
Construction and Management of
Large-Scale and Complex Virtual

Manufacturing Environments

A thesis submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

By

ZHIJIE XU BSc.

School of Engineering
University of Derby

f
' , . '

~. ,1\

September 2000

"If I have been seen further ... , it is by standing
upon the shoulders of Giants."

Sir Issac Newton

ACKNOWLEDGEMENTS

I publicly express my thanks to the University of Derby for its support and to the

School of Engineering for granting me the opportunity to carry out this project.

I would like to express sincere gratitude to Professor Zhengxu Zhao, my director of

studies, who has guided the work and for giving me confidence in my research

abilities when I needed it most.

My appreciation goes to Professor Ray W Baines who, as a second supervisor,

provided his help, support and encouragement.

I thank the staff and my colleagues in the School of Engineering at the University of

Derby for giving me help, ideas and a camaraderie which made my research so

satisfying.

The motivation to pursue this degree is a result of the guidance and personality

shaping given by my parents, linfu Xu and Meiling Hu, during my upbringing.

Thanks to them for molding and sharing my dreams and for supporting my ambition.

Thanks to brothers, friends and relatives for their reliance and assistance.

I thank my wife, Van Chen, who deserve a major share of this degree and its potential

benefits. As my own personal fan, Van is a loving wife who challenged me to do my

best and provided comfort in times of doubt.

II

AUTHOR'S BIOGRAPHY

Zhijie Xu was born in Xi'an City, ShaanXi Province, P. R. China, on 13th May 1969.

He married Yan Chen in 1995. He received his BSc degree in communication

engineering in 1991 from Xi'an Mining Institute, Xi'an City, ShaanXi Province, P. R.

China. From 1991 to 1995, he was an Electric Engineer in the State-run HuangHe

Machinery and Electrical Co.Ltd in Xi'an City. In 1995 he worked on developing an

industrial robot local area network communication and intelligent control system at

the University of Derby as a Visiting Scholar. From 1996, he started his research on

Construction and Management of Large-Scale and Complex Virtual Manufacturing

Environments within the School of Engineering at Derby, where he completed this

thesis. His research interests are Virtual Reality, Virtual Environment, Database

Development, Robotics, and Computer Networks. He is now a lecturer in the School

of Engineering at the University of Huddersfield.

III

RELATED PUBLICATIONS

Xu, Z. 1., Zhao, Z. X., and Baines, R. W., 2000. Constructing Virtual Environments for
Manufacturing Simulation. Accepted for including in the Special Edition of the International
Journal of Production Research.

Xu, Z. 1., Zhao, Z. X., and Baines, R. W., 2000. Application Oriented Configurable Virtual
Manufacturing Environment Construction. Proceedings of the 33nd International MATDOR
Conference, ISBN 1-85233-323-5, pp 145-150.

Xu, Z. 1., Zhao, Z. X., and Baines, R. W., 1999. A Virtual Environment for Manufacturing
Simulation. Proceedings of the Fifteenth Conference of the International Foundation for
Production Research, ISBN 1-874653-56-9.

Xu, Z. J., Zhao, Z. X., and Baines, R. W., 1999. Rapid Modelling Virtual Environment for
Manufacturing Simulation. Proceedings of the 15th National Conference on Manufacturing
Research, ISBN 1-86-058227-3, pp131-135.

Xu, Z. J. and Zhao, Z. X., 1999. Configurable Virtual Manufacturing Environment Modelling
and Simulation. Proceedings of the 1999 Chinese Automation Conference in the UK
(CACUK'99), ISBN 0-9533890-2-2, pp7I-76.

Xu, Z. J., Zhao, Z. X., and Baines, R. W., 1998. Variant Virtual Environment Construction
and Manufacturing Information Representation Methodology. Proceedings of the 14th
National Conference on Manufacturing Research, ISBN I-S605S-172-2, pp3I5-320.

Xu, Z. J., Zhao, Z. x., and Baines, R. W., 1998. Virtual Environment Construction and
Applications. Proceedings of the 1998 Chinese Automation Conference in the UK
(CACUK'98), ISBN 0-953-38900-6, pp59-64.

Xu, Z. J., Zhao, Z. X., and Baines, R. W., 1997. Manufacturing Knowledge Acquisition and
Database Management using Virtual Reality Techniques. Proceedings of the 32nd
International MATDOR Conference, ISBN 0-333-71655-8, pp233-23S.

