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A B S T R A C T

Precise estimation of boiling points in organic fluids is critical for designing efficient and safe 
thermal systems. This study presents a hybrid molecular dynamic (MD)–machine learning (ML) 
framework for boiling point estimation in two representative aromatic fluids: biphenyl (C12H10) 
and diphenyl ether (C12H10O). Two force fields, OPLS-AA and COMPASS, were tested in equi
librium MD simulations. OPLS-AA produced density predictions with a relative error below 2 % 
compared to experimental values, while COMPASS showed reduced accuracy at elevated tem
peratures. Boiling point was estimated using a density threshold method (yielding 525.66 K) and 
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a thermodynamically rigorous inflection-point method (508.18 K), revealing ~3.3 % deviation 
between boiling onset and completion. MD data were used to train and evaluate three regression 
models—Nearest Neighbours Regression (NNR), Neural Network (NN), and Support Vector 
Regression (SVR). The NNR model achieved the best match with MD data, predicting a boiling 
point of 524.97 K and density of 0.064 g/cm3. The NN model accurately estimated boiling 
temperature (525.3 K) but overestimated density, while SVR underestimated both. This work 
contributes a novel, interpretable MD–ML framework to integrate the inflection-point detection 
with data-driven model selection, offering a reproducible and accurate method for boiling point 
estimation that can be extended to other organic thermal systems.

1. Introduction

Accurate predictions of thermophysical properties of fluids are essential to design efficient and sustainable thermal fluid systems for 
many industrial applications, e.g., chemical processing and thermal management. The chemical makeup of heat transfer fluids (HTFs) 
along with their operating conditions determines their thermal stability and heat transfer efficiency. Previous studies show that 
thermal fluids degrade because of thermal and chemical stresses during normal operations, underlining the importance of fluid 
chemical decomposition and environmental conditions for long-term performance [1,2]. Rigorous system design practices are essential 
to maximize the service life of HTFs [3]. The design of heat exchangers and heaters demands that engineers meticulously evaluate the 
heat flux control, temperature gradients, and thermal boundary conditions, with specific attention to energy recovery units [4]. In 
scenarios where flame impingement is present localized overheating often happens and raises the risk of premature thermal degra
dation [5]. Proper fuel-to-air mixing becomes essential because incorrect mixing leads to changes in flame dynamics which amplify 
thermal stresses [6,7]. The stability of HTF fluids is seriously compromised by chemical contamination because contaminants exhibit 
poor thermal stability, leading to fluid breakdown and surface fouling at high temperatures [8]. Rigorous filtration and conditioning 
processes are essential for maintaining fluid purity, thus ensuring the efficiency and integrity of the thermal-fluid system [9].

Direct economic and operational benefits arise from precise boiling point predictions by enabling efficient system operation and 
energy savings while also improving process design for chemical reactors and energy production systems. Hosseinifar and Shahverdi 
[10] developed a six-point technique to create petroleum fluid distillation curves from minimal experimental data. Their method 
builds mathematical connections between distillation temperatures and physical properties to enable the prediction of true boiling 
point and ASTM D86 distillation curves. The model was evaluated against both literature data and newly obtained experimental data, 
demonstrating strong predictive capability with a mean absolute deviation of 1.98 %. Mukwembi and Nyabadza [11] developed an 
innovative model to predict alkane boiling points using graph theory. Their results showed that new computational methods surpass 
traditional single-parameter models by effectively modelling complex thermophysical interactions in organic thermal-fluid systems 
with potential relevance to biphenyl and diphenyl ether-based mixtures. Stratiev et al. [12] investigated the relationship between 
boiling points and viscosity in secondary vacuum gas oils, discovering that accurate boiling point predictions enhance viscosity 
modelling results. These models achieve enhanced predictive accuracy and improved design efficiency in petrochemical systems 
through the strong link between viscosity and boiling points. Additionally, recent developments in molecular dynamics (MD) simu
lations have given important new perspectives on interfacial heat transport mechanisms and boiling behaviour of low-boiling-point 
organic fluids. Su et al. [13] examined how different liquid film thicknesses and solid-liquid interaction forces along with initial 
temperatures affect the boiling dynamics of 1,1,1,2-tetrafluoroethane (R134a). Their research showed how film thickness determines 
the boiling mode because thinner films result in thin film boiling while thicker films lead to explosive boiling, emphasizing vapor layer 
thermal resistance as the main factor that affects the entire heat transfer mechanism. Su et al. [14] investigated how liquid sodium (Na) 
and R134a behaved during boiling when exposed to high heat flux conditions. MD simulations showed that liquid sodium maintained a 
lengthier nucleate boiling stage which featured more active bubble movement and achieved substantially higher heat flux than R134a. 
Furthermore, Lin et al. [15] focused on understanding of how vibration affects phase change dynamics in organic fluids with low 
boiling points. Their research indicated that vibration amplitude, frequency, and the wettability of surfaces determine the phase 
transition modes such as diffusive evaporation, nucleate boiling, and film boiling/cavitation. Their work enhances molecular-level 
knowledge of phase change processes which may lead to industrial cooling and thermal management advancements.

Despite significant progress in classical and computational boiling-point predictions, there remains an identifiable gap: current 
methods struggle to accurately assess the properties of thermal fluids such as biphenyl and diphenyl ether [16]. Industrial heat transfer 
applications often use these substances because they maintain thermal stability well while featuring low vapor pressure at high 
temperatures and good thermal conductivity. As diphenyl ether (C12H10O) boils at 528 K and biphenyl (C12H10) has a boiling range of 
524–538 K, their combination in Dowtherm A provides exceptional heat-transfer qualities, low volatility, and enhanced thermal 
stability, making it ideal for high-temperature industrial applications [17,19]. Nevertheless, these fluids face several challenges, 
including potential thermal degradation together with environmental persistence and associated toxicity concerns. Boiling-point 
prediction methodologies must be both accurate and reliable to maintain thermal efficiency and protect environmental and occu
pational safety within thermal fluid systems that use these substances [18]. Traditional thermodynamic models and empirical cor
relations provide useful information, but they often fail to accurately predict boiling points near critical conditions or during phase 
transitions due to their inability to capture complex molecular interactions. In contrast, machine learning (ML) approaches have shown 
significant promise in improving predictive performance by learning intricate patterns from large, multi-dimensional datasets. Xu et al. 
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[20] demonstrated that Convolutional Neural Networks (CNNs) can accurately estimate thermophysical properties of organic com
pounds using 3D molecular structure representations. Similarly, Liu and Nouroddin [21] applied Extreme Learning Machines (ELM) 
and Ensemble Decision Tree Boosting (EDT Boosted) algorithms to predict refrigerant boiling points, showing ML’s capacity to model 
nonlinearities inherent in molecular thermodynamics. Building on this foundation, Liu et al. [31] constructed a database of potential 
insulating gases and applied a Gradient Boosting Regression (GBR) model with RDKit descriptors to predict boiling points, achieving a 
determination coefficient (R2) of 0.97 on the test set. Their use of SHAP (SHapley Additive exPlanations) further revealed that spatial 
interaction descriptors (e.g., Ipc) played key roles in the prediction, highlighting ML’s ability to uncover structure–property 
relationships.

Parallel research has applied ML to predict a wide range of thermophysical properties in nanofluids and phase change materials 
(PCMs). Ullah et al. [32] proposed integrating artificial neural networks (ANN) in ML with computational fluid dynamics (CFD) 
pipelines to overcome limitations of empirical correlations when modelling complex nanofluids. Bhanuteja et al. [33] experimentally 
measured the thermal conductivity and viscosity of hybrid nanofluids and compared traditional correlations with ML models, 
demonstrating that ML could reduce prediction error to less than 4 %. Gao et al. [34] used Automatic Relevance Determination (ARD), 
k-nearest neighbours (KNN), and least absolute shrinkage and selection operator (LASSO) to model the thermal conductivity and latent 
heat of carbon-based nano-enhanced PCMs across 100 thermal cycles, achieving R2 values of about 0.999. Similarly, Bakouri et al. [35] 
implemented multiple regressors, including Support Vector Machine (SVM), Stochastic Gradient Descent (SGD), KNN, and Huber 
regression, to predict the latent heat and thermal conductivity enhancements in metal-based PCMs with strong statistical performance. 
Comprehensive reviews have reinforced these findings. Upadhyay et al. [36] provided a wide-ranging overview of ML models applied 
to boiling heat transfer, recommending feature reduction, algorithm selection, and physics-inspired modelling to improve interpret
ability and generalisability. Jirasek and Hasse [37] reviewed deep learning approaches that integrate MD simulation data with ML 
models, underlining their potential in predicting thermal conductivity and specific heat across ionic and molecular fluids.

