages of subjects' responses to 

questions corresponded to the rules at a 5% level of significance. The non-musicians 

had slightly poorer performances when listening to repertoire music sequences (as 

opposed to simple melodic sequences designed to illustrate/include possible conflicts 

of rules), but in general there was little difference between the results for both groups 

of listeners. Two of the GPRs didn't hold as well, though the author predicted this. 

These were GPR3d and 3c - the change in length rule and the change in articulation 

rule. These are apparent where a boundary is predicted between two notes if they are 
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the middle pair of a group of four notes the first pair being of equal length, the second 

pair being of equal length (GPR3d); or the first pair being articulated as (for example) 

legato and the second pair staccato (GPR3c). Deliege found that the grouping 

boundary was often delayed to being between the third and fourth note rather than the 

second and third, this happened where the second pair were longer than the first, or 

where the second pair were staccato and the first legato. The reason given by Oeliege 

for predicting this is that the slur/rest rule (GPR2a) could be said to be apparent in the 

first case above and the attack point rule (GPR2b) could be said to be apparent in the 

second case above, both at the delayed positions. This is illustrated in the example 

below but can be seen to be not entirely true. The slur/rest rule states that given four 

notes n 1, n2, n3, n4 a group boundary will be heard between n2 and n3 if the gap 

between the end of n2 and the onset of n3 is greater than between n 1 and n2, and that 

between n3 and n4. In the Figure 2.1 below the gap between n2 and n3 would not be 

greater than that between n3 and n4. 

Figure 2.1 Rule 3b: Change in articulation. (a) Segmentation according to the rule. 

(b) Postponed segmentation. (Deliege, 1987, 331) 

Similarly the attack point rule states that a group boundary is heard between n2 and n3 

if the time between the start of each is greater than that between nl and n2, and n3 and 

n4. Again, this is not true for the gap between n3 and n4 in figure 2.2 below. 

However, the arguments for the prediction of this occurrence may be flawed but the 

experimental data in the article does support the fact that many listeners did hear the 

group boundaries in these delayed positions. The term Oeliege has given to this is 

'postponed segmentation' . 
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Figure 2.2 Rule 3d: Change in Length. (a) Segmentation according to the rule. (b) 

Postponed segmentation. (Deliege. 1987. 331) 

The idea of postponed segmentation could suggest a modification of GPR3c and 

GPR3d but Lerdahl and lackendofrs later publications do not include such a 

modification. Tests carried out by Palmer and Krumhansl (1987) show that all of the 

phrase boundaries predicted by the preference rules of GTIM correspond well to 

reports from listeners. These experiments were carried out using musical stimulii 

derived from a Bach fugue, and hence the context was not as broad as that of Deliege. 

Deliege also reports the result of an experiment that enable a possible 'relative 

salience' of the rules to be provided. In this experiment subjects were required to 

listen to short musical sequences that had possible group boundaries close together 

and the purpose of the experiment was to find out which was the most salient of the 

two in each case, enabling an overall relative salience to be reported (as a numerical 

value) on the completion of all of the tests. The results did not reflect the relative 

salience (or preference) as suggested by Lerdahl and lackendoff (theirs is reported 

textually with no numerical values associated.) This could suggest that any work 

requiring information about the relative salience should not rely fully on either of 

these, but rather on experimental results from further experiments conducted in the 

context of that work. The experiment described at the beginning of Chapter 4 aims to 

further the order of salience of preference of the rules given by Lerdahl and 

Jackendoff in the context of folk dance melodies. 
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The idea that the theory is modelling the listening of the 'experienced listener' is a 

difficult one to work with as Hantz (1985, 191) observes ''The question of whose 

listening is being modelled by the theory is one of its weaknesses". The term is meant 

to mean anyone that has experience of listening in a particular idiom, but there could 

be variations between amounts of experience in certain idioms that cause slightly 

different approaches to listening. This is supported by the differences (though only 

slight) between non-musicians and musicians in the results of the experiments carried 

out by Deliege described above. The experiment in Chapter 4 to further the order of 

preference proposed by Lerdahl and Jackendoff used subjects who all had a minimum 

of two years musical experience. 

Although GTIM is well tested as a cognitive theory describing the listener's 

experience and though it continues to be well used, some researchers have 

reservations. For example, Robert Rowe, in Interactive Music Systems (1993, pl0l) 

observes that one of the attractions of GTIM is that "it treats musical rhythm much 

more explicitly than do many music theories, Schenker's being an example", but he 

goes on to express his concerns with GTIM, saying that" [ .. lan exaggerated reliance 

on one perspective leads both to uncomfortable accounts of cognition, and finally to a 

devaluation of music not conforming to structure" (Rowe, 1993, plOl). However he 

is then more specific and observes that one of his main concerns is the cognitive 

reality at the higher levels of the complete tree structure rather than at the musical 

surface level where grouping boundaries are initially predicted. Rowe's own work 

considers elements of GTIM but favours the Implication Realisation (IR) model of 

Narmour (1977, 1990, 1992), another important theory of music analysis with an 

alternative approach to that of Lerdahl and Jackendoff. The IR model is reviewed in 

the following paragraphs. 

An alternative to GTIM is Narmour's IR model (1977, 1990, 1992). This centres on 

modelling the expectations of the listener, and is influenced substantially by Leonard 

Meyer's Emotion and Meaning in Music (1956). The theory uses the ideas of both tree 

and network structures; Narmour argues that musical pieces exhibit both systematic 

and hierarchic tendencies at the same time. The first book in the three volumes 

describing the IR model argues the case for an alternative to Schenkerian approaches 

to music analysis; Schenker proposes totally tree structured approaches, where all 
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analyses lead to the definition of a deep structure or Ursatz. Nannour sees this as 

fallible because it is possible to arrive at more than one Ursatz for most pieces of 

music, yet the tree structure would only allow the definition of one. He therefore 

believes that a network structure is a better model since it allows more complex 

relationships to be acknowledged, and also because it does not rely on deep structures 

at all, but is more concerned with the detailed surface of the music. He observes that 

this is taking a bottom up view of musical structures. The theory is developed further 

in two later works The Analysis and Cognition of Basic Melodic Structures (1990), 

and The Analysis and Cognition of Melodic Complexity (1992), where he asks, and 

aims to address the question "What are the specific note to note principles by which 

listeners perceive, structure and comprehend the vast world of melody?" (1990,3). 

Nannour's model is based on the idea that listeners form expectations of how 

melodies might continue as they are listening to them. These expectations are 

presumed to be due to a combination of both innate and learned factors, and they arise 

when an 'implicative interval' is evident, so particularly when a melodic interval is 

perceived as being incomplete, or not 'closed'. Narmour states that such implications 

result from five perceptual predispositions: registral direction, intervallic difference, 

registral return, proximity, and closure; and the first two of these form the core of the 

IR model. Although the IR model is very complex, there have been a number of 

attempts to simplify the work and to find the core principles that it represents. The 

work of Schellenberg (1996, 1997) and that of Cuddy and Lunney (1995) indicates 

that the IR model may well be "over-specified and more complex than necessary" 

(Schellenberg, 1997, 295), and as a result Schellenberg (1996) presented a revised 

model and argued based on experimental evidence that the results using the revised 

method were more reliable than using the original IR model. 

The insert below illustrates the five implicative principles of Narmour. They show 

whether or not the implicative interval created by the first two tones is fulfilled or 

denied by the subsequent tone according to each principle. The IR model describes 

them in terms of large and small intervals where a small interval is a fourth or less, 

and a large interval a fifth or more. A description of each follows the illustration. 
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Figure 2.3 Examples of continuation notes that fulfil or deny each implicative 

principle. (Thompson et al. 1998, 6) 

1. Registral direction: a small implicative interval implies a subsequent pitch 

movement in the same direction (i.e. if the pitch of the second tone was higher than 

the first, then the continuation tone should be higher than the second tone of the 

implicative interval). A large interval implies a subsequent pitch movement in a 

different or lateral direction. 

2. Intervallic difference: a small interval implies a subsequent interval of a similar 

size (+/- 3 semi tones) if the pitch movement is in the same direction, or within +/- 2 

semi tones for a change in direction. A large interval implies a relatively smaller 

interval. 
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3. Registral return: any interval implies a pitch that is near to (within 2 semi tones) or 

in unison with the first note of the implicative interval. 

4. Proximity: any interval implies a subsequent note that is near to (within a perfect 

fourth) of the second note of the implicative interval. 

5. Closure: the implication of closure is increased by any interval that is followed by a 

subsequent change in registral direction, and a movement from a larger to a smaller 

interval. 

Narmour's model has been used for various musical analysis projects, some of which 

are detailed in later sections. It is a well tested approach that can be said to 

complement GITM and as such has also been used in conjunction with GITM for 

certain research projects. An important and on-going example of this is the work of 

Gerhard Widmer and his research group in Vienna, who are investigating the potential 

of Machine Learning in music research with particular emphasis on the phenomenon 

of musical expression. Widmer (1998) shows how he is using both GITM and the IR 

model as means for providing learning algorithms with background knowledge about 

musical structure and also the possible relation of such knowledge to expressive 

perfonnance. He comments that such work will also provide more empirical evidence 

for or against the relevance of such theories and will therefore be useful to the 

Musicology community as well as Machine Learning. The apparent success of this 

work provides support for an Integrated approach to music analysis using elements of 

both of the theories. 

2.4 Use of Analysis in Computer Music Applications and Research 

The use of computers in music research has increased in recent years. There are two 

main reasons for this, one being that they can be a useful aid due to their fast 

processing capabilities and the other that they provide a range of possibilities for 

generating musical data. Faster processing capabilities enables the application of 

analysis to larger volumes of data and also the combination of techniques for more 

complex approaches. There are a significant number of works that illustrate ways of 
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analysing music using a computer. The approaches to analysis are usually derived 

from, or are computer implementations of, existing analysis theories and techniques, 

in particular those described in the previous section. The following paragraphs 

examine well known computer music systems, focusing on the analysis methods 

chosen by the researchers. 

Probably the most well known system is EMI (Experiments in Musical Intelligence) 

developed by David Cope and completed in 1991. The system is able to analyse 

pieces of music and then generate further compositions in a similar style. It is a 

complete system in itself and although there are criticisms of elements of Cope's 

approach to its development, its completeness alone has helped to make it one of the 

most significant developments in the field. A composer and lecturer at California 

University, Cope developed EMI after suffering 'composers block' himself. EMI is 

written in LISP and is able to analyse the style of a minimum of two pieces of music, 

and can then go on to generate a new piece with a similar style. The system is very 

successful, producing pieces of music that sound convincingly like the composer in 

question. Its capabilities extend beyond the Western classical domain having, amongst 

other things, successfully generated a piece that resembles a Scott Joplin Rag. 

Before defining his approach to music analysis, Cope explores concepts and 

parameters of style in his book Computers and Musical Style (1991). The Oxford 

Encyclopaedic English Dictionary (OED) defines it as "the distinctive manner of a 

person or school or period, especially in relation to painting, architecture, furniture, 

dress etc." 1991, 1439). Cope gives a definition of style from Dickinson (1965, 3): 

"Style is the reflection of the individual essence of a work of art which gives it its 

identity. The identity is the result of a distinctive emphasis among the components." 

Cope also refers to Meyer's definition of style (1989, 3), stating that this is not very 

helpful either: " Style is a replication or patterning, whether in human behaviour or in 

the artefacts produced by human behaviour, that results from a series of choices made 

within some set of constraints". Cope recognises that these definitions are useful when 

it comes to understanding the concept of style but observes that they are vague and 

almost useless for the purposes of processes such as coding, and points out that for a 

programmer to be able to model style in any way, slhe must find a means of 

quantifying it. The term is vague however as can be seen from the Dictionary 
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definition given above and it is therefore necessary to refine the meaning for 

particular research purposes in order to be clear about the motivation and justification 

for any work carried out. Cope gives his own definition of style as being: ''The 

identifiable characteristics of a composer's music which are recognisably similar from 

one work to another", Cope, (1991, 30). These characteristics include pitch, duration, 

timbre, dynamics, nuance, and more. Cope states that when put together, they 

constitute grammars which can be perceived at many levels. This too is a limited 

definition of a complex term. The perceived style of a piece of music can be changed 

significantly by the performance for example; it doesn't just depend on the notated 

score. Scored music can include substantial amounts of performance information (i.e. 

to do with phrasing, articulation, dynamics and so on) so it can provide a reasonably 

detailed description of a piece of music. For the purposes of the work described in this 

thesis a definition of style derivative of the dictionary definition will be used: 'the 

distinctive manner or identifiable commonality of melodies'. The term genre is often 

used interchangeably with style. The dictionary definition of this is "a kind or style, 

esp. of art or literature" (OED, 1991,587). Bohlman, 1988 uses this term to refer to 

subsets of folk music such as lyric folk song or the blues. The term idiom is also used 

in similar contexts, but usually for broader groupings. Within this work, idiom is used 

to refer to broad (and slightly fuzzy) groupings such as folk music or art music; genre 

for subgroups such as folk dance melodies and style for collections within a genre that 

exhibit commonalities. 

Cope derives the music analysis method used in EMI partly from the ideas of 

Schenker and to a limited extent GTTM; he calls his method the SPEAC system, 

where SPEAC is an acronym for the following: 

S. Statement notes exist 'as is' 

P. Preparation statements can be prefaced or 

lengthened 

E. Extension see immediately above 

A. Antecedent causes an implication & require 

resolution 

C. Consequent usually same chords as S. but 

results from A. 
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Each sequence of notes is categorised into one of these five types, and a database of 

these phrases is built. The idea of a 'musical signature' is created by looking for sets 

of intervals that appear more than once in a composer's work. The system uses a type 

of grammar known as an Augmented Transition Network (A TN) to enable the 

SPEAC symbols to combine and generate musical structures, he refers to this as a 

reverse Schenker approach, as at this stage the process is compositional rather than 

analytic. ATNs are standard tools for speech processing and have been used in the 

development of speech processing systems; as a result they have become a standard 

tool for computational linguistics. ATNs involve the definition of a set of 'succession 

rules' that determine the order of symbols, and in Cope's system they are defined as 

shown in the table below. 

CURRENT CAN BE 

FOLLOWED BY 

S P,E,A 

P S,A,C 

E S,P,A,C 

A E,C 

C S,P,E,A 

Table 2.1 Succession rules a/the SPEAC abstractions (Cope. 1991.37) 

Cope's work is undoubtedly successful, the music generated by EMI is usually very 

easily identifiable as being in the style of Mozart or Bach, for example. As a result of 

this success EM! has attracted a lot of attention in this field of work. However, there a 

number of criticisms, some of which are identified here. Rowe, for example, thinks 

that Cope's work is interesting as it implements "a proven method for finding 

significant sequences" Rowe, (1993,240), but he doesn't believe (as he says Cope 

does) that it finds a fundamental element of a composer's style. 
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Brush et. al. (1993, 81) questions elements of the work: "Cope's SPEAC grammar is 

intriguing but how effective is it as a syntactic model of music and what are the 

alternatives?" Berger et. al. (1995, 347), find it "far less substantial than the days 

when his [Cope's] music spoke for itself' - here they are referring to his work as a 

composer. They believe that using the library of patterns is a superficial way in which 

to mimic a style and that the products are "either structurally unpredictable (at best) or 

structurally banal." Putnam (1997, 102) describes it as an "[ .. ] important work, which 

calls into question the methodologies traditionally used by music theorists. Like any 

new and important paradigm, it will take years to take root. In the meantime, David 

Cope has established a landmark in music theory". 

Cope's work remains significant despite the criticisms raised. The main reason for this 

is that it is one of the few works that is complete in itself. EMI starts with complete 

pieces of music of selected styles, analyses them in order to find the 'musical 

signatures', then generates a new piece of music using that infonnation. It gives 

recognisable results that at least on the surface show significant similarities to the 

style/s it is attempting to reproduce. Although there are questions raised about the 

work in the reviews, and many musicologists consider that the approach glosses over 

important musical concerns, it still remains an important work because of its 

completeness; and is still considered to be a good illustration of the potential there is 

for work with computer analysis and creation of music. 

Further works in which music analysis is required as part of a computer based system 

are discussed in the following section in combination with the more general 

discussion of analysis of musical genres other than Western art music. 

2.5 Applications to genres other than Western art music 

The theories discussed so far were all developed for the analysis of Western tonal 

("meaning particular observance of a single tonic key as the basis of composition", 

Kennedy, 1996, 741) art music, however some key works have shown how such 

theories can be adapted for other purposes. An illustrative example of this is Rowe's 
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'Interactive Music Systems' (1993), where he uses ideas mainly from Nannour's 

(1977, 1990, 1992) work to develop a system that is able to improvise interactively 

with a human musician in the domains of improvisational and of atonal (i.e. not in any 

key) music. 

Rowe describes the development of an Interactive Music System, known as Cypher. 

Cypher incorporates three modules: a listener, a performer, and a critic. The system is 

particularly important in the area of performance-based analysis (as opposed to score

based). He discusses the contrast between what he calls listening, and analysis based 

on the reading of musical scores. He points out how a listener has to listen to music 

(i.e. analyse it) in real time, and must process this information as it arrives (as 

opposed to the analyst who can access any part of the score randomly). His approach 

to analysis for the listening element of Cypher is based on this - analysing the musical 

data (in MIDI fonnat) in the order in which it is received. The analysis results in a 

representation of events that are hierarchical in nature and hence have some 

resemblance to both Schenkerian and GTTM analysis. However, the representation 

also places emphasis on network relationships between events as proposed by 

Nannour (1977) and Meyer (1956). Rowe does not claim that the analysis is strictly 

representative of the best elements of these theories, or that the analysis process 

simulates the workings of the human mind; he states that the currently available 

theories on the nature of thought processes remain unproven. He observes, however, 

that he has aimed to capture enough musicianship within the program to enable 

Cypher to implement what he takes to be "a method with plausible relations to human 

music processing" (1993, 96). His main aim in developing Cypher was to achieve his 

primary goal and this was to develop a computer program that could listen to music. 

Having 'listened' to the music Cypher is able in real time to generate a musical 

response. The listener classifies features in the input and also classifies how they 

behave over time. Messages as a result of the listener's analysis are sent to the player 

and Cypher reacts to these messages by the execution of algorithmic techniques that 

produce the musical output. Thus, in a perfonnance, the system is able to perfonn live 

improvisation with other musicians. The generated output is also passed through the 

'critic' which analyses and then improves the output. Cypher therefore has two 

listeners, one for the MIDI input data and one for its own output. Both listeners 
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maintain their own histories which can then be used for generation of further output. 

Features of the analysis include - speed, density, dynamics and rhythm. 

Rowe observes how a significant amount of information is lost as soon as it is 

translated into MIDI, in particular it is only possible to represent limited aspects of 

timbre with MIDI. Timbre is difficult to represent anyway, and certainly difficult to 

measure and analyse, and is therefore subject to considerable research in its own right. 

Still, Rowe does not believe MIDI to be very useful as a representation technique 

observing that MIDI inputs and audio signals are low level, weakly structured 

representations, and that they must be processed further in order to be used for the 

purpose of particular musical goals. However, he does say that the influence of MIDI 

outweighs the limitations, and hence why he uses it himself. He also points out that 

information can arrive from sensors other than MIDI e.g. samples could be picked up 

by microphone, sent through an analog to digital converter (ADC) and then to the 

computer. This demands high powered processing and in fact most systems would 

usually need dedicated hardware if interactive systems require this kind of input. A 

discussion of computer representation of music is provided in Chapter 5. 

Other examples of alternative applications of classical analysis techniques include that 

of Damon Horowitz (1995) who shows how elements of GTTM can be used to 

analyse jazz improvisation. Horowitz has a long term goal to develop a system that 

represents musical knowledge in a way that closely resembles the human 

understanding of music, and states that he considers "a representation of musical 

common sense concepts combined with the mechanisms that manipulate them to be 

the basis of musical intelligence" (1995, 104). The system he describes in this paper 

(incomplete at this stage) focuses on the style of Louis Armstrong in the 1920s. The 

requirements are that it should analyse a target set of Armstrong solos and then 

generate others with a similar style. His approach to music analysis draws directly on 

GTTM, though he also observes some of the criticisms of it. Additionally his 

approach is influenced by the ideas of Minsky (1989) "musical meaning derives from 

references of instances of music to each other" (in Horowitz, 1995). The paper 

focuses on the importance of representation of musical knowledge on computer, an 

area that is discussed fully in Chapter 5 of this document. 
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The suitability of GTTM for the analysis of pop music has also been considered 

(Bolswijk, 1999). She observes how the theory appears to work well with classical 

tonal music, and that analyses of such music are reported to give a reasonable account 

of the listeners understanding of that musical genre but comments on the difficulties 

posed when applying such an analysis technique to pop music: "some pieces exhibit a 

kind of grouping structure or harmonic language to which the GTTM rules are 

unsuited". She goes on to discuss the analysis of a particular piece 'Happiness is a 

Warm Gun' by the Beatles, as a way of suggesting appropriate adaptations to 

elements of GTTM when applied to the domain of pop music. Unfortunately this 

work was only published as a conference abstract and so there is not enough detail to 

assess whether or not its findings might aid the folk dance melody analysis of this 

study. 

Another example of the application of GTTM to a different genre of music is 

described (Sennan et. at. 2000), where the suitability of GITM's grouping preference 

rules (GPRs) is considered for the analysis of unaccompanied melodies from non

Western cultures. In order to do this a 'rule program' was developed enabling the 

musical infonnation to be encoded as input. The results showed which of the GPRs 

were 'fired' for each piece of music. Although the authors found some success in the 

application of this approach, they found that there were limitations since they had 

needed to encode the music using Western tonal music (WTM) notation, and it was 

difficult to do this without losing a significant amount of musical infonnation from 

music that is not nonnally encoded in this way. As a result they have started work on 

a system that takes real sound as input and is then able to indicate in the output where 

the GPRs are fired; the system is known as a Music Tracker. The scored music that 

Sennan et. at. worked with on their preliminary experiments did not contain any 

perfonnance infonnation, therefore nothing about phrasing, articulation, dynamics 

and so on. There is a wealth of music that does contain such infonnation and such 

features are recognised by GTTM. It would appear that the use of scored music was 

not explored fully here before switching to the use of real sound as input. The 

preliminary study undertaken by Sennan et al. indicates that the "application of 

grouping rules specified in tenns of the discrete pitch events drawn from music 

notation, fails to capture all perceptually significant aspects of melodic structure that 

may arise from different musical systems" (1999, 10). They are suggesting then that 
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the study indicates that WTM coding is not enough for working with non-Western 

music in the context within which they worked and also that GTIM is not enough 

even when applied without WTM coding of the same music. This provides support for 

the argument that an integrated approach to analysis is appropriate for certain genres 

of music. 

2.6 Folk music and folk music analysis 

One of the aims of this project is to find a way of successfully analysing folk dance 

melodies for violin, using an integrated method derived from existing approaches. In 

order to do this it is necessary to consider ethno-musicological research into this area 

as well as that relating to Western art music as discussed in the earlier sections of this 

chapter. The following sections look at how folk music is defined, and also at what is 

known about the development and geographical movement of Western folk melodies, 

with particular emphasis on dance melodies for violin that have origins or some of 

their influences from Ireland. 

2.6.1 Definitions of folk music 

The term folk music covers a very broad band of musical material, and opinions on 

the position of the boundaries differ greatly. The International Folk Music Council 

changed its name in 1981 to the International Council for Traditional Music in an 

effort to define their field of study more precisely. However this probably hasn't really 

helped, as Bohlman (1988, xiii) points out: "traditional music hardly seems more 

precise than folk music [ ] folk music forms traditions, but so do other genres of 

music". 

Studies of folk music usually require an attempt at a definition as to what folk music 

is, as well as a means of division of the genre into sub-groups. Trying to define what 

folk music is, and in particular where the boundaries of it lie, is not an easy task. 

Bruno Nettl (1973) discusses some of the ideas that have been used when attempting 

to define folk music. These include suggestions that such music has its origins as a 

purely functional music to go alongside work practices, or as music that is composed 
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by anonymous composers, or music that is not really composed by an individual but is 

more of a group effort. Nettl argues that there are elements of truth in all of these, but 

none of them are suitable as a sole definition. For instance, folk music has been found, 

historically, to be used as entertainment in village life as well as accompanying work; 

many composers of folk music are anonymous but this doesn't really define it, it is 

more the result of melodies and songs being developed and passed on from their 

origins in such a way (often orally) that the original creator is no longer associated 

with it. Nettl also points out that communal creation of songs has been found to be 

rare, and that most songs are, in fact, created by individuals. As the tunes are passed 

on from person to person, they are developed and adapted, especially as until recently, 

very little folk music was written down (if ever), and this is likely to be how the idea 

of group creation or composition came about. 

We frequently hear discussions about the authenticity of folk music, but the way in 

which folk songs are devised and continue to evolve by being passed from person to 

person and group to group makes it very difficult and in some cases impossible to 

determine at what stage a particular music can be classed as authentic (and the when it 

became unauthentic). The very nature of folk music is that it is not strictly defined and 

that its creators allow it to change and develop. This is an important point to consider 

when addressing the stylistic features of folk music from different cultures. 

2.6.2 A cross-cultural view of folk music and the movement of melodies from 

Ireland 

It is possible for listeners with relatively low experience to recognise styles of folk 

music as being from a particular country or region or cultural group, and those with 

greater experience more so. However, it is also possible to discern similarities in 

styles of folk music from apparently quite different sources. This is not surprising, as 

for many years people have moved around the world and usually take their musical 

ideas along with them, as Netll (1973, 7) observes "No culture can claim a body of 

music as its own without admitting that it shares many characteristics and probably 

many compositions with neighbouring cultures. But we must also assume that some 

of the essential and distinctive qualities of a culture somehow find their way into its 

music". He goes on to propose that "if we plotted the characteristics of the folk music 
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of each people - the characteristics of its scales, its melodic movement, its rhythm, 

and so on - and if we fed this infonnation nation by nation into a computer and 

examined the results statistically, we would probably find that no two peoples have 

identical styles of music" (Nettl, 1973, 8). 

In fact, Lomax et. al. (1968) carried out a study of this nature. He used characteristics 

that enabled him to derive a characteristics profile, known as the Cantometric Coding 

Book, of the songs from many musical cultures. The Cantometric system was an 

attempt to represent "a set of perceptive categories that the ordinary listener can apply 

to the classification of his musical experience" (Lomax, 1968, pxi). There are 37 

parameters identified in the Cantometric Coding Book and these were applied to 

samples of songs from 233 cultures. The parameters are not derived using fonnal 

music analysis techniques, they include such things as ratings for amount of 

embellishment, vibrato, nasalization, 'wordiness', 'raspiness' and so on, though more 

typical measures such as volume and tempo are also included. This work was based 

on a substantial amount of field work; Lomax is well known as a folk music archivist 

and collector, he travelled the world recording music directly from the people who 

made it. After coding the musical samples, computer aided statistical analyses were 

carried out, and although he found correlations between certain types of music and 

cultural styles, he also found each to be unique. 

Lomax continued with this work, and went on to develop a prototype for the 'Global 

Jukebox'. a multimedia computer system that "surveys the relationship between 

dance. song, and human history" (www.alan-lomax.com). Although there was 

substantial initial interest from software developers and vendors when the Global 

Jukebox was first prototyped, Lomax was disappointed when this interest lapsed 

resulting in the tool not being completed. It remains incomplete and is currently used 

mainly as a research tool by other musicologists and ethnomusicologists. Lomax died 

recently but work is on-going with the project. His work is important to 

ethnomusicologists in a number of ways, there are many publications of songs from 

various cultures (though this led to some criticisms, in particular in the New York 

Times, about such issues as Lomax having his name attached to the authorship of the 

music even though he only collected it and did not write it), and the Global Jukebox is 

very good as an encyclopaedia of musical and dance cultures. However the decisions 
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about what parameters/characteristics should make up the Cantometric Code Book, 

and indeed the ratings allocated for each parameter to the pieces of music, do seem to 

be subjective to a certain extent, making it hard to assess the accuracy of the results 

from comparison ratings and so on. The Cantometric Code Book does not account for 

instrumental music, "Purely instrumental music is beyond the scope of this system" 

(Lomax, 1968, 36). Although the parameters themselves are therefore not obviously 

useable for the analysis of folk dance music, the work done by Lomax and his team 

highlights the scope for work in the field of folk music analysis (and hence 

characterisation), and in particular in the development of computer tools to aid such 

work. 