Xu, Z. J., Zhao, Z. X., and Wu, M. H., 1997. Virtual Reality Based Robot Graphic Simulation
and Virtual Manufacturing System. Proceedings of the 1997 Chinese Automation Conference
in the UK (CACUK'97), UMIST, Manchester, I3-I4th, September 1997, ppI95-200.

Wu, M. H., Xu, Z. J. and Baines, R. W., 1997. Integrate the LANCING Robot to PC
Computer. Proceedings of CIRP Symposium - Advanced Design and Manufacturing Era,
Hong Kong.

Wu, M. H., Xu, Z. J., 1996. Development of Robot Language Conversion System.
International Journal of INGENIUM, Volume (1), pSI-pS6.

Wu, M. H., Xu, Z. J., 1996. Intelligent PCB Board Assembly System Based on PUMA Robot.
Proceedings of the 12th International conference of CAD/CAM Robotics and Factories of the
Future, Middlesex University, London, ISBN I-S9-S25303-X.

IV

ABSTRACT

The major challenges in designing and implementing an applicable virtual

environment for industrial applications are to enhance the environment-based

knowledge representation and its acquisition capacity and, paradoxically, the

simplification of the environment construction, configuration and information

management processes. This paradox has led to a search for an appropriate strategy

for a practical environment construction method and related implementation platform.

This thesis describes such a new virtual environment construction approach - domain

analysis that is based on a top-down environment construction - for manufacturing

applications. This approach reduces the effort to rapidly construct a virtual

manufacturing environment using two steps: (i) application domain analysis, which

classifies the application to identify the environment specification, and top-down

construction that is based on a ready-built template as the starting point; (ii) The

development of an integrated application development platform with various modules

to enable a virtual environment and its virtual objects to be organised and managed in

a database that can be connected with other data sources.