The degradation of thermal fluids not only presents safety hazards but also leads to increased operational costs and maintenance 
demands. Repeated heating cycles that approach or exceed the fluid’s boiling point accelerate chemical breakdown, reduce heat 
transfer efficiency, and shorten service life. Early prediction of boiling behaviour during the initial phases of system operation, when 
the fluid remains chemically stable, is therefore essential for effective performance management. Biphenyl and diphenyl ether were 
selected for this investigation due to their excellent thermal stability and widespread industrial use in high-temperature applications. 
Accurate boiling point estimation during early operational conditions supports proactive intervention, thereby reducing degradation 
risks and improving system reliability. While ML methods have shown promise in enhancing prediction capabilities beyond traditional 
empirical correlations, their integration with molecular-level simulation data remains limited.

To fill this gap, the present study develops a hybrid molecular dynamics–machine learning (MD–ML) framework for boiling point 
estimation in aromatic thermal fluids. The approach combines measurable thermodynamic properties extracted from equilibrium MD 
simulations, including density, kinetic energy, potential energy, and pressure–volume data, along with multiple supervised ML al
gorithms. A systematic evaluation of kernel-based, instance-based, and neural network (NN) models is carried out to identify archi
tectures best suited for capturing thermophysical trends and phase-transition behaviour. Additionally, multiple force fields (OPLS-AA 
and COMPASS CLASS2) are employed to assess the reliability of MD-predicted thermophysical properties and their alignment with a 
diverse set of experimental benchmarks. Boiling points are estimated using both a fixed density threshold and an inflection-point 
method, allowing robust cross-validation of phase transition detection. Model accuracy is quantified using mean absolute error 
(MAE), mean squared error (MSE), R2, and Pearson correlation (PC) metrics. This integrative framework offers a reproducible and 
physically grounded strategy for boiling point prediction, while it also provides guidance on force field selection and ML model 
suitability for a wider range of thermal fluid systems.

2. Methodology

The study analysed biphenyl (C12H10) and diphenyl ether (C12H10O) molecules because they represent typical examples of 
emerging components in thermal oil heat-transfer systems. Biphenyl (C12H10) and diphenyl ether (C12H10) undergo thermal degra
dation at extended high temperatures, resulting in multiple byproducts. Biphenyl degradation produces both low-boiling chemicals 
such as benzene (C6H6) and phenol (C6H5OH) and high-boiling oligomers such as terphenyls (C18H14) and quaterphenyls (C24H18). 
Diphenyl ether degrades into volatile phenol (C6H5) and benzene (C6) compounds while creating dibenzofurans (C12H8O), which 
elevate viscosity levels and obstruct fluid movement [22].

Initially, the molecular structures for biphenyl and diphenyl ether were constructed using Packmol [23]. In all systems, a total of 
490 molecules were utilized. Previous studies indicated that increasing the number of molecules did not significantly affect the 
prediction for density [24]. The simulation process was independently replicated three times in each scenario to remove any bias that 
may occur from random molecular positioning at the beginning. The energy minimisation process enabled atoms in each configuration 
to reach their minimum potential energy states which ensured accurate molecular arrangements. The study consistently assigned 
partial atomic charges through Xenoview [25] and ArgusLab [26] to ensure accurate depiction of electrostatic interactions in MD 
simulations. The MD framework utilized OPLS-AA (Optimized Potentials for Liquid Simulations-All Atom) and COMPASS CLASS2 
(Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies) force fields to determine the effects of force-field 
selection on thermophysical prediction accuracy. Deploying both force fields facilitated a comprehensive assessment of molecular 
interaction parameters, resulting in strong validation through available experimental data. Molecular structures, post-energy mini
misation and replication, were combined using the replicate and append commands within the Large-scale Atomic/Molecular Massively 
Parallel Simulator (LAMMPS) software [27]. The simulation systems underwent structural verification through OVITO visualization 
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software [28], which confirmed proper assembly of molecular configurations and structural integrity. The simulation systems entered 
controlled equilibrium and production phases in LAMMPS after their preparation. The resulting MD-generated datasets included 
detailed thermodynamic parameters such as density, kinetic energy, potential energy, pressure, and volume, which are all essential 
indicators of phase behaviour. The use of two different force fields, OPLS-AA and COMPASS CLASS2 along with comparison against 
experimental data allows the determination of which force field provides superior accuracy for biphenyl and diphenyl ether, aiming to 
improve the reliability of predictive analysis for these substances.

MD simulation datasets needed thorough pre-processing before ML application which combined multiple steps including data 
conditioning, labelling, curation and elimination of outliers and noise together with correlation analysis. The cleaned data was divided 
into training and testing subsets in an 80–20 % ratio using the train_test_split method in Python [29,30]. Various ML models received 
training and evaluation treatment through the Monolith AI platform and PyCharm software. Throughout model training sessions 
learning curves were consistently tracked to identify and correct problems related to underfitting and overfitting. Model performance 
was comprehensively assessed through multiple metrics: mean absolute error (MAE), mean squared error (MSE), determination co
efficient (R2), and Pearson coefficient (PC) as the primary metrics. The chosen ML model demonstrated optimal results on every 
evaluation criterion and achieved high accuracy for predicting biphenyl boiling points, which supports early thermal fluid manage
ment interventions (see Fig. 1). The detailed configurations and parameter settings utilized in MD simulations, including force field 
parameters and equilibrium conditions, are further discussed in Sec. 3.1, providing clarity on MD simulation procedures. Sec. 3.2
elaborates upon the ML techniques employed, including their configuration, training, and the rationale for model selection, ensuring 
transparency and reproducibility of the methodology.

3. Configuration of MD and ML

3.1. MD simulations

3.1.1. Force field setup
All MD simulations were performed using LAMMPS, employing the real unit system to ensure consistency with experimental 

thermophysical data. Periodic boundary conditions were imposed in all three spatial dimensions to replicate bulk-phase behaviour, 
and a full-atom representation was used to accurately capture intermolecular interactions. The velocity-Verlet algorithm was 
employed to integrate the equations of motion, balancing computational efficiency and numerical stability [29]. Long-range 
Coulombic interactions were calculated using the particle–particle particle–mesh (PPPM) method with a precision of 1.0 × 10− 4. A 
cutoff distance of 1.2 nm was applied to nonbonded interactions to efficiently model both van der Waals and electrostatic forces.

To investigate the influence of potential models on boiling point estimation, two force fields were employed: OPLS-AA and 
COMPASS CLASS2. These force fields were manually implemented in LAMMPS through custom assignment of bond, angle, and 
dihedral parameters. For OPLS-AA, bonded interactions were defined using dihedral_style opls, and nonbonded terms were assigned 
using pair_style lj/cut/coul/long. For COMPASS CLASS2, the higher-order bonded terms were incorporated using dihedral_style class2, 
and nonbonded interactions were modelled using pair_style lj/class2/coul/long. Force field parameters were sourced from published 
studies involving organic and aromatic molecules [63,64,67], ensuring compatibility with the molecular structures of biphenyl and 
diphenyl ether used in this study, as detailed in Tables 1 and 2. This implementation ensured full compatibility with LAMMPS’ force 

Fig. 1. Schematic of integrating MD simulation with ML algorithm to predict the boiling point of the thermal fluid.
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field styles and accurately reproduced the molecular topologies of the target fluids.
The energy minimisation process was completed by setting force and energy convergence thresholds to 1.0 × 10− 12 to achieve a 

well-prepared starting structure. All systems were initially equilibrated under the ensemble (NPT) at 300 K and 1atm pressure for 
0.25ns using a Nose–Hoover thermostat and barostat to establish volumetric and thermal stability. The initial density was not 
manually set but allowed to emerge from pressure relaxation during the NPT equilibration stage. This strategy ensures that the system 
naturally evolves to its equilibrium volume and density at 300 K and 1atm without applying artificial constraints. Although the NPT 
equilibration was performed for 0.25ns, this duration was validated through preliminary trial simulations that showed rapid 
convergence of total energy, volume, and temperature within this period. To further confirm equilibrium, the atomic trajectories, 
energy drift, and volume evolution were analysed using LAMMPS output logs and OVITO visualization. The subsequent production 
stage in canonical ensemble (NVT) exhibited no systematic drift in thermodynamic observables, thereby confirming the system’s 
relaxation to equilibrium before heating. This was followed by a 1ns heating phase under the NVT ensemble, where temperature was 
linearly increased to the target value in each case. These conditions ensured reproducible and stable MD trajectories across the full 
temperature range evaluated. Subsequently, for boiling point detection, a series of independent NVT simulations were performed at 
discrete target temperatures, with each system equilibrated separately to extract the corresponding equilibrium density.