The geographical movement of songs and tunes between countries and cultures is 

discussed further by Nettl (1973) whilst noting that the songs and music of a 

particular culture are often related to its language (in tenns of stress patterns, patterns 

of intonation and so on). He comments on how tunes/melodies are passed on, new 

words are often applied to songs, and then the tunes may be adapted slightly to fit the 

new words, and so the development continues. It appears to be that stylistic traits are 

also passed on in this way; it doesn't always have to be whole songs or melodies. He 

observes that if the tunes are too different to that of the cultures that it is passing to, 

then they may well be dropped, and hence certain boundaries do remain. This seems 

to explain quite effectively why certain music types, though ending up being 

geographically close, do not overlap significantly. A typical example of this being the 

music of the Native American Indians and the Anglo- American music present in 

North America. Although modern Native American Indians participate in Western 

musical practices, a music that sounds both Western and Native American hasn't 

really developed in the same way as Western and African music combinations have, 

though their are some discernible Western influences on some Indian music, (Nettl, 

1973). Native American Indian music is still very different from British and African 

music that make up the mainstream. 

British dance forms were taken to North America by early immigrants. The reel is the 

most popular survivor there, it can be found in New England and throughout the 

South where reel type tunes are sometimes called breakdowns, or hoedowns. Jigs and 

hornpipes are found in New England more than they are in the south. (A description 
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of these types of dance melodies follows later in this section.) America itself 

contributed to the dance repertoire with, for example, marching tunes from the civil 

war. American fiddlers developed a syncopated style of playing reels that are not 

evident in the equivalent British melodies, a likely explanation for this is the influence 

of African music, as Africans were brought to America with the slave trade. 

The British, Spanish and French all colonised during the sixteenth, seventeenth, and 

eighteenth centuries. The British were the most successful colonisers in North 

America and hence their music became dominant, though it is still possible to hear 

some French and Spanish influences. French influences are found in particular in 

Canada and North New England, also there is a pocket in Louisiana. The Spanish 

influence is prevalent in the Southwest. The Slave trade brought Africans to the South 

and North of North America hence there is an important musical influence that can be 

seen in the very different rhythms for example. Many other cultures have contributed 

to North America in various ways and all have their influence on the folk music; the 

Amish, for example, have a style that may have come from their ancient homelands in 

Germany, but might also be a result of their isolation; their musical style is very 

unlike anything else. The new songs that the Amish sing, though, have been 

influenced by other styles, showing just how hard it is to avoid such developments. 

(Carlin, 1987) 

Instrumental music is often used for the purpose of dance but can also be simply for 

listening purposes, certainly today much folk dance music has become listening 

music. Typically Western folk dance music consists of three or four main styles. A 

common form is the reel. These are in common or 4:4 time and are of unknown origin 

though they are believed to be from the Celts. Both Scotland and Ireland claim the 

reel as theirs, and both have developed tunes in this fonn. The hornpipe is an ancient 

English fonn also in common time, however hornpipes used to be in 3:2 until about 

1760 (Breathnach, 1971). The structure is similar to a reel but it is played more 

deliberately and with quite strong accents on the first and third beats of the bar. 

Another typical dance type and one of the oldest from these islands, is the jig. This is 

usually in compound duple (or 6:8) time, though it can be in compound triple (9:8) or 

compound quadruple (12:8), and according to Breathnach is now thought to be of 

British origin, although at one time it was thought to be from Italy since it is believed 
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that the word 'jig' derives from Italian. However research seems to show that it was 

present in England before Italian music became popular in the British Isles. The 

majority of Irish jigs were actually written in Ireland by pipers and fiddlers in the 

eighteenth and nineteenth centuries (Breathnach, 1971), despite the origin of the style 

being England. A popular ancient Scottish dance is the Strathspey, from the valley of 

the River Spey, this is in common time like the reel, but has a more moderate tempo 

and many dotted rhythms. 

In the nineteenth century the popularity of mainland European tunes increased, for 

example the waltz (triple or 3:4 time), the polka (moderately fast, double time), and 

mazurka (round dance in triple time). Most of these originate from Eastern Europe 

and have influenced classical as well as folk music. 

In general there is a blurring between folk music and the more sophisticated art music 

in America and Europe. This is mainly due to the ideas from each influencing the 

other. The music of cities and the music of villages cannot be completely insulated 

from each other and therefore cannot be completely independent. The distinction is 

more of a gradual one because of this. Familiar examples of classical composers that 

have been significantly influenced by folk music are Bela Bartok, who travelled 

around Hungary and Romania gathering tunes and ideas from local musicians and 

then went on to compose music that made use of these styles; and Vaughan Williams 

who collected and made use of English traditional folk melodies in many of his 

compositions. 

2.6.3 Violinlfiddle music 

The fiddle or violin was introduced as a medieval bowed instrument and it came to 

Britain from Europe. The instrument known as the classical violin is also used for folk 

music. English folk fiddlers tend to play in an unornamented way and there are few 

virtuoso players around. In Ireland however, the fiddle is one of the most widely 

played folk instruments, in the past most houses had one, and as a result we see a 

number of virtuosos and styles that are highly ornate. Irish fiddle playing was 

influenced substantially by Michael Coleman (1891-1945) who emigrated from 

Ireland to the United States early in the twentieth century. His style spread more 
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widely than others since he made many recordings on 78 r.p.m. discs. Similarly a well 

known Scot, 1. Scott Skinner (1843-1927) influenced the Scottish style with his 

compositions and recordings. The people who set about documenting or recording 

music also made an impact as there were fewer of them doing this than in present 

times. Francis O'Neill is a prime example, he became Chief of Police in Chicago after 

emigrating there in the late nineteenth century, and he worked hard to keep Irish 

traditional music alive by publishing a number of collections of Irish dance music. His 

collection called 'The Music of Ireland' (1903) has become a standard collection. 

There was much movement of dance melodies and songs between Scotland and 

Ireland, the common Gaelic language helping to maintain the cultural ties. Bards, 

dance masters, and musicians travelled between Scotland and Ireland sharing their 

crafts. After the highland clearances when many Scots moved to Cape Bretton Island 

in Canada, the music lived on, and the well known jigs and reels of Cape Bretton are 

also still known and played in Ireland. Most of the tunes were written for fiddle 

though the pipes (both Scottish and Irish Uileann) were also used for dance music and 

had tunes composed for them too. 

Tunes, songs and style influences were also taken by the large number of Irish and 

Scots-Irish emigrants to North America. The Scots-Irish, (originally Scots who moved 

to Ulster in the late fifteenth and early sixteenth centuries, fleeing bad harvests and 

religious strife, and who then had to leave Ulster as leases expired and rents rose) 

made a big impact musically around the Appalachian regions, and the music evolved 

into a style known as Appalachian Old Time, which in tum influenced much country, 

blue-grass and even rock and roll music. (O'hAllmhurain, 1998). The people of the 

South coast of Ireland tended to move to the Newfoundland area, mainly as a result of 

working with fishing companies. In the South of North America, the focus has been 

on playing reels, jigs and strathspeys, and to a lesser extent, the originally Eastern 

European polkas and waltzes. 

The fiddle was imported to America from Britain, and initially fiddlers there played 

British tunes in British styles. As time moved on, the style changed, and new tunes 

were written, with fiddlers developing a stronger sense of rhythm. There is much 

emphasis placed on the bowing styles, and although the melodies have become 
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simpler in construction, the rhythms and the style of playing have become more 

complex. The use of syncopation, emphasising the off-beat, has been borrowed from 

African musicians. 

Since fiddle playing became so important in Ireland, significant style differences 

developed between different areas or regions within the country. There are 32 

counties in Ireland and most of them have their own variations in style, though 

uniformity is developing due to the enormous availability of recordings, (O'Riada, 

1982). Some of the counties have quite distinctive styles and these are better known, 

and are well documented and recorded. The most significant or most pr:ominent of 

these styles are outlined briefly in the following paragraph. 

The county Donegal has a loose fiddle style, where the dexterity of bowing is 

important. About 75% of the notes are played with separate bows, and loud tones are 

used, this gives a tendency for a more evenly spaced rhythm, with an equal 

distribution of notes, and as a result there is less emphasis on phrasing. The Sligo 

style (and that performed by Michael Coleman) uses more slurring of the bow (Le. 

where a sequence of notes are joined together in one bow stroke) and there is a lighter 

accentuation on rhythm, and often more ornamentation. This style is more flamboyant 

that the Donegal style. The overall sensation for the listener is that the music is fluid, 

rapid, and flowing. The Clare style is similar to that of Sligo, though it has a more 

pronounced rhythmic accent, and not quite as much slurring. Other Counties or 

regions have less pronounced variations and will not be discussed here. Having 

discussed the variations in fiddle (or violin) styles within Ireland it is necessary to 

observe however that the commonest style is still that of Sligo, mainly due to the early 

influences of Michael Coleman. Sligo bowing and ornamentation are now played 

widely in the West and South of Ireland and it is this style that is the one we most 

frequently hear when listening to Irish fiddlers. It is therefore the Sligo fiddle style 

and derivatives of it that features most prominently in the experiments described in 

Chapters 3 and 4. 

It is generally felt that Irish music is best played by individuals to make the most of 

such style differences, and that group playing should be avoided for that reason. 

However group playing is a popular pass-time for many of today's fiddlers and that is 
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how many choose to learn new tunes, and style traits, although there is also much 

recorded and scored music available as sources of musical information. 

The variations in style that can be observed as a result of the sharing of music, the 

migration of musicians, and the influences of other styles and cultures, suggests that 

the study of folk dance music could benefit from a formal musical analysis, in order to 

help those interested to find out more about stylistic features associated with the 

variations of the musical styles within the genre. A possible approach to this is to use 

existing analysis techniques, most of which were developed with a view to analysing 

Western art music. Earlier sections in this chapter have shown how these techniques 

have been used effectively with other genres of music, and in the next section some 

analyses of folk music (mainly statistical) have been discussed. Chapter 3 describes 

some preliminary experiments that were carried out using existing analysis techniques 

to compare the stylistic characteristics and differences in folk dance tunes for fiddle, 

using tunes taken from an Irish collection, and also from an old time southern (North 

America) collection. 

2.6.4 Approaches to the analysis of folk music, with particular reference to 

statistical approaches 

There are examples of some quite simple analyses of folk tunes that have shown 

interesting results. For example Tomas 0 Canainn (1978) gives an analysis method 

for Irish music that shows that in Irish dance tunes there is a tendency to 'concentrate 

on only a few notes of the available scale, and to return to these again and again 

throughout the tune'. His method is based on the idea of note frequency; he allocates a 

point to each note every time it appears, additional points are allocated to notes based 

on their positions in the bar, and so on. He found that the most important notes 

resulting from this analysis were not necessarily the same as those that would result 

from a more formal analysis of key signature for example and as such that the tunes 

examined could be said to have complex tonality. Tunes such as these are often modal 

which means based on a scale system that dates back to at least the eighth century and 

was associated with church music. A study carried out using O'Canainn's approach to 

analysis by Carter et. aI., 2000a, on a series of fiddle tunes (15 Irish and 15 American) 
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found that this approach to analysis highlighted a limited number of features that were 

particular to one or other of the styles. This study is discussed more extensively in 

chapter 4. 

O'Canainn's work has some similarity with the work of Sen & Haihong (1992) on 

scale tone functions. Here the authors observe that the scalar materials involved in the 

structure of Chinese folk melodies can be broken into three types: framework tones, 

supporting tones, and embellishing tones, and they developed a computer system to 

carry out an analysis based on this. The results of their analysis highlighted some 

regional variations in the melodies. 

Eric Foxley (2001) developed a system to store and analyse folk melodies. The 

analysis is statistical using the ideas of note pitch distribution, distribution of intervals 

between successive notes, and distribution of successive pairs of intervals between 

notes. He used cluster analysis techniques and multidimensional scaling and this 

allowed the determination of ethnic similarities between the tunes. Again, this 

statistical method showed a degree of success in the study of the cultural origins of 

folk music, but can only be limited due to the lack of performance information 

included in the representation of the music, and hence omitted from the analysis. The 

music representation system used is based on DARMS (Erickson, 1977) which is an 

ASCII format. DARMS is discussed as a music representation approach in Chapter 5. 

Although methods such as those of 0 Canainn, Foxley and Sen and Haihong, are 

largely statistical and do not claim to represent listeners intuitions (as does GTTM 

discussed in the earlier sections of this chapter), they can still provide valid 

information about the stylistic characteristics of the tunes. Additionally, some 

parallels with the mechanisms used in these methods can be drawn with methods such 

as GTTM and the IR model. For example, in 0 Canainn's model, an extra point is 

given for a pitch that falls after an interval of a fifth or more; in GTTM, a large 

interval can be a reason for choosing a group boundary, and in the IR model the size 

of the implicative and realised intervals is important when applying the five principles 

described earlier. There is also evidence to suggest (Eerola et al. 2001, Jarvinen et al. 

1999, Krumhansl, 1999) that statistical analyses can provide adequate information to 

enable the classification of musical styles according to their perceptual similarities. 
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The most recent of these studies (reported by Eerola et a1.) achieved only moderate 

success by comparison to the earlier studies and he concluded that statistical measures 

can therefore capture "only a few basic aspects of the structures which portray 

common salient dimensions to which listeners pay attention whilst categorising 

melodies" (2001, 6). However he observes that his sample size was small compared to 

those of other studies and additionally that the melodies he used may have been too 

long. The study by Jarvinen et a1. was particularly successful; listeners were able to 

classify ten styles based on the distributions of tones and intervals. The findings of 

Krumhansl (1999) and Oram and Cuddy (1995) also indicate that it would be 

appropriate to incorporate statistical features into an integrated method of musical 

analysis, and therefore an experiment is reported in Chapter 3 using a statistical 

method devised by O'Canainn (1978) to analyse Irish dance melodies. 

Another important work centred on folk music is that of Sundberg and Lindblom 

(1976). They developed a grammar for the generation of eight bar melodies in the 

style of Alice Tegner, a Swedish folk tune composer. The grammar is based on a 

linguistic approach and its hierarchical nature is similar to that of GTTM, though it 

was developed at an earlier date. Of course the outcome of applying the method is 

different to GTTM as it is designed to actually generate melodies, whereas GTTM is 

generative in the sense that it aims to specify a structural description of a tonal piece 

of music. Listeners were unable to tell the difference between the generated tunes and 

those composed by Tegner. Sloboda (1985) points out that although this is not a 

rigorous proof, it "demonstrates that music with a definite style can be generated from 

a small set of completely definite grammatical rules"; which in tum demonstrates that 

a comprehensive set of rules could be used to describe the stylistic features of a set of 

tunes. 

2.7 Summary 

The findings of the research for this Chapter show that there is substantial availability 

of well tested approaches to music analysis in general. and also that there is a great 

deal of interest in folk music. Although there have been attempts to perform analyses 

on the folk genre, the bulk of the work has been aimed at the oral tradition (i.e. songs) 

rather than dance melodies, and some of those have been very specific in terms of the 
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domain. Some (e.g. Lomax) have been very general both in terms of the domain and 

the approach. There are few approaches to folk dance music analysis that use the 

formal methods that have proved popular with works on Western art music (such as 

Lerdahl and lackendoff, Narmour). Using folk dance melodies from Ireland (which 

are in general written for fiddle or to a lesser extent Uileann pipes) and also from the 

Southern North American States (the tunes of which are likely relations of Irish 

melodies), some preliminary experiments were carried out to determine the 

effectiveness of existing analysis techniques when applied to this particular domain of 

folk dance music, as means of finding a set of stylistic discriminators for the sets of 

melodies. These experiments are described in detail in the following Chapter. 
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CHAPTER 3 - Preliminary Experiments on Analysis of Fiddle Melodies 

3.1 General Introduction 

This chapter gives details of a series of experiments that were carried out on a selection 

of thirty folk dance melodies for violin. The investigation focused on western folk dance 

melodies for violin. for which there is a large amount of scored music available. The 

same melodies were used for each of the experiments and were all 16 bars long and in 

common time. Half of the tunes were Irish. and taken from '0' Neill's Music of Ireland' 

(Miles Krassen, 1976); the other half were American and taken from 'Fiddle Case Tune 

Book: Old Time Southern' (Stacey Philips, 1989). Both sources are written for the fiddle 

and include typical performance information (slurring/phrasing, ornamentation) i.e. 

including information about how the music should be played in order to emphasise the 

style, though both sources acknowledge that individual performers may choose to vary 

the way that they playa particular tune. Philips observes that the indications of 

performance style in terms of slurs and phrasings written into the scores in her book can 

form the basis of an authentic style and that this information has been gathered from the 

performers. However there is no discussion of how this was achieved and without this it 

cannot be guaranteed that this is a true reflection of typical performance styles. Krassen, 

though still not providing a methodology for the addition of performance information, 

gives a fuller explanation of how the slurring, ornamentations and so on were arrived at. 

The collection is that of O'Neill, an Irish emigrant who settled in Chicago, Illinois. 

O'Neill's work is recognised as a true collection of the most widely played Irish dance 

melodies, but the original work had very little in terms of the performance information 

included. When Krassen revised the work he drew on the experience of a number of well 

known fiddle players in order to add the ornamentations and the phrasings or slurring. 

The majority of the fiddle players he worked with adhere to the Sligo style of fiddling 

(See Chapter 2) and this is in fact the most common style to be found in the South and 

West of Ireland and the style that we hear most frequently when listening to Irish dance 

melodies for violin. 
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In order to analyse these melodies, three of the analysis techniques discussed in Chapter 3 

have been applied, and additionally a group of human listeners were asked to listen to and 

classify a sample of the same melodies, given some training. Each of the analysis 

approaches enabled a number of attributes to be derived and these were tested for their 

effectiveness as means of classifying the melodies according to their cultural origin, thus 

enabling stylistic characteristics to be determined within this domain. Classification was 

carried out using QUinlan's C5 algorithm (Quinlan, 1998) for inductive learning. In order 

to use this algorithm a number of attributes must be identified as input for the 

classification process and therefore the attributes derived from the analyses could be used 

for this purpose. 

Section 3.2 describes an experiment in which the grouping and metrical components of 

GTTM are used as the analysis mechanism. A further experiment is then described in 

which a group of human listeners are played a sample of the tunes, told the class of each 

(Irish or American) and are then played the remainder of the tunes and asked to classify 

them giving their reasons. The results of this experiment are then compared with the 

previous sections where GTTM was used. Section 3.3 describes an experiment in which 

the same melodies are analysed using the statistical method of O'Cannain; the results are 

compared with those of the previous experiments. Section 3.4 describes an experiment in 

which the melodies are analysed using Narmour's Implication-Realisation model, and the 

results are again compared with the previous experiments. The purpose of these 

preliminary experiments is to verify the approaches to analysis in this context. If the 

results are meaningful, the analysis of the melodies will be repeated with larger samples 

drawn from wider sources. 

3.2 Analysis of Folk Dance Melodies using GTTM, Experiment 1 

3.2.1 Introduction 

The experiment described in this section addresses the style analysis of Irish and 

American folk melodies for fiddle, using GTTM. The hypothesis is that GITM can be 
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used to analyse dance melodies for violin, deriving a set of characteristics that could then 

be used to classify the melodies on the basis of their style. As a preliminary study, 

suitable attributes have been obtained by using the metrical and grouping components of 

GTIM. The analysis was carried out using musical scores that include performance 

information (such as indications of slurs and ornamentation). 

On completion of the analysis process, classification of the melodies was carried out 

using Quinlan's C5 algorithm (Quinlan, 1998). The results of this experiment were then 

compared with results from a further experiment, in which a group of human listeners 

were played the same set of melodies (18 as training data, and 12 as test data) and were 

then asked to classify the test melodies as either Irish or American, giving their reasons 

for doing so. 

The aim was to find out the effectiveness of GTTM as an analysis tool in this context, 

and to compare the level of success of the classification based on the derived 

characteristics, with those made by the human listeners. 

The results of the experiments showed that GTTM did provide enough information for 

correct classification of the melodies (86.6% classified correctly) and that the results 

were comparable to those from the experiment with human listeners. It was also found 

that some of the characteristics on which the classifications were derived appeared to 

have similarities with the reasons given by some of the human users for their 

classifications. 

3.2.2 Generative Theory of Tonal Music (GTTM) 

With GTTM, scored notation is necessary but because there is also room for more 

features to be included in the representation such as slurring, phrasing, ornamentation, 

attack and so on, the style of the performance can be analysed in a more detailed way 

than with a score containing only pitch and duration information. The scores used for the 
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study in this experiment all had information about slurring and ornamentation, and these 

influenced the results of the analysis to varying extents. 

GTIM has been used as a successful analysis mechanism by other researchers. For 

example, Horowitz (1995) used it as a major contributor for his computer model to 

analyse and generate improvisational jazz solos (See Chapter 2, Section 2.5). The system 

illustrates the capabilities of GITM when applied to a domain other than western art 

music. Widmer (1998, 273) uses elements of GTTM and also Narmour's Implication 

Realisation (IR) model as means of providing a learning algorithm with "general 

background knowledge about musical structure and its possible relation to expressive 

performance". The purpose of the work is to investigate the potential of machine learning 

when applied to the domain of expressive music performance. 

This experiment therefore aims to show the effectiveness of the grouping and metrical 

preference rules from GTTM, as means of identifying the discriminatory stylistic features 

of two sets of western dance melodies for violin. The melodies were represented in WTM 

notation but with additional performance information included (slurring or phrasing, 

ornamentation and articulation.) The results of the analysis were interpreted using See5, a 

software tool for decision tree induction developed by Quinlan (1993). Quinlan's 

approach to inductive learning is introduced in the next section, and is discussed in 

greater depth in Chapter 5. 

3.2.3 Quinlan's Algorithms for Inductive Learning 

Quinlan's work on 103, C4.5 and more recently C5 has made a substantial contribution to 

machine learning. The process of induction allows a set of examples to be used in order 

to create a decision tree, which can also be represented as a rule set. The algorithm 

achieves this by discovering and analysing patterns found in sets of data. The data 

presented to the algorithm for classification purposes must have the following 

characteristics: 
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• There must be a fixed collection of attributes that describe the object or case, and 

these may have either discrete or numeric values. 

• The classes must be pre-defined as this is supervised learning. 

• Each case must belong to one class or another, and there should be substantially 

more cases than there are classes. 

• There must be enough data for patterns to be established. The amount required 

varies depending on the complexity of the classification task (Quinlan, 1993). 

The algorithm needs to have a training set in order to build the decision tree (also known 

as a classifier). It is then able to make classification predictions on further data sets based 

on the tree it has already built. There are a number of ways of using the software to give 

more accurate predictions without increasing the available number of cases. One of these 

is known as cross-validation trials. This option uses the complete set of cases, and from 

this takes a number of different samples as training sets. It builds a new tree each time, 

uses it as a classifier and gives a measure of the success of that tree as a classifier. At the 

end it presents summary information and the average success rate for all of the trials. This 

means that every case is used at some time both as training data and as sample data for 

classification (Quinlan, 1998). The software will also derive a set of rules from the 

decision tree and these are generally easier for the user to interpret. 

3.2.4 Method for Experiment 1 

The preliminary study described here uses the metrical and lower level grouping 

components of GTTM to analyse two sets of 16 bar fiddle melodies, in common time. 

The elements of GTTM enable a set of attributes to be derived that could contribute to the 

characterisation of the melodies. The GTTM analysis enables a value for each attribute to 

be derived for each melody, i.e. which lower level Grouping Preference Rules (GPRs) 

and which Metrical Preference Rules (MPRs) were invoked by the musical information. 

In order to determine which attributes characterise the sets of melodies effectively, the 

software known as See 5 (an implementation of Quinlan's C5 algorithm for Windows) 
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was used. It provides statistics that indicate the accuracy of the classifications made, as 

well as allowing the user to establish which of the given attributes were key to the 

classification process. 

For this study, a total of thirty melodies (fifteen American, fifteen Irish) were analysed. It 

was noted during the analysis phase that certain rules were required frequently; others not 

at all, details of this can be seen in the results section. 

The well-formedness rules were all used as a framework for carrying out the analysis, 

and then the grouping and metrical preference rules (GPRs and MPRs) were applied 

within this framework. A brief outline of the GPRs used follows: 

Lower level preference rules: 

1. Strongly avoid groups containing a single event and in general the smaller the 

group the less preferable it is. 

2a. Consider four notes, n 1, n2, n3, n4; n2 to n3 is heard as a boundary if the interval 

of time before the end of n2 to the beginning of n3 is greater than that between n 1 

and n2, and that between n2 and n3. (i.e. if there is a slur ending/beginning, or a 

rest). 

2b. Consider four notes, n 1, n2, n3, n4. n2 to n3 is heard as a boundary if the attack 

point between n2 and n3 is greater than that between the other pairs (i.e. if n2 is a 

longer note). 

3. Consider four notes as in 2a and 2b above, but hear a boundary in terms of: 

a. Register (Le. the pitch gap between two notes is greater at a boundary). 

b. Changes in dynamics 

c. Changes in articulation 

d. First two notes are of equal length, but are different to second two notes 

which are also equal. 
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Higher level preference rules: 

4. Where the effects picked out by GPRs 2 and 3 are relatively more pronounced, a 

larger level group boundary may be placed. 

5. Prefer grouping analyses that most closely approach the ideal subdivision of 

groups into 2 parts of equal length. 

6. Where two or more segments of the music can be construed as parallel, they 

preferably fonn parallel parts of groups. 

The lower level preference rules (sometimes referred to as local level rules) are 

concerned directly with the musical surface. The higher level rules re-enforce the lower 

level rules but at a higher hierarchical level. The experiments reported in this thesis are 

concerned with the surface level of the music and therefore use the lower level preference 

rules. 

On carrying out the analysis of the melodies it was found that the metrical structures were 

identical for each, as a result it was not necessary to note infonnation about the MPRs. 

Metrical structure did become important though where there was a certain kind of 

deviation from the metrical structure. This is explained in the following paragraph. 

Metrical structure introduces the idea of the tactus. This is "the level of beats that is 

conducted and with which one most naturally coordinates foot-tapping and dance steps" 

(Lerdahl & Jackendoff, 1983, 71). Additionally the tactus should not be too far away 

from the smallest metrical level and should be continuous throughout the piece and the 

speed of it is often somewhere between 40 and 160 beats per minute (thought to be 

related to human pulse level). For all of the melodies in this analysis the tactus level was 

at the quarter note; any levels smaller than the tactus are referred to as the sub-tactus level 

in OITM. The tactus level must also consist of equally spaced beats so for many of these 

melodies attempting to set the tactus at the eighth note level for example would create a 

problem where there are triplets of eighth notes. Eighth note triplets can be written in as a 

sub-tactus event where the tactus is at the quarter note level and for the purposes of this 
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work these have been referred to as deviations from the metrical structure. In addition to 

triplets, handled by GTIM specifically in the way described above, many of the melodies 

feature ornamentations such as grace notes, turns and so on. GTIM does not specifically 

deal with these: "these extra metrical events are fast relative to the tactus. Intuition 

suggests they are exempt from the MWFRs [metrical well-fonnedness rules]" (l..erdahl 

and lackendoff, 1983, 72). These ornaments were therefore not used in the analysis 

according to GTIM, though in the proposed integrated analysis method they can be 

identified by the statistical components. 