v

TABLE OF CONTENTS

CONTENTS

ACKNOWLEDGEMENTS I

AUTHOR'S BIOGRAPHY III

RELATED PUBLICATIONS IV

ABSTRACT V

CONTENTS VI

LIST OF FIGURES XIII

LIST OF TABLES AND LISTS XVII

CHAPTER 1 INTRODUCTION 1

1.1 THE VIRTUAL REALITY TECHNOLOGY 2

1.2 VIRTUAL REALITY SYSTEMS 4

1.2.1 Immersive VR systems 4

1.2.2 Augmented VR systems 5

1.2.3 Desktop VR system 6

1.3 VIRTUAL ENVIRONMENT DEVELOPMENT 6

1.3.1 Application programme interface (API) methods 7

1.3.2 Importing model methods 7

1.3.3 Graphical environment authoriser methods 8

1.3.4 Virtual reality modelling language method 8

1.4 VIRTUAL MANUFACTURING ENVIRONMENTS 9

104.1 Large-scale and complex environment 9

1.4.2 Virtual manufacturing environment knowledge 10

104.3 VE-based knowledge representation and acquisition 10

1.5 APPLICA nON PROBLEMS 11

1.6 RESEARCH OBJECTIVES 13

1.7 THESIS STRUCTURE 14

VI

CHAPTER 2 LITERATURE REVIEW

2.1 CONVENTIONAL MANUFACTURING SIMULATION

2.2 VR MANUFACTURING APPLICATIONS

2.2.1 VR based rapid proto typing

2.2.2 Process simulation and design validation

2.2.3 Assembly planning and test

2.2.4 NC programming and machining simulation

2.2.5 Factory layout design and cell control simulation

2.3 RELATED SYSTEMS

2.4 DISCUSSION

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION

APPROACHES

3.1 CONVENTIONAL APPROACHES TO CONSTRUCTING

VIRTUAL ENVIRONMENTS

3.1.1 Bottom-up generative approach

3.1.2 Building-block approach

3.1.3 Variant construction approach

3.2 A DOMAIN-ANALYSIS BASED TOP-DOWN APPROACH

3.2.1 Application domain-analysis

3.2.2 Top-down VE construction

3.2.3 Operation mechanism

3.3 IMPLEMENTA TION

3.3.1 Design application task coding scheme

3.3.2 Constructing template environments

3.3.3 Database Design

3.3.4 Linking VE properties and database records

3.3.5 Connect virtual and physical world

TABLE OF CONTENTS

15

16

17

17

18

19

19

20

21

30

31

32

32

33

34

36

36

36

37

39

39

41

43

44

45

3.3.6 Integrate function modules under a unified system structure 45

VII

3.4 CONCLUSION

CHAPTER 4 SYSTEM ARCHITECTURE

4.1 KAMVR SYSTEM ARCHITECTURE

4.2 INTERACTIVE APPLICATION INTERFACE

4.2.1 Visualiser interaction

4.2.2 VE Control module interaction

4.3 KAMVR SYSTEM MANAGER

4.3.1 Task description and coding module

4.3.2 Knowledge representation and acquisition module

4.3.3 Device communication and control

4.3.4 Network and data communication module

4.4 VIRTUAL ENVIRONMENT DATABASE

4.4.1 Database files

4.4.2 VE Database management system

4.5 REAL APPLICATION ENVIRONMENT

4.6 CONCLUSIONS

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION

AND ANALYSIS

5.1 VIRTUAL ENVIRONMENT MODELLING

5.1.1 Virtual object modelling

5.1.2 Virtual template environment modelling

5.1.3 State simulation modelling

5.1.4 Interaction modelling

5.1.5 Knowledge capture

5.2 VIRTUAL OBJECT MODELLING

5.2.1 Virtual lathe model

5.2.2 Virtual milling machine model

VIII

TABLE OF CONTENTS

45

47

48

49

50

55

58

58

63

66

67

68

68

69

69

70

71

72

72

72

73

73

74

74

75

77

5.2.3 Virtual robot model

5.3 MODELLING TEMPLATE ENVIRONMENTS

5.3.1 The modelling criteria

5.3.2 The construction of template environments

TABLE OF CONTENTS

78

80

80

81

5.4 TEMPLATE ENVIRONMENT SIMULATION 85

5.5 INTERACTION WITH A VIRTUAL TEMPLATE ENVIRONMENT 86

5.5.1 Environment navigation

5.5.2 Environment exploration

5.5.3 Object control

5.6 KNOWLEDGE SOURCES AND CAPTURE

5.6.1 Data interpretation

5.6.2 Knowledge representation

5.7 CONCLUSION

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL

ENVIRONMENTS

6.1 OVERVIEW OF THE ENVIRONMENT DATA

6.2 THE HIERARCHY OF ENVIRONMENT DATA

6.3 THE DEVELOPMENT OF AN ENVIRONMENT DATA

STRUCTURE

6.3.1 The database of the environment

6.3.2 General template environment reference file

6.3.3 Virtual object file

6.3.4 Standard information

6.3.5 Dynamic information

6.3.6 Static information

6.3.7 Shape information

6.4 RECORDING TEMPLATE ENVIRONMENTS

6.4.1 Recording the data of a single object

6.4.2 Scan all objects in an environment

IX

86

89

89

89

90

90

91

92

93

93

100

100

102

102

103

104

105

105

106

106

108

6.5 ENVIRONMENT CONSTRUCTION FACILITATED BY

THE DATABASE

6.5.1 Constructing the scene graph of an environment

6.5.2 Retrieving a scene graph of template environments

6.5.3 Modify scene graph

6.5.4 Assigning object properties

6.6 CONJUGA TING MANUFACTURING DATA AND VE

6.6.1 Static manufacturing data

6.6.2 Dynamic machining activities

6.7 CONCLUSIONS

CHAPTER 7 ENVIRONMENT CONFIGURATION AND

COMMUNICATION

7.1 CONFIGURABLE VIRTUAL ENVIRONMENTS

7.2 ACCESSING ENVIRONMENT PROPERTIES

7.2.1 Configuring environment data structure

7.2.2 Configuring object shape properties

7.2.3 Configuring object static properties

7.2.4 Configuring dynamic properties

7.2.5 Configuring general environment properties

7.3 MIGRATING ENVIRONMENT PROPERTIES

7.3.1 Extracting and migrating shape properties

7.3.2 Extracting and migrating object static properties

7.3.3 Extracting and migrating object dynamic properties

7.3.4 Extracting and migrating global environment properties

7.4 SETTING AND UTILISING PROPERTIES

7.4.1 Setting the simulation triggers for an environment

7.4.2 Setting environment counters

7.4.3 Setting object properties

7.4.4 Receiving environment events

x

TABLE OF