The OPLS-AA force field models the total potential energy as a summation of bonded and non-bonded interactions [63–65]: 

Etotal = Ebonds + Eangles + Edihedral + Enonbonded (1) 

Bond stretching and angle bending interactions follow harmonic potentials: 

Ebonds =
∑

bonds
Kr(r − r0)

2 (2) 

Eangles =
∑

angles
Kθ(θ − θ0)

2 (3) 

Torsional interactions are modelled using a Fourier series expansion: 

Edihedrals =
∑

dihedrals

(
1
2
Kφ1 [1+ cos (φ)] +

1
2
Kφ2[1+ cos (2φ)] +

1
2
Kφ3 [1+ cos (3φ)] +

1
2
Kφ4 [1+ cos (4φ)]

)

(4) 

Non-bonded interactions incorporate Coulombic interactions and Lennard-Jones (LJ) 12-6 potential: 

Table 1 
OPLS-AA force field parameters for biphenyl and diphenyl ether.

OPLS-AA Nonbonded parameters and atom types for biphenyl 1 and diphenyl ether 2

Name Element Type qOPLS σ( Å) ε(kcal /mol)
C1 C CH − 250 3.55 0.07
H1 H H 240 2.42 0.03
C2 C CH − 250 3.55 0.07
H2 H H +240 2.42 0.03
O2 O O − 430 3.12 0.17
OPLS-AA Bond stretching parameters and bond types for biphenyl 1 and diphenyl ether 2
Bond type Kr

(
kcal.mol− 1

.Å
− 2) r(Å)

C1-C1 469 1.4
C1-H1 367 1.08
C2-C2 469 1.4
C2-H2 367 1.08
C2-O2 320 1.41
OPLS-AA Angle bending parameters and angle types for biphenyl 1 and diphenyl ether 2
Angle type Kθ

(
kcal.mol− 1

.rad− 2
)

θ(deg)

C1-C1-C1 35 120
C2-C2-C2 63 120
C2-C2-O2 35 109.47
C2-C2-H2 35 120
C2-O2-H2 55 108.5
H1-C1-H1 33 107.8
OPLS-AA Torsion parameters and dihedral types for biphenyl 1 and diphenyl ether 2
Dihedral type Kφ1

Kφ2 Kφ3 Kφ4

C1-C1-C1-C1 1.3 − 0.2 0.2 0.0
C1-C1-C1-H1 − 1.552 0.0 0.0 0.0
C2-C2-C2-C2 1.3 − 0.2 0.2 0.0
C2-C2-C2-H2 − 1.552 0.0 0.0 0.0
C2-C2-O2-H2 − 0.356 − 0.174 0.492 0.0

Footnote: subscripts ‘1’ and ‘2’ in atoms of carbon (C), hydrogen (H) and oxygen (O) refer to as the belonging of biphenyl or diphenyl ether, 
respectively.
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Enonbond =
Cqiqj

ε0rij
+ 4εij

[(
σij

rij

)12

−

(
σij

rij

)6]

(5) 

The force constants in these equations are Kr, Kθ, and Kφn ; the bond lengths, angles, and dihedral angles are represented by r, θ, and φ, 
respectively, and r0, θ0 and φ0 are the equilibrium values. There are two primary parts in Enonbond: the first term, Coulombic interactions 
between partial charges, is represented by Cqiqj

εrij
, where qi and qj are the partial charges of atoms i and j, ε0 is the vacuum permittivity, rij 

is the distance between the atoms, and C is an energy-conversion constant. The second term, 4εij

[(
σij
rij

)12
−

(
σij
rij

)6]

, characterizes the 

van der Waals interactions, where εij and σij are the energy and diameter parameters, respectively. Table 1 provides the selected values 
of parameters in this study [63,64,67].

COMPASS CLASS2 utilizes higher-order bonded potential terms to achieve better precision in condensed-phase simulations. The 
behaviour of bond stretching and angle bending is modelled with third- and fourth-order polynomial functions [66,67]: 

Ebonds =Kr2(r − r0)
2
+Kr3(r − r0)

3
+ Kr4(r − r0)

4 (6) 

Eangles =Kθ2(θ − θ0)
2
+Kθ3(θ − θ0)

3
+ Kθ4(θ − θ0)

4 (7) 

The modelling of dihedral and improper torsions utilizes higher-order expressions. The COMPASS CLASS2 version of the Lennard- 
Jones potential uses a 9-6 formulation: 

EElec-LJ =
∑

i<j

qiqj

ε0rij
+
∑

i<j
εij

[

2
(

σij

rij

)9

− 3
(

σij

rij

)6]

(8) 

The force constants and bond lengths along with the Lennard-Jones parameters for carbon hydrogen and oxygen atoms match well 
with values found in previous research [66–68]. Table 2 displays the detailed parameter values for COMPASS CLASS2 force field.

The system was subsequently heated in a linear manner after equilibration, raising the temperature from 300 K to the target 
temperature over 1ns using the NVT ensemble. Two heating conditions were explored: The first set of OPLS-AA and COMPASS CLASS2 
simulations heated the system from 300 to 600 K while the second set of OPLS-AA simulations reached a higher target of 700 K. The 
heating phase creates a controlled environment that enables researchers to examine boiling transition dynamics while directly 
comparing how different temperatures influence molecular interactions and phase behaviour.

3.1.2. Density
The system density ρ was calculated by dividing the total mass of thermal fluid by the volume of simulation box and is given by: 

ρ= NM
VENA

(9) 

Table 2 
COMPASS Class 2 force field parameters for biphenyl and diphenyl ether.

COMPASS Pair coefficients for biphenyl 1 and diphenyl ether 2

Element ε(kcal /mol) σ( Å)
C1 0.055 3.85
H1 0.02 2.42
C2 0.055 3.85
H2 0.02 2.42
O2 0.08 3.0
COMPASS Bond coefficients for biphenyl 1 and diphenyl ether 2
Bond type r(Å) Kr2

(
kcal.mol− 1

.Å
− 2)

Kr3

(
kcal.mol− 1

.Å
− 2)

Kr4

(
kcal.mol− 1

.Å
− 2)

C1-C1 1.53 299.67 − 501.77 679.81
C1-H1 1.1 345.0 − 691.89 844.6
C2-C2 1.53 299.67 − 501.77 679.81
C2-H2 1.1 345.0 − 691.89 844.6
C2-O2 1.41 320.0 − 650.0 720.0
COMPASS Angle coefficients for biphenyl 1 and diphenyl ether 2
Bond type θ(deg) Kθ2

(
kcal.mol− 1

.Å
− 2)

Kθ3

(
kcal.mol− 1

.Å
− 2)

Kθ4

(
kcal.mol− 1

.Å
− 2)

C1-C1-C1 120.0 39.516 − 7.443 − 9.558
C1-C1-H1 110.77 41.453 − 10.604 5.129
C2-C2-C2 120.0 39.516 − 7.443 − 9.558
C2-C2-H2 110.77 41.453 − 10.604 5.129
C2-C2-O2 109.5 40.0 − 9.8 6.5

Footnote: subscripts ‘1’ and ‘2’ in atoms of carbon (C), hydrogen (H) and oxygen (O) refer to as the belonging of biphenyl or diphenyl ether, 
respectively.
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where N denotes the particle number, M denotes the molar mass, VE represents the simulation cell’s equilibrium volume at a NVE 
system, and NA is the Avogadro’s constant [69].

3.1.3. Viscosity
The viscosity measurements of biphenyl and diphenyl ether thermal fluids were conducted through equilibrium molecular dy

namics (EMD) simulations based on the Green-Kubo method. The approach involves integrating the autocorrelation function of stress 
tensor components to connect viscosity with molecular momentum transport [38]. The canonical ensemble (NVT) was used in sim
ulations to maintain constant temperature while keeping the system in equilibrium and enabling the collection of statistical data. The 
Green-Kubo relation determines shear viscosity η by integrating the autocorrelation function of the stress tensor’s off-diagonal ele
ments [39], and η is expressed as: 

η= V
kBT

∫ ∞

0
〈Pij(0)Pij(t)〉dt (10) 

where V is the system volume, kB represents the Boltzmann constant, and T denotes temperature alongside Pij which signifies the off- 
diagonal pressure tensor component. The integral represents the time correlation function for pressure tensor components and 
demonstrates how intermolecular forces develop over time and affect overall viscosity. The total viscosity was obtained by averaging 
the contributions from different off-diagonal components of the stress tensor [40]: 

η=1
3
(
ηxy + ηxz + ηyz

)
(11) 

where ηxy, ηxz, and ηyz correspond to viscosity components derived from the autocorrelation functions of the respective stress tensor 
elements. To ensure accurate viscosity calculations, a sufficiently long sampling time was used to capture the full relaxation behaviour 
of the stress autocorrelation function. Regular interval simulation data collection was followed by numerical integration using the 
trapezoidal rule for Green-Kubo integral approximation [38,40].