An example of an analysis of an Irish melody is shown in Figure 3.1. (A full set of all 

thirty melodies are provided in Appendices Al and A2.) The dots indicate the metrical 

structure. The groupings are indicated by the brackets beneath the stave, and the grouping 

preference rules (GPRs) causing a particular group boundary are indicated in pencil on 

the score for each of the melodies. An 'X' indicates where GPRl caused the suppression 

of a group boundary. Suppression of a boundary occurred where the potential boundaries 

implied a group of only one or two notes. When this arose, the group boundary least 

likely to be preferred by a listener was suppressed. The likely preference of listeners for 

one boundary over another was taken from the order of preference suggested by Lerdahl 

and lackendoff (1983). Occasionally the infonnation provided by them was not enough 

to account for all of the observed conflicts and a further experiment to detennine 

preferences when such conflicts occurred was required. This issue, along with the further 

experiment is discussed in Chapter 4, Section 4.2. On completion of the experiment 

described in Section 4.2 this preliminary experiment was revisited and the results reflect 

any changes due to this. 
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The Pleasures of Home 

Fig 3.1 Analysis of an Irish Reel 'The Pleasures of Home' (Krassen, 1976) showing the 

metrical structure, and the lower level of grouping structure 

The set of attributes that therefore described the music in terms of the GTIM analysis 

were as follows: 

GPR 1: continuous. 

GPR2a: continuous. 

GPR2b: continuous. 

GPR3a: continuous. 

GPR3b: continuous. 

GPR3c: continuous. 

GPR3d: continuous. 

mecdeviations: continuous. 
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The above represent each of the lower level grouping preference rules and the number of 

metrical deviations (caused by triplets). The word 'continuous' after each shows the type 

of data that is given as a value for the attributes i.e. numerical and of any value on a 

continuous scale. Note, only the lower level preference rules were used. The higher level 

preference rules reinforce certain group boundaries to form higher level groupings, but it 

is important to concentrate on the lower level groupings initially as these relate more 

directly to specific musical features. 

The attributes were used to form a data set for use with SeeS. Not all of the available 

preference rules were invoked (GPR 3b was never used) during the analysis but all of the 

rules were left in as attributes for completeness. There are a number of ways in which the 

data can be divided into training data and test data. As the sample of data was fairly small 

(thirty melodies), the experiment was initially carried out using cross-validation trials. 

This means that a number of decision trees are built using different combinations of the 

melodies as training and test data. The results from each are then automatically 

amalgamated to give an overall measure of the success of the classification. A later trial 

was carried out using exactly the same melodies (twelve as test data, eighteen as training 

data) but this time they were played to the human listeners in Experiment 2. 

3.2.5 Results for Experiment 1 

The classification process identified two important attributes that differentiated one set of 

melodies from the other. These were: 

• Number of deviations from the metrical structure (in the form of triplets) was 

greater for the Irish melodies. 

• The number of times GPR 1 was invoked due to a conflict in potential boundaries 

was greater for the American melodies 

The classifiers (trees) were all small, since certain attributes were clearly the most 

important, and also because the number of cases was relatively small. 12115 cases for 
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both Irish and American melodies were classified correctly using these trees. 

See5 indicates the number of training cases associated with each leaf on a decision tree, 

and can also generate rule sets. It provides a value for the predicted accuracy of any 

further classifications made using that rule. E.g. in the simple rule below, it predicts an 

accuracy of 92.9% were it to classify any further melodies using that rule. The rule read 

as "If the number of metrical deviations is greater than 2 then the class is Irish". 

Rule 1: 

mecdeviations > 2 

-> class irish [0.929] 

It is possible to pass the data through See5 ignoring certain attributes. This can be useful 

when there is a need to find out more about the differences between the classes rather 

than just classify them as effectively as possible. The data was passed through SeeS 

again, this time ignoring the metrical deviations attribute. The classification was slightly 

better for the American tunes, this time 12115 melodies were classified correctly as being 

Irish, and 13/15 were classified correctly as American. This time the attributes 

contributing to the classification were the incidence of GPRl, GPR3c and GPR3d. 

• The number of times GPR 1 was invoked due to a conflict in potential boundaries 

was greater for the American melodies 

• The number of changes in articulation due to the onset or ending of slurs was 

greater in the American melodies, causing GPR3c to be invoked more frequently. 

• The incidence of GPR3d was greater in the Irish melodies. This is the change in 

length rule and was invoked mainly at the start or end of a series of triplets 

preceded by or followed by a series of eighth notes. Although GPR3d was 

invoked in both Irish and American melodies for other kinds of change in length 

(for example, two eighth notes followed by two quarter notes). 

The classification of the melodies after analysis using the grouping preference rules (and 
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limited metrical infonnation) was therefore successful, and the nature of SeeS meant that 

it was possible to look at the reasons for the classifications, and hence learn more about 

the music. The following section describes an experiment in which a group of human 

listeners listen to the same set of melodies and are asked to classify a selection of them 

after being presented with some as training data. 

3.2.6 Method for Experiment 2, using Human Listeners 

GTTM aims to represent the intuitions of the listener "who is experienced in a musical 

idiom" (Lerdahl & Jackendoff, 1983). This is a fairly general description and is intended 

to refer to the musical culture with which a listener is familiar, in this case western tonal 

music. A listener with greater familiarity with folk music would still be classed as an 

experienced listener in the same way as a listener who rarely hears that type of music, 

thus the category is very broad. Due to this it was felt appropriate to carry out a similar 

classification experiment on the sets of melodies, but this time using human subjects. 

The subjects were a group of fifteen Computing students from De Montfort University, 

UK. The experiment took about fifty minutes to complete. The students were all in a 

quiet class room where they were initially asked to complete a short questionnaire (see 

Appendix C) that provided information about their musical backgrounds and interests. 

They were then played a recording of 18 of the violin melodies as training data and told 

the classification (Irish or American) of each. Whilst listening to these they were asked to 

write down anything that they felt characterised the melodies as either Irish or American. 

A further twelve melodies were then played in a random order as test data and the 

students asked to classify them as either American or Irish, and to try to give a reason 

where possible. The melodies were played exactly as written (with slurs and 

ornamentations as given in the scores), so that information was as close as possible to that 

used in the Experiment 1. 
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3.2.7 Results for Experiment 2 

The students all had similar backgrounds: some had limited musical training (recorder at 

school for example), one student played an instrument, all listened to western popular 

music but none of them listened specifically to folk music (except for familiarity with 

music for shows such as River Dance that features Irish dance melodies). The results for 

this experiment showed a high degree of success in terms of classifying the melodies. 

Only one student classified as little as 6/12 melodies correctly, and all of the others 

scored higher than this (mean score 8.7 out of 12 which is an accuracy of 72.5%, if the 

subjects had selected their answers randomly the expected percentage of correct 

responses would be 50). The results using GTTM analysis and See5 gave an accuracy of 

80% (and 83.3% when the metrical deviations attribute was ignored) when used for 

classifying the melodies. The reasons given for the classifications (as well as the noted 

characterising features) also seemed to fit with some of the attributes derived from the 

GTTM analysis; these included such observations as the Irish melodies had more 'flow', 

'consistent rhythm'; the American melodies had more long notes, more 'changes in 

notes'. There were also more general observations such as the American melodies had a 

more 'country & western' or a 'cowboy' feel to them. 

3.2.8 Discussion of Results for both Experiments 

The results for Experiment 1 were successful as even a limited analysis has highlighted 

differences between the two types of melodies. Cross validation in general enables a 

better set of results to be achieved, though a further construction of a classifier that used 

18 melodies as training data (the same 18 as the students listened to as training data) and 

12 as test data in order to make a more valid comparison with the results of Experiment 2 

still classified the melodies with a similar degree of success (83.3% of the test data 

classified correctly). The classifications were based on an attribute that featured 

prominently in the cross-validation trials, the number of deviations from the metrical 

structure. A bigger data set is likely to have given a larger and therefore more complex 

tree, and of course more attributes from a broader analysis approach would be beneficial. 
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These issues will be addressed now that this preliminary study has shown that the 

approach yields positive results. 

To achieve a comprehensive analysis of sets of melodies. the identification of many more 

key features is necessary. For example. although grouping preference rule 3c is invoked 

more frequently in the American melodies (due to a change in articulation with the onset 

or ending of a slur). a more specific feature relating to this is the beat in the bar where the 

slur begins. This is often the fourth and eighth quaver in the bar in American fiddle 

melodies. but more often falls on a strong beat in Irish melodies. The current analysis 

does not give emphasis to this. 

The actual construction of the melodies in terms of notes. specific types of 

ornamentation. use of inflection and so on, have also been overlooked. Some of these 

features could be recognised by the remaining elements of GTTM (such as time span 

reduction and prolongation reduction not considered in this work). but other methods of 

analysis must also be considered if complete sets of characteristics are to be achieved. 

Experiments focusing on alternative analysis methods are described in sections 3.3 and 

3.4 

The results for experiment 2 showed that after listening to the training data. and noting 

down any features that seemed to characterise the given styles. all but one student was 

able to classify more than half of the melodies correctly. The proportion of correct 

classifications was not as high as when using GTTM and SeeS, but nevertheless was an 

interesting and significant result (an accuracy of 72.5% whereas the expected correct 

responses if the classifications had been guessed would be 50%). 

The students could be classified as experienced listeners in the domain as they were all 

familiar with western tonal music by virtue of having lived in this culture for all or most 

of their lives. (and GTTM aims to represent the intuitions of experienced listeners). 

Additionally. about half of them had played an instrument for at least a short period of 

time. and most of them stated that they frequently listened to current popular music. None 
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of them had a specific interest in western folk music, though their responses to the 

questions showed that they had heard it in films or via other broadcasting means, and 

were able to describe features that they had learned to associate with certain styles of 

music (e.g. 'cowboy music'). They all appeared to make use of the training melodies, and 

had written notes during the experiment explaining what they had heard in order to aid 

them with the classification of the test melodies. 

3.2.9 Conclusion for Experiments 1 and 2 

A particularly interesting feature of studying the styles of melodies like these is the way 

in which they have travelled and developed. Many of these melodies that sound 

stylistically either Irish or American, may well have travelled (mainly from Ireland to 

America) in their lifetimes, and will have been adapted and developed as this has taken 

place. Their current versions give them a particular style; this can be due to the approach 

to performance or to the development of structure and rhythms which may incorporate 

features of other music prevalent in a region, (e.g. American melodies feature 

syncopation, generally thought to be from African and Jazz influences). GTIM, as a 

formal approach to analysis appears to pick out some of these features this enabling the 

successful classifications in experiment 1. 

As an initial study the approach described has proved to be successful and it shows that 

there is scope for further work with musical data in this context. The results show that 

analysis techniques aimed at Western art music can be used with certain types of folk 

music in order to highlight characteristics of the style of that music, and that the 

classifications made can be similar to those made by human listeners. However it is clear 

that to achieve the level of characteristic information required, a broader approach to 

analysis is necessary, and this should draw from a number of existing techniques in order 

to form an effective integrated method. The evidence suggests that Inductive Learning 

appears is an effective way of finding the most important characteristics of the musical 

styles. 
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The next section describes an experiment in which a statistical analysis method is used to 

analyse the same selection of melodies. 

3.3 Analysis of Fiddle Melodies using the Statistical method of Tomas O'Cannaln, 

Experiment 3. 

3.3.1 Introduction 

This section addresses the area of style classification of folk melodies using a statistical 

analysis technique, that of Thomas O'Canainn (1978). O'Canainn is well known for his 

work on the study of Irish music and is also a practitioner having previously held the title 

of 'All Ireland Uillean Piper'. His approach to the analysis of Irish tunes is not well 

tested and is derived from a more discursive account of the music, however as a method 

aimed at this genre of music specifically it makes it of relevance to this study and worthy 

of testing on the sets of tunes. His approach has some similarity with the work of Sen & 

Haihong (1992) on scale tone functions cited in Chapter 2; where the authors observe that 

the scalar materials involved in the structure of Chinese folk melodies can be broken into 

framework tones, supporting and embellishing tones. Their results show that most of the 

folk melodies have two tones that appear to be the most important (referred to as 

framework tones), but some have three, and these all appear to be from a particular 

region. 

For this experiment, the same set of thirty sixteen bar melodies were used. fifteen of 

which were American and the other fifteen Irish, as described in 3.1. O'Canainn's analysis 

was carried out on all of the melodies enabling a set of ten attributes for each melody to 

be derived. 

The attributes derived from this analysis process were similarly passed through Quinlan's 

See5 algorithm to enable identification of the key characteristics of the melodies, with 

respect to cultural background. The results were compared with the first experiment 

described in section 3.2, where the Same melodies were analysed using the lower level 
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GPRs (and to a limited extent MPRs) of GTIM. 

3.3.2 O'Canainn's Method of Analysis 

This is an example of a fairly simple analysis process designed for work with folk 

melodies and is based on the idea of note frequency. O'Canainn applied the method to a 

number of melodies, showing that in Irish dance tunes there is a tendency to concentrate 

on only a few notes within the scale, and to return frequently to these notes throughout 

the tune. The method requires the allocation of points to notes for the reasons indicated 

below: 

• each occurrence of a note 

• any note falling on a strong beat 

• the highest note on its first appearance 

• the lowest note on its first appearance 

• any note proceeded to by an interval greater than a fifth 

• the first stressed note 

• a long note (relative to the modal note length in the melody) 

O'Canainn's own analyses showed that the most important notes resulting from this 

analysis were not necessarily the same as those that would result from a more fonnal 

analysis of key signature. For example, the notes with the maximum and second 

maximum frequency of points were not necessarily the tonic and the dominant as might 

be expected, and hence he concluded that the tunes examined had a complex tonality. 

3.3.3 Experimental Method 

Each of the thirty melodies was analysed according to the rules outlined in section 3.2. 

The number of points for each note in every melody was then used to derive a series of 

attributes that describe features of the melody. The attributes were derived as follows: 
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• The note with the highest number of points 

• The note with second highest number of points 

• The note with the lowest number of points 

• The note on which the first stressed note falls 

• Percentage of points allocated to the key signature tonic 

• Percentage of points allocated to the key signature dominant 

• Mean number of points per note 

• Standard deviation of points for each note 

• Percentage of points allocated for a long note 

• Percentage of points allocated for a large interval (fifth or more) 

Values for the first four attributes were described using the standard naming for notes of 

a diatonic scale (Le. tonic, supertonic, medient, subdominant, dominant. submedient, 

leading note). The remaining attributes all had numeric (and continuous) values. 

The results of this analysis were then used as input for the See5 decision tree induction 

software. Tests were carried out using cross validation trials since the data set was small 

and rule sets were generated for all trials. 

3.3.4 Summarised Results for Experiment 3 

The results were positive in that they showed that the melodies could be classified 

according to cultural background using the attributes from the analysis (76.6% classified 

correctly), however only one attribute stood out as being useful as a classifier for the 

melodies, and this was the mean number of long notes (higher for American tunes). If 

this attribute was ignored the classification was quite poor based on the remaining 

attributes, although some weaker characteristics could be picked out. The results are 

discussed further in the following section. 
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3.3.5 Discussion 

The most important characteristic was the number of points allocated due to the note 

being longer than the average (modal) length. This is not surprising, since an examination 

of the scores shows that the Irish melodies are often a stream of notes of equal length, 

with longer notes appearing mainly at the end of a section. Many of the American 

melodies however have more variation in the rhythm. 

This could also account for the variation in the mean number of points per note (higher 

for Irish though not used for classification by See5 in the first set of cross-validation 

trials), since the note frequency will be greater if there are less long notes. Using the 

mean as an attribute is probably not so helpful in retrospect since it could be hiding more 

significant features. 

As described in experiment 1, it is possible to pass the data through See5 ignoring certain 

attributes, when seeking to uncover more about the differences between the classes rather 

than just classify them as effectively as possible. The data was therefore passed though 

See5 with the attribute 'percentage of points allocated for a long note' set to 'ignore'. The 

resulting classification was poor (8/15 Irish melodies classified correctly, 9115 American 

melodies classified correctly which is an overall rate of 56.7%) but the trees enable 

certain tendencies to be observed. 

The American tunes tended to have slightly more points on the key signature tonic and 

dominant than the Irish tunes. According to Q'Canainn this would imply a less complex 

tonality and he defines this as being where the melodies do not move to the tonic and 

dominant as frequently as expected, instead they move to less important tones in the tonal 

hierarchy for the given key signature. 

The standard deviation of points per note appeared in some trees as a weak means of 

classification, but these were relatively few and resulted in a high proportion of errors 

when used to classify. Nevertheless this suggests further study of the range and 
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distribution of notes within a melody. The occurrences of notes within its specific octave 

could also add more value to this. 

A number of trees attached limited importance to the second maximum number of points 

awarded, (supertonic, subdominant, leading note for Irish melodies; tonic, medient, 

submedient for American melodies). The expected result for this would be the dominant 

as this is the second most important tone in the tonal hierarchy. This therefore shows an 

interesting feature but it is not specific enough as it stands to be very useful. There was 

no pattern to the note for which the maximum points were awarded, although for all of 

the tunes there was a tendency for this not to be the tonic (which would be the expected 

result), and this tendency was greater for the Irish melodies. 

3.3.6 Comparison with experiments 1 and 2 (Section 3.2) 

The earlier study of the same melodies using the GTTM (Section 3.2 and Carter et al. 

1999) showed that it was possible to classify the tunes successfully according to the 

positioning of group boundaries and consideration of metrical information. The analysis 

was carried out using the well-formedness and preference rules. The analysis using 

O'Canainn's method gives reasonably good results in terms of correct classifications, 

however only one attribute caused this with a high degree of success, and if this one was 

ignored classification was poor. Some of the rules in GTIM overlap with the reasons for 

awarding points in O'Canainn's method, for example, a group boundary is created in 

GTTM for large intervals, and for long notes; in O'Canainn's method points are allocated 

for intervals greater than a fifth, and also for long notes. 

The key features identified by GTIM were as follows: deviations from metrical structure 

(caused by frequent occurrence of triplets in Irish tunes); and group boundaries due to the 

greater frequency of changes in articulation and occurrence of longer notes in American 

tunes. 
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O'Canainn's method identified the most important feature as one that was weakly 

identified by GTIM i.e. the more frequent occurrence of long notes in American tunes. 

GTIM would not pick these out every time because the long notes in the American tunes 

appear in batches close together and GPR! in GTIM states that small groups must be 

avoided, thus long notes did not necessarily cause a new group boundary every time. 

Occurrence of larger intervals appeared to happen to a similar degree in both types of 

analysis illustrating an overlap. The different levels of complexity in tonality identified 

by O'Canainn's method were not apparent in the results of the analysis using GTIM. 

Although methods such as O'Cannain's are largely statistical, and do not claim to 

represent listeners intuitions (as does GTIM), they can still provide valid information 

about the stylistic characteristics of the melodies. Additionally, some parallels with the 

mechanisms used in these methods can be drawn with methods such as GTIM; for 

example, in 0 Canainn's model, an extra point is given for a pitch that falls after an 

interval of a fifth or more; in GTIM, a large interval can be a reason for choosing a 

group boundary (GPR3a). Also there is evidence to suggest (Eerola et a1. 2001, Jarvinen 

et a1. 1999, Krumhansl et al. 1999) that statistical analyses can provide adequate 

information to enable the classification of musical styles according to their perceptual 

similarities. 

3.3.7 Conclusion 

The analysis method described has proved to be useful as a means of classifying the 

melodies but in a very limited way. It does add some information to the previous study 

using GTIM, though the results are not as specific. The results were successful in that 

the analysis enabled the classification of the melodies, however only a few features were 

drawn out as being important, and the aim is to achieve an analysis method that provides 

a full description of the melodies. Rather than providing a useful means of analysis in 

itself, O'Canainn's method as accounted in this experiment has helped to illustrate that 

there is a place for statistical analysis approaches and that they may well both 

complement and overlap the cognitive approaches to analysis. Further work is required to 
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derive an integrated method that fully describes the styles in tenns of their perceptual 

similarities. The conclusion to be drawn from this then is that statistical methods in 

general can provide useful infonnation about music and that such infonnation may also 

correlate with the way that human listeners perceive the music. O'Canainn's statistical 

method was helpful in only a limited way in the preliminary experiment and hence in 

order to propose an integrated method of analysis a more comprehensive statistically 

based method might be more infonnative. Such a method does already exist and has been 

implemented as part of a computerised tool kit known as the Humdrum Toolkit (Huron, 

1999). Humdrum is discussed fully in Chapter 5. 

The next section looks at the possible contribution of an alternative well tested cognitive 

approach to analysis, that of Eugene Nannour, and then Chapter 4 describes a repeat of 

some of these studies with a larger sample of melodies collected from wider sources. 

3.4 The Implication Realisation (IR) Model Applied to Folk Dance Melodies, 

Experiment 4 

3.4.1 Introduction 

This section addresses the area of style classification of folk melodies using the 

Implication Realisation (IR) Model of Nannour (1977, 1990, 1992). The same set of 

thirty sixteen bar melodies were used for the study, fifteen of which were American and 

the other fifteen Irish, as described in 4.2. The IR analysis was carried out on all of the 

melodies enabling a set of seven attributes for each melody to be derived. 

In order to detennine which attributes characterise the sets of melodies effectively 

Quinlan's See5 (1998), was used as described in section 3.2. The results are compared 

with the experiments described in Sections 3.2 and 3.3. 

Chapter 3 - Preliminary Experiments on Analysis of Fiddle Melodies , 60 



3.4.2 The Implication Realisation (lR) Model 

Narmour's model is based on the idea that listeners form expectancies about how a 

melody will continue as they are listening to it. Such expectancies are thought to derive 

from both innate and learned factors, (Schellenberg, 1996). Meyer (1956) proposed that 

emotion and affect may be increased when musical events conflict with a listener's 

expectation. Narmour extended this idea which resulted in a formal description of 

melodic implications and formed the basis of the IR model. The model includes a set of 

Implicative Principles, described below. The descriptions are adapted from Thompson 

and Stainton (1998). Each description refers to the interval between two consecutive 

tones (the implicative interval) and the possible subsequent or continuation tones that the 

interval in question might cause a listener to expect. 

1. Registral Direction: Small intervals (a perfect fourth or less) imply subsequent pitch 

movement in the same registral direction. Large intervals (a perfect fifth or more) imply a 

subsequent pitch movement in the opposite direction. 

2. Intervallic Difference: Small intervals imply a subsequent interval that is similar in size 

(+/- 3 semitones if registral direction continues, +/- 2 semi tones if registral direction 

changes), whereas large intervals imply a subsequent interval that is relatively smaller. 

3. Registral Return: An interval of any size may be followed by a return to a pitch that is 

near (within 2 semi-tones) or in unison with the first note in the interval. 

4. Proximity: An interval of any size implies a subsequent note within a perfect fourth of 

the second note of the interval. 

5. Melodic Closure: Closure is increased by two aspects of pitch pattern: a change in 

registral direction, and movement from a larger to a smaller interval. 

Thompson and Stainton (1998) used these principles to analyse over 13 ()()() continuation 
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notes from a sample of 513 bohemian folk song melodies. This is a development of an 

earlier study by Thompson (1997) where smaller samples were used. The musical 

samples were available from a database known as the Essen database (Schaffrath, 1995). 

This database is available for research purposes though it does not contain instrumental 

music, focussing only on folk songs. The intervals they picked were classed as either 

strongly implicative or closural (i.e. not implicative). They used the Humdrum toolkit 

(Huron, 1995) to identify the intervals that were to be classed as either implicative or 

closural, and based this identification on the following: 

1. "intervals are defined as implicative if the subsequent tone moved to a weaker 

metric position, decreased in tonal stability, decreased or stayed the same in 

duration" (Thompson and Stainton, 1998); 

2. "intervals are defined as cIosural if the subsequent note moved to a stronger 

metric position, increased in tonal stability, increased or did not change in 

duration" (Thompson and Stainton, 1998). 

Similar means of determining intervals as being implicative for subsequent analysis 

according to the IR model were employed by Krumhansl (1995) and are described here in 

an email exchange with her (2002): 

"The fragments [in the experiment carried out by Krumhansl in 1995] ended with one of 

the chosen implicative intervals that met the following criteria: 1) the second tone of the 

implicative interval could not be longer than the first tone, 2) the second tone had to be 

lower than the first tone in the tonal hierarchy of the key of the fragment, 3) the second 

tone had to be on a metrically weaker beat than the first tone, 4) the second tone could 

not occur in the last or second-to-Iast position of a phrase, and 5) the second tone had to 

be 16 to 21 tones from the beginning of a phrase. The first four criteria ensured that the 

last two tones of each fragment were unclosed and truly implicative. The fifth criterion 

ensured that all fragments would be approximately equal in length. Of course, how 

implicative/closed something is, is a matter of degree." 
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Krumhansl's study of 1995 compared fulfilment or denial of expectancies as predicted by 

the IR model with a rating from listeners of how well a continuation note followed a 

melodic stimulus. The study supported the set of principles. Similarly Thompson and 

Stainton (1998) found support for the principles whilst Schellenberg (1996) supports the 

model in general, but he argues that it is over specified and can be reduced to a two factor 

model. The two factors he reduces the IR model to are "registral direction-revised and 

registral return-revised" (1996; 113) and he summarises "the two factor model proposes 

that tone-to-tone expectancies are determined primarily by proximity; upcoming tones in 

a melody are expected to be proximate to tones heard previously. When listeners hear 

successive tones that are non-proximate (relatively distant in pitch), they expect the next 

tone to fill in the gap" (1996, 113). For the experiments in this study however the original 

five principles of Narmour were used for the analysis of the selected intervals. 

3.4.3 Method for Experiment 4 

The experiment used the same thirty melodies as in the experiments described earlier in 

this chapter. It was decided initially to take two implicative intervals from each melody 

and to analyse these according to the IR model. This would enable a set of characteristics 

to be determined for each interval which could then be passed through the SeeS software 

to investigate if it was possible to classify the intervals as being from either an Irish or an 

American melody. In order to analyse them using the IR model it was necessary first of 

all to determine which intervals to use, and for this the first four of Krumhansl's criteria 

as described in the previous section were used and the fifth criterion was altered slightly. 

The fifth criterion (that the second tone had to be 16 to 21 tones from the beginning of a 

phrase) was varied as follows. Two possible intervals were chosen for each melody. All 

of the melodies are written as two eight bar sections (often referred to by musicians as 

section A and section B) and the fragments of music from which the implicative intervals 

were to be taken were the first three bars in Section A and the first three bars in Section 

B. The first interval in the third bar was to be used in each case. When the first interval in 

the third bar was unsuitable as an implicative interval (based on Krumhansl, previous 

section), then the next suitable interval after it was used instead. This was noted and used 
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as an attribute titled 'position'. The chosen intervals were marked on the scores with a 

pencilled rectangle around the two notes. An example of this can be seen in Figure 4.1 

(earlier in this Chapter), and a full set of all of the melodies is provided in Appendices Al 

and A2. 

The attributes or characteristics that could be derived from this analysis are shown below 

and in each case the possible values that the attribute could take are given. 

interval_size: s,L. (i.e. small or large) 

registral_direction: y, n. (y if fulfilled, n if denied) 

intervallic_difference: y, n. 

registral_retum: y, n. 

proximity: y, n. 

closure: y, n. 

position: 1, 1.5,2,3,4,b4_1 ,b4_2. 

Attributes 2 to 6 represent the five implicative principles of Narmour, and it should be 

noted that the sixth attribute, regarding closure, was only classed as 'yes' when both 

elements of closure as described by Thompson and Stainton (see previous section) were 

satisfied. The seventh attribute 'position' was given a set of allowed values. These can be 

interpreted as follows: '1' refers to the first quarter beat in the third bar, '2', to the second 

and so on, '1.5 refers to the third eighth beat in the third bar (i.e. falling between' 1 ' and 

'2') and b4_1 and b4_2 refer to the first and second quarter beats in the fourth bar 

respectively. If any other positions had been noted in the analysis then these would also 

have been included in the list of allowed values. 

