
Bringing the Blessing of Dimensionality
to the Edge

1st Ivan Y. Tyukin1,2,3
1 Department of Mathematics

University of Leicester
2 Lobachevsky University

3 St-Petersburg State Electrotechnical University
1 Leicester, United Kingdom

I.Tyukin@le.ac.uk

2nd Alexander N Gorban
University of Leicester

and Lobachevsky University
Leicester, UK, and Nizhni Novgorod, Russia

a.n.gorban@le.ac.uk

3rd Alistair McEwan
Department of Engineering

University of Leicester
Leicester, United Kingdom

aam19@le.ac.uk

4th Sepehr Meshkinfamfard
Department of Mathematics

University of Leicester
Leicester, United Kingdom

sm901@le.ac.uk

Abstract—In this work we present a novel approach and
algorithms for equipping Artificial Intelligence systems with
capabilities to become better over time. A distinctive feature of
the approach is that, in the supervised setting, the approaches’
computational complexity is sub-linear in the number of training
samples. This makes it particularly attractive in applications in
which the computational power and memory are limited. The
approach is based on the concentration of measure effects and
stochastic separation theorems. The algorithms are illustrated
with examples.

Index Terms—Stochastic separation theorems, artificial intel-
ligence, machine learning, computer vision

I. INTRODUCTION

Large and growing streams of data are ubiquitous in modern
society and technology. They are the backbone of modern
healthcare, public safety and security services, sciences, in-
cluding satellite Earth Observation missions, and world-wide
web. Sustained functioning and progress in these essential
areas depend on the ability to extract and process information
from large and growing data. Since processing overwhelm-
ingly large volumes of data can no longer be accomplished by
humans alone, we must rely on Artificial Intelligence (AI)
systems built on state-of-the-art machine learning and data
analytics technologies.

With the explosive pace of progress in computing such
as the emergence and accessibility of Nvidia GPU devices,
Google TPUs, and cloud resources to name just a few, current
AI systems are now capable of spotting minute patterns in
large data sets and can outperform humans in highly compli-
cated tasks like chess, Go, and medical diagnosis [1]. However,
the super-human power of modern AIs to learn from massive
volumes of data make their conclusions vulnerable to data
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inconsistencies, poor data quality, and uncertainty inherent
to any data. This uncertainty, together with engineering con-
straints on AI’s implementation, lead to inevitable errors in
data-driven AIs.

Consequences of AI errors range from mere technical in-
conveniences to significant public and societal risks: incorrect
cancer treatment options by IBM Watson and several Tesla
and Uber crashes in 2018 are few examples. Structuring data,
improving its quality, and removing uncertainty is generally
very resource intensive and thus unsustainable across sectors
and industries. More fundamentally, constraints on AIs im-
plementations such as e.g. quantization errors and memory
limitations are major limits to AI’s performance “at the edge”,
i.e. in embedded setting.

Significant efforts have been applied to date to address
errors in AI systems. Using ensembles [2], [3], [4], augment-
ing training data [5], [6], [7], enforcing continuity [8], and
AI knowledge transfer [9], [10], [11] have been extensively
discussed in the literature. These measures, however, do not
warrant error-free behaviour as AIs based on empirical data
are expected to make mistakes.

Recently, [12], [13], [14], [15], [16], [17] we have shown
that spurious errors of AI systems operating in essentially
high-dimensional spaces (convolutional and deep learning
neural networks are an example of such AI), can be effi-
ciently removed by Fisher discriminants. The advantage of
this approach over, for instance, support vector machines [18]
is that the computational complexity for constructing Fisher
discriminants is at most linear in the number of points in
the training set whereas the worst-case complexity for support
vector machines scales as a cubic function of the training set’s
size [19].

The method applies to identified singular spurious errors as
well as their moderate-sized clusters. The question, however,
is what if the volume of errors which the AI’s produce is
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similar to that of AI’s correct response? The second question
is if it is possible for deployed AI’s to learn autonomously
without supervision? The above questions are fundamentally
important for the broad spectrum of AI applications. At the
same time, they are particularly acute for embedded and near-
edge systems due to constraints imposed by their limited
computational capabilities and memory resources.

In this work, we show that stochastic separation theorems,
or the blessing of dimensionality [20], [21], stemming from
the concentration of measure effects [22], [23], [24], can be
adapted and applied to address these important issues too.
In particular we present and justify mathematically and in
experiments two algorithms that are capable of delivering the
required functionality at the computational costs which are
compatible with strict computational requirements of embed-
ded deployment.

The paper is organized as follows. Section II contains
necessary theoretical preliminaries and formal statement of
the problem. In Section III we present a new algorithm for
improving AIs “at the edge”, Section IV presents numerical
example, and Section V concludes the paper.