3.2. ML techniques

3.2.1. Data framework and structure
This research produced a comprehensive dataset generated via MD simulations to analyse the thermophysical properties of both 

biphenyl and diphenyl ether thermal fluids. The MD simulations ran for a full production period of 1ns while recording data every 
1000fs. High temporal resolution characterizes this approach because it precisely captures dynamic molecular interactions and phase 
transition behaviours. The intricacy of atomic-scale systems necessitates the use of a structured methodology for data extraction to 
achieve accurate representation in ML applications. The dataset contains essential thermodynamic and molecular descriptors that 
enable analysis of system behaviour across different temperature ranges. The dataset contains temperature (Temp), density (Density), 
potential energy (PotEng), kinetic energy (KinEng), total energy (TotEng), pressure (Press), and system volume (Volume) that rep
resents the product of dimensions Lx, Ly, Lz under periodic boundary conditions to track density changes accurately and reduce edge 
effects and finite-size artifacts throughout the simulation. The various parameters collectively reveal a multidimensional view of 
molecular dynamics by identifying essential factors of intermolecular forces and phase transitions. Although kinetic energy is directly 
related to the instantaneous temperature, the target variable in this study reflects a broader thermodynamic profile. The ML models 
were trained on raw MD-derived features, including kinetic energy, potential energy, density, total energy, and simulation time 
progression. As a result, the predicted temperature was interpreted not as a frame-level KinEng equivalent, but as a phase-sensitive, 

Fig. 2. Parallel coordinate plot of MD simulation data: key thermophysical properties were extracted from MD simulations over a 1.25ns simulation 
period. The data consists of 0.25ns for equilibration using NPT ensemble, followed by 1ns for the production state where thermodynamic properties 
were recorded every 1000fs. The colour gradient represents the temperature variations ranging from 300 to 600 K.
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smoothed estimate that captures equilibrium trends across varying conditions. The learning process integrates multidimensional 
descriptors that collectively encode phase stability, energy accumulation, and boiling onset.

Analysing MD-generated datasets presents a significant challenge due to the inherent noise and nonlinear behaviour undergoing in 
molecular interactions [41,42]. Data quality improvements require rigorous preprocessing when energy distributions exhibit fluc
tuations alongside pressure and density variations. The research utilized noise reduction techniques to filter irrelevant data and retain 
only significant variations for further analysis by using Monolith AI platform and PyCharm. ML model training remained unbiased 
because normalizing variables to a common scale ensured dimensional consistency. The study used parallel coordinate plots to 
examine relationships among extracted features while identifying crucial influencing parameters. Fig. 2 demonstrates how temper
ature connects with energy distributions alongside pressure and density through parallel axes mapping. The visualization technique 
enables intuitive perception of dataset interdependencies, which helps analyse detection trends and anomalies. Each line in this 
visualization stands for a specific simulation moment, and temperature changes are shown through different colours. The analysis 
reveals a distinct pattern where rising temperatures show a connection with energy changes which then cause measurable fluctuations 
in pressure and density. The observed increase in line density during higher temperature conditions implies possible phase transition 
onset, highlighting the essential role of accurate boiling point predictions. Capabilities of the interactive data analysis enable the 
removal of outliers and inconsistencies and help produce reliable predictive modelling input. This visualization capability improves 
data comprehension while identifying essential factors that influence thermophysical properties in biphenyl and diphenyl ether 
systems. ML models derive their structure from the core dataset which undergoes an 80-20 % train-test division to achieve general
ization. The training data enables the model to recognize hidden patterns, and the test set functions as an evaluation standard to 
validate performance [29,30]. Prior to ML model development, all MD-derived features were processed to remove statistical noise and 
outliers. Each feature trajectory (e.g., pressure, energy, density) was smoothed using a 5-point moving average to suppress the thermal 
fluctuations. Outlier detection was performed using the interquartile range (IQR) method: any data point falling below Q1− 1.5 × IQR 
or above Q3+1.5 × IQR was excluded. Q1 represents the first quartile, the 25th percentile of the data, and IQR is the difference 
between the third quartile (Q3) and the first quartile (Q1). Features were then standardised using z-score normalisation. All pre
processing was conducted before the train-test split. This ensured that both the training and test datasets reflected uniformly condi
tioned thermodynamic signals. The effectiveness of this preprocessing was further validated through principal component analysis 
(PCA), which revealed the low feature redundancy and a structured temperature-driven variance profile. Predictive reliability im
proves when the dataset’s extensive range and variety undergo thorough preprocessing. Using the train_test_split function from the 
scikit-learn library ensures that the dataset is split in a way that minimizes bias and maintains the consistency of data distribution across 
both sets. This study combines MD with ML methodologies to benefit from both approaches and achieve accurate computational 
boiling point predictions.

To examine the intrinsic dimensionality of the input feature space and identify dominant modes of variation, PCA was applied to 
the scaled ML input dataset. The first principal component (PC1) accounts for over 73 % of the total variance, while PC2 explains an 
additional 16 %, indicating that the system’s behaviour is largely governed by one or two strongly correlated physical trends (see Fig. 3
(a)). The PCA scatter plot in Fig. 3(b) reveals a continuous temperature gradient along PC1, showing that thermally sensitive features, 
primarily kinetic energy, total energy, and density, dominate the input variance. This result confirms that temperature acts as a latent 
driver of feature correlations in the dataset. PC2 is orthogonal to PC1 and appears to capture pressure–volume variations. These 
observations justify the use of temperature-related thermophysical features in ML models for boiling point prediction and confirm that 
the input space is both low-dimensional and physically structured rather than noise-dominated. PCA loading vectors were also 
examined to assess redundancy among input features. Kinetic energy, total energy, and temperature-aligned features were all closely 
correlated along PC1, indicating that they contribute strongly to the thermal variance. Volume and pressure were grouped along PC2 

Fig. 3. Principal component analysis (PCA) of the ML input feature space: (a) Scree plot showing variance explained by each principal component, 
PC1 and PC2, together capturing ~90 % of the total variance and (b) PCA scatter plot (PC1 vs. PC2), colour-coded by simulation temperature. The 
clear gradient along PC1 indicates that temperature-sensitive thermophysical features such as kinetic energy, density and total energy are the 
primary drivers of variance in the input dataset.
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and consistent with their low variability under the NVT ensemble. Although some correlation exists, particularly between kinetic 
energy and total energy, these variables represent distinct thermodynamic contributions and are thus retained to preserve model 
interpretability. Combining with the sensitivity analysis in Fig. 14, which confirms that pressure and volume have negligible influence 
while kinetic energy dominates the prediction, the findings in PCA validate our input selection strategy. No features were removed 
during training, but this analysis supports the potential for dimensionality reduction in future studies.

In addition to PCA, mutual information (MI) analysis was performed to quantify the direct informational contribution of each input 
feature to temperature prediction. Unlike PCA, which evaluates global linear variance across the input space, MI captures nonlinear 
dependencies between individual features and the target variable. As shown in Fig. 4, kinetic energy has the highest MI score as 
expected due to its direct thermodynamic link to temperature, but other features such as total energy, potential energy, and density 
also demonstrate substantial information content. This analysis reinforces that the model learns from a multidimensional thermo
dynamic signal, not just from KinEng alone. Volume and pressure exhibit lower MI values, keeping consistency with their limited 
variability under the NVT ensemble and PCA loadings on PC2. By considering the MI analysis and PCA, it can be confirmed that the 
dataset is both informationally rich and physically structured, supporting the chosen feature set for temperature-based property 
prediction. It is noted that the temp–volume correlation has been included not because volume is a dominant feature but to evidence 
that volume remains stable within each run and does not artificially track temperature under NVT. This rules out ensemble-related 
artifacts. Pressure is excluded because it is unconstrained in NVT and already known to be the least informative feature based on 
the MI analysis.

3.2.2. ML algorithms
The complexity of thermophysical interactions in thermal fluid systems requires the selection of robust regression models to 

effectively capture nonlinear relationships and improve generalisability. The present study utilized three distinct ML models, including 
Support Vector Regression (SVR), Neural Networks (NN), and Nearest Neighbour Regression (NNR), because each model demonstrated 
unique strengths in effective regression tasks. The Monolith AI platform supports the implementation process by enabling cross- 
validation procedures and hyperparameter optimization along with model comparison to achieve reliable predictive results. SVR 
functions as an effective regression method that focuses on reducing prediction errors while preserving simple model structure. SVR 
demonstrates excellent performance on datasets with complex nonlinear relationships, making it a suitable method for predicting 
boiling points from MD-generated thermodynamic parameters. Hyperparameter tuning through randomized search helped optimize 
SVR performance by comparing 10 distinct model configurations. The model applied a radial basis function (RBF) kernel to model 
nonlinear dependencies in data and tested different values for the regularization parameter (C), specifically {0.001, 0.01, 0.1, 1, 10, 
100}. Additionally, the kernel coefficient (gamma) was tested using multiple settings: scale, auto, 0.0001, 0.01, and 0.1. A 5-fold cross- 
validation technique was employed in the present study to evaluate model stability with root mean squared error (RMSE) as the 
performance evaluation metric. The employed method prevented overfitting while allowing the model to perform accurately on new 
data.