The analysis was therefore of sixty intervals, thirty from Irish melodies and thirty from 

American melodies. The attribute values for each interval were passed through See5 and 

the results are described in the following section. 
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3.4.4 Results for Experiment 4 

The results for this experiment highlight some interesting features resulting from the 

analysis and provide a basis for further work. The trees formed classified 93% of the 

intervals taken from American melodies correctly, but in 47% of cases also classified 

those from Irish melodies as being American. Table 3.1 below shows a summary from 

the SeeS results. This indicates that 28/30 American intervals were classed correctly. but 

only 16/30 Irish intervals were classed correctly. 

(a) (b) ~ Classified as 

16 14 (a): class Irish 

2 28 (b): class American 

Table 3.1 Table to show results from cross-validation trials from See5. 

The characteristics picked out as being the most relevant for the classification by See S 

were registral direction, registral return, intervallic difference and closure. 

Below is an example of a rule generated from one of the cross validation trials. 

Rule 3 : (cover 17) 

intervallic_difference = y 

closure = y 

-> class american [0.737] 

Rule 3 above shows that there is a 73.7% chance of classifying an interval correctly as 

American using this rule and that the rule applies to 17 cases in total (the cases might be 

either Irish or American since some will have been classified incorrectly as American). 
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The Irish implicative intervals tended to be fulfilled with respect to registral direction and 

registral return and unfulfilled with respect to intervallic difference. The American 

intervals tended to be fulfilled with respect to intervallic difference and closure. 

3.4.5 Discussion of Results and Conclusion 

The most important discriminators have been identified as registral direction, registral 

return, intervallic difference and closure. The experiment shows that some of the 

characteristics identified by the IR model can be used to discriminate between the origins 

of the melodies but that some cannot; but what does it mean if, for example, some 

intervals are more likely to be fulfilled with respect to registral direction, or closure etc? 

It is possible to trace back to the interval on the scored music for each case that satisfies a 

particular rule, to enable an interpretation of what these rules mean in terms of the music. 

For this preliminary experiment this process was not carried out. The reason for this is 

that the main purpose of this preliminary experiment is to investigate the potential of the 

IR model in the context of folk dance melodies using a small sample. The results show 

that it does highlight differences between the two types of melodies examined and that 

further experiments with larger samples would be worthwhile. The further experiments 

are described in Chapter 4. 

The following section examines the results of this experiment in the light of those 

described in Sections 3.2 and 3.3. 

3.5 General Discussion of Preliminary Experiments 

The results of experiment 1 showed that GTTM analysis enabled a series of 

characteristics to be derived for each melody and that there were commonalities between 

the Irish and American melodies with respect to some of the attributes, and differences 

with respect to others. These results were shown to have similarities with the ways in 

which human listeners classed the melodies after a period of training. Experiment 3 
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which used a statistical approach also enabled successful classification according to some 

of the attributes, and some of the attributes identified by this approach had similarities 

with those identified by GTTM. Experiment 4 has given a different set of attributes, and 

some of these enabled the identification of differences between the origins of the 

melodies. 

In general then, it seems that the approaches to analysis do complement each other and 

that they can each tell us something useful about the characteristics of the melodies. 

Some of them overlap in terms of what they identify as important characteristics but this 

is not a problem, in fact it is interesting in its own right as it tells us more about how the 

different approaches relate to each other. Chapter 6 gives an account of a proposed 

integrative approach to analysis. The suggested approach combines the features of the 

techniques employed in these experiments. 

One of the problems of such experiments is the time factor. A great deal of time is taken 

in analysing the melodies manually, and then preparing the results of the musical analysis 

for classification and hence interpretation with See5 (or some other classification or 

statistical process). This leads to a requirement for an automatic (or computer) tool as a 

way of speeding up the music analysis process. In order to develop such an aid however, 

it is necessary to consider the most appropriate way in which to approach this, 

particularly with respect to representation of the musical data on computer. Chapter 5 

considers the issue of music representation. 

Chapter 4 describes further experiments in which a larger sample of melodies are 

analysed according to GTIM and the IR model. The new melodies are not analysed 

according to O'Canainn's method since the conclusion earlier observed that results with 

this method were poor and not as informative as GTIM and the IR model. Also there are 

other statistical methods already available that could be used, in particular the statistical 

facilities of the Humdrum toolkit (Huron, 1995). 
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CHAPTER 4 - Further Experiments 

4.1 Introduction 

This Chapter describes three further experiments and a discussion of inductive 

learning techniques. The first (Section 4.2) was designed to remove certain 

ambiguities that occur when applying GTTM analysis to folk dance tunes. The second 

(Section 4.3) describes the analysis of 60 folk dance melodies for violin using GTTM, 

and the third (Section 4.4) describes the analysis of the same melodies using the IR 

model. The results are discussed in Sections 4.3.2 and 4.4.2 respectively. All of the 

experiments so far have used SeeS where classification was required. Section 4.S 

discusses classification techniques; in particular an alternative decision tree induction 

tool known as CART (Friedman, 1977) and more generally the potential of neural 

networks as classifiers for this type of problem. The Chapter concludes by proposing 

a integrated approach for the analysis of the folk dance melodies for violin. 

4.2 Experiment to Remove Ambiguities in GTTM Analysis 

4.2.1 Motivation for the Experiment 

It was observed in the preliminary experiment (Chapter 3) that when analysing 

melodies using GTTM, certain conflicts were apparent. Carrying out GTIM analysis 

on a piece of music can require decisions to be made by the analyst from time to time. 

The usual reason for this, is that GPR 1 states that small groups should not be 

preferred, yet occasionally there are potential group boundaries that would result in a 

small group (of one or two notes for example). On occasions like this it is necessary to 

decide which of the group boundaries is likely to be preferred by a typical listener. 

Lerdahl and lackendoff give some advice about this indicating that in general the 

order of preference would be GPR2a, GPR3b, GPR2b, then GPRs 3a, 3c and 3d but 

they do not give a preferred order for these last three. They also do not give 

weightings to these and suggest that it could be an area for further research 

particularly for potential computer applications, though they do not believe this to be 

necessary for their own work, preferring to leave room for the intuitions of the 

analyst. Oeliege (1987) carried out experimental research to establish an order of 
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salience for the rules (see Chapter 2) and found that there are different orders for 

musicians (two years experience of musical training or more) and non-musicians. The 

order of salience of the rules for musicians was slightly different to that of the non

musicians and there were some differences between her results and the order 

suggested by Lerdahl and lackendoff. Later publications by Lerdahl and lackendoff 

(1996) and Lerdahl(200 1) have not included any changes as a result of the work by 

Deliege. Since the investigations into the Irish and American melodies are intended to 

be based on GTTM as it is described by Lerdahl and lackendoff, the order of likely 

preference of the rules where there is conflict was taken from their work rather than 

that of Deliege. Where there was potential for further conflict a decision had to be 

taken, and for this reason the experiment described in this section was carried out. 

Having already completed the analysis of 30 melodies using GTTM it was observed 

that occasionally there were conflicts as described above when applying the GPRs. An 

experiment was therefore devised to find out the preferred groupings assigned by 

listeners when hearing such conflicts in short musical sequences taken from or 

designed to be similar to the American and Irish melodies. The results of this 

experiment enabled the conflicts to be resolved both in the preliminary analysis using 

GTTM and also in the analysis of the additional 30 used in the experiment described 

in Section 4.3. Preliminary work on these showed similar conflicts arising. 

4.2.2 Method 

The experiment included conflicts that had been observed to happen in the set of 60 

melodies and that could not be resolved by using the order of preference suggested by 

Lerdahl and lackendoff. Future work could include a full test of all possible conflicts 

in this context. The possible conflicts that needed to be tested are those listed below. 

• GPR2b against GPRs 3c and 3a 

• GPR2b against GPRs 3d and 3a 

• GPR2b against GPRs 3d and 3c 

Although GPR2b is preferred above GPR3c and above GPR3a, some potential group 

Chapter 4 - Further Experiments 69 



boundaries might be due to more than one GPR. This poses the question 'do rules 

such as GPR3c and GPR3a when both apparent at a potential boundary override the 

preference for GPR2b?' . Hence the above tests needed to be carried out. There is only 

a limited way in which to compare GPRs 3d and 3c together or GPRs 3d and 3a 

against GPR2b. This is because it is not possible to have GPR3d occurring either one 

or two notes before GPR2b due to the patterns of notes required by the definitions of 

the rules, nor is it possible for GPR3d to occur one note after GPR2b. It is possible for 

GPR3d to occur 2 notes after GPR2b and so this conflict was tested. GPR3b was not 

required in any of the analyses and so was not tested in any way. However, Lerdahl 

and lackendoff did not give an order of preference for GPRs 3a, 3c and 3d, yet these 

did cause potential conflicts and so each of the following pairs were also tested. 

• GPR3d against GPR3c 

• GPR3a against GPR3c 

• GPR3a against GPR3d 

Short sequences of tunes were either taken directly or adapted from the melodies in 

order to have ten sequences of notes that exhibited each of the above conflicts. The 

reason for the adaptations was that in some cases there were not any suitable 

examples of the conflict in question and in others there may have been further non

conflicting group boundaries in the sequence of notes as well as the two under 

conflict, and it was therefore necessary to remove these for the purposes of the 

experiment. All of the sequences were six to eight quarter beats in length. There were 

two examples for each possible conflict and the order of the conflicting rules was 

reversed for each, i.e. there was a sequence that firstly had a potential group boundary 

due to GPR3d followed by a potential boundary due to GPR3c; then there was another 

sequence that firstly had a potential boundary due to GPR3c followed by a potential 

boundary due to GPR3d. The sequences were recorded by the author on a violin and 

played to the subjects (A score representation of the fragments can be found in 

Appendix EI). A pilot study showed that it was necessary to play the sequences once 

at a slower pace than the natural speed to enable the listeners to be able to describe 

where they thought the boundary was. The subjects were allowed to listen to the 

sequences as many times as they felt necessary to make a decision (it was decided to 
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do this because the pilot study showed it necessary and in the Deliege (1987) 

experiment the subjects were allowed to do this.) Ten subjects were played the 

sequences and instructions to the subjects were given verbally and were as follows: 

• You will be played 10 short excerpts from folk dance melodies. Each one will 

be played initially three times and one of these occasions it will be at a slightly 

slower pace. Your task is to say if you think you would naturally divide the 

sequence of notes into groups or segments and if so to describe to me where 

the most prominent place for the group boundary is in your opinion. Although 

the sequences are only played initially three times, you can listen to them as 

many times as you like before making a decision. ' 

The subjects all had some musical experience (either as trained or self taught 

instrumentalists). They described where they felt the group boundary should be and 

this was noted by the author. along with any additional comments volunteered. 

4.2.3 Results 

The results are presented in the table in Appendix E2 and are summarised below. 

(i.) GPR3a conflicting with GPR3c. Both examples with conflicts between these two 

rules resulted in a preference for GPR3c. 5110 subjects picked GPR3c in the first 

example where 3c caused the second potential boundary. None picked GPR3a in this 

example. 4/10 picked a point that was on the bar line and that also represented a place 

where repetition of the first four notes took place. This could point to the influence of 

parallelism. GTTM recognises parallelism but as a higher level grouping (not at the 

local level). Second level groupings re-enforce lower group boundaries. At the point 

where parallelism is evident in the excerpts. there are no lower level group boundaries 

and hence there would be no higher level boundaries either. This could suggest a 

variation in the implementation of GTTM at the lower level when applied to these 

types of tunes where group boundaries due to parallelism are identified at the lower 

level. This experiment was not designed to test for this however so this observation 

can be used as a reason to propose further experiments and will be discussed more 

fully in Chapter 7 on future work. 
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(ii.) GPR2b conflicting with both GPR3c and GPR3a. The majority of subjects picked 

GPR2b as the group boundary regardless of the order. Though in the example where 

GPRs 3a/3c were after GPR2b, 4/10 people picked GPRs 3a/3c (6/10 picked GPR2b). 

This could be to do with the order, but it could also be that there is a preference for 

group boundaries at a later point or nearer to the middle in short excerpts such as 

those used in these examples. 

(iii.) GPR2b conflicting with GPRs3c/3d and 3a/3d. The majority of subjects picked 

GPR2b (7/10 and 8110) respectively. In both of these examples GPR2b was the first 

potential boundary. The order may therefore not be particularly significant but, a 

tendency to listen for a boundary somewhere near the middle of the excerpt is still 

possible. 

(iv.) GPR3a against GPR3d. For these two the order did appear to be significant. 

Where GPR 3a was first, 4110 picked GPR3d and only 1110 picked GPR3a. Where 

GPR3d was first 7/10 picked 3a and only 2110 3d. In both cases some subjects picked 

group boundaries where GTTM did not predict any. 

(v.) GPR3c against GPR3d. Where GPR3d was the first potential boundary, 5/10 

picked 3d and 3/10 picked GPR3c. Where GPR 3d was first 4/10 subjects picked 

GPR3c and only 1110 picked GPR3d. The second highest preference here was 'after 5 

notes' which is one note after the position of the potential boundary GPR3d. This 

shows some similarities with the findings of Deliege (1987) described in Chapter 2. 

Her experimental results showed a preference for a postponed segmentation (by one 

note) when GPR3d is evident and the second pair of notes surrounding the potential 

group boundary according to GTIM are each longer than the first pair. Again there is 

potential here for further investigation and this is discussed further in Chapter 7 on 

future work. 

These results enable an order of preference to be derived where conflicts are likely to 

occur and used in addition to the order of preference as suggested by Lerdahl and 

Jackendoff, it is possible to eliminate the ambiguities when analysing the melodies. 
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These results indicate that where there is a conflict of potential boundaries: 

• GPR3c is preferable to GPR3a regardless of the order in which they occur. 

• Where the order of occurrence is GPR3d then GPR3c, GPR3c is preferable to 

GPR3d. 

• Where the order of occurrence is GPR3c then GPR3d, GPR3d is preferable to 

GPR3c. 

• Where the order of occurrence is GPR3a then GPR3d, GPR3d is preferable to 

GPR3a. 

• Where the order of occurrence is GPR3d then GPR3a, GPR3a is preferable to 

GPR3d. 

• GPR2b is preferable to any combination of pairs of GPR3a, GPR3c and 

GPR3d. 

Lerdahl and lackendoff (1983) provide the following infonnation: 

• GPR2a has the highest preference, followed by GPR3b, then GPR2b, and then 

GPRs 3a, 3c and 3d. 

In addition to the above, it was taken that any group boundary implied by two out of 

3a, 3c and 3d, would be of a higher preference to a conflicting boundary with only 

one of these boundaries. 

4.2.4 Discussion and Conclusion 

Lerdahl and lackendoff give a general order of preference for the lower level GPRs 

where there is conflict but the preliminary experiments showed that this does not 

account for all possible conflicts. The experiment described in the previous section 

showed that there was a pattern to the preferences of listeners in the context of the 

dance melodies for those conflicts not covered in Lerdahl and Jackendoffs text. The 

results of this experiment therefore enabled the GTIM analysis described in Section 

4.3 to be carried out in an algorithmic way, and as indicated in Chapter 3, the 

preliminary experiments were revisited in order to apply the preferences to the 
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observed conflicts in those melodies. 

Although usable patterns were observed in the results there were also,other 

observations that suggest potential for further study in this area. For example, it was 

observed that a small number of the subjects chose the postponed groupings as found 

by Deliege (described in Chapter 2), and two subjects raised this after the experiment, 

observing that they had had difficulty choosing between what they saw as two 

potential boundaries. This suggests potential for future experiments of the same nature 

as those of Deliege (i.e. to find an overall order of salience for the GPRs with an 

emphasis on testing preferences for postponed groupings) but in the context of folk 

dance melodies. There is also evidence to suggest (again comments from two subjects 

after the experiment) that the influence of parallelism on the choice of group 

boundaries could cause conflicts in grouping preferences at the surface level. GPR6 

(where a sequence of notes is heard to be the same as or close to another either at the 

start or end of a group, known as parallelism) is a higher grouping preference rule in 

GTTM which means it would be chosen to re-enforce existing lower level group 

boundaries. However the occasions where the two subjects felt there could be a group 

boundary due to what they described as repetition were at places in the music where 

there were no potential group boundaries according to the other low level GPRs. This 

might suggest that parallelism in this context could be investigated as a lower level 

preference rule rather than a higher level preference rule as indicated by Lerdahl and 

lackendoff. Further experiments to investigate this are proposed in Chapter 7 on 

future work. 

The next section describes the analysis of sixty melodies for violin using GTIM. 

Where there were conflicts regarding potential boundaries, the likely preference of a 

listener was decided according to the order of preference as defined by Lerdahl and 

lackendoff (see above), and where this was not enough to resolve the ambiguities, the 

likely preference was decided according to the result of the experiment described 

earlier in this Section. 
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4.3 Analysis of Melodies Using GTTM 

4.3.1 Method 

For this experiment a further thirty melodies were selected to add to those used in the 

preliminary experiment described in Chapter 3. These needed to be taken from wider 

sources to ensure that the differences in characteristics identified in the preliminary 

experiments were not just due to the sources. There are many sources of tunes 

available and in order to get a truly representative sample they need to be selected 

using an appropriate methodology. Brody (1983) in the Fiddler's Fakebook has done 

just this, and this book was therefore chosen as the source of the additional thirty 

melodies. Brody wanted to compile a book of the most important and interesting 

fiddle tunes for his pupils. In order to do this he catalogued a large number of tunes by 

title and did a tally to find out which had been recorded most often as a way of 

determining the foundation material for inclusion on the book. He then added to this 

those pieces that he knew to be performed frequently though not necessarily recorded. 

He listened to recordings of the tunes to find the most popular ways of playing them 

(in terms of the notes, ornamentation and bowing) and transcribed them according to 

his findings. This procedure took him four years to complete with the aid of a number 

of people and can therefore be regarded as the most realistic compilation possible for 

the purposes of these experiments. 

The preliminary study used Irish reels and American Old Time melodies and hence 

those chosen from Brody's book are also either Irish reels or American Old Time (or 

Blue Grass). Old Time and Blue Grass melodies are derivative of Irish reels and it is 

therefore interesting to study how the American melodies have changed since being 

taken there by Irish emigrants. The tunes are all 16 bars long and usually have repeats. 

When the analysis was carried out the repeats were ignored and only the second time 

bars used in order to keep them all the same length. In one or two cases the melodies 

were shorter (for example a four bar section A, and an eight bar section B), in these 

cases the analysis was carried out still using the second time bar, but scaling the 

number of attributes up to make it equivalent to a sixteen bar melody. 

The melodies were photocopied from the sources and all sixty of these can be found 
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in Appendix 1. The procedure for carrying out the analysis according to the lower 

level grouping preference rules of GTTM was as follows. The score for each tune was 

examined and all of the potential group boundaries were marked in pencil. It was then 

necessary to look for conflicts of boundaries, since GPRI does not allow for small 

groups. This is described as meaning no groups with only one note and probably none 

with two notes. For the purposes of this experiment it was decided not to allow groups 

of either one or two notes, but three or more would be allowed. Where conflicts were 

observed between potential group boundaries within one or two notes of each other, 

one of the boundaries would be crossed out according to the order of preference 

determined in Section 4.2.3. The conflicts were marked with a cross in pencil on the 

scores. Where two notes were played simultaneously (a double stop) the upper note 

was taken. For each of the melodies the potential boundaries due to each GPR were 

totalled and noted on the same sheet. Similarly the crosses (indicating GPRI being 

invoked) were totalled. For incidences of GPR3a ( a larger pitch gap between notes n2 

and n3 than that between n 1 and n2 and between n3 and n4, in a sequence of notes n 1, 

n2, n3, n4.) a decision was taken to only count intervals between n3 and n4 that were 

a perfect fourth or more (5 semitones). The reason for this was that counting smaller 

intervals would result in a very large number of potential boundaries due to GPR3a in 

these melodies, which would in tum result in a large number of incidences of GPRI 

due to conflicts, all of which would lead to an analysis more removed from the kind 

GTTM aims for. Finally, the number of occurrences of triplets was counted and noted. 

The metrical structure was not indicated on the sheets as it is possible to see by eye 

that it would be the same for all of the melodies (as in the preliminary experiments), 

only the occurrence of triplets indicating a deviation from the metrical structure was 

noted. 

The attributes that were derived from this analysis were passed through the decision 

tree induction software, SeeS (Quinlan, 1998) as discussed in Chapter 3. The data was 

analysed with SeeS using cross-validation trials (10 trials as used in the preliminary 

experiments). The new data was first tested on its own to compare the results using 

the initial set of melodies with those from the new source. The two sets of data were 

then combined enabling a total of sixty cases to be used in the cross validation trials. 

Chapter 4 - Further Experiments 76 



4.3.2 Results and discussion 

The data resulting from the analysis of the melodies taken from Brody enabled 14115 

American tunes to be classified correctly and 9115 Irish tunes to be classified correctly 

after cross validation trials with ten folds. This is higher for the American tunes, but 

lower for the Irish tunes than in the preliminary experiments described in Chapter 3. 

The primary reason for classification of the melodies was still metrical deviations, but 

with the new data, there was greater use of other GPRs in order to classify the 

information. The results can be summarised as shown below. 

Tendencies for Irish melodies: 

• Higher number of metrical deviations (due to incidence of triplets) 

• Higher number of occasions where GPR3d was invoked (related to triplets, see 

results of Experiment 1 in Chapter 3). 

• Lower incidence of GPR1, meaning that there were fewer conflicts of 

potential group boundaries. 

Tendencies for American melodies 

• Higher number of occasions where GPR2b was required caused by more 

variation in the rhythm. 

• Higher number of occasions where GPR3a was required caused by the 

tendency for larger pitch gaps between consecutive notes. 

• Number of occasions where GPR3c (change in articulation caused by onset or 

completion of a slur) was greater than 5 or less than or equal to 9 for American 

melodies. 

Although there were some differences between the reasons for classification of the 

two sets of data, there were also substantial similarities and it could still be beneficial 

to combine the results to give a larger dataset for use with See5. The results of the 

cross validation trials with the full set of 60 melodies are summarised below: 

With ten folds 70% of the melodies were classified correctly (22130 classed correctly 

as Irish, 21130 classed correctly as American), and with twenty folds 77% were 
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classified correctly (23/30 for both Irish and American). The reasons can be 

summarised in the same way as those above for the melodies taken from Brody. 

In conclusion, the analysis of the sixty melodies according to the grouping preference 

rules of GTTM (and limited information resulting from the application of metrical 

preference rules) does provide enough information about the two types of melodies to 

enable classification to take place. Classification of the analysis results using SeeS is 

transparent, enabling the reasons and hence specific musical features of the two 

classes of melodies to be identified. Section 4.4 describes the analysis of the same 

sixty melodies using the IR model. 

4.4 Analysis of Melodies using the IR model 

4.4.1 Method 

The thirty melodies taken from Brody (1983) were analysed using the IR model in the 

same way as in the preliminary experiment described in Section 3.4. Photocopies of 

the scores from the preliminary sources and from Brody (available in Appendix Al -

A4) were used to identify suitable implicative intervals. The interval was to be 

selected as detailed in Section 3.4.2 (i.e. the first interval of the third bar in sections A 

and B of each melody, and where this interval did not meet the criteria for being 

implicative according Krumhansl's criteria (1995), then the next suitable interval was 

taken). The intervals used are marked on the score with a pencilled rectangle around 

them. Each interval and its continuation note (i.e. the note immediately after the 

second note of the interval) were checked for either fulfilment or denial against each 

of the five implicative principles of the IR model (described more fully in Section 

3.4). The results for each interval were noted as either y or n (yes or no) on a result 

sheet (an example of a blank result sheet can be found in Appendix D). The 

information could then be written into a text file for potential classification with SeeS. 

The same attribute names were used as in the experiment in Section 3.4 and these 

were as shown below (taken from Section 3.4). 
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interval_size: s,L. (i.e. small or large) 

registral_direction: y, n. (y if fulfilled, n if denied) 

intervallic_difference: y, n. 

registral_retum: y, n. 

proximity: y, n. 

closure: y, n. 

position: 1,1.5,2,3,4,b4_1,b4_2. 

As described in Chapter 3, attributes 2 to 6 represent the five implicative principles of 

Narmour, and it should be noted that the sixth attribute, regarding closure, was only 

classed as 'yes' when both elements of closure as described by Thompson and 

Stainton (1998) were satisfied. The seventh attribute 'position' was given a set of 

allowed values. These can be interpreted as follows: '1' refers to the first quarter beat 

in the third bar, '2', to the second and so on, '1.5 refers to the third eighth beat in the 

third bar (i.e. falling between' l' and '2') and b4_1 and b4_2 refer to the first and 

second quarter beats in the fourth bar respectively. If any other positions had been 

noted in the analysis then these would also have been included in the list of allowed 

values. 

Although there were some differences in the proportions of intervals classified as 

either Irish or American, the reasons were generally the same as for the preliminary 

experiment. This meant that it was a reasonable decision to amalgamate the two sets 

of data to give a bigger sample (SeeS is more efficient with bigger samples). The data 

was therefore amalgamated and passed through SeeS again, using the same set of 

attributes as described above. 

4.4.2 Results and Discussion 

The results for the preliminary experiment described in Section 3.4.5 showed that 

analysis according to the IR model enabled classification of the intervals from 

American melodies successfully (93% classified correctly), but the classification of 

those from Irish melodies was poor (only 53% classified correctly). When the second 

set of intervals from the new melodies (taken from Brody, 1983) were analysed, this 

gave better results. 
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(a) (b) ~ Classified as 

19 11 (a): class irish 

10 20 (b): class american 

Table 4.1 Table to show results/rom cross-validation trials from See5. 

Approximately 66% of each was classified correctly using See5 with cross validation 

trials (10 folds). 

The main reasons for the classifications were generally the same as in the preliminary 

experiment in Chapter 2. The Irish implicative intervals tended to be fulfilled with 

respect to registral direction and registral return and denied with respect to intervallic 

difference. The American intervals tended to be fulfilled with respect to intervallic 

difference and closure. However in addition to this it was noted that there was a 

higher tendency for intervals from the Irish melodies to be fulfilled with respect to 

pitch proximity and a tendency for the intervals from American intervals to be denied 

with respect to this. Also, most of the intervals from American melodies were at the 

first choice of position (Le. the fist interval in the third bar) whereas a higher number 

were at later position for the Irish intervals. 

For the amalgamated results, the classification was as follows: 

(a) (b) ~ Classified as 

34 26 (a): class irish 

14 46 (b): class american 

Table 4.2 Table to show results from cross-validation trials from SeeS. 

This means that 57% of the intervals from the Irish melodies were classified correctly, 

and 77% of the intervals from American melodies were classified correctly. The 

reasons were the same as described above (using melodies from Brody, 1983). 
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What do these results mean in terms of musical features? With the GTIM analysis, 

the results of the classification process with SeeS were relatively easy to interpret; for 

example a higher incidence of GPR2b means that there are more long notes relative to 

surrounding notes, the a higher incidence of GPR3a means that there are more larger 

intervals, and so on. With the IR model it is not so easy to translate the results back 

into musical features. What does is mean in terms of the musical surface, if an interval 

is fulfilled with respect to intervallic difference or registral return? An additional 

feature of SeeS enables the results to be tracked back to their source in the original 

data; this feature is known as cross referencing. It allows the user to look at a list of all 

the rules against all of the cases. The cases have an indicator against them to show 

whether or not they were classified correctly. Clicking on any case shows which rule 

was used to classify it, and clicking on any Rule shows which cases were classified 

(correctly or incorrectly) using that rule. The cases are all numbered and as along as 

the original scores of the melodies used for the analysis process are also numbered it 

is possible to relate back to the intervals concerned. 