NOTATION

The following notational agreements are used throughout
the text:

• Rn stands for the n-dimensional linear real vector space;
• N denotes the set of natural numbers;
• symbols x = (x1, . . . , xn) will denote elements of Rn;
• (x,y) =

∑
k xkyk is the inner product of x and y, and

‖x‖ =
√

(x,x) is the standard Euclidean norm in Rn;
• Bn denotes for the unit ball in Rn centered at the origin:

Bn = {x ∈ Rn| (x,x) ≤ 1};
• Vn is the n-dimensional Lebesgue measure, and Vn(Bn)

is the volume of unit ball;
• if Y is a finite set then the number of elements in Y

(cardinality of Y) is denoted by |Y|.

II. PROBLEM FORMULATION AND MATHEMATICAL
PRELIMINARIES

A. Problem formulation

Following [14], we consider a generic AI system that pro-
cesses some input signals, produces internal representations of
the input and returns some outputs. We assume that there is
a sampling process whereby some relevant information about
the input, internal signals, and outputs are combined into a
common vector, x, representing, but not necessarily defining,
the state of the AI system.

Depending on the sampling process, the vector x may have
various numbers of elements. But generally, the objects x
are assumed to be elements of Rn, with n depending on the
sampling process. Over a period of activity the AI system
generates a set X = {x1, . . . ,xM} of representations x.
In agreement with standard assumptions in machine learning
literature [18], we assume that the set X is is a random sample
drawn from some distribution. The distribution that generates
vectors x is supposed to be unknown. We will, however,

impose the following technical assumption on the generating
probability distribution

Assumption 1: The probability density function, p, associ-
ated with the probability distribution of the random variable
x is compactly supported in the unit ball Bn and

there exists a C > 0 : p(x) <
Crn

Vn(Bn)
, r ∈ (0, 2).

for all x ∈ Bn and relevant n.
The assumption requires that the random variable x is in

Bn which is consistent with the scope of our applications. Ad-
ditionally, it states that, as the number of variables in vectors
x = (x1, x2, . . . , xn) grows, no unexpected concentrations in
the probability distributions emerge as a result of this growth
(cf. the Smeared Absolute Continuity (SmAC) property in
[16], [25]). Awareness of the latter property will be important
for the algorithms that follow.

Definition 1: A point x ∈ Rn is linearly separable from a
set Y ⊂ Rn, if there exists a linear functional l(·) such that

l(x) > l(y)

for all y ∈ Y .
Definition 2: A set X ⊂ Rn is linearly separable from a set
Y ⊂ Rn, if there exists a linear functional l(·) such that

l(x) > l(y)

for all y ∈ Y and x ∈ X .
In addition to these standard notions of linear separability,

we adopt the notion of Fisher separability [16], [25].
Definition 3: A point x ∈ Rn is Fisher separable from a

set Y ⊂ Rn, if
(x,x) > (x,y) (1)

for all y ∈ Y . The point is Fisher separable from the set Y
with a threshold κ ∈ [0, 1) if

(x,x) > κ(x,y) (2)

Having introduced all relevant assumptions and notions,
we are now ready to proceed with results underpinning our
algorithmic developments.

B. Mathematical Preliminaries

Our first result is provided in Theorem 1 (cf. [26], [16])
Theorem 1: Let X = {x1, . . . ,xM} be given, xi ∈ Bn, and

let x be drawn from a distribution satisfying Assumption 1.
Then x is Fisher separable from the set X with probability

P ≥ 1−MC
(r

2

)n
, r ∈ (0, 2). (3)

Proof of Theorem 1. Consider events

Ai : x is Fisher separable from yi

It is clear that

P (not Ai) =

∫
(x,x)−(x,xi)≤0

p(x)dx.
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Recall that

P (A1&A2& · · ·&AM ) ≥ 1−
M∑
i=1

P (not Ai).

Combining the last two observations we can conclude that the
probability that x is separable from all xi is bounded from
below by the expression in (3). �

Consider two random sets X = {x1, . . . ,xM} and Y =
{y1, . . . ,yK}. Let there be a process (e.g. a learning algo-
rithm) which, for the given X , Y or their subsets, produces a
classifier

f(·) =
d∑
i=1

αi(zi, ·), αj ∈ R.

The vectors zi, i = 1, . . . , d are supposed to be known.
Furthermore, we suppose that the function f is such that

f(yj) >
d∑

m,k=1

αmαk(zm, zk) (4)

for all yj ∈ Y . In other words, if we denote w =
∑d
i=1 αizi,

the following holds true:

(w,w) < (w,yi) for all i = 1, . . . ,K. (5)

Note that since the Y,X are random, it is natural to expect that
the vector α = (α1, . . . , αd) is also random. The following
statement can now be formulated:

Theorem 2: Consider sets X and Y . Let pα(α) be the
probability density function associated with the random vector
α, and α satisfies condition (4) with probability 1. Then the
set X is separable from the set Y with probability

P ≥ 1−
M∑
i=1

∫
H(α,xi)≤0

pα(α)dα, (6)

where

H(α,xi) =
d∑

k,m=1

αkαm(zk, zm)−
d∑

m=1

αm(zm,xi).