NN were selected because they can learn sophisticated patterns from extensive datasets. NN were configured to evaluate multiple 
network architectures using hyperparameter tuning to optimize essential parameters for maximum accuracy, and a randomized search 
technique was implemented to test 10 different configurations by varying batch sizes {16, 32, 128, 512} and hidden layers in {1, 2, 3} 
quantities. The network could adjust its capacity to data complexity by selecting hidden layer sizes from a set of options: {20, 50, 75, 
100, 150, 200, 300, 500}. Three activation functions were tested across three common nonlinear transformations, including rectified 

Fig. 4. Mutual information (MI) analysis of input features (KinEng, TolEng, PotEng, Density, Volume, and Press) in MD with temperature, 
demonstrating that temperature-related signals exist beyond kinetic energy. Inset shows within-run temp–volume correlations under NVT condi
tions, further confirming that the lower MI score for volume reflects physical ensemble constraints rather than noise.
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linear unit (ReLU), exponential linear unit (ELU), and Swish. The model utilized dropout regularization at rates of 0.05 and 0.1 to 
counteract overfitting. The NN model also used 5-fold cross-validation with RMSE as the evaluation metric to maintain model reli
ability by avoiding overfitting and underfitting.

NNR functions as a non-parametric predictive model to determine outcomes by using the nearest data points in feature space. The 
relationship between thermodynamic properties such as density makes NNR a suitable benchmark for boiling point prediction. A 
randomized search strategy was employed to test 10 different configurations to optimize performance by altering the number of 
nearest neighbours (k), with values ranging from {1, 2, 3, 4, 5, 10, 20, 40}. This k parameter determines the prediction smoothing level, 
where lower values provide high sensitivity to local variations and higher values enhance generalization. The model’s capability to 
capture local relationships while maintaining low variance was verified through a 5-fold cross-validation process that used RMSE as 
the evaluation metric.

The ranges for hyperparameter selection in all three models were chosen based on a combination of preliminary trial simulations, 
prior literature on regression problems in thermophysical modelling, and empirical tuning recommendations from widely used ML 
frameworks. For SVR, values of the regularization parameter (C) were ranged from 0.001 to 100 to explore a wide spectrum from 
strong regularization to high flexibility, while gamma settings (scale, auto, and small numeric values) were selected to capture both 
adaptive and fixed RBF kernel spreads. The NN architecture tested varying hidden layer sizes (20–500 neurons), batch sizes (16–512), 
and multiple activation functions to ensure coverage of both shallow and deeper networks suited for structured datasets. Dropout rates 
were selected conservatively to prevent overfitting in medium-sized models. For NNR, the k-values tested (1–40) were chosen to 
balance the sensitivity to local variation against generalisation across global patterns. These ranges were not arbitrary but informed by 
common practices in tuning ML models for physical regression tasks with structured numerical features.

3.2.3. Model evaluation
Multiple metrics have been utilized in the present study to evaluate the accuracy of ML models and determine which model most 

accurately predicts the boiling point of biphenyl, including mean absolute error (MAE), mean squared error (MSE), Pearson coefficient 
(PC), and determination coefficient (R2). MAE measures the average size of prediction errors without considering whether they are 
positive or negative. The metric calculates the mean absolute deviation between predicted values and actual data points throughout 
the test sample and treats each deviation equally, and MAE is defined below [43]: 

MAE=
1
n
∑n

i=1
|yi − ŷi| (12) 

where n is the number of observations, yi is the actual value, ̂yi is the predicted value, and 
⃒
⃒yi − ŷi

⃒
⃒ is the absolute difference between the 

actual (MD results) and predicted values (ML predictions).
MSE measures the average of squares of the errors. It is more sensitive to outliers than MAE due to the squaring of each term, 

meaning that larger errors have a disproportionately large effect on MSE. MSE is given by Ref. [43]: 

MSE=
1
n
∑n

i=1
(yi − ŷi)

2 (13) 

PC determines the strength and direction of the linear relationship between two variables by providing a value ranging from − 1 to 
1. Value 1 represents a perfect positive linear correlation while − 1 represents a perfect negative linear correlation and 0 indicates 
nonlinear relationship between variables. PC can be expressed by Ref. [44]: 

PC=

∑n
i− 1 (yi − y)(ŷi − ŷ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i− 1 (yi − y)2∑n
i=1 (ŷi − ŷ)2

√ (14) 

In this case, y is the mean of the actual values, and ŷ is the mean of the predicted values. The deviation of actual values from the mean 
of actual values is denoted by 

(
yi − y

)
, and the deviation of predicted values from the mean of predicted values is denoted by 

(
ŷi − ŷ

)
.

R2 quantifies the percentage of the dependent variable’s variance that can be predicted based on the independent variables. R2 has 
a range of 0–1, with higher values denoting greater model performance. R2 can be defined as [45]: 

R2 =1 −

∑n
i=1 (yi − ŷi)

2

∑n
i− 1 (yi − y)2 (15) 

where the total variance in the actual values is measured by the sum of squares 
(
yi − y

)2, and the sum of the squared differences 

between the actual and predicted values 
(
yi − ŷi

)2. By measuring the prediction accuracy and error, these metrics together assist to 
assess the performance of the regression models and help choose the best model.
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4. Results and discussion

4.1. Validation of MD simulation results

Integrating reliable data into ML models requires to evaluate the accuracy of MD simulation results by comparing them against 
experimental datasets. To avoid predictions which compromise ML model performance, suitable force field values guarantee accurate 
computations of thermophysical properties. Extensive comparisons between reference experimental data and generated density and 
viscosity values constituted part of the validation procedure. Experimental data from the NIST database [46] was compared with the 
estimated biphenyl density derived from OPLS-AA and COMPASS force fields. Fig. 5(a) illustrates a clear departure of the results 
between the COMPASS force field and experimental data as biphenyl density fluctuates with temperature. OPLS-AA follows the ex
pected pattern; COMPASS does not replicate the exact temperature dependence of biphenyl density. At high temperatures such as 490 
K COMPASS exhibit an unrealistically rapid decline in density levels. To assess the accuracy of OPLS-AA force field, Fig. 5(b) presents a 
thorough comparison between OPLS-AA forecasts and NIST values for a given temperature range. The strong agreement between the 
two datasets attests to OPLS-AA’s fit for computing biphenyl density.

Table 3 shows percentage errors for both force fields over a wide range of temperatures, thereby supporting this selection by means 
of quantitative error analysis. Whereas OPLS-AA maintains error percentages below 2 % for all temperatures examined, the experi
mental results demonstrate that COMPASS consistently increases divergence from real values with increasing temperatures, displaying 
an error of 46.80 % at 498 K and 94.16 % at 523 K, respectively. The data show that OPLS-AA offers a realistic model for predicting the 
biphenyl density.

Furthermore, the thermophysical properties of diphenyl ether were validated by experimental viscosity data from Byers et al. [47] 
and density data from PubChem [48] and experimental study by Cabaleiro et al. [49]. Fig. 6(a) shows the simulated viscosity results 
from the OPLS-AA force field are in good agreement with the experimental data from Byers et al. Strong correlation is shown by the 
simulation data since it truly reflects the decreasing pattern of viscosity observed in experimental measurements with the increasing 
temperature, thus supporting theoretical predictions. Comparing OPLS-AA results with experimental data from PubChem reinforces 
the accuracy of the chosen force field by means of the density evaluation of diphenyl ether displayed in Fig. 6(b). The consistent values 
of diphenyl ether density predicted by OPLS-AA are reflected in both dataset’s same linear behaviour. Although minor errors are 
inherent within a reasonable margin, the force field fairly reflects the thermophysical characteristics of diphenyl ether. In contrast, the 
COMPASS force field fails to provide accurate density predictions, reflecting greater deviations from experimental data compared with 
OPLS-AA. The close alignment of the viscosity computations for diphenyl ether with experimental data shows that the chosen values 
fairly capture the temperature-dependent behaviour of the fluid. The better accuracy of MD dataset qualifies it for ML studies.