The table below gives a summary of the tendencies of both types of melody in terms 

of fulfilment and denial with respect to each of the five bottom-up principles of the IR 

model. It is interesting to note that all five principles featured in the classifications. 

Position is included in the table as this featured as a characterising attribute in the 

classifications but interval size did not feature and is therefore not included. 

American Melodies Irish Melodies 

Registral Direction Denied Fulfilled 

Reglstral Return Denied Fulfilled 

Intervallic Difference Fulfilled Denied 

Pitch Proximity Denied Fulfilled 

Closure Fulfilled Denied 

Position First interval in bar three Later position in third or 

fourth bar 

Table 4.3 Tendencies for fulfilment or denial of intervals taken from Irish and 
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American melodies according to the IR model. 

It should be noted that the above table represents tendencies rather than an illustration 

of features that are always true. On some occasions rules were generated that showed 

a difference to the general patterns above. Also. most of the rules required more than 

one characteristic. Examples of rules that were generated in the cross validation trials 

are given below and each one is discussed in terms of what this means about the 

music. 

Rule 5: (cover 31) 
registral_direction = n 
intervallic_difference = y 
closure :: y 
-> class american [0.727] 

The rule above was true for 31 cases. It classifies intervals as being from an American 

melody with a 72.7% chance of success. Tracing this back to the music indicates that 

this is caused by a tendency in the American melodies to have sequences of notes 

such as C-E-C. i.e. where the note following the implicative interval (which was small 

in all cases) returns to the first note of the interval. Such a sequence indicates a denial 

in terms of registral direction because this says that for small intervals fulfilment 

would require movement in the same direction. It indicates fulfilment with respect to 

intervallic difference since the resulting interval is the same size as the implicative 

interval. Finally it is fulfilled with respect to closure because the registral direction 

has changed and the second interval is not larger than the first. 

Rule 6: (cover 42) 
intervallic_difference = y 
registral_return = n 
closure = n 

-> class american [0.61) 

The rule above was true for 42 cases. It classifies intervals as being from an American 

melody with a 61 % chance of success. Tracing this back to the music indicates that 

this is caused by a tendency in the American melodies to have sequences of notes that 

are runs such as C-D-E or C-E-G. These sequences caused fulfilment with respect to 

intervallic difference because they were all small. and the second interval was similar 

(usually the same) in size. They caused denial with respect to registral return because 
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the third note does not show a return to the first note of the implicative interval (or to 

a note within two semi tones of the first note). They caused denial with respect to 

closure because of failing to have a change in registral direction, this shows a 

difference in the general tendency for fulfilment with respect to closure in American 

melodies as indicated in the table above. 

Rule 4: (cover 23) 
intervallic_difference = n 
-> class irish [0.727) 

The rule above was true for 23 cases. It classifies intervals as being from an Irish 

melody with a 72% chance of success. Tracing this back to the music indicates that 

this is caused by a tendency in the Irish melodies to have sequences of notes where 

the realized tone is more likely to be the same as the 2nd tone in the implicative 

interval e.g. G-E-E, E-C-C. Such a sequence of notes fails with respect to intervallic 

difference because for a small interval (which they all were) intervallic difference 

requires the interval created by the continuation note to be either the same size or 

within +/- two semi tones of the implicative interval where the registral direction 

changes. In the note sequences such as those above the registral direction has changed 

to lateral and the second interval is zero semi tones in size compared to the size of the 

implicative interval (three and four semi tones respectively for the examples given 

above). 

Rule 1: (cover 14) 
registral_return = y 
closure = n 
-> class irish [0.875) 

The rule above was true for 14 cases (one of which was wrongly classified as 

American). It classifies intervals as being from an Irish melody with an 87.5% chance 

of success. Tracing this back to the music indicates that this is caused by three 

tendencies in the Irish melodies. The highest number of cases classified as Irish (7/13) 

was sequences of notes that were all the same e.g. C-C-C or E-E-E and so on. Such 

sequences of notes show fulfilment with respect to registral return because the 

continuation tone is in unison with the first note of the implicative interval, and denial 

with respect to closure because there is no change in registral direction (the movement 
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between the three tones is lateral - lateral}. Another type of interval that satisfied this 

rule were where the implicative interval consisted of two notes of the same pitch, and 

the continuation tone was a movement of just one or two semi tones, e.g. G-G-F, F-F

E (3/13). These intervals are fulfilled with respect to registral return because the 

continuation tone is still within one or two semi tones of the first tone of the 

implicative interval. They fail with respect to closure because although they have a 

change in registral direction (required for closure) the second interval is larger than 

the first. Finally a further 3/13 of the intervals were of a pattern where the implicative 

interval was either a third or a fourth and the subsequent interval was two semitones 

larger (hence failing with respect to closure but still being fulfilled with respect to 

registral return) e.g. E-G-D, A-F-B. 

Some of the examples of rules above are referring to small numbers of intervals, but it 

is the combination of these with the rules that refer to larger numbers of intervals that 

enable SeeS to classify a large proportion of the intervals overall successfully. The 

interpretations of the rules, allowed by the facility for cross referencing with See5, 

enables patterns in the two types of melodies to be identified. It would be more useful 

for building a profile of the melodies to be able to do this for all implicative intervals 

rather than just two for each melody. This would be far too time consuming to be 

carried out manually and therefore suggests that a computer analysis tool to carry out 

the task would be helpful. This raises more issues, in particular that of representation. 

The representation of music on computer has been the focus of much research and a 

discussion of the possible approaches that might suit the requirements for this work is 

presented in Chapter 5. The next section examines alternative approaches to inductive 

learning techniques for classification and compares them to See5. 

4.5 Comparison of Approaches to Inductive Learning 

4.5.1 Background to Inductive Learning 

Inductive learning techniques come under the broader umbrella of machine learning. 

Machine learning is an important part of Artificial Intelligence (AI). Humans learn 

from their mistakes but in contrast programs always work in the same way; if there is 

an error in the code that causes a mistake to occur then that mistake will be repeated 
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every time that part of the code is executed. In order to build 'intelligence' into our 

programs we need them to be able to learn from their mistakes and adapt. Programs 

that learn enable more complex tasks to be carried out. 

There have been a number of different approaches to machine learning: 

1. Rote learning: e.g. Samuels' checkers program uses the idea of data caching, 

which involves searching a game tree, storing the computed values and then re

using these for later moves. Further work has been done to improve the storage 

and access by indexing. This process results in the speeding up of the performance 

the more games are played. (Rich and Knight, 1991) 

2. Learning by taking advice: the program needs to be able to take vague advice and 

turn generalised instructions into rules. 

3. Learning from problem solving: again Samuel's checkers program exhibits this by 

using the idea of coefficient adjustment to improve performance. 

4. Inductive Learning: Inductive learning enables theories to be derived from a 

series of facts. Examples of approaches to this are Winston's learning program, 

version spaces, decision trees and neural networks. Inductive learning is 

particularly good for classification purposes. 

S. Genetic learning: these are searching techniques based on the principles of natural 
selection and natural genetics. 

The two machine learning techniques that are the most effective for classification 

problems are decision tree induction and neural networks. These have been shown to 

give comparable results (Dawson et al. 2(00) when used in certain domains. The two 

approaches work in quite different ways and one of the drawbacks of the neural 

network approach is that it is difficult to see how the classification was made since it 

is a black box method, whereas with decision trees it is possible to learn a lot more 

about the application area by studying the results of how the classification was made. 

The following sections discuss each of these in tum and show how the classification 

of the melodies using SeeS compares with other approaches. 
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4.5.2 Overview of the ID3 Family of Algorithms for Indudive Learning 

The most well known algorithm for decision tree induction is Quinlan's 103, and the 

most recent version of this is known as C5. This has been implemented as a tool that 

builds decision trees automatically given positive and negative instances of a concept, 

the current version being the previously discussed See5. 103 starts by choosing a 

random subset of training examples and this subset is known as the window. It then 

builds a tree that correctly classifies all examples in the window. It then tests the tree 

on the training examples outside the window and if all of the examples are classified 

correctly the algorithm halts, otherwise it adds a number of training examples to the 

window and the process repeats. In order to do this the algorithm calculates the 

entropy and from that the information gain for each attribute. Entropy can be defined 

as a measure of disorder in a closed system and more specifically it is a measure of 

the impurity in a collection of training examples when used in the context of 

classification tasks. Information gain is defined by Mitchell (1997, 57) as "a measure 

of the effectiveness of an attribute in classifying the training data [and] is simply the 

expected reduction in entropy caused by partitioning the examples according to this 

attribute". The information gain for each attribute is calculated by subtracting the 

entropy for each attribute from the total entropy for the system. The attribute with the 

highest information gain is chosen as the root node of the decision tree, the process is 

repeated using the remaining attributes in order to build each subsequent layer in the 

tree. 

103 was originally designed for use with attributes that had discrete values. The 

subsequent version (C4.S) was a radical improvement on this since it allowed 

attributes to have continuous values. CS (the software tool version is known as SeeS) 

was an improvement in the sense that it enabled the decision trees to be built much 

more quickly than earlier versions and as a result is the most frequently used tool of 

this nature. Another popular data mining tool that builds decision trees is CART 

(Friedman, 1977). This tool is also based on ID3. The next section gives a brief 

overview of CART and compares the results of this when used with data from the 

experiments in Sections 4.3 and 4.4 with those using SeeS. 
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4.5.3 Results and Discussion Using CART 

The data from the analysis of the melodies according to GITM was passed through 

the CART data mining tool for classification purposes. The software builds decision 

trees based on the data and also provides output in the form of rules. The results in the 

discussion below are from cross validation trials with ten folds, both using entropy as 

the basis for building the trees. 

On passing the GTTM data through CART a tree with only three nodes and hence two 

rules was built. The rules were If metrical_deviations> 2.S then class = Irish, and If 

metrical_deviations <= 2.S then class = American. CART only used one attribute to 

perform the classification and this enabled 63.33% of the Irish melodies to be 

classified correctly and 83.33% of the American melodies to be classified correctly, 

which is 73.33% accuracy overall (see table 4.4 below). 

Using all attributes 

American melodies Irish melodies Overall accuracy of 

classified correctly classified correctly classifications 

CART 25/30 = 83.33% 19/30 = 63.33% 73.33% 

SeeS 24/30= 80% 20/30 = 66.67% 73.33% 

Table 4.4 Summary o/results o/the classification resulting from G1TM analysis 0/ 
melodies with all available attributes, using See5 and CART. 

This is good in terms of the classification but it only provides information about one 

of the attributes. However, classification is not the main purpose of this activity; the 

main purpose here is to make use of the classifications to enable further interpretation 

of the data and to relate this back to features of the music. The reason that such a 

small tree was produced is that CART shows a final pruned tree as the main result. 

This can be grown to show a full summary tree of the cross validation trials. The 

grown tree had four leaf nodes and used other GPRs in order to classify the melodies. 

The classification accuracy overall was lower however (20/30 for the American 
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melodies, 23/30 for the Irish melodies which is 71.67 overall). 

Pruning is used in decision tree induction software to prevent over-fitting of the trees. 

Both CART and SeeS use a post-pruning approach (rather than pre-pruning) because 

this approach tends to give better trees although it is computationally more costly. In 

SeeS pruning is done by growing the decision tree, converting this into rules (one for 

every path leading to a leaf node), pruning each rule by removing any rule antecedents 

whose removal does not reduce its estimated accuracy, sorting the pruned rules by 

their estimated accuracy and then using the rules in this order for subsequent 

classifications (Mitchell, 1997). The pruning method used by CART is based on a two 

stage algorithm called error complexity. The method of pruning in SeeS is such that it 

results in the inclusion of more information than CART offers about the attributes and 

the extent to which they are stylistic discriminators. 

In order to find out if CART could provide more information about the melodies, the 

data was passed through the software again, this time with the metrical_deviations 

attribute de-selected as one to be considered in the classification. This time a bigger 

tree with five nodes and six leaf nodes was produced. 73.33% of the American 

melodies were classified correctly and 83.33% of the Irish melodies were classified 

correctly (78.33% overall). See table 4.S below for a summary of these results. 

Ignoring the metrical_deviations attribute 

American melodies Irish melodies Overall accuracy of 

classified correctly classified correctly classifications 

CART 22130 = 73.33% 2S/30 = 83.33% 78.33% 

SeeS 21130 = 70% 24/30 = 80% 75% 

Table 4.5 Summary of results of the classification resulting from G1TM analysis of 

melodies with all available attributes except metricaCdeviations, using See5 and 

CART. 

This time information relating to the GPRs of GTIM was used to enable the 

classifications. The summary tree was of the maximum size here so it could not be 
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grown further. In order to compare the results the data was passed through SeeS in the 

same way. The tables below show how the results for the CART and SeeS compare. 

Note that the results reported here for SeeS are different from those reported in 

Section 4.2. This illustrates how different windows of attribute values are chosen each 

time when using cross-validation trials, so that although the results are similar each 

time, there is variation in the final output. 

In table 4.4 SeeS classifies the data with a slightly greater accuracy and in table 4.5 

CART classifies with slightly greater accuracy. These differences are not really 

significant since repeated runs of both of the software tools give slightly different 

results each time using the same data, for the reason explained above. Classification 

using all of the attributes was less informative with CART unless the tree was grown, 

since the resulting tree used only one of the attributes even though others are 

important as classifiers. SeeS used more of the attributes for classification when all of 

the attributes were used, though metricaLdeviations was used for the root node 

indicating that this attribute had the highest information gain. Some of the generated 

rules were almost the same with both tools. For example one of the rules generated by 

SeeS said If metricaLdeviations > 2 then the class is Irish and if metrical_deviations 

<=2 then the class is American, which is very close to the only rule produced by 

CART when the metrical_deviations attribute was included. The difference is that the 

boundary in SeeS was given as 2 and that with CART is given as 2.5. This difference 

is to do with the way the algorithm has been implemented in the tool in order to deal 

with continuous data. Since CART is based on 103 which only dealt with discrete 

data, the approaches have diversified slightly. All boundaries in CART rules are at the 

half way mark between whole numbers, whereas those in See5 are at whole numbers. 

Continuous variables in both See5 and CART are handled by dynamically partitioning 

continuous attributes values into discrete intervals. 

Overall then there was little difference in terms of the classification between using 

CART and See5. Slightly better information about which attributes are important in 

the classification was provided by See5 and this was always the case however many 

times the data was passed through the software. However, this can be overcome by 

ignOring certain attributes as a way of finding out more about the others. Either 
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system would be suitable as a classifier for data such as that available from the music 

analysis experiments, but SeeS would be a better choice where further interpretation 

of the results is required. For example, SeeS has the facility for cross referencing rules 

to cases, and cases to rules, so that in this context the actual examples that caused a 

rule to be generated can be examined. When carrying out the analysis according to the 

IR model this was essential in order to establish what the analysis results meant in 

terms of the musical surface. 

SeeS is also very easy to use yet it provides very good facilities such as easy viewing 

of all of the decision trees built when using cross-validation trials (CART does allow 

for this, but all except the summary tree are not formatted in a very readable way). 

The next section describes the neural network approach to inductive learning. A brief 

background to neural networks is given, followed by results and a discussion of 

classification trials of the GTIM analysis data using a neural network tool. 

4.5.4 Classification Using a Neural Network 

Neural networks are the result of investigations that involve using mathematical 

formulations to model nervous system operations and they are used to learn patterns 

and relationships in data. They can be given training data which is used to produce an 

understanding of the factors involved in the problem and this can then be called upon 

to provide predictions on test data. The neural network approach uses programs that 

operate in a way that is loosely based on that of the animal brain. Such artificial neural 

networks are said to learn from examples and their knowledge is stored in 

representations that are distributed across a set of weights. In order to learn the 

relationships in the data, algorithms are used. Neural networks are very good at 

finding the inter-relationships between data and can handle situations where there is a 

non-linear relationship between the explanatory factors and the outcome. However, 

the results are not transparent in the same was as they are when using algorithms such 

as CS. This means that it would be almost impossible to trace the reasoning back to 

the musical surface when classifying the dance melodies as in the previous 

experiment. Despite this it is still useful from a computer science point of view to find 

out how well a neural network might compare as a classifier with the decision tree 
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induction approach seen earlier. To this end the data from the GTIM analysis was 

passed through a neural network using software known as Joone (Java Object

Oriented Neural Engine). 

Preliminary experiments in which different epochs from 500 - 10000 were tried, as 

were different transfer functions (sigmoid and logarithmic) and different numbers of 

hidden nodes (10 - 20). The preliminary trials showed that the best classification was 

achieved when a sigmoid function with 1000 epochs and 10 hidden nodes with a 

learning rate of 0.7 and momentum of 0.6. 

The results are summarised in table 4.6 below 

Class \ Predicted American Irish 

American 25 5 

Irish 8 22 

Table 4.6 Table to show classifications of melodies using GITM analysis and a 

neural network tool. 

Table 4.7 below shows how these classification results compare to those from CART 

and SeeS. 

American melodies Irish melodies Overall accuracy of 

classified correctly classified correctly classifications 

CART 25/30 = 83.33% 19/30 = 63.33% 73.33% 

SeeS 24/30= 80% 20/30 = 66.67% 73.33% 

Joone 25/30 = 83.33% 22130 = 73.33% 78.33% 

Table 4.7 Table to compare classification results using GITM analysis and with 

three different classification tools: CART, See5, and Joone (neural network) 

Overall then 83.33% of the American melodies were classified correctly and 73.33% 

of the Irish melodies were classified correctly hence 78.33% of the classifications 

were correct overall. Comparing this to the results with SeeS shows that the overall 

Chapter 4 - Further Experiments 91 



percentage of correct classifications is slightly better (73.33% with See5) and that the 

distribution between percentage of correct American and correct Irish classifications 

are similar. Overall then the classification using the neural network tool is better, 

however the reasons for the classifications can be examined when using SeeS or 

CART but with the neural network approach we only have the final results to 

consider. The mechanism is a black box approach. It can therefore be concluded that 

neural networks are not well suited to problems of this particular nature where reason 

for the classifications need to be known. However, the experiment shows that in this 

context, and where classification is the main purpose (without further interpretation of 

the reasoning) then neural networks are likely to be a good solution. Also it suggests 

that musical data of this nature can provide a suitable context for experimental work 

with neural networks. 

4.5.5 Formal Comparison of Classifiers 

The discussion in sections 4.S.3 and 4.5.4 examined the results of classification of the 

melodies using three methods of classification, namely SeeS, CART and a Neural 

Network (Joone). The comparison took into consideration the results in terms of 

accuracy of classification, and the information available about the reasons for the 

classification. 

A more formal way of comparing the approaches in terms of the accuracy of 

classification is possible using Receiver Operating Characteristics (ROC) analysis. 

ROC graphs are used widely in medical decision making but more recently have been 

adopted by researchers in the areas of Machine Learning and Data Mining. A ROC 

graph can be plotted that gives a visual summary of the relative suitability of 

classification approaches according to the accuracy of their results from a given set of 

test data. 

In order to plot a basic ROC graph for classifications that have two possible classes, it 

is necessary to calculate values known as True Positive (TP) rate and False Positive 

(FP) rate. The TP rate is plotted on the Y axis and FP rate on the X axis. The first step 
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towards this requires the construction of a confusion matrix (or a contingency table) in 

the form shown in Fig 4.1 below (Fawcett, 2(03). 

Figure 4.1 A Confusion Matrix. 

The labels Y and N are used for the class predictions produced by the classification 

mechanism (this enables distinction between the actual classifications which are 

labelled as 'Pos' and 'Neg'). 

TP is the number of positive instances correctly classified as positive; FP is the 

number of negative instances classified a positive; FN is the number of positive 

instances classified as negative; and TN is the number of negative instances correctly 

classified as negative. 

TP rate = TPI Total Positives 

FP rate = FPI Total Negatives 
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These values were calculated for the three classification approaches (See5, CART and 

Joone) treating the classification of 'American' as being a positive outcome, and 

'Irish' as being a negative outcome. (Associated confusion matrices are shown in 

Appendix H). The values were plotted with TP on the Y axis and FP on the X axis. 

The resultant graph is shown in Figure 4.2 below. 
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Figure 4.2 ROC graph showing three classifiers with 'American' as positive and 'Irish' 

as negative. 

The point 0,0 on the graph is where no positive instances are correctly classified as 

positive but also no negative instances are classified as positive. The point 1,1 is where 

all the positive instances are classified correctly as positive but all negative instances 

are also classified as positive. The line x = y therefore represents the strategy of 

randomly guessing a class (Fawcett 2003). 

The point 0,1 indicates a perfect classification (Le. no false positives, and all the 

positive instances classified correctly). The closer a classifier is to this point on the 

graph the better it is for the data set. The graph above therefore suggests that the Neural 

Network is slightly better at classifying the data than both CART and SEES and that 

there is little difference between CART and SEES as classifiers for this data. 
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Figure 4.3 below plots the same results for the three classifiers but this time treats 

'Irish' as being the positive outcome and' American' as being negative. The effect of 

this is to reflect the points on the graph about the line y + x = 1. This still indicates that 

Joone is slightly better than SEES and CART. 
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Figure 4.3 ROC graph showing three classifiers with 'Irish' as positive and 'American' 

as negative. 

As discussed in 4.5.4 the Neural Network has the disadvantage of not being transparent 

in terms of how the classifications were arrived at; however transparency in Neural 

Network classifications is receiving attention in the research community and this is 

likely to improve in the future. For the purposes of this work, it is helpful to use the 

Neural Network approach as an indicator of the classification accuracy achievable 

based on the given characteristics, but SEES is the most useful in determining which 

characteristics are important in the classification process. 
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4.6 Proposal for an Integrated Analysis Method 

The experiments using GTIM lower level grouping preference rules (and limited 

metrical information) and the five bottom up principles of the lR model have shown that 

it is possible to derive attributes that enable folk dance melodies for violin to be 

classified successfully according to their cultural origin. Moreover, the method of 

classification chosen (See5) enables information about differences in the surface level 

of the music to be examined. The experiments have shown that GTIM analysis and 

analysis according to the lR model pick out different surface features that can be used to 

classify the melodies and therefore complement each other. It is therefore proposed that 

an integrated method consisting of both of these approaches be used as a way of 

maximising the information about the music that can be gained from a formal analysis 

method. The statistical method tested in the preliminary experiments (Chapter 3) only 

had limited value and was therefore not followed up. However there is enough evidence 

to suggest that statistical methods can provide additional information (Eerola et a1. 

2001, Jarvinen et al. 1999, Krumhansl et a1. 1999) and that their results can also tell us 

something about how listeners perceive music. It would be therefore be beneficial to 

include or make available some kind of statistical analysis in the proposed integrated 

approach. Statistical methods could also be used as a way of recognising certain kinds 

of ornamentation that both GITM and the IR model do not. For example acciaccaturas 

are defined as having no length and so could not be classed so easily as metrical 

deviations in the same way as the written in triplets are (though these are really 

ornamentation as well). Statistical methods of counting the number of ornaments and 

the types and positions in the score would be a suitable way of handling these. There are 

statistical methods available as part of existing implemented tools (the Humdrum 

toolkit) and these will be discussed briefly as 'ready made' additions to the integrated 

analysis approach in Chapter 5 on the representation of music. 

One of the problems observed whilst carrying out the GITM and IR model analysis was 

the time required. It is therefore hoped to automate the means of carrying out the 

analysis for future experiments and in order to do this approaches to the representation 

of music must be considered and additionally approaches to the programming style that 

would best suit the development of such an application. In particular the use of 

Artificial Intelligence (AI) programming will be considered. The next chapter examines 
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some of the approaches to music representation on computer and at possible approaches 

to program development with particular emphasis on AI based methods. It concludes 

with a recommendation for the most appropriate way to represent Western folk 

melodies such as those used for the experiments described in this chapter in order to 

analyse them effectively using an integrated analysis approach, along with the most 

appropriate way in which such a system should be implemented. 
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CHAPTER 5 - Music Representation and Processing on Computer 

5.1 Introduction 

In order to use a computer for work with music it is necessary to abstract the musical 

information into a computational form and hence a suitable method of representation 

needs to be chosen. Dannenberg (1993, 20) observes "Computers allow (and require) 

a formal approach to the study of music representation. Computer programs demand 

that every detail of a representation be precisely specified, and the resulting precision 

allows experimentation and testing of new representations". The representation of 

music should ideally allow the researcher to view the data at different levels of 

abstraction to suit their specific purposes. Wiggins et al. (2000, 8) on representation 

suggest that "A good compromise, then, is a representation with an explicit, but not 

too restrictive, musical surface, within which the widest possible range of data can be 

represented" and this was their aim in the development of CHARM, a framework for 

the representation of music. The idea of a musical surface is taken from lackendoff 

(1987, 217), where it is defined as "the lowest level of representation that has musical 

significance". An important factor in choosing a representation system is the purpose 

for which the information is to be used; as observed by Wiggins et a1. (1993,33) "One 

feature of music representation [ .. ) is the importance of musical viewpoints - the 

ability to represent the same musical objects in many different ways for different 

purposes". 

This chapter firstly considers the different approaches to representation and reviews 

examples of their implementation in existing systems and then considers the relative 

merits of declarative and procedural programming approaches as a way of processing 

the represented information. The chapter concludes with recommendations for an 

appropriate approach to the representation and subsequent processing of western folk 

dance melodies for violin. 

5.2 Approaches to Representation 

This section gi ves an overview of the most common approaches to music 

representation. Such approaches can be loosely categorized and span a wide range. 
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For example, a waveform can be used to represent a particular performance very 

accurately, though analysing the wave form at specific levels of abstraction may be 

difficult. Another possible approach to representation would be one based on the 

musical score notation that many musicians rely on to share work. Scores allow 

analysis at various levels of abstraction (as described in chapter 3) yet they can omit 

key information about the performance. It is also possible to represent musical 

information using general purpose representation systems e.g. programming 

languages, both third generation and object-oriented; declarative and procedural. 

There are implementations of representation systems in all of these categories and it is 

possible to show the relative merits of each with respect to their possible applications. 

However the main focus here is within the context of representations that are suitable 

for the integrated analysis method proposed in Chapter 4. 

S.2.1 Systems that Employ Waveform Representation 

A waveform enables the representation of a performance completely, with all 

elements of expression included. However it is hard to abstract the information at 

different structural levels for purposes such as analysis. Wiggins et al. (1993) provide 

a useful framework for the evaluation of music representation systems generally. 

Their evaluations are measured along two dimensions: those of 'structural generality' , 

and 'expressive completeness'. where expressive completeness refers to "the range of 

raw musical data that can be expressed" and structural generality to "the range of 

high-level structures that can be represented and manipulated" (Wiggins et al.. 1993. 