Proof of Theorem 2. Consider events

Ai : (w,w) > (w,xi).

Events Ai are equivalent to that H(α,xi) > 0. Eq. (6)
provides a lower bound for the probability that all these events
hold. Recall that vectors α satisfy (5), and hence

d∑
m=1

αm(zm,xi) =(w,xi)

< (w,yj) =
d∑

m=1

αm(zm,yj)

for all xi ∈ X and yj ∈ Y with probability at least (6). The
statement now follows immediately from Definition 2. �

Theorem 2 generalizes earlier k-tuple separation theorems
[15] to a very general class of practically relevant distributions.
No independence assumptions are imposed on the components

of vectors xi and yi. We do, however, require that some
information about distribution of the classifier parameters, α,
is available.

Observe, for example, that if there exist L > 0, λ ∈ (0, 1)
and a function β : N× N→ R such that∫

H(α,y)≤0

pα(α)dα ≤ Lλβ(d,n)

for any y ∈ Rn then (6) becomes

P ≥ 1−MLλβ(d,n).

If d = n and elements of the set Y are sufficiently strongly
correlated, then Theorem 1 provides a good approximation
of the separability probability bound for a simple separating
function in which w is just a scaled centroid of Y .

III. FAST REMOVAL OF AI ERRORS

According to theoretical constructions presented in the pre-
vious section, the following is an advantage for successful and
efficient separation of random sets in high dimension: one of
the sets should be sufficiently concentrated (spatially localized
and have an exponentially smaller volume relative to the other
[Theorems 1, 2]). Moreover, successful separability of a single
point is dependent on absence of unexpected concentrations in
the probability distributions. Below we present an algorithm
for fast and efficient error correction of AI systems which is
motivated by these observations and intuition stemming from
our theoretical results.

Consider two finite sets, the set X ⊂ Rn, and Y ⊂ Rn.
The task is to construct a linear functional separating the set
X from Y .

Algorithm 1:
1) Let x̄ be the centroid of X . Generate two sets, Xc, the

centralized set X , and Y∗, the set obtained from Y by
subtracting x̄ from each of its elements.

2) Construct Principal Components for the centralized set
Xc.

3) Select m ≤ n Principal Components, h1, . . . , hm, and
project the centralized set Xc as well as Y∗ onto these
vectors. The operation returns sets Xr and Y∗,r, respec-
tively.

4) For the sets Xr and Y∗,r, construct the Fisher discrimi-
nant separating Xr from Y∗,r. Let wr be a vector such
that if (wr, z) > (wr,wr) then we associate element
z with the set Yr,∗; if (wr, z) ≤ (wr,wr) then we
associate z with the set Xr.

5) Calculate w = [h1
... · · ·

...hm]wr and return l(·) = (w, ·)
as the desired linear functional for Xc and Y∗.

IV. NUMERICAL EXAMPLE

To illustrate the efficiency of the approach, we tested the
algorithm in the object detection task in which the primary
object detector was an OpenCV implementation of the Haar
face detector. The detector has been applied to a video footage
capturing traffic and pedestrians walking on the streets of
Montreal. For the purposes of testing and validation, we used
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Fig. 1. ROC curves after the application of the AI error correcting algorithm

the MTCNN face detector as a vehicle to generate ground truth
data. All the data as well as the code generating true positive
and false positive images can be provided by request.

For this particular dataset, the total number of true positives
was 21896, and the total number of false positives was 9372.
All the detects have been resized to 64 by 64 crops (in RGB
encoding). Each crop produces a 12288-dimensional vector.
From this dataset, we generated a training set containing 50
percent of positive and false positives, and passed this training
set to Algorithm 1. In the algorithm, true positives have been
associated with the set X , and false positives were associated
with the set Y∗. The number of Principal Components was
limited to 200.

Training took 183.87 seconds on a Core i7 laptop, and the
outcomes of the process as well as performance on the testing
set are shown in Fig. 1. As we can see from this figure, direct
implementation of Algorithm 1 allows one to filter 90 percent
of all errors at the cost of missing circa 5 percent of true
positives. Most importantly, implementation of the correcting
functional on an ARM Cortex-A53 processor took less than
1 millisecond per each 12288-dimensional vector implying

significant capacity of the approach for embedded near-edge
applications.

V. CONCLUSION

In this work we presented a novel approach for equipping
edge-based or near-edge devices with capabilities to remove
spurious as well as a rather overwhelming number of errors.
The approach is based on stochastic separation theorems [12],
[13], [14], [15], [16], [17] and the concentration of measure
phenomena. Our results demonstrate that the new capability
can be delivered to the edge and deployed in a fully automated
way, whereby a more sophisticated AI system, e.g. MTCNN
face detector, monitors performance of a less powerful coun-
terpart. The experiment extends our earlier work [15] and
directly responds to the fundamental challenge of removing
AI errors in industrial applications at minimal computational
costs.
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