4.2. Boiling point prediction by MD

In this study, the boiling point is estimated by analysing how the equilibrium density changes across a range of simulated tem
peratures, using a series of independent NVT simulations. At each target temperature, the system is equilibrated separately, and the 
corresponding densities are compiled into a discrete ρ − T profile. The boiling onset is then defined thermodynamically as the tem
perature at which this curve exhibits its most rapid decline, i.e., the inflection point, corresponding to the minimum of the first-order 
derivative dρ/dT. This inflection-based criterion provides a physically grounded signal of incipient vaporisation and offers a practical 
alternative to two-phase coexistence methods that require explicit interface tracking. Surface tension was not computed in this study, 

Fig. 5. Comparison of biphenyl density between MD simulation results and experimental measurements from NIST: (a) Density predictions of 
biphenyl using OPLS-AA and COMPASS force fields compared with NIST data and (b) Comparison between OPLS-AA and NIST data for 
biphenyl density.
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as the simulation protocol did not involve the vapor–liquid coexistence or interface formation. In molecular dynamics, surface tension 
emerges from the presence of a density gradient across an interfacial region, which requires two-phase configurations and spatially 
resolved slab geometries [58,65,70]. Since the current work relies solely on equilibrium bulk-phase trajectories under NVT, surface 
tension is not defined. Instead, boiling onset was inferred from the thermodynamic response of density, following protocols demon
strated in recent single-phase studies [59–61], which showed that inflection-based density analysis can reliably capture the phase 
transition behaviour without requiring interfacial metrics. Fig. 7 schematises this protocol. Each density point arises from an inde
pendently equilibrated NVT trajectory, and the boiling point is inferred from the curvature change in the ρ − T trend rather than from a 
fixed density threshold or time-dependent trajectory. This approach circumvents the system size demands and stability limitations, 
which are typical of direct-coexistence simulations under NPT or Gibbs ensembles [58]. In fact, it aligns with modern single-phase 
strategies, where phase transition signatures are extracted from the equilibrium thermodynamic response functions. Gorfer et al. 
[59] demonstrated that inflection points in bulk properties such as density and surface tension can mark the onset of structural 
transformation, even without phase interfaces. Similarly, Wang and Hou [60] validated the use of NVT simulations for capturing 
thermal trends in density and vaporisation enthalpy. Moreover, Mohebbi et al. [61] confirmed that equilibrium NVT trajectories 
remain suitable for identifying the transition-like behaviour in complex fluids.

OPLS-AA force field was used to validate the capacity of MD simulations in estimating the boiling point of biphenyl because it has 
shown accuracy in reproducing their thermophysical parameters. Thus, this section focuses on assessing the boiling point predictions 
obtained from MD simulations using two different temperature ranges: OPLS-AA #1 (300–600 K) and OPLS-AA #2 (300–700 K). Both 
simulations were conducted for the same total duration of 1.25ns, ensuring consistent simulation conditions and enabling direct 
comparison of the effect of different temperature ranges on the predicted boiling point. Fig. 8(a) and (b) show the density profiles for 
OPLS-AA #1 and OPLS-AA #2, respectively. In all circumstances, the density falls gradually with the increasing temperature until a 
clear change indicates the beginning of phase change. Both simulations show a density value of about 0.06 g/cm3, implying that the 
phase transition from liquid to gas has been detected. However, the two scenarios experience different temperatures at which this 
density threshold is attained: The boiling point of OPLS-AA #1 is found at 525.66 K with a density of 0.0621 g/cm3, but the boiling 
point for OPLS-AA #2 moves higher to 534.19 K with a density of 0.0684 g/cm3.

To support the physical validity of MD-estimated boiling point and further justify the threshold-based results, an additional 

Table 3 
Error analysis of simulated density for biphenyl using OPLS-AA and COMPASS force fields.

ρ (g/cm3) Error (%)

Temp. (K) NIST OPLS-AA COMPASS OPLS-AA COMPASS

348.13 0.9892 1.0087 0.7576 1.97 23.41
373.12 0.9685 0.9866 0.7293 1.87 24.70
398.12 0.9482 0.9646 0.6908 1.73 27.15
423.11 0.9277 0.9387 0.6471 1.19 30.25
448.11 0.9063 0.913 0.6042 0.74 33.33
473.11 0.8845 0.8897 0.5468 0.59 38.18
498.11 0.8618 0.8669 0.4585 0.59 46.80
523.11 0.8378 0.8339 0.0489 0.47 94.16

Fig. 6. Validation of MD simulated viscosity and density for diphenyl ether: (a) Comparison of viscosity results for diphenyl ether between OPLS-AA 
simulation results and experimental data and (b) Comparison of density for diphenyl ether between OPLS-AA simulation results and experi
mental data.
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thermodynamic analysis is provided based on the curvature of the temperature-related density curve. Fig. 9 presents the spline-fitted 
ρ − T trend obtained from MD data along with its first-order derivative dρ/dT. The boiling onset is identified at the inflection point 
corresponding to the minimum of the derivative, which marks the temperature while the maximum density declines. This inflection- 
based approach does not rely on an arbitrary density threshold but instead reflects the underlying thermodynamic instability of the 
liquid phase. The inflection temperature is found to be 508.18 K, while the boiling point in MD, which was previously identified at a 
density threshold of 0.0621 g/cm3, is 525.66 K, resulting in a relative error of approximately 3.3 %. This level of deviation is within the 
typical uncertainty range for single-phase MD-based boiling point estimations, particularly in systems where interface effects are not 
explicitly resolved. While the inflection-based temperature represents the onset of boiling, the density threshold corresponds more 
closely to the completion or stabilisation of the boiling transition in NVT system. This distinction is consistent with MD thermodynamic 
expectations: the inflection reflects the earliest point of rapid structural destabilisation, whereas the threshold method tracks the 
effective disappearance of the liquid phase.

Fig. 10 presents a comparison between the predicted boiling point in MD with experimental data gathered from the NIST dataset 
[17,19,51–57]. The experimental values in Fig. 10 span 524–538 K, reaching good agreement with the predictions using both OPLS-AA 
#1 and OPLS-AA #2. This shows that the boiling point is still accurately predicted within the expected interval even with an expanded 
temperature range in OPLS-AA #2. Furthermore, the density threshold of ~0.06 g/cm3 found in both cases, corresponds with the 
expected behaviour of molecular systems experiencing a liquid-to-gas phase transition. As the temperature increases toward the 
boiling point, intermolecular forces become weaker, and molecules transition from the condensed liquid phase to the gaseous state, 
leading to a rapid decrease in density. This density drop signifies that the system has reached a threshold at which boiling occurs [50]. 
Although direct experimental validation of this exact density value for biphenyl at its boiling point is limited, consistency of this 
threshold in both simulations support its dependability as an indication of phase change. At high temperatures, the increased thermal 
energy enhances molecular motion, allowing molecules to overcome intermolecular forces and leading to an increase in intermolecular 
distance. This expansion of the fluid results in a phase transition, where molecular interactions are weak, illustrating that the system 
enters the vapor phase. The observed density reduction reflects this transition, indicating that the molecular arrangement shifts toward 
a less compact structure that characterizes the gas phase. These results demonstrate that the OPLS-AA force field not only accurately 
captures the thermodynamic characteristics of biphenyl but also efficiently predicts its boiling point within the expected experimental 
range, hence strengthening the robustness of the chosen simulation parameters. The corresponding values of boiling point from MD 
simulations and experimental sources shown in Fig. 10 are listed in Table S1 in Supporting Information (SI) for reference and 
accessibility.

Fig. 7. Schematic workflow for estimating the boiling point from single-phase simulations. Independent canonical (NVT) simulations are performed 
at a series of fixed temperatures T1,T2,…,Tn. The equilibrium density obtained at each state point defines the isothermal ρ− T profile. The boiling 
onset is identified with the inflection (largest negative slope) in this curve, corresponding to the temperature at which the liquid density begins its 
rapid collapse.
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4.3. ML predictions

4.3.1. Evaluation of ML models
Performances of three ML models, Nearest Neighbours Regression (NNR), Neural Network (NN), and Support Vector Regression 

(SVR), were assessed in temperature prediction using the MD simulation data. Table 4 shows the main performance metrics used to 
evaluate the predicted accuracy and dependability of every model in terms of primary metrics such as MAE, MSE, PC and R2. Along 
with the greatest PC (0. 99944) and R2 (0.99887), NNR showed the best accuracy among the evaluated models, attaining the lowest 
MAE (1.88681) and MSE (5.95195). This suggests that NNR is well-suited to capturing the combined thermodynamic behaviour of the 
system from multiple physical features. Its strong performance comes from its ability to learn local trends in the data without assuming 

Fig. 8. Density variation of biphenyl using OPLS-AA force field at different temperature ranges: (a) OPLS-AA #1 with a temperature range of 
300–600 K, detecting the boiling point at 525.66 K with a density of 0.0621 g/cm3 and (b) OPLS-AA #2 with a temperature range of 300–700 K, 
detecting the boiling point at 534.19 K with a density of 0.0684 g/cm3. The red-shaded region represents the post-boiling phase where density 
approaches to the values of gaseous phase.
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Fig. 9. Thermodynamic inflection-point detection of boiling onset from MD-derived density profile. Spline-fitted density curve (blue solid line), 
first-order derivative dρ/dT (red dashed line), thermodynamic inflection point (green dashed line and filled triangle), and MD boiling point based on 
density threshold (yellow dashed line).