31). The waveform representation. according to their assessment has maximum 

expressive completeness but minimum structural generality. Fig 5.1 shows the 

classification by Wiggins et al. of a number of well known representation systems 

along these two dimensions. They believe that it is useful to evaluate the suitability of 

a representation system for a particular task by relating the task and system to these 

two dimensions. 
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Figure 5.1 Two dimensions/or comparison o/music representation systems. (Wiggins 

et al. 1993, 32) 

Despite the problems with wave fonn representations, some researchers believe it is 

the best way to handle musical data for certain circumstances. For example, Sennan et 

a1. (2000) report a comparative study based on segmentation of unaccompanied folk 

songs from four different regions (Ireland, China, Germany. Chippewa North 

American Indian). Their work showed that using the scored notation for Western 

tonal music (WTM) and applying Lerdahl and Jackendofrs grouping preference rules 

(GPRs) enabled them to achieve an analysis of the songs by observing which of the 

GPRs were fired and how frequently. They compared the results of this to those of 

DeJiege (1987) one of the key works that tests GTIM compared to human listeners 

(discussed more fully in Chapter 3). They found some similarities in the results in that 

the rules were fired in similar proportions, however there were some differences; for 

example the rest rule (GPR2a) - one that is considered particularly important as a 

chunking cue - was mainly absent from the European songs. On analysis of their 

results it was apparent that the melodies that were the most distant from WTM were 

analysed least successfully by GTIM. This was mainly due to such features as singers 

using large amounts of vibrato. note bending, timing variations and so on. and these 
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are generally omitted from (or are very difficult to encode using) WTM notation. This 

experiment hence led to further work on the development of a system known as 

MusicTracker to take the raw sound and analyse it from this form. MusicTracker 

reads a 'wav' file and the signal is expressed in an array which is split into frames of 

about 20 milliseconds. For each frame the system computes values for pitch, timbre, 

and perceptual dynamics (loudness). (Timbre or tone colour in particular is difficult to 

measure and to define, though it is an important feature of heard music. Dowling 

(1986, 63) spends some time discussing it but observes more generally that timbre is 

multidimensional and that it describes "those psychological properties of sounds that 

make them quantitatively distinguishable from each other even if they should have the 

same pitch and loudness.") When MusicTracker is applied to a fragment of music it is 

possible to graphically represent the incidence of the indicators. The small example 

used showed that timbre and loudness caused more rules to be fired than pitch 

variation and this appeared to match with the author's Own views of how the fragment 

would be segmented on listening. 

They therefore argue that WTM notation (and hence GTIM) cannot give as true an 

account of the grouping as perceived by a human listener. Many examples of WTM 

notation include information about how the performance should be carried out 

however, including information about dynamics, articulation, phrasing and to some 

extent timbre. The experiment described by Serman et al. compares the most basic 

form of WTM notation, with no added performance information at all. It could be 

argued that performance information added to WTM scores is only the performance 

view of the person who transcribed the music to WTM, but unless a large number of 

live performances are recorded and analysed, then the same argument also applies to 

raw musical data, in that the recordings only represent the performance view of the 

particular performer. MusicTracker is in the early stages of development and does 

provide a way of analysing music that doesn't lend itself to WTM notation easily. 

Some categories of folk music are more suited to WTM notation however, and are 

readily available in that form with performance information included, western folk 

dance music for violin being such an example. Although wave form analysis can be a 

useful and realistic way of representing music, it also has significant disadvantages. 

The main one being, that it is difficult to use tested analysis methods that require 

alternative representations, and related to this is the problem of abstraction at different 

Chapter 5 - Music Representation and Processing On Computer 101 



structural levels in order to draw comparisons (e.g. note level, measure level, phrase 

level, and so on.) Certain applications might not require either of these features and 

for these wave form analysis would be more appropriate. 

5.2.2 Score Based Representations 

Since many analysis techniques depend on the use of WTM notation, some systems 

that require the analysis of music rely on a representation system that allows the 

music to be coded in this way. One such example is the DARMS system (Erickson, 

1977). DARMS allows a western score to be translated directly to ASCD code and the 

score is seen as a collection of symbols without any individual meaning. Since this is 

a direct mapping form score to computer it falls in the same place as a score on the 

classification diagram of Wiggins et al. (Fig 5.1). This approach to representation has 

been used in various research projects. One of them being that of Foxley (2001) as 

reported in Chapter 3 for the storage and statistical analysis of English folk melodies. 

DARMS was really developed as a way of typing music easily into a computer for 

subsequent printing purposes and is valued as such, but because it provided a way of 

getting musical data into the computer it has also been used for analysis purposes and 

as such has received probably unfair criticism. DARMS can therefore be described as 

an early example of a simple approach to representation that has been used more 

widely than its originators intended with varying degrees of success. 

There are more general criticisms of systems that are based solely on scored notation, 

in particular Balaban (1996, 98) observes that it is not possible to denote "real-world 

music" with a simple graphical representation. Other systems rely on scores to an 

extent but take the representation further by assigning hierarchies to the musical 

structures, and also include or depend upon the inclusion of additional information 

that indicate performance features such as phrasing, dynamics, articulation and so on. 

Approaches such as this are often grammar-based and are discussed further in the next 

section. 
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5.2.3 Grammar Based Representations 

The idea of a grammar is that structures can be described in term of their subparts. 

thus forming a hierarchy of structures. "A grammar for a class of structures may be 

used to generate those structures. to check if a given structure falls within the class 

described, or just the description alone; the structure itself is purely declarative", 

(Wiggins et al. 1993,37). Such approaches would score well in terms of structural 

generality (one of the dimensions suggested by Wiggins et al.) since it allows 

abstraction at the different levels in the hierarchy. It would also be possible for a 

grammar representation to score well in terms of expressive completeness, depending 

on how it was defined. The grammar itself is not a representation system for computer 

implementation but computer implementations can be designed to represent music 

grammars where required. Lerdahl and lackendoff (1983. 1996) give a detailed 

description of their grammar (GTTM, see chapter 3). and there have been a number of 

implementations on computer that use this approach as a means of analysis and hence 

the representation method has had to be able to handle the musical information in this 

form. Examples of computer analysis systems that use GITM have already been 

discussed in chapter 3, though the given examples exhibit different approaches when 

mapping the grammar to the computer. For example. Robbie and Smaill (1995) 

developed a music analysis tool for computer based on the grouping component of 

GTIM; the implementation was written in Prolog. but the approach to representation 

was based on the CHARM framework of Wiggins et.al.1989. Harris et. al. 1991, 

Smaill et. al. 1993a. 1993b which uses abstract data types as the basis of 

representation. CHARM is independent of any programming language and is 

discussed further in section 5.2.4 and 5.2.5. Horowitz (1995) applies GTTM analysis 

to a jazz improvisation system (written in C++), in which he uses an approach to 

representation that is based on a hierarchy of frames. 

5.2.4 Abstract Representations 

An approach to representation that scores highly in both of the dimensions identified 

by Wiggins et al. is SmOKe (Small music Object Kernal) devised by Pope (1992), 

Smallmusic (1992). This is a specification for what a music representation scheme 

should be rather than a representation in itself. The specification is wide-ranging in 
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that it requires the representation of timbre in various forms, it maps descriptions of 

instruments onto synthesizers and so on; it therefore has a high level of complexity 

overall though the core of the music representation approach can be compared with 

other representation systems. The specification is Object-Oriented in structure and is 

implementation language independent. SmOKe requires that music is represented as a 

series of events, where events consist of a list of properties (typical properties being 

pitch, loudness, duration etc.). Events are grouped into event lists which can be seen 

as events themselves, hence forming a hierarchical structure with a flexibility in terms 

of the groupings that allows arbitrary nesting of structures, which adds to the 

structural generality of the system. SmOKe also provides abstractions for certain 

types of music structures (e.g., trills, chords) but Wiggins et al. argue that this could 

restrict the structural generality in a way that a more general specification (e.g. in 

logic terms) would not do. They attempt to overcome this when they propose the 

CHARM framework described in the following paragraphs. 

The CHARM (Common Hierarchical Abstract Representation for Music) framework 

(Wiggins et.al.1989, Harris et. al. 1991, Smaill et. al. 1993a, 1993b) scores highly 

along both of the previously mentioned dimensions (structural generality and 

expressive completeness). This system is a specification for how a music 

representation should be designed and what mathematical properties it should have. 

How the specification is implemented depends on the host language (it is not 

programming language specific) and what properties of the music are of interest. It 

enables a very flexible approach in terms of both input data - which can range from 

simple score information to performance information - and subsequent data 

manipulation. The intention then in specifying CHARM is to provide a framework 

that enables a wide range of possible representations, and the idea is defined in terms 

of abstract data types. The basic level of representation considered in CHARM is at 

note-like events thus corresponding to Jackendofrs musical surface, (Jackendoff 

1987) however Wiggins et al. (2000) want researchers using the CHARM framework 

to be able to consider groupings of these events, and groupings of groupings and so 

on, depending on what the criteria of interest are. The basic representation allows for 

pitch, time, duration, amplitude and (a later addition) timbre. Different researchers 

may want to refer to any of these dimensions in different ways i.e. one way may want 
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to measure pitch in terms of hertz, another in terms of WTM-type notes, with pitch 

gaps measured in semitones and so on. An abstract framework should allow for this. 

There have been successful implementations using CHARM as the basis for 

representation. The previously mentioned work of Robbie and Smaill (1995) show 

how CHARM can be used to represent musical data in the development of a tool to 

enable analysis of musical information based on the Grouping Preference rules of 

Lerdahl and lackendoff. This implementation was written in Prolog, a declarative 

language. Wiggins and Smaill (1993) discuss the differences between procedural and 

declarative languages as means of implementing representations. They do not see 

object oriented languages as providing an alternative to declarative languages, but as 

an alternative style that can be implemented in any of the existing forms of 

programming, depending on the purpose. In fact, the majority of implementations of 

CHARM have been written in Prolog. 

The approach taken to representation using CHARM is the most general of all those 

discussed in the previous sections and therefore suits many different purposes. For 

this reason consideration is given to how CHARM might be used as the basis for 

representation of folk melodies for violin with a view to analysing them using the 

integrated method described in Chapter 4. The following section briefly describes the 

CHARM specification and illustrates how it can be used to represent a fragment of a 

violin melody. 

S.2.S The CHARM Specification 

Harris et al. (1991) describe the CHARM representation framework as consisting of 

events and constituents. In order to achieve this representation they define abstract 

data types to represent pitch, time, amplitude and (though not discussed further in the 

1991 work) timbre. Since they are interested not only in instances of time but also in 

durations, and not only pitches but also pitch intervals, etc. they also define functions 

to enable computations. These can be illustrated using time and duration. The 

functions add"y and sub"y are defined where x and y can be either t or d and where t 

stands for time and d for duration. Hence there are four functions: 
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Ad~: Duration x Duration --+ Duration 

Addoo: Time x Duration --+ Time 

Subtt: Time x Time --+ Duration 

Subdd: Duration x Duration --+ Duration 

(Harris et a1. 1991, 6) 

Similar functions are defined for pitch and pitch interval, amplitude and relative 

amplitude, by renaming the properties in the description for time and duration. 

Events in the music are given a unique identifier, and each has a number of elements 

associated with it, e.g. 

(E05, (F,#,2),1I4,1I2,1O) 

This could be representing a musical event with given identifier EOS, the event is a 

pitch of F# in the 2nd octave, with a start time of 1,4 of a crotchet beat from the 

beginning, a duration of 1h (i.e. an eighth note or a quaver) and an amplitude of 10 

decibels. Every musical event in a piece of music can be encoded in this way, and the 

elements of the events can vary depending on the requirements for the representation. 

A piece of music would therefore consist of a large collection of such events. 

Harris et a1. use constituents for the grouping of events and also other constituents. 

They define a constituent as a pair of the form (PropertieslDefinition, Particles) where 

"Properties/Definition allows logical specification of the relationships between the 

Particles of this constituent in terms of membership of certain classes, which may be 

defined externally by the user [and] Particles is the set of the events and sub

constituents making up this constituent." (Harris et a1. 1991,8). An example 

representation of a constituent is given below. 

Constituent( col, collection(O, 34*dotted_minim+crotchet), syrinx, (eOOO, 

eOO1, ... e181, e182]). 

Smaill et a1. (1993, 9) 
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The first field is the unique identifier (in this case ·col'). The second field shows the 

structural type of the constituent, so it is a collection, with a start time and a finish 

time. The third field is a musical type representing the role of the constituent and in 

this case it is simply the name of the piece of music 'Syrinx'. The fourth field is a set 

of identifiers that names the events that make up the constituents - these are therefore 

the particles of the constituent. A 'collection' doesn't say much about the constituent, 

and a more meaningful type here would be a 'stream' which indicates that the events 

are ordered. Stream constituents are therefore especially useful for representing 

monophonic melodies. Smain et al. point out how it is possible and often desirable to 

represent the same piece of musical data using different types of constituents to 

provide multiple views. Constituents can also be used to represent groupings such as 

motifs e.g. 

constituent (col, stream(O, minim), motif(mtfl),[eOl,e02,e03,e04,eOS,e06]). 

This time the 'musical type' field (third field) shows that the phrase is a motif, with a 

unique identifier 'mtfl '. The length of the motif is a minim and it contains six events 

that occur in the order listed. It would also be possible to use constituents to represent 

chords (Le. as a group of events) and other features such as triplets or ornamentations 

which are features of the violin melodies under consideration in this study. Smaill et 

al. suggest future work on the representation of chords might be beneficial in order to 

represent them as orthogonal to streams rather than simply as col1ections of events in 

a constituent. 

The example below illustrates how CHARM could be used to represent a fragment of 

musical data from one of the violin melodies used in this study. The representation 

should contain all of the information available in the original scored data (i.e. 

including the performance information) in order that it may be analysed using the 

integrated method derived in Chapter 4. The first eight notes are listed as events 

(representation of the acciaccatura or grace note is incomplete at this stage). 
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Fig 5.2 An extract from the Pleasures of Home, O'Neill's Music of Ireland, Krassen 

(1976) 

Event (eoo, (d,nat,4),0,l/8) 

Event (eOl, (c,nat,4),1I8,l/8) 

Event (e02, (b,flat,4), 114, l/8) 

Event (e03, (g,nat,4),3/8,1/8) 

Event (e04, (a,nat,4), ? see below) 

Event (e05, (g,nat,4),1I2,lIl2) 

Event (eOO, (f,#,4),7112,1I12) 

Event (e07, (g,nat,4),213,1112 

The events listed above give infonnation about the sequence of notes up to the end of 

the triplet. Each row in the list above gives an event label; a pitch followed by an 

indicator of whether or not the note is sharp (#), flat or natural (nat); the octave 

number (the octave starting from middle C to the C above is the fourth octave); the 

onset time as a fraction of a whole note; and the duration as a fraction of a whole note. 

The fifth note of the score is an acciaccatura. None of the documentation from 

Wiggins, Smaill et. al. give an indication of how grace notes such as these might be 

represented using the CHARM framework. However a way of handling this might be 

to consider the acciaccatura as being durationless (they are defined as so by the 

Associated Board of the Royal School of Music, 1958 and treated in this way by 

Lerdahl and Jackendoff, 1983). This would mean that event 4 could be represented as 

follows: 

Event (e04, (a,nat,4), Y2, 0) 

So the acciaccatura has an onset time of a half note measured from the start of the 

piece of music and zero duration. 
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Information relating to bars, slurs and so on can be represented by constituents as 

required. For example the group of slurred notes in the fragment above could be 

represented by the following constituent: 

Constituent (co 1 ,slurred_stream, [e03,e04,e05,eQ6,e07)) 

This indicates that there is a constituent with the label 'col' that consists of a slurred 

stream of events as listed in the square brackets. 

The CHARM framework certainly provides a valuable approach to representing 

musical data. It is flexible enough to enable researchers to represent the information 

they want to represent and to use their own terminology and so on. The way that the 

information is represented enables translation into computer code very well and is 

also language independent. Data notated as specified above would translate easily into 

a Prolog database for example and also the object-oriented nature of the hierarchy of 

events and constituents means that it could be encoded using an object-oriented 

language with relative ease. 

The diagram on the next page shows an Entity Relationship diagram to represent the 

musical data required in terms of constituents for the folk dance melodies. 
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Constituent 

mament Type 

m 

Fig 5.3 Entity Relationship diagramfor CHARM representation offolk dance 

melodies. 

This diagram show the constituents required for representation of the melodies. The 

earlier experiments reported in Chapter 3 and 4 have determined that it is necessary to 

know about the onset and completion of slurs, the pitch and duration of the notes, the 

order of the notes, ornaments such as grace notes and so on. All of this information 

could be contained in a database based on the above diagram. The bar groupings have 

been included because these are relevant when applying metrical preference rules 

from GTTM. For the melodies in the earlier experiment it was found that the metrical 

rules and hence the metrical structure was identical for all melodies with the 

exception of deviations from the metrical structure in the form of triplets, it might be 

appropriate therefore to leave out the bar grouping constituent. though for 

completeness and for use with a wider range of melodies it could become relevant 

again. The constituent representing triplets could also be left out since triplets can be 

identified amongst the events as being a sequence of three twelfth notes, however as 

they are important in the GTIM analysis it is helpful to have them as a specific 
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constituent. One of the advantages of CHARM is that it enables multiple views and 

different abstractions of pieces of music to be identified. The triplets constituent does 

not introduce redundant data, it is simply flexing the data model to include groupings 

of and labels for series of events. The above diagram would result in ten tables being 

defined (skeleton tables are shown in Appendix G and some of them would be quite 

large. For example the Event table would have a record for every note in every 

melody. One of the advantages of translating the representation into a database is that 

it would be possible to create a simple interface as a way of inputting the data, though 

even this is still likely to be time consuming. A disadvantage of using CHARM and 

the idea of constituents is that to some extent elements of analysis are being carried 

out at the time of encoding by performing the abstractions (for example, there is extra 

pre-processing taking place when representing the triplets as constituents having 

already represented them as twelfth note events). It might be better therefore to have a 

simpler representation scheme but one that enables all of the required features of the 

data to be extracted automatically by the computer. The next section is concerned 

with the Humdrum representation scheme and toolkit which aims to do this. 

5.2.6 The Humdrum Toolkit and Kern Code Representation 

A more recent development in musical representation that has also been implemented 

and made available as a mUltipurpose tool is the Humdrum toolkit (Huron, 1994). 

Humdrum itself is a syntax but the Humdrum toolkit is an application that enables a 

number of approaches to representation (including user defined representations as 

long as they are written in such a way that they conform to the syntax) to be 

employed. "Humdrum is not a representation scheme in the conventional sense; rather 

it embodies an unbounded class of representations" (Huron, 1997, 375). It is designed 

to represent sequential and/or concurrent time dependent data in a table type format, 

so that sequential events are represented vertically, and concurrent events 

horizontally. Humdrum files are standard ASCII and the flexibility is such that one 

file can represent a whole piece of music, or there may be a number of files of 

different forms that represent different aspects of a piece. Since common usage of the 

toolkit is likely to include Western tonal music, a representation scheme is included 

that lends itself specifically to this task, this is known as the Kern code. Kern allows 

for information about pitch, duration, articulation, ornamentation, timbre (in terms of 

Chapter 5 - Music Representation and Processing on Computer 111 



the instrument name and class), editorial notes, and other typical markings found on 

scores such as slurs, bar lines, bowing etc. It also distinguishes key from key signature 

which means that the key signature can be defined in terms of the number of sharps 

and flats but that this does not determine a particular key, the key is defined 

separately. This is particularly relevant when considering the dance melodies of this 

research since many of them are in modal keys and hence the usual translation of the 

key name from the sharps or flats of the signature does not necessarily follow. The 

example below shows how the Kern notation can be used to encode a fragment from 

one of the dance melodies, (the right hand column in italics contains explanatory 

comments). 

Fig 5.4 An extract from the Pleasures of Home, O'Neill's Music of Ireland, Krassen 

( 1976) 

...... kern Indicates that the following material conforms to the kern notation 

*clefG2 The clef is a G-Clef positioned on the second line of the stave 

*k[b-) Key signature is a single flat 

*d: Lower case indicates a minor key 

"'M4/4 The Meter is 4 quarter notes to a bar 

8dd\L An eighth note, on the second D above middle C (indicated by dd), with a 

down-stem (denoted by \), and the first of a beam (indicated by an L). 

8cc\J See above, J denotes the end of the beam. 

= Bar line 

8h-1L An eighth note that is the first B flat above middle C, has an up-stem, and 

is the first in a beam. 

(8g1J The round bracket indicates the start of a slur, J the end of a beam. 

aq The q denotes an acciaccatura and this is on the first A above middle C. 

12gIL A twelfth note (i.e. the first of the triplet) on thefirst G above middle C 

Chapter 5 - Music Representation and Processing on Computer 112 



12f#! Second note of triplet on the first F# above middle C 

12g1J) Third note of triplet on the first G above middle C, end of beam 

8gIL Eighth note on first G above middle C, start of beam 

8f! Etc. 

8g1 

8a1J 

= Bar line 

Table 5.1 Representation of the whole of the musical extract shown in Fig. 5.4 written 

in the Kern notation. 

The Kern representation supports all of the features required for the analysis of 

melodies according to both GTIM and the IR model. As well as Kern, the Humdrum 

toolkit has over twenty pre-specified representation schemes and in addition allows 

researchers to define there own. Humdrum goes beyond being a specification by 

providing a very flexible means of coding all kinds of music representations. As a 

result it is becoming very popular and there are already as many as 10 ()()() substantial 

pieces of music that have been coded using it, and over 6500 of these are available for 

researchers to use. Representations in the Kern Code (or in other versions of 

Humdrum syntax) are easily read by computer programs making it relatively straight 

forward to identify the features required for analysis according to either GTIM or the 

IR model. For example the round brackets indicating the onset (or completion) of 

slurs would be used to identify incidences of GPR2a (where one slur ends and another 

begins), or a change in articulation if the other relevant conditions are mel. Similarly 

the interval sizes can be calculated from the pitch information, suitability of an 

interval for IR analysis can be worked out by relating the pitches to the key and so on. 

There are also some software tools available that will translate from other 

representation formats into Humdrum, most interestingly one of them translates from 

Schaffraths Essen Database (1997), (ESAC representation) which is a large database 

of folk songs (currently there is no instrumental music in the Essen Database). The 

translation tools are not part of the Humdrum toolkit and must be requested from the 
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originators. For many researchers, using Humdrum removes a large amount of pre

processing and coding. 

Humdrum is a representation scheme that has been implemented as a toolkit. Some of 

the tools are to enable researchers to code their data either using a prescribed scheme 

such as Kern or using their own. Other tools (the toolkit currently consists of over 

seventy tools) provide further processing facilities commonly required by researchers. 

The kinds of questions that can be answered are illustrated below (quoted from 

Huron's Humdrum web based user manual, 1994): 

• In Urdu folk songs, how common is the so-called "melodic arch" -- where 

phrases tend to ascend and then descend in pitch? 

• What are the most common fret-board patterns in guitar riffs by Jimi Hendrix? 

• Which of the Brandenburg Concertos contains the B-A-C-H motif? 

• Which of two different English translations of Schubert lyrics best preserves 

the vowel coloration of the original German? 

• Did George Gershwin tend to use more syncopation in his later works? 

• How do chord voicings in barbershop quartets differ from chord voicings in 

other repertories? 

These questions give an illustration of the breadth of the facilities offered by the 

toolkit. Some of the tools are based on work by researchers other than Huron and his 

team, one example is a tool based on the research by Krumhansl and Kessler (1982) 

on tonal hierarchy and key estimation, referred to earlier in Chapter 3. The statistical 

facilities of the toolkit are able to provide a range of additional information to support 

the integrated analysis method for analysis of dance melodies proposed in Chapter 4. 

The preliminary experiment using a statistical method devised by O'Canainn (1978) 

(presented in Chapter 3) gave only limited information about the melodies. However, 

statistical analysis methods have been shown more generally to produce useful 

information that also bears some relation to how listeners hear music (Eerola et al. 

2001, Jarvinen et al. 1999, Krumhansl et al. 1999). Having a choice of statistical 

analysis tools available to use in addition to the proposed integrated analysis tool 

would therefore add significantly to its value as an aid to music research. The 
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statistical work carried out by Jarvinen et a1. 1999 used the Kern Code representation 

and the statistical tools of Humdrum in order to perform the reported statistical 

analysis. It can therefore be concluded that Humdrum is the most flexible. accessible 

and usable representation scheme available. The toolkit removes substantial amounts 

of pre-processing and saves time spent on writing programs to implement some other 

representation scheme. 

Other representation schemes can also be translated into Humdrum syntax so that 

earlier work can be transferred and added to existing databases and made generally 

available to music researchers. It would also be possible to translate music 

represented in the CHARM scheme to the Humdrum syntax. It could be beneficial to 

convert existing CHARM representations into Humdrum if or where required as a 

way of implementing such representations onto computer. but for a researcher starting 

fresh work it would be more appropriate to use Humdrum independently of a 

framework such as CHARM. In fact it appears that Humdrum has become central to 

computer based music research. 

Tables 5.2 and 5.3 illustrate how Humdrum syntax can be used to create computer 

files of representations according to the CHARM framework. 

evenelabel pitch accidental octave on"Ctlme duration 
eOO d nat 4 0 1/8 
e01 c nat 4 1/8 1/8 
e02 b flat 4 1/4 1/8 
e03 9 nat 4 3/8 1/8 
e04 a nat 4 1/2 0 
e05 9 nat 4 1/2 1/12 
e06 f # 4 7/12 1/12 
e07 9 nat 4 2/3 1/12 

Table 5.2 Table to show how the CHARM representation of Figure 5.4 (first eight 

notes including the acciaccatura) can be defined using Humdrum syntax. 
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SlurrecLstream 
803 
804 
805 
e06 
807 

Table 5.3 Table to show how the CHARM constituent representing the slurred group 

of notes in Figure 5.4 can be defined as a series of events using Humdrum symtax. 

Translating in this way could be useful where existing CHARM representations 

needed to be defined using Humdrum syntax for further processing. or where the 

researcher needed to use Humdrum tools but also required a hierarchical 

representation. Similarly for those researchers working with CHARM it is possible to 

translate data from Humdrum syntax and more specifically from the Kern notation 

into a format corresponding to the CHARM framework. An example of this is 

described by Pearce (2002) in his implementation notes on representation; the 

translation from Humdrum encoded music is carried out using a LISP program. 

The abstract nature of CHARM makes it very flexible in term of processing musical 

information. Almost any language could then be used to process the musical 

information represented using the CHARM framework though it lends itself 

particularly well to Prolog since the format of input to a Prolog database is very 

similar to that of the definitions of events and constituents shown earlier in this 

section .. However there is no available implementation of CHARM and therefore 

every researcher would need to build his or her own tool in order to use it. which 

constitutes a significant task. Humdrum on the other hand exists as a free tool and its 

files. being in ASCII format. can be read easily by most programming languages. In 

general then Humdrum is likely to suit the requirements of a large proportion of 

computer music research and therefore there is a reduced need for a framework such 

as CHARM unless the research work is focusing on the nature of the representation 

rather than further analysis of the represented musical information. It is therefore 

proposed that Humdrum would be the most appropriate representation scheme for the 
, 

folk dance melodies of this study. 
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The next section, considers the possible approaches to automating the analysis of the 

melodies focussing on the debate around Artificial Intelligence approaches and the 

more traditional approaches to programming. 

5.3 Automated Analysis - Traditional Versus AI Approach 

5.3.1 Introduction 

This section addresses the issue of the implementation of an automatic music analysis 

tool for folk dance melodies. The discussion focuses on the debate between the 

relative merits of declarative (AI languages) and procedural (traditional) languages 

with a view to proposing the most appropriate method for the development of an 

automated music analysis tool for musical data encoded using the Kern Code which is 

part of the Humdrum toolkit. Humdrum syntax of any kind is in ASCII format and 

data encoded in ASCn code is accessible by both declarative and procedural 

languages. Section 5.3.2 summarises the differences between declarative and 

procedural languages. 

5.3.2 Declarative Versus Procedural Languages 

When using a procedural language (such as Pascal or C), the programmer has to 

specify exactly how and what the program must do, this means that he/she is required 

to be concerned at a very detailed level with the operation of the program. A 

procedural language gives the computer a list of instructions to can)' out or a 

procedure to follow. Declarative languages on the other hand enable the programmer 

to be more removed from the way the data is processed and therefore to be able to 

think in a more strategic way in order to solve a problem. Procedural information is 

implicit and hard to use for other purposes, whereas declarative information enables 

the information to be separated from its uses and therefore can be used for a number 

of different purposes. In declarative languages (such as Prolog) the facts and rules are 

declared statically and then information can be drawn out as required. 

Prolog (the name comes from Programming in Logic) is probably the most common 

declarati ve language. Facts and rules are stored in a database in Prolog and the 
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language has a search facility for accessing the database. With a procedural language 

the search facility would have to be explicitly programmed by the programmer, and 

hence programming in a declarative language such as Prolog can often be simpler and 

quicker, this also makes it easier to construct prototypes. The Prolog programmer 

needs to be concerned with procedure to some extent in the sense that it is important 

to understand the order in which facts and rules are fired, but in general Prolog is not 

considered to be procedurally oriented. Prolog is primarily concerned with the 

manipulation of symbols (as opposed to the numerical methods of procedural 

languages) where symbols can be anything from characters to words to sentences to 

pictures. "It is precisely [the] ability of Prolog to process and manipulate symbols that 

makes it such a powerful language and that stands it in direct contrast to many other 

languages that focus more on numerical manipulations" (Schaffer and McGee, 1997, 

27). 

Declarative languages fall under the umbrella of Artificial Intelligence (AI) since the 

approach to storing facts and rules, and the approach to searching for solutions to 

problems from these are loosely based on what we know about the workings of the 

human mind. Wiggins and Smaill (2000) observe that AI attracts both Intelligent 

Systems Engineering researchers who are interested in its capabilities for solving 

problems that require a human approach and at the other end of the spectrum, 

researchers (such as Cognitive Scientists) that are interested in studying the brain and 

the workings of the mind. They argue that the reason for choosing an AI approach is 

that AI as a study and simulation of intelligent behaviour lends itself to problems that 

require a more human approach; "While AI itself will never be able to solve these 

problems [problems that require an intuitive approach] in general, its techniques are 

often able to go further than the standard 'unintelligent' approaches" (Wiggins & 

Smaill, 2000, 2). Researchers in AI do not necessarily fall into one or other of the 

extremes mentioned above, in reality there is more of a spectrum of interests amongst 

them and often the employment of AI techniques goes alongside an interest in the way 

that a problem is solved as well as simply achieving the desired result. The nature of 

music is such that it can be used as a basis for most types of AI research; it is an 

intellectual activity that operates on many different levels and as such can be used by 

Cognitive Scientists and Intelligent Systems Engineers as well as anyone who falls 

between or across these categories. We therefore find that many researchers primarily 
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interested in music employ AI techniques, and similarly those that are primarily 

interested in AI use music as a suitable application area with which to work on or try 

out their theories. 

The employment of AI techniques often goes alongside an interest in the way that a 

problem is solved, as well as achieving a desired result. It is not surprising then that 

the study of AI also overlaps with many other disciplines (such as psychology and 

linguistics) as well as music. The value of taking an AI approach is multi-faceted; it 

can enable us to achieve a better understanding (by simulation) of human intelligence 

(Searle 1997, 1999); and conversely, attempting to automate human intelligence could 

help us develop better machines (Cawsey, 1998). Balaban (1996, 97) in support of an 

AI approach for music representation and processing states: "AI augments the 

software engineering view with a connection to the real world. Problems attacked by 

AI systems are rooted in the real world, and AI systems are description of such 

problems." From a musical perspective, Robert Rowe (1995) illustrates the two fold 

gains in AI/music research in the following two quotes: 

'From the point of view of artificial intelligence research, such {AUmusicj 

applications {he cites Cope 1991, Ebcioglu 1992, Barucha & Todd 1989J are 

attractive because of music's rich capacity to support a wide variety of 

models'; 

'From the point of view of computer music composition and performance. 

artificial intelligence is of central importance because it directly addresses the 

modelling of human cognition'. 

Having considered the implications of both declarative and procedural approaches to 

programming (under the broader umbrellas of AI and traditional approaches 

respectively), the following section summarises by proposing a suitable approach for 

the program development of the automated analysis tool. 
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5.3.3 Proposed Approach to Programming for an Automated Analysis Tool 

Section 5.2 ended with the conclusion that the Humdrum toolkit is the best way 

forward in tenns of representing musical infonnation and hence automating the 

analysis process of the folk dance melodies. Section 5.3 has briefly discussed the 

difference between declarative and procedural approaches to program development. 

Although most programming languages could do the job of automating the integrated 

analysis method proposed in Chapter 4 adequately, declarative languages such as 

Prolog provide an approach to programming that enables the programmer to focus on 

the problem to be solved in a more holistic way. In addition to this Prolog would 

enable a prototype to be developed in a relatively short time, possibly implementing 

only part of the integrated analysis method initially. The nature of Prolog is such that 

the program can be extended in order to expand the analysis tool without interfering 

with any of the earlier programming. It is therefore proposed that Prolog, as a well 

known declarative language, would be the most appropriate means of implementing 

the automatic analysis tool for the folk dance melodies and that these will be 

represented prior to analysis in the Kern Code which is part of the Humdrum toolkit. 

Statistical tools available with Humdrum will be used for statistical analysis where 

required. 

5.4 Conclusion 

This Chapter has looked at the available possibilities for representation of musical 

information and at approaches to processing such data after it has been suitably 

represented. One of the most important considerations when deciding on a 

representation system is the purpose for which the infonnation is being represented, 

as observed by Huron (1992, 10) "One cannot meaningfully discuss the design of 

representation schemes without some knowledge of how such a representation is 

going to be used". Huron goes on to list twelve features of good representations, 

amongst them are the following: consistent, context-free, explicit, extendable and 

terse. Both Humdrum and CHARM are good examples of representation schemes 

when examined against Huron's twelve criteria and in many ways both would suit the 

requirements for the representation of the folk dance melodies of this study. The 

CHARM system has substantial benefits because of its independence of language and 
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independence of types of data, but has not been developed into an available software 

package and therefore the representation tool itself would need to be programmed 

from scratch. Humdrum also fairs well against Huron's criteria (this is not surprising 

since he is its creator) and has the additional benefit of being available as a software 

tool, with a large number of supporting tools (including statistical tools useful for 

additional analysis of the melodies). Humdrum syntax and in particular the Kern Code 

notation is very simple to write. There are facilities for representing all musical 

information, the researcher does not need to decide on what constituents to create or 

represent as with CHARM, just what musical information to put in and what to leave 

out. On balance then Humdrum is likely to be the best approach to representation of 

the melodies. 

Section 5.3 briefly discussed the relative merits of procedural and declarative 

languages concluding in Section 5.3.3 that a declarative language offers the most 

holistic and flexible approach to program development and therefore that developing 

the tool in Prolog would be the most suitable approach. Another advantage of this is 

that music research can aid in the development and verification of AI techniques and 

hence there are likely to be benefits from the reverse point of view also. 
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CHAPTER 6 - Discussion 

6.1 Introduction 

The research presented in this thesis attempts to take a human perspective on the 

formal analysis of folk dance melodies. Cognitive approaches to music analysis for 

Western art music are applied in the context of folk dance music and an integrated 

approach is suggested, with a long term view to developing a computer analysis tool. 

There follows a discussion of the validity and value of this approach, observations on 

new insights gained from the work are summarised in Chapter 7. In order to structure 

this discussion it would be useful to revisit the specific aims of the research originally 

presented in Chapter 1 and review the manner in which these have been addressed. 

To aid the review a diagrammatic guide to the experimental work and follow-up 

analysis is provided in Figure 6.1. (Each numbered box represents a discrete task in 

numeric order of execution). 
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Fig. 6.1 Diagrammatic overview of experiments and proposals reported in previous 
Chapters 
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6.2 Review of the Aims 

Aim (1) To evaluate the effectiveness of music analysis techniques for Western 

art music, in particular those of Lerdahl & lackendoff (1983, 1996) 

and Narmour (1977, 1990, 1992), when applied to the field of Western 

folk dance melodies for violin. 

In order to meet Aim 1 (above), preliminary experiments were undertaken to analyse 

thirty violin melodies according to the lower level grouping preference rules and 

metrical preference rules of Lerdahl and lackendoffs GITM, Narmour's IR model, 

and O'Canainn's statistical analysis method (boxes 1,4 and 5 in Fig. 6.1). Both the 

GTTM analysis and IR model analysis revealed significant differences in the musical 

styles, such that they could be classified using a decision tree induction tool with 

classification accuracies of approximately 80% (GITM) and 73% (IR model) using 

cross-validation trials. The results of these experiments were reported at the SMPC 

(Society for Music Perception and Cognition) conference in 1999 (Carter et al. 1999) 

and 2000 (Carter et a1. 2ooob) respectively. 

The statistical analysis was not as successful however. Statistical analysis methods, 

though quantitative in nature have been shown (Jarvinen et. a1. 1999, Eerola et. a1. 

2001 and Krumhansl et al. 1999) to bear some relation to listeners' perceptions (see 

Chapter 2 for further discussion of this). The statistical approaches taken by the above 

researchers varied, though all of the reported work was undertaken with reference to 

the statistical distribution of pitch, rhythm and intervals. A decision was therefore 

taken to carry out the statistical analysis of the melodies (box 4) using an existing 

method drawn from previous research. O'Canainn's method was selected as the 

preliminary method since it was originally devised for work with the type of music 

under investigation. The results of this experiment (Carter et a1. 2oooa) showed only 

limited success (see Chapter 3) but this was enough to support the argument that 

statistical methods could be beneficial to this research and that they are worthy of 

further investigation as contributors to an integrative analysis approach. However they 

did not validate further use of this particular method. 
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The Implication Realisation (IR) model of Nannour (1977,1990, 1992), was 

identified as a well tested cognitive based approach to music analysis, (box 5). This 

method can be seen as being complementary to GTIM as it focuses on melodic 

information rather than the more rhythmic focus of GTIM, though some argue that 

they could be perceived as contradictory. The results of the GTTM and the IR model 

analysis provided sets of attributes for each melody hence forming partial descriptions 

of the musical features of that melody. The attributes were passed through SeeS which 

resulted in successful classifications as reported previously and in both cases, most of 

the attributes were used at some point as an aid to the classifications which meant that 

the process was informative in terms of providing information about discriminatory 

musical features. The cross referencing tool that is part of the SeeS software tool 

meant that it was possible to trace derived rules back to the exact intervals on the 

musical scores and hence to determine the musical features, patterns or contours that 

featured more frequently in either the American or the Irish melodies. The successful 

results of these experiments and the observation that the IR model analysis identified 

different features to those identified by GTTM suggested that both of these methods 

are informative as approaches to the analysis of folk dance music. 

The results of the preliminary experiments showed that certain analysis methods for 

Western art music are also suitable as analysis tools when exploring the 

discriminatory features of Irish and American folk dance melodies for violin. The 

preliminary experiments therefore enable Aim (1) to be met, and provide a basis for 

further experimental work to determine an integrative analysis approach. 

AIM (2) To derive an integrative method for the analysis of folk dance 

melodies, drawing from existing key music analysis methods with a 

view to finding the key characteristics that describe such sets of 

melodies, hence highlighting any differences that accord to their 

cultural background. 

The sample of melodies in the preliminary experiments Was relatively small (fifteen 

from each origin), but the results of the preliminary experiments prompted further 

work using a larger sample of data and suggested a way forward as a way to meeting 
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Aim (2). The preliminary experiments were therefore repeated; firstly using only the 

new set of data (from Brody, 1983) in order to check that there was not too big a 

discrepancy in the results due to the sources of infonnation being different (and 

although there were some differences in the classification rates these were quite 

small), and secondly using all sixty melodies, hence doubling the sample size. 

O'Canainn's method was not repeated since the preliminary experiment showed it 

deduced only limited infonnation about the music, but alternative statistical 

approaches provided by the Humdrum toolkit were considered in Chapter 5. 

The grouping preference rules of GTTM (plus the infonnation regarding metrical 

deviations), combined with the analysis according to the bottom-up principles of 

Nannour can be said to constitute an integrative approach to analysis in the context of 

folk dance melodies. The two approaches complement each other in terms of what 

they are able to reveal about the features of the melodies. From an analysis according 

to both of these methods it is possible to identify significant information about the 

differentiating features of the two styles of melodies. For example Narmour identifies 

musical contours or surface patterns that appear more frequently in melodies from one 

of the origins rather than the other; GTTM analysis identifies tendencies of the 

melodies to have higher or lower frequencies of long notes, pitch jumps, slurring and 

triplets. Hence a combination of these two approaches with the additional support of 

statistical methods would satisfy Aim (2) of the work. The results of these 

experiments were reported at the SMPC conference 2003 (Carter et aI, 2(03). 

AIM (3) To evaluate the suitability of machine learning techniques as classifiers 

for the problem domain. 

The results of each analysis provided a series of attributes that describe certain 

features of the music. In order to look for patterns in this data, classification software 

was required (referred to earlier) and for this purpose SeeS (Quinlan, 1998) was 

selected. The software was able to classify the melodies with a high degree of success 

given the attributes derived from the analysis. The nature of the output (decision trees 

and associated rules), and the facility to cross reference between rules and cases 

meant that the results could be related to exact features of the music. This meant that 
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the process of analysis and further interpretation of these results using SeeS enables 

the researcher to find out more about the features of the melodies. and in particular 

which features are special to each of their origins (either Ireland or America). 

SeeS as an approach to classification has proved to be both efficient and informative 

in this context. with a high level of transparency and therefore adopting SeeS as a tool 

for interpretation of the analysis results goes some of the way to meeting Aim (3). 

However. other decision tree induction software and other classification approaches 

should be considered with a view to determining the most effective approach for the 

task. In order to compare other tools with SeeS. data from the GTIM analysis were 

used. The data was firstly passed through another well known software tool for 

decision tree induction known as CART (Friedman. 1977) and secondly through a 

neural network which is a different approach to classification within the domain of 

machine learning (represented by boxes 9 and lOon Fig. 6.1). The results of the 

classification using CART were similar to those of SeeS though the interface and 

tools were not quite as suited to this particular task. The results of the classification 

using the neural network were slightly better than with either SeeS or CART. but the 

neural network approach is not transparent and therefore it is not possible to trace the 

reasoning for the classifications back to the musical features. Neural networks are 

often very good classifiers and if this is the main requirement of the activity then such 

a solution may well be the best choice; but if it is important to know how and why the 

software arrived at the classifications. decision tree induction is far more informative. 

With software such as SeeS it is possible to trace every rule back to the cases that 

caused the generation of that rule (this was not quite as easily done with CART. 

though this is to do with the interface and the choice of facilities offered by the 

software designers than the classification approach behind it). With a neural network 

this process is not possible; the closest thing to achieving this kind of facility would 

be to examine the final weights on the network and relate these to the attributes used 

as the input. but it would be very difficult to translate back to the cases in this way 

and the software is not designed with this activity in mind and therefore does not 

provide any support for it. 

Decision tree induction using SeeS was therefore observed to be the most suitable 

approach for the interpretation of the music analysis results in this context. 
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AIM (4) To propose a suitable representation scheme for the melodies for future 

automation of the analysis. 

The process of analysis according to the methods identified in this work is very time

consuming when performed manually and therefore proposals are made for the 

development of an automated tool with which to carry out the analysis. In order to 

automate the analysis process the issue of representation of the musical information 

must be considered, and the proposal of an appropriate representation approach in this 

context satisfies Aim (4). Approaches to music representation current in music 

research are discussed in Chapter 5, enabling the selection of the Humdrum toolkit 

(Huron, 1995) as the representation approach. This is a well documented and well 

used system that is very flexible in terms of the type of data it can represent. It is 

implemented as a free software toolkit which includes prescribed representation 

syntaxes as well as the possibility for users to define their own; and in addition to this 

there are a number of statistical analysis tools available that could therefore be used to 

add more information to the integrative analysis method as required. The statistical 

analysis reported by Jarvinen et a1. (1999) was performed using the Humdrum toolkit 

and therefore supports this as an approach for the statistical analysis component of the 

integrative analysis method. 

There are already a number of pieces of music that are encoded in Humdrum syntax 

available for researchers to use, and there are tools to enable pieces of music already 

represented using earlier representation schemes to be translated into Humdrum files. 

Currently the represented music available includes mainly art music and some folk 

music but this is mainly folk song. The Essen database in particular has a very large 

number of folk songs encoded in a form that is translatable to Humdrum and that have 

been used extensively in previous research. The lack of instrumental folk music in this 

collection is noticeable and encoding the music from these experiments could be a 

way of starting an instrumental folk music collection to complement the Essen 

database. Humdrum is rapidly becoming the most used representation scheme and is 

substantially reducing the pre-processing tasks for many researchers. 
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AIM 5:To propose an appropriate approach to program development for the 

automation of folk dance music analysis. 

The focus in attempting to meet Aim (5) was on the choice between an artificial 

intelligence (AI) approach (Le. a declarative language such as Prolog) and a more 

traditional approach (i.e. procedural languages). Although either type of language 

could be used for the development of such a tool, there are more arguments (presented 

more fully in Chapter 5) in favour of using an AI approach. These are mainly centred 

on the flexibility that such an approach would provide by enabling a more holistic 

view of the programming task which supports the explorative nature of this research. 

Additionally, the interest in developing the field of AI is in itself a justification for 

working with this approach, so that two-fold benefits can be observed. The 

observations of Schaffer et al. (1997, 24) express this view successfully: "AI 

continues to strive toward the laudatory goal of exploring the human mind. What is 

left in its wake, however, is a technology that is finding increasingly practical use". 

Music is undoubtedly a cognitive process and therefore provides a suitable basis for 

AI research, whilst an AI approach to programming suits the imprecise nature of 

music research to a greater extent than traditional approaches. It was therefore 

proposed that the automated tool be programmed in a language such as Prolog. 

6.3 Conclusion 

In conclusion, the results of the reported experiments support the proposal for an 

integrative analysis approach based on the lower level (or local level) grouping 

preference rules (and to a limited extent the metrical preference rules) of GTIM and 

the five bottom-up principles of Nannour's Implication Realisation Model. Analysis 

according to this integrative method can derive characteristics that describe the 

surface of the music and that enable discrimination between the styles. A suitable 

approach to automating the analysis method would be to represent the musical 

information using the Humdrum syntax and additionally to make use of statistical 

tools available as part of the Humdrum toolkit. Statistical tools can provide more 

information as required about other features of the music, for example, 'durationless' 
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notes such as acciaccaturas, that are not identified by the other elements of the 

integrated approach. 

It is then proposed that a tool be developed using a declarative language such as 

Prolog in order to analyse the represented musical information according to the 

integrative method. The results of the analysis can be interpreted in order to find the 

discriminatory stylistic characteristics of the musical surface using a decision tree 

induction tool, SeeS. 

The explorative approach taken to the research has meant that there were not too 

many restrictions on the direction taken, and hence that additional experiments and 

investigations previously not considered could be undertaken when the opportunities 

arose. A more prescriptive approach to the work might have led to more definite 

solutions and in a stricter time frame. but limiting the boundaries in this way might 

have left fruitful avenues unexplored. The work has addressed the identified aims 

successfully and has also created the potential for further related work. 

Chapter 7 concludes by explaining how this work has contributed to knowledge and 

makes recommendations for future related work 
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CHAPTER 7 - Conclusions and Further Work 

7.1 Overview 

This thesis has addressed the issue of the application of analysis techniques for 

Western art music to Western folk dance melodies for violin. with a view to enabling 

the development of a computer tool that can aid in the identification and exploration 

of the stylistic characteristics of the origin of the melodies. An integrative approach to 

analysis that can be carried out in an algorithmic way is identified hence lending itself 

to future implementation on computer. 

A brief summary of the content of each Chapter is given in the following paragraphs. 

Chapter 2 reviewed approaches to the analysis of Western tonal music and its 

applications. The current most frequently cited and well tested approaches were 

identified as being the Generative Theory of Tonal Music (GTIM). devised by 

Lerdahl and Jackendoff. and the Implication Realisation (IR) model of Narmour. 

These two approaches were developed by researchers with different views on 

cognitive based music analysis and could be considered to be contradictory in nature 

though it is becoming increasingly apparent that they are in fact complementary. 

Evidence was also found that indicates statistical analysis methods provide more than 

basic quantitative information and that the results of statistical analysis can to some 

extent reflect the way that human listeners interpret music as they hear it. Chapter 2 

also explores the context of folk music. emphasising the effects of geographical 

movement on melodies as groups of people migrate. the focus here was on Irish 

settlers in America. 

Chapter 3 presents some preliminary experiments in which thirty folk dance melodies 

(fifteen Irish and fifteen American) are analysed according to GTIM. the IR model. 

and a statistical method devised by O'Canainn (1978). An experiment to compare the 

classification of the melodies based on the results of such analysis with classification 

by human listeners is also reported. These experiments showed that there is 

significant potential in using methods such as GTIM and the IR model, and that their 
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classification accuracies are comparable to those of human listeners. The statistical 

method was less successful but there was enough evidence to suggest that alternative 

statistical methods could be useful in terms of the type of supplementary information 

they can provide, and as we see in Chapter 5 there are a number of statistical tools 

available as part of the Humdrum toolkit. 

Chapter 4 firstly presents an experiment with human listeners to determine the order 

of preference of GPRs in this context and that therefore enables the GTTM analysis to 

be carried out in an algorithmic way with a view to future automation. The 

preliminary GTTM analysis was revisited after the completion of this experiment. 

Further analyses with larger samples of melodies (a total of sixty melodies this time, 

thirty from each of the two origins) were then carried out according to the grouping 

(and to a limited extent the metrical) preference rules of GITM, and the IR model, in 

order to ensure that the results held. The results showed that GTfM and the IR model 

are able to identify features from the melodies that highlight differences in the styles 

according to their origin. and that the features highlighted by each approach 

complemented each other. It was therefore proposed that the lower level grouping 

preference rules of GTTM and the IR model can be combined as an integrative 

approach to the analysis of Western folk dance melodies for violin. 

All of the analyses provided attributes associated with the melodies and for each 

experiment these attributes were passed through the decision tree induction software 

known as SeeS (Quinlan 1998) in order look for characterising patterns in the data. 

The later part of Chapter 4 looks at alternative approaches to classification and 

considers a software tool known as CART (Friedman, 1977) for decision tree 

induction, and a neural network. It was found that the neural network was slightly 

better as a classifier in this context, whilst CART and SeeS produced similar results. 

However, the transparency of the decision tree induction approach makes it superior 

to the neural network for this purpose. 

Chapter S focuses on proposals for the future automation of the analysis process, 

beginning by reviewing approaches to representation of music on computer. There is 

much research on this subject and a number of representation schemes have been 

devised. The two most suitable approaches for representation of the music in this 
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work were found to be CHARM, a framework for music representation developed at 

the University of Edinburgh and Humdrum developed at Ohio State University. On 

balance Humdrum was selected as the best approach. The reasons for this include the 

following: there is more recent work on Humdrum, it is well documented, and it is 

implemented as a software toolkit with a large amount of flexibility in tenns of how it 

is used. There are already a large number of pieces of music available encoded using 

Humdrum syntax (over 6500 pieces of music) and there are translation tools to enable 

music represented in older schemes to be transferred. Humdrum is becoming a fonnat 

for a worldwide database of musical infonnation with which researchers can work. In 

addition it provides a range of statistical analysis tools which could be used as 

required to complement the proposed integrative analysis approach. 

The later part of Chapter 5 considers approaches to the program development of an 

automated analysis tool, given that the representation of the musical data would be 

using the Humdrum syntax (the Kern Code). Arguments are presented in favour of an 

artificial intelligence (AI) approach using a declarative language such as Prolog. 

Chapter 6 reviews and discusses the work of the thesis indicating how it has enabled 

the identified aims to be met. This can be summarised as follows: 

• Music analysis techniques developed for Western art music have been applied 

in the context of Western folk dance melodies for violin and it was found that 

these methods are able to extract infonnation from the musical data in such a 

way that classifications of the melodies according to their stylistic origin can 

be made. 

• An integrative analysis method has been proposed that is a combination of the 

lower level grouping preference rules of GTIM, to a limited extent the 

metrical preference rules of GTIM, and the five bottom-up principles of the 

IR model. 

• Decision tree induction has been identified as the most appropriate approach 

for finding the stylistic features of the melodies amongst the data produced 

from the analyses. 
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• The Humdrum toolkit has been identified as the most appropriate approach to 

representation of the musical information. and a declarative approach to 

programming for the development of an automatic analysis tool has been 

proposed. 

7.2 Contributions to Knowledge 

This work has contributed to knowledge as follows: 

• Existing music analysis techniques for Western art music have been applied in 

the context of folk dance music for violin. Evidence for this can be found in 

the experiments described in Chapters 3 and 4. 

• The ability for human listeners to classify music to a similar level of accuracy 

as the analysis and classification process using GTIM and inductive learning 

software has been verified in this context. The experiment to demonstrate this 

is described in Chapter 3. 

• Lerdahl and Jackendoffs order of preference for grouping preference rules has 

been furthered in the context of folk dance melodies for violin. A method for 

applying the grouping preference rules of GTIM algorithmically in this 

context was derived from the results of an experiment to find preferences of 

listeners where there are conflicts of potential boundaries. The experiment is 

reported in Chapter 4. 

• Decision tree induction has been applied as an approach to classification and 

also as an appropriate method for interpretation of the analysis results in the 

context of folk dance melodies for violin. Experimental work performing this 

application is reported in Chapters 3 and 4, and a comparison of two decision 

tree induction tools with a neural network approach is presented in Chapter 4. 

• An indication of how certain types of ornamentation might be represented 

using the CHARM framework for music representation, and a demonstration 

of how representations in the CHARM framework might be translated into 

Kern Code (part of the Humdrum syntax) have been presented in Chapter 5. 
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There is currently no evidence for either of these in any of the associated 

literature. 

7.3 Further work 

7.3.1 Further Investigation of Order of Preference of GPRs 

When perfonning GTTM analysis potential conflicts between the local level 

GPRs are observed. An order of preference of listeners for GPRs is given in the 

text of Lerdahl and Jackendoff, but the infonnation was found to be incomplete 

which would be a problem if computer implementation of the analysis was to be 

undertaken. Previous researchers have handled this in different ways, Robbie and 

Smaill (1995) for example implemented the grouping preference rules as a 

computer tool but allowed users to interact with it where potential boundary 

conflicts arose. The purpose of their tool was to teach the user about GTTM rather 

than to produce an analysis for other reasons (such as stylistic classification). 

Deliege (1987) canied out experiments to identify an order of preference of the 

rules in the context of Western art music. For the experiments reported in this 

thesis, the missing information in l..erdah and Jackendoffs text was added by 

devising an experiment to find out the listeners' order of preference of the 

remaining rules within the context of this music. This experiment (reported in 

Chapter 4) supplied strong enough evidence to enable a general order of 

preference to be derived, making it possible to revisit the preliminary experiment 

and complete the analysis according to the lower level GPRs in an algorithmic 

way. With more time, it would be a useful exercise to find out an order of 

preference for all of the rules in this context and then compare this to the results of 

Deliege. 

The experiment raised other issues which suggested potential for further related 

work. For example, two of the ten subjects described difficulty in making a 

decision between two possible positions (the second being one note after the 

potential boundary according to GTIM). This occurred in two of the examples 

and in both cases it indicated support for the idea of postponed segmentation 
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reported in a further experiment by Deliege (1987). The majority of subjects in the 

experiment reported in this thesis did pick the boundary predicted by the grouping 

preference rules, but the comments of some of the subjects combined with the 

findings of Deliege, suggest further work in this area. 

7.3.2 Representation and Implementation of an Analysis Tool 

It would be useful to implement the proposed analysis tool in order to test the 

analysis approach on larger samples of data and also on melodies from other 

origins. For example there are dance melodies for violin that are of Swedish origin 

and some that are French; these could be investigated using the same approach. 

Encoding the melodies in the Kern Code of the Humdrum syntax could be the 

beginning of a new database of instrumental melodies that are available for 

researchers, in the same way as the Essen database provides a large dataset for 

research into folk song. 

7.3.3 Capture of Musical Data 

Improved methods of capturing musical information (regardless of the required 

representation format) are an important long term goal for many music 

researchers. The facility to be able to play the music and for the representation to 

recognise the features such as slurs, ornaments (as well as the note pitches and 

lengths) and encode them correctly for further analysis would be a great 

improvement and deserves further investigation. 