Fig. 10. Comparison of the boiling point of biphenyl between several force fields in MD simulations and experimental values. While COMPASS 
underestimates the boiling point, OPLS-AA #1 and OPLS-AA #2 predict boiling points within the confirmed experimental range of 524–538 K, 
closely corresponding with values from NIST and previous investigations [17,19,51–57].

Table 4 
Performance metrics of ML models for prediction of system temperature.

Output ML Model Metrics

MAE MSE PC R2

Temperature NNR 1.88681 5.95195 0.99944 0.99887
NN 3.38837 16.39038 0.99958 0.99688
SVR 12.3162 180.71225 0.99489 0.96557
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a fixed mathematical form between inputs and the target. With higher MAE (3.38837) and MSE (16.39038) than NNR, the NN model 
also performed well. The NN model can efficiently understand intricate nonlinear interactions inside the dataset according to PC 
(0.99958) and R2 (0.99688). Its lower accuracy in comparison with NNR, however, implies that NN model would need more training 
data or hyperparameter adjustment to produce higher performance. With greater MAE (12.3162) and MSE (180.71225) and 
comparatively reduced PC (0.99489) and R2 (0.96557), the SVR model displayed the lowest performance. Its reduced accuracy implies 
that this model finds it difficult to generalize well for this dataset, probably because of the choice of kernel or constraints in capturing 
the fundamental data distribution. The bigger error figures suggest that SVR might not be the best option for temperature prediction in 
this work.

Fig. 11 displays a comparison of the predicted values of system temperature by the three models against the actual temperature 
readings (e.g., MD results). NNR’s great predictive accuracy is confirmed by the data points, which most nearly match the ideal 
prediction line. While the SVR model shows more departure from the ideal trend, therefore illustrating its poorer performance, which 
is closely followed by NN. These results show the need of choosing a suitable ML model for the temperature prediction. NNR has been 
selected for this work since its better performance shows high efficiency in managing the structured relationships in dataset. Although 
the NN model also shows promise, its accuracy may need further improvement by extra tuning. Moreover, SVR’s performance implies 
that different strategies could be required to raise its predictive capacity in this setting.

For NNR, SVR, and NN, the learning curves in Fig. 12 show the link between training data size and model error. These results help 
clarify the generalizing capacity and learning efficiency of each model, further supporting the conclusions drawn in Table 4 and 
Fig. 11. As the amount of training data rises, the NNR model in Fig. 12(a) clearly and steadily shows a lower trend in both training and 
test errors. The smooth convergence in two error curves points to NNR’s effective generalizing without notable overfitting. This is in 
line with founding in Tables 4 and in which NNR obtained the highest R2 (0.99887) and the lowest MAE (1.89681) and MSE (5.95195). 
Moreover, Fig. 11 validates this tendency since the results by NNR are quite near the ideal prediction line, thereby supporting its 
accuracy for temperature prediction. Even as the magnitude of the training data grows, the SVR model in Fig. 12(b) shows notable 
fluctuations in test error. The test error does not steadily drop, unlike NNR, suggesting inadequate generalization and possible sus
ceptibility to hyperparameter choice. While training error stays quite constant, the unpredictable test error points to SVR overfitting to 
patterns in the training data rather than learning a broader relationship. This observation is also in line with Tables 4 and in which SVR 
has the lowest R2 (0.96557) together with the highest MAE (12.3162) and MSE (180.71225). Deviating further from the ideal pre
diction line, the predictions by SVR in Fig. 11 show greater variation than those of NNR and NN, thereby demonstrating its poorer 
predictive performance. The NN model in Fig. 12(c) shows that the test and training errors vary at smaller data percentages but 
progressively stabilize as more training data is used, therefore demonstrating progressive learning and lower overfitting. This trend is 
more consistent than SVR but partially less accurate than NNR since NN attained an MAE of 3.38837 and an MSE of 16.39038 in 
Table 4. Fig. 11 further indicates that, although with slightly higher variance than NNR, predictions by NN closely track the ideal 
prediction line, hence strengthening their modest dependability in temperature prediction.

4.3.2. Boiling point prediction by ML
Fig. 13 compares the predicted temperatures from three ML models (NNR, NN, and SVR) with the corresponding MD simulation 

densities across the investigated temperature range. This comparison evaluates whether the predicted temperatures reflect physically 
meaningful density–temperature behaviour near the boiling point. These models were trained to predict the simulation temperature 
from thermodynamic input features, and this figure indirectly illustrates how the predicted temperatures align with known physical 
trends, such as the decline in density with increasing temperature. Especially in the boiling-point region, where a rapid drop in density 

Fig. 11. Comparison of ML model predictions (NNR, NN, SVR) vs. actual value (MD simulations) for system temperature. The perfect prediction line 
represents an ideal match between predicted and actual values. The insets highlight areas where model performance varies significantly, particularly 
for SVR.
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Fig. 12. Learning curves in ML models: (a) NNR; (b) SVR; and (c) NN. The test set error (blue) and training set error (red) reveal information on the 
generalizing capacity as well as learning efficiency of each model.

Fig. 13. Comparison of ML-predicted temperatures (NNR− blue line, NN− red line, SVR− green line) mapped onto known MD simulation density 
data (purple circles) across the investigated temperature range. This visualization tests whether the predicted temperatures preserve the physical 
density–temperature trend observed in MD. The top inset highlights the transition region near boiling, where NNR and NN most accurately capture 
phase-sensitive density changes. The bottom inset shows the general deviation between ML models and MD simulations.
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occurs, this comparison allows for an indirect assessment of the models’ ability to reflect phase-sensitive behaviour. In the liquid-phase 
regime, the temperatures predicted by NNR and NN, when mapped back onto the known MD ρ–T curve, correspond closely to the 
expected densities, indicating that these models are aligned with physical phase behaviour. The SVR model, however, predicts tem
peratures that, when matched against MD density values, correspond to higher-than-expected densities near the boiling region, 
suggesting weaker sensitivity to phase transition cues. The upper inset (470–510 K) highlights how NNR more accurately tracks the 
steep density decline near boiling, consistent with its better generalization seen in Table 4. Minor fluctuations in NNR and NN pre
dictions may stem from noise inherent in complex thermodynamic signals near the phase boundary. Nonetheless, the alignment with 
MD densities suggests that these models effectively preserve key thermal patterns without requiring explicit phase labelling. These 
observations complement the regression metrics in Figs. 11 and 12, where NNR consistently shows the highest predictive accuracy and 
lowest error. While kinetic energy is known to correlate with temperature by first principles, the parallel coordinate graphs, PCA and 
MI analysis (see Figs. 2–4) demonstrate that the model performance is supported by multiple thermodynamic inputs, not only by 
kinetic energy.

Fig. 14 shows the results of sensitivity analysis, which presents a comparison of the effects of important physical parameters, 
including pressure (Press), volume (Volume), density (Density), potential energy (PotEng), total energy (TotEng), simulation step 
(Step), and kinetic energy (KinEng), on the temperature predictions by the NNR, NN, and SVR models. For all the identified important 
factors such as density (0.33), total energy (0.42), step count (0.46), and kinetic energy (0.50), the NNR model (blue bars in Fig. 14) 
shows a plausible sensitivity distribution because the kinetic energy is directly linked to temperature-related molecular motion. 
Furthermore, the large influence of step count is reasonable, as system relaxation and phase stability in MD simulations are affected by 
time development. The low values of pressure (0.01) and volume (0.01) are consistent with the fact that simulations were carried out in 
a NVT ensemble, where volume stays constant, and pressure changes are secondary. These findings confirm the robustness of NNR and 
further demonstrate that it is the most reliable model for the temperature prediction by appropriately prioritizing the kinetic energy 
over other parameters. Although density (0.18) is weighted lower than expected, the NN model (red bars in Fig. 14) shows a reasonable 
parameter priority ranking with kinetic energy as the most influential parameter. In the meantime, step count (0.27) and total energy 
(0.38) acquire higher effect, and NN’s decreased sensitivity to density and greater reliance on time evolution (step count) create 
possible bias. This implies that, despite its balanced weighting across thermodynamic factors, NN would be less successful than NNR in 
identifying rapid changes in phase behaviour. The SVR model (green bars in Fig. 14) exhibits a different parameter priority ranking: 
density (0.50) is still the most crucial characteristic; PotEng (0.43), TotEng (0.44), and Step (0.47) have weights either similar or 
greater effects than KinEng (0.44) does. This contradicts basic thermodynamic principles, as kinetic energy is expected to have the 
greatest effect on the temperature prediction. Moreover, Volume (0.12) gets higher weight than those in other models; this poses a 
problem considering that the simulation runs in a NVT ensemble where volume is constant. This also explains SVR’s lower perfor
mance in past evaluation criteria, indicating that it fails to properly differentiate between the fundamental and secondary thermo
dynamic impacts (e.g., Table 4 and Fig. 11). Although all MD simulations were conducted under NVT, the volume was not fixed 
globally across the dataset. Each system was independently equilibrated at 1atm using the NPT ensemble prior to NVT production, 
resulting in slightly different fixed volumes for each simulation at different temperatures. This allowed volume to appear as a varying 
input in the dataset, even though it remained constant within each simulation. The elevated sensitivity to volume seen in SVR model 
(green bars in Fig. 14) reflects a limitation of SVR itself rather than meaningful physical correlation. The elevated importance of 
volume in SVR model may stem from its known susceptibility to overfitting in small, structured datasets and its sensitivity to feature 
scaling and correlation effects [61,62]. In contrast, the NNR and NN models more accurately reflected expected thermodynamic 
behaviour, by assigning higher importance to kinetic and total energies, which are properties directly linked to temperature and phase 
stability, while appropriately down-weighting volume remains constant in NVT simulations. This discrepancy reinforces our rationale 