7.4 In Conclusion 

This thesis has identified the suitability of music analysis techniques for Western 

art music for analysis of folk dance melodies for violin, and has shown that in this 

context two key methods (those of Lerdahl and Jackendoff, and of Narmour) can 

be combined to form an integrative approach. 
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It has been shown that in this context human listeners can be trained to classify 

melodies as either Irish or American with a similar level of accuracy to that of the 

analysis and computer classification process. The reasons given for classification 

appeared to be related to those identified by the analysis. 

During the analysis using Lerdahl and lackendoffs analysis method, limitations 

were identified in relation to handling certain conflicts in grouping preference 

rules. An experiment to investigate a possible order of preference for the rules in 

this context was undertaken and the results were conclusive, enabling the GTIM 

analysis to be carried out in a fully algorithmic way. 

The integrated analysis method could therefore be implemented as a computer 

tool in the future, and the discussion and investigation presented in Chapter 5 

resulted in the suggestion that the Humdrum representation method is adopted 

along with a declarative approach to program development. 

As a result, the thesis has satisfied the aims as identified in Chapter 1 and 

represents an original contribution to knowledge in the interdisciplinary field of 

computer aided music analysis. 
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Appendix B - Test Data 

Appendix Bl - Test Data for GTTM analysis 

List of attributes and associated data types 
GPR 1: continuous. 
GPR2a: continuous. 
GPR2b: continuous. 
GPR3a: continuous. 
GPR3b: continuous. 
GPR3c: continuous. 
GPR3d: continuous. 
meCdeviations: continuous. 

Attribute values. 
The data is presented in the order resulting from the analysis of melodies taken firstly 
from Philips, then Krassen, and then Brody. 

7,0, 16,4,0,0,3,0,american. 
7,2,8,2,0,10,0,0,american. 
2,0,2,3,0,20,0,0,american. 
19,0,8,1,0,17,0,0,american. 
8,2,3,1,0,18,3,I,american. 
8,0,9,5,0,7,0,0,american. 
3,0,6,1,0,11,5,0,american. 
0,3,1O,0,0,3,1,0,american. 
8,0,4,1,0,17,3,0,american. 
9,0,4,1,0,12,4,I,american. 
4,0,4,2,0,19,1,0,american. 
12,2,8,1 ,0, 17,0,0,american. 
9,2,4,1,0,14,2,0,american. 
22,0,6,1,0,21,1,0,american. 
10, 1, 14,7,0,9,0,0,american. 
3,0,9,2,0,8,3,3,irish. 
2,0,8,1,0,6,0,0,irish. 
2,0,5,3,0,6,5,3,irish. 
2,0,2,2,0,8,2,1 ,irish. 
0,0,4,1,0,6,12,II,irish. 
1,0,5,1,0,6,4,3,irish. 
2,0,11,5,0,4,7,7,irish. 
3,0,4,4,0,4,7,7,irish. 
2,0, 13,0,0,2,4,4,irish. 
1,0,4, I ,0,5,7 ,4,irish. 
2,0,3,3,0,14,5,3,irish. 
2,0,0,4,0,6,16,10,irish. 
8,0,5,4,0,7, 10,9 ,irish. 
3,0,6,0,0,5,10,7,irish. 
3,0,5,4,0,8,1O,7,irish. 
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8,0, 17,3,0,3,1,0,american. 
6,0,3.67,1.33,0,4.67,0.67,0,american. 
7,0,2,0,0,5,10,0,american. 
14,0,7,2,0,7,3,2,american. 
18,8,4,4,0, 12,2,0,american. 
9,2,5,5,0,6,9,3,american. 
15,7,3,2,0,8,0,0,american. 
5,0,8,5,0,1,6,I,american. 
0,0,8,0,0,8,0,0,american. 
8,3,2,9,0,7,2,3,american. 
1.6,1.6,14.4,1.6,0,11.2,0,3.2,american. 
13,5, 14,5,0,3,0,0,american. 
5,5,4,3,0, 13,4,2,american. 
1O,3,9,2,0,9,2,1,american. 
7,0,8,2,0,0,5,0,american. 
15,9,9,1,0,10,3,6,irish. 
11,14,4,1,0,13,0,3,irish. 
8,0,4,2,0,0, 12,0,irish. 
3,1,7,0,0,10,0,0,irish. 
5,0,7,3,0,0,5,5 ,irish. 
1,0,2,9,0,1,6,3,irish. 
14,9,8,1,0,11,1,7,irish. 
8,1,8,2,0,5,7,2,irish. 
11,4,12,4,0,10,0,8,irish. 
11,0,4,3,0,16,5,5,irish. 
6,15,6,0,0,8,0,4,irish. 
2,1,6,1,0,14,6,4,irish. 
5,0,9,2,0,6,8,4,irish. 
6,4,7,2,0,4,6,0,irish. 
17,5,12,1,0,5,5,15,irish. 
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Appendix B2 - Test data for IR model analysis 

List of attributes: 
intervaLsize: s,L. 
registral_direction: y, n. 
intervallic_difference: y, n. 
registral_retum: y, n. 
proximity: y, n. 
closure: y, n. 
Bar:ignore. 
Position: 1, 1.5,2,3,4,b4_1,b4_2 

N.B. The attribute 'Bar' became unnecessary when the more specific attribute 
'Position' was included. This has been set to ignore to save editing all of the 
associated values from the data file. 

List of attribute values: 
The data is presented in the order resulting from the analysis of melodies taken firstly 
from Brody, then Philips, and then Krassen. 

s,n,y,y,y,y,b3,1,american. 
s,y,y,n,y,n,b3,1,american. 
s,n,y,y,y,y,b3,1,american. 
s,y,y,n,y,n,b3,1,american. 
s,n,y,y,y,y,b3,1,american. 
s,n,y,y,y,y,b3,1,american. 
s,n,y,y,y,y,b3,1,american. 
s,n,y,y,y,y,b3,1,american. 
s,y,y ,n,y ,n,b3,2,american. 
s,n,y,y,y,y,b3,1,american. 
s,y,y,n,y,n,b3,l,american. 
s,n,n,n,y ,n,b3, 1 ,american. 
s,y,y,n,y,n,b3, 1 ,american. 
s,y,y,n,y,n,b3,2,american. 
s,n,n,n,y ,n,b3,l ,american. 
s,n,y,y,y,y,b3,1,american. 
s,y,y,n,y,n,b3,1,american. 
s,n,y,y,y,y,b3,1,american. 
s,n,n,n,n,y ,b3, 1 ,american. 
s,n,n,n,n,y ,b3, 1 ,american. 
L,y,n,y,n,y,b3,l,american. 
s,y ,y ,n,y ,n,b3,2,american. 
s,n,y,y,y,y,b3, 1 ,american. 
s,y,y,n,y,n,b3,2,american. 
s,y,y,n,y,n,b3,l,american. 
s,n,y,y,y,y,b3,1,american. 
s,n,y,y,y,y,b3,1,american. 
s,n,y,y,y,y,b3,1,american. 
s,y,y,n,y,n,b3,1,american. 
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s,y,y,n,y,n,b3,1,american. 
s,n,y ,y ,y ,y ,b4,b4_1 ,irish. 
s,y ,y ,n,y,n,b3,2,irish. 
s,y ,y,n,y,n,b3, 1 ,irish. 
s,y ,y ,n,y ,n,b3,2,irish. 
s,y ,y ,n,y ,n,b3,3,irish. 
s,n,n,n,n,n,b3,1,irish. 
L,y,n,y,n,y,b3,I,irish. 
s,y,y,y,y,y,b3, I ,irish. 
s,n,n,n,y ,y ,b3, I ,irish. 
s,n,y ,y ,y ,y ,b3,2,irish. 
s,n,y ,y ,y ,y ,b3,2,irish. 
s,n,y ,y ,y ,n,b3, 1 ,irish. 
s,y ,y ,n,y ,n,b3, 1 ,irish. 
s,n,y,y,y,y,b3, 1 ,irish. 
s,n,y,y,y,n,b3, 1 ,irish. 
s,y ,y ,n,y,n,b3,2,irish. 
s,n,n,n,y,y ,b3, 1 ,irish. 
s,n,n,n,y,y ,b3, 1 ,irish. 
s,y ,y ,y ,y ,y ,b3,2,irish. 
s,y ,y ,n,y ,n,b3, 1 ,irish. 
s,y ,y ,n,y,n,b3, 1 ,irish. 
s,n,y,y,y,n,b3,1,irish. 
L,y ,n,y ,n,n,b3,2,irish. 
s,y ,y ,n,y ,n,b3,2,irish. 
s,n,n,y ,y ,y ,b3, 1 ,irish. 
s,y ,n,n,y ,n,b3, I ,irish. 
s,y ,y ,n,y ,n,b3,2,irish. 
s,n,n,n,y,n,b3, I ,irish. 
s,y ,y,y,y,y ,b3,2,irish. 
s,y ,y,n,y,n,b3, I ,irish. 
s,y,y,n,y,n,b3,1,american. 
s,y ,y ,n,y ,n,b4,b4_1 ,american. 
s,y,y,n,y,n,b3, 1 ,american. 
s,y ,y ,n,y ,n,b3,2,american. 
s,y,y,n,y,n,b3,I,american. 
s,y,y,n,y,n,b3, I ,american. 
s,n,y,y,y,y,b3,I,american. 
s,n,y,y,y,y,b3,1.5,american. 
L,y,y,n,y,y,b3,I,american. 
s,n,y,y,y ,y ,b3, I ,american. 
s,y,y,n,y,n,b3,I,american. 
s,y,y ,n,y ,n,b3,2,american. 
s,y,y,n,y,n,b3, I ,american. 
s,n,y,y,y,y,b3,I,american. 
s,y,y,n,y,n,b3,2,american. 
s,n,y,y,y,y,b3,2,american. 
s,y,y,n,y,n,b3,I,american. 
s,n,y,y,y,y,b3, 1 ,american. 
s,n,y,y,y,n,b3,I,american. 
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s,n,y,y,y,y,b3,I,american. 
s,n,y,y,y,y,b3, I ,american. 
s,n,n,n,y,y ,b3, I ,american. 
s,n,y,y,y,y,b3,I,american. 
s,n,y,y,y,y,b3,1.5,american. 
s,y,y,n,y,n,b3,I,american. 
s,y,y,n,y,n,b3, I ,american. 
s,n,y ,y,y,y ,b4,b4_2,american. 
s,n,y,y,y,y,b3, I ,american. 
s,y,y,n,y,n,b3, I ,american. 
s,y, y ,n, y ,n ,b3, I ,american. 
s,n,n,n,y ,y ,b3, I,irish. 
s,y,y,y,y,n,b3,I,irish. 
s,y ,n,n,y ,n,b3,2,irish. 
s,n,y,y,y,y,b3,I,irish. 
s,y,y,n,y,n,b3,2,irish. 
s,y ,y,y ,y ,n,b3, I ,irish. 
s,y,y,n,y ,n,b3, I ,irish. 
s,n,n,n,y,y ,b3, I,irish. 
s,n,n,n,Y ,Y ,b3, I ,irish. 
s,n,n,n,Y ,y ,b3, I,irish. 
s,n,Y,Y,Y ,y,b3, I ,irish. 
s,y,y,y,y ,n,b3, I,irish. 
L,y ,n,n,Y ,Y ,b3, I ,irish. 
s,n,Y ,Y ,Y ,n,b3, I ,irish. 
s,y,y,y,y,n,b3,I,irish. 
s,Y,Y,n,y ,n,b3, I ,irish. 
s,n,Y ,Y ,Y ,Y ,b3,2,irish. 
s,Y,Y ,y,y ,n,b3, I ,irish. 
s,y,y,n,y,n,b3,I,irish. 
s,n,n,n,Y ,Y ,b3, I ,irish. 
s,n,n,n,n,n,b3, I ,irish. 
s,y,y,n,y,n,b3,2,irish. 
s,y,y,y,y,n,b3,I,irish. 
L,y,y,n,y,y,b3,I,irish. 
L,y,y,n,y,y,b3,1,irish. 
s,n,y,y,y,n,b3,I,irish. 
s,y,y,n,y,n,b3, I ,irish. 
s,y ,y,y,y,n,b3, I ,irish. 
s,y ,y ,n,y ,n,b3, I ,irish. 
s,n,y ,y ,y ,y ,b3,2,irish. 
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Appendix 83 - Data resulting from analysis of melodies according to O'Canainn 

List of attributes: 

max points on:tonic,supert,med,subdom,dom,submed,LN. 
second max points on:tonic,supert,med,subdom,dom,submed,LN. 
min points on:tonic,supert,med,subdom,dom,submed,LN. 
proportion on Key Sig tonic: continuous. 
proportion on Key Sig Dominant: continuous. 
Mean:continuous. 
Standard Deviation:continuous. 
Proportion of points for long note:continuous. 
Proportion of points for large interval:continuous. 
First stressed note on: tonic,supert,med,subdom,dom,submed,LN. 

List of attribute values: 

tonic,med,submed,27.52,19.46,21.29,14.13,9.4,0,dom,american. 
med,dom,submed,18.79,20.81,19.57 ,13.48,11.7 ,O,tonic,american. 
med,tonic,LN ,27 .52,26.85,24.86,18.3 ,6.3,0,tonic,american. 
tonic,med,subdom,28.86,8.05,20.14,15.61,5.7,0,dom,american. 
dom,subdom,med,8. 72,28.19,22. 71,13.33,7 .5,0,dom,american. 
tonic,dom,submed,24.68,15.58,19.25,11.16,6.5,1.3,tonic,american. 
dom,tonic,subdom,21.48,30.87 ,24.29,11.64,7.1 ,O,dom,american. 
dom,tonic,subdom,24.83,21.48,21.57,13.1,7.3,0,tonic,american. 
tonic,submed,subdom,30.2,12.75,21.43,16.77,2.5,0,tonic,american. 
tonic,dom,subdom,32.89,23.49,22.86,14.48,10.7,0.7,dom,american. 
submed,tonic,subdom,20.75,18.24,22.71,13.81,8.2,1.9,tonic,american. 
tonic,med,submed,28.57, 16.67,21, 14.65,4.2,0,med,american. 
dom,submed,subdom,20,25.19, 19.29, 11.6,8.9,0,tonic,american. 
tonic,med,LN,25.32, 16.23,22, 10.66, 12.3,0.6,tonic,american. 
tonic,med,LN ,37.5,17.5,22.86,20.58, 12.5,0,med,american. 
tonic,supert,subdom,44.97 ,8.72,22.29 ,21.08,4.5,0,tonic,irish. 
dom,med,LN, 19.46,26.85,22, 14.22,S.8,0,tonic,irish. 
tonic,LN,subdom,28.86,IS.44,23.29,12.68,2.5,0,submed,irish. 
med,subdom,submed,20.13,16.11,23.71,14.72,3.6,0,med,irish. 
tonic,supert,med,25.47,9.94,20.13,13.61,1.9,1.2,subdom,irish. 
tonic,med,LN ,28.19,11.41 ,22.S7, 11.36,2.5,2.5,tonic,irish. 
dom,supert,med,11.18,2S.47,20.13,13.05,3.1,0,dom,irish. 
submed,LN,med, 12.75,17.45,22.57,11.67 ,3.8,4.4,subdom,irish. 
tonic,LN,subdom,30.87, 12.75,22.29, 12.05,8.3,0.6,tonic,iri sh. 
dom,submed,med,4.21 ,32.63,23.75,19.92,1.6,4.7 ,supert,irish. 
tonic,dom,LN ,26.86,20,25,15.08,3.4,1.7 ,tonic,irish. 
tonic,dom,supert,lS.89,18.54,18.88,8.74,5.9,0,submed,irish. 
dom,LN,subdom,36.26,14.29,26,23.04,1.1,6.6,tonic,irish. 
tonic,supert,submed,29.41,20.26,21.86,13.25,0.7,0,med,irish. 
tonic,supert,LN,27 .01,11.49,21.14,11.39, 1.4,0,tonic,irish. 
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Appendix C - Form used in experiment with human listeners, reported in 
Chapter 3 

Folk M usit Analysis Experiment 

Plellse complete the following questions 

Agel I S~X MtF 

I low would you rate your familiarity with r"lk music? 

very not 
f~l11iljlll' alienge fanuli:ar 
---_!_-_ .. 
\I 1 2 j 4 

I .--1--::-,-~~---,-I-:-:--,1 
~ 6 7 II !II 10 

How would you rnte\thc fr"'luc:mcy of which you listen to music'? 

nul 
much 
I 
o 

Dverqte 
, I 

5 (, ., , 

l\lol 

I 
8 9 10 

Do you play, or have: you ever learned to playa musical inslrUmc:nt? YN 

Ifycs. what is the instrumenl'? ____ .. 

How JllllIly years did you playi have you played this jnstrum~l'? 0 
\\!'hat are your two favourilt kind!; ur mu~ic? 1. 2. ___ _ 

What are your two lca5t favourite kinds ofmusie'! 1.__ 2. ___ _ 

While lislening to the: training tulles, jot down any features that yuu think ~cm to be 
specific to the named cultural u';gins. 

fwures of American TUlles: 
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F or each of the test tunes, indicate whieh cultural origin you think it might 
be associated with (either Irish or American) & try and say briefly why. 
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APPENDIX D - Form for writing data during from IR analysis 

Title: ...................... Origin: ............... . 

SmalV Fulfilled w.r.t w.r.t. w.r.t. w.r.t. 
Large w.r.t intervallic registral proximity closure 

registral difference return 
direction? 

1st 

Interval 
2no 

Interval 

Title: ...................... Origin: ............... . 

Small! Fulfilled w.r.t w.r.t. w.r.t. w.r.t. 
Large w.r.t intervallic registral proximity closure 

registral difference return 
direction? 

1st 

Interval 
2no 

Interval 

Title: ...................... Origin: ............... . 

Small! Fulfilled w.r.t w.r.t. w.r.t. w.r.t. 
Large w.r.t intervallic registral proximity closure 

registral difference return 
direction? 

1 st 

Interval 
2no 

Interval 
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APPENDIX E2 - Summary of results for experiment to determine order of 
preference of group boundaries where there are conflicts 

Subject 1 2 3 4 5 6 7 8 9 
No~ 

Tune I After After 3c 3c 3c After After After 3c 
3a then 3c 6 8 8 8 8 

Tune 2 3c After 3c After 3c 3a 3c None After 
3c then 3a 8 8 8 

Tune 3 3c 3c 3c 2b 2b 3c 2b 2b 2b 
2b then 3c/3a 3a 3a 3a 3a 

Tune 4 2b After 2b 2b 2b 2b 2b 2b 2b 
3c/3a then 2b 7 

Tune 5 After None 3d 3d 3d After 3d After After 
3a then 3d 5 5 6 6 

Tune 6 After 3d 3a 3a 3a 3d 3a 3a 3a 
3d then 3a 5 

Tune 7 3c 3d 3c After After 3d 3d 3c 3d 
3c then 3d 7 5 

Tune 8 3c 3d None After After After 3c 3c 3c 
3d then 3c 5 5 5 

Tune 9 2b 2b 3c 2b 3c 2b 3c 2b 2b 
2b then 3d 3d 3a 

3c/3d 
Tune 10 3a 2b 2b 2b 2b 3a 2b 2b 2b 

2b then 3d 3d 

3a13d 

Appendices 

10 Results 

3c 5 said 3c 
4 said 
after 8 
1 said 
after 6 

3a 4 said 
3c, 
3 said 
after 8 
2 said 3a 
1 said 
None 

2b 6 said 2b 
4 said 
3c/3a 

2b 9 said2b 
1 said 
after 7 

3a 4 said 3d 
2 said 
after 6 
2 said 
after 5 
1 said 3a 
1 said 
none 

3a 7 said 3a 
2 said 3d 
1 said 
after 5 

3d 5 said 3d 
3 said 3c 
1 said 
after 7 
1 said 
after 5 

Afte 4 said 
r8 after3c 

3 said 
after 5 
1 said 
after 8 
1 said 
none 
1 said 3d 

2b 7 said2b 
3 said 
3c/3d 

2b 8 said2b 
2 said 
3a13d 
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APPENDIX F - Examples of detailed results from classification software 

Appendix Fl - Example of output using SeeS with GTIM. Shows one fold, hence 
one tree and the associated rules. Followed by a summary of the output for all 10 
folds. 

SeeS INDUCTION SYSTEM [Release 1.09a] Mon Jul 28 10:34:11 2003 

Options: 
Generating rules 

Read 60 cases (8 attributes) from GTTM_3_revised.data 

[ Fold 0 

Decision tree: 

met_deviations <= 2: american (30.0/5.0) 
met_deviations> 2: 
: ... GPR3a <= 4: irish (20.0) 

GPR3a > 4: 
: ... GPR1 <= 5: irish (2.0) 

GPR1 > 5: american (2.0) 

Extracted rules: 

Rule 1: (cover 20) 
GPR3a <= 4 
met_deviations > 
-> class irish 

Rule 2: (cover 14) 

2 
[0.955] 

GPR1 <= 5 
met_deviations > 2 
-> class irish [0.938] 

Rule 3: (cover 5) 
GPR1 > 5 
GPR3a > 4 
-> class american [0.857] 

Rule 4: (cover 30) 
met_deviations <= 2 
-> class american [0.813] 

Default class: irish 

Evaluation on hold-out data (6 cases): 

Decision Tree Rules 

Size Errors No Errors 

4 2(33.3%) 4 2(33.3%) 
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Sununary ) 

Fold Decision Tree Rules 
---------------- ----------------

Size Errors No Errors 

0 4.0 33.3% 4.0 33.3% 
1 8.0 50.0% 6.0 50.0% 
2 4.0 16.7% 4.0 16.7% 
3 3.0 50.0% 3.0 50.0% 
4 8.0 33.3% 5.0 16.7% 
5 6.0 16.7% 6.0 16.7% 
6 4.0 16.7% 4.0 16.7% 
7 4.0 0.0% 4.0 0.0% 
8 9.0 16.7% 8.0 16.7% 
9 6.0 33.3% 6.0 33.3% 

Mean 5.6 26.7% 5.0 25.0% 
SE 0.7 5.1% 0.5 5.1% 

(a) (b) <-classified as 

21 9 (a) : class irish 
6 24 (b) : class american 

Appendices 78 



Appendix F2 - Example of output using SeeS with IR. model analysis. Shows one 
fold, hence one tree and the associated rules. Followed by a summary of the output for 
all 10 folds. 

Decision tree: 

intervallic_difference = n: irish (22.0/6.0) 
intervallic_difference = y: 
: ... closure = y: 

: ... registral_direction = y: irish (5.0/1.0) 
registral_direction = n: american (29.0/7.0) 

closure = n: 
: ... registral_return = y: irish (11.0) 

registral_return = n: american (41.0/16.0) 

Extracted rules: 

Rule 1: (cover 12) 
registral_return = y 
closure = n 
-> class irish [0.929] 

Rule 2: (cover 5) 
registral_direction = y 
intervallic_difference = y 
closure = y 
-> class irish [0.714] 

Rule 3: (cover 22) 
intervallic_difference = n 
-> class irish [0.708] 

Rule 4: (cover 29) 
registral_direction = n 
intervallic_difference = y 
closure = y 

-> class american [0.742] 

Rule 5: (cover 41) 
intervallic_difference = y 
registral_return = n 
closure = n 
-> class american [0.605] 

Default class: irish 

Evaluation on hold-out data (12 cases): 

Decision Tree Rules 

Size Errors No Errors 

5 4(33.3%) 5 4(33.3%) 

Summary ] 

Fold Decision Tree Rules 
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---------------- ----------------
Size Errors No Errors 

0 11. 0 50.0% 9.0 50.0% 
1 5.0 33.3% 5.0 33.3% 
2 12.0 16.7% 6.0 16.7% 
3 12.0 50.0% 7.0 50.0% 
4 10.0 41. 7% 6.0 41.7% 
5 10.0 33.3% 9.0 33.3% 
6 5.0 33.3% 5.0 33.3% 
7 11. 0 25.0% 10.0 25.0% 
8 13.0 25.0% 11. 0 25.0% 
9 14.0 33.3% 12.0 33.3% 

Mean 10.3 34.2% 8.0 34.2% 
SE 1.0 3.4% 0.8 3.4% 

(a) (b) <-classified as 

36 24 (a) : class irish 
17 43 (b) : class american 
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Appendix F3 - Example of output using SeeS with Q'Canainn analysis. Shows one 
fold, hence one tree and the associated rules. Followed by a summary of the output for 
all 10 folds. 

See5 INDUCTION SYSTEM [Release 1.09a) Mon Jul 28 10:42:24 2003 

Options: 
Generating rules 

Read 30 cases (10 attributes) from canainn.data 

[ Fold 0 

Decision tree: 

Proportion of points for long note <= 5.8: irish (15.0/3.0) 
Proportion of points for long note> 5.8: american (12.0/1.0) 

Extracted rules: 

Rule 1: (cover 15) 
Proportion of points for long note <= 5.8 
-> class irish [0.765) 

Rule 2: (cover 12) 
Proportion of points for long note> 5.8 
-> class american [0.857) 

Default class: american 

Evaluation on hold-out data (3 cases): 

Decision Tree Rules 

Size Errors No Errors 

2 1(33.3%) 2 1(33.3%) « 

Summary ) 

Fold Decision Tree Rules 
---------------- ----------------

Size Errors No Errors 

0 2.0 33.3% 2.0 33.3% 
1 4.0 0.0% 4.0 0.0% 
2 2.0 66.7% 2.0 66.7% 
3 2.0 33.3% 2.0 33.3% 
4 2.0 0.0% 2.0 0.0% 
5 2.0 0.0% 2.0 0.0% 
6 2.0 33.3% 2.0 33.3% 
7 2.0 33.3% 2.0 33.3% 
8 2.0 0.0% 2.0 0.0% 
9 2.0 0.0% 2.0 0.0% 
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Mean 2.2 20.0% 2.2 20.0% 
SE 0.2 7.4% 0.2 7.4% 

(a) (b) <-classified as 

12 3 (a) : class irish 
3 12 (b) : class american 
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APPENDIX G - Skeleton tables derived from Entity Relationship diagram in 
Section 5.2.5 

Constituent 

• 

Slurred group 

1 

Co Ists 
of 

«table r qulred» 

Constituent (ConstisNo, ..... ) 
Melody(Mel ConstitNo, ....... ) 
Slurred_Group(SGm ConstitNo, .... ) 
Bar_Group(Bar ConstitNo, ..... ) 
Triplet(Trip ConstitNo ..... ) 

m 

Event(EventNo, MelConstitNo, BacConstitNo, ... ) 
SlurGrpEvent(EventNo, SGrp_ConstitNo .... ) 
TripEvent(EventNo, Trip_ConstitNo, .... ) 
OmamentType(OmamentNo, .... ) 
OmamencEvent(EventNo, OmamentNo ... ) 
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APPENDIX H - Confusion Matrices for Classification Using seeS, CART and 
Joone 

In all cases TP = True Positives, FP = False Positives, FN = False Negatives, TN = 
True Negatives. 

Matrices 1 -3 represent classifications where the classification 'American' was treated 
as positive, and the classification 'Irish' treated as negative. 

1. Matrix for See5 

TP FP 

24 10 

FN TN 

6 20 

2. Matrix for CART 

TP FP 

25 11 

FN TN 

5 19 

3. Matrix for Joone 

TP FP 

25 8 

FN TN 

5 22 

Matrices 4 - 6 represent classifications where the classification 'Irish' was treated as 
positive, and the classification 'American' treated as negative. 
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4. Matrix for See5 

TP FP 

20 6 

FN TN 

10 24 

5. Matrix for CART 

TP FP 

19 5 

FN TN 

11 25 

6. Matrix for Joone 

TP FP 

22 5 

FN TN 

8 25 
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