Fig. 14. Sensitivity analysis of ML models (NNR− blue bars, NN− pink bars, and SVR− green bars): effects of parameters on the tempera
ture prediction.
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for comparing different ML models. By including NNR (instance-based), NN (connectionist), and SVR (kernel-based), the study aimed 
to evaluate how different learning architectures handle phase-dependent thermophysical data. The NNR model consistently offered 
both high accuracy and physical consistency, confirming its suitability for boiling point estimation in aromatic fluids.

The predictions of boiling points derived from NNR, NN, and SVR models are compared against the MD simulation results in Fig. 15. 
Evaluating the accuracy of these models depends on agreement with the MD-predicted boiling point (525.66 K) and consistency with 
the MD-derived density at the phase transition (0.062 g/cm3). The NNR model predicts a boiling point of 524.97 K together with a 
density of 0.064 g/cm3, which agree well with the MD results, confirming the NNR’s great capacity of phase transition prediction. A 
boiling temperature of 525.3 K predicted by NN model also fits well with the MD simulated result. However, its estimated density, 0.22 
g/cm3, is higher than the MD-derived density, ~0.062 g/cm3. Based on the sensitivity analysis in Fig. 14, overestimation of the liquid- 
phase density near the boiling point by NN is potentially due to its higher sensitivity to step count and total energy. Although the 
boiling temperature stays accurate, the inaccurate density prediction undermines the reliability of NN in modelling the phase tran
sition accurately. It can be also seen clearly from Fig. 15 that a boiling point of 502.78 K is predicted by the SVR model, which is well 
below the MD result of 525.66 K. Moreover, its predicted density of 0.16 g/cm3 is also higher than the MD-derived density of 0.062 g/ 
cm3. This further supports the earlier findings in Figs. 11 and 14, where SVR showed inaccurate predictions and an unreasonable 
ranking in the sensitivity analysis. Underestimating the boiling point implies that SVR struggles to appropriately capture the 
temperature-density relationship, which is crucial for the phase transition modelling. The most reliable and accurate model is NNR 
since its predicted density (0.064 g/cm3) and boiling point (525.97 K) well match the MD simulation results. Although the NN model is 
still a good substitute, its inflated density prediction at phase transition causes possible inaccuracy in modelling the phase transition 
process. The SVR model is the least reliable because it underpredicts the boiling point and overpredicts density, clearly demonstrating 
its limited applicability for phase transition predictions.

The plots of surface prediction displayed in Fig. 16(a–d) reveal how the predicted temperature from the NNR model varies with 
changes in thermodynamic properties and how these changes elucidate the phase transition behaviour. Fig. 16(a) shows how rising 
potential energy results in weaker intermolecular forces, thereby promoting phase transition. Density serves as a crucial variable that 
sets the specific point, at which phase transition occurs. Fig. 16(b) reflects how the density changes during each simulation step. At the 
beginning of each simulation period, density stays stable, indicating that the liquid phase remains unchanged. As the system ap
proaches to its boiling temperature, it undergoes a swift reduction in density, which signifies the transition from liquid to vapor phase. 
The model’s accuracy is validated by the predicted decrease in density, which aligns with the typical pattern of the actual boiling 
process. Fig. 16(c) illustrates how temperature rises with fast molecular motion, indicating the direct link between kinetic energy and 
temperature. This is consistent with the sensitivity analysis results shown in Fig. 14 that kinetic energy has the greatest effect on the 
temperature prediction. The also demonstrates the effectiveness of NNR model to accurately capture the boiling behaviour by pre
senting the sharp increase in temperature, marking the transition from liquid to gas phase. Fig. 16(d) illustrates how the predicted 
temperature responses to changes in pressure and volume. It can be seen clearly that the predicted temperature remains almost un
changed, thereby confirming the sensitivity analysis presented in Fig. 14 that pressure and volume have little effects on the tem
perature prediction. It also indicates the accumulation of kinetic energy through simulation steps until it hits the boiling threshold. The 
accumulation of kinetic energy continues rising at a uniform rate until it reaches the necessary level to overcome intermolecular forces 
that enables boiling. Fig. 16(a–d) further evidence how the NNR model successfully emulates boiling physics by matching both 
experimental data and MD simulations results.

Fig. 15. Predictions of boiling point along with density by ML models compared with MD simulations.
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5. Conclusions

This study presented a hybrid molecular dynamics (MD)–machine learning (ML) framework for boiling point estimation in aro
matic fluids, with a particular focus on biphenyl and diphenyl ether. Density predictions using the OPLS-AA force field aligned closely 
with experimental benchmarks, showing deviations below 2 %, while the COMPASS force field significantly overpredicted densities at 
elevated temperatures, with errors reaching 94.16 % at 523 K.

Three regression-based ML models were trained using features derived from equilibrium MD data. The Nearest Neighbours 
Regression (NNR) model demonstrated the best overall performance, predicting a boiling temperature of 524.97 K and a density of 
0.064 g/cm3, which are close to the MD-derived values of 525.66 K and 0.062 g/cm3, respectively. Neural Network (NN) predictions 
also yielded accurate boiling points (525.3 K), but significantly overestimated density. The Support Vector Regression (SVR) model 
showed the weakest consistency, particularly under phase transition conditions, likely due to its sensitivity to volume, which was a 
fixed parameter in NVT simulations. These results were reinforced by learning curve of temperature-density relationship and feature 
sensitivity analysis, which confirmed NNR’s generalisability and robustness near phase boundaries.

In addition to agreement between ML prediction and MD simulation, an inflection-based thermodynamic analysis of the ρ− T curve 
identified the boiling onset temperature at 508.18 K. Although it is slightly lower than the threshold-based MD estimate (525.66 K), the 
~3.3 % discrepancy is consistent with the distinction between onset and completion of boiling in equilibrium MD. The inflection-based 
point also aligned closely with the ML prediction, validating the physical soundness of the data-driven approach. This MD-ML 
framework offers an efficient and transferable methodology for predicting phase behaviour in high-performance working fluids. 
Potential applications include the screening of organic fluids for Rankine cycles, design of heat exchangers, thermal storage, and 
predictive control of phase-change-driven systems.

The models were trained on thermophysical data from biphenyl and diphenyl ether, which are two structurally similar aromatic 

Fig. 16. Surface prediction models display how temperature changes with essential thermodynamic properties to estimate the boiling point: (a) 
Temperature as a function of density and potential energy; (b) Temperature evolution with simulation step and density; (c) Temperature variation 
with changes in kinetic energy and simulation step; and (d) Temperature response to changes in pressure and volume.
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compounds characterised by delocalised π-systems, planar rigidity, and comparable van der Waals-driven phase transition mecha
nisms. It should be noted that the results are expected to generalize across similar aromatic fluids. However, extension to non-aromatic 
compounds with different dominant interactions (e.g., hydrogen bonding or strong polarity) will require retraining on a broader 
thermodynamic space. This will be explored in future work. Future research should broaden the dataset to include a more diverse 
range of molecular classes beyond aromatic compounds and investigate performance under varying pressure conditions. Integrating 
chemical reactivity modelling (e.g., via reactive force field in MD simulations) could further extend the framework’s scope, enabling 
the simulation of thermal degradation pathways and intermediate species formation. Incorporating more advanced dimensionality- 
reduction or feature-selection methods may also help to streamline the ML pipeline, particularly as larger molecular datasets are 
introduced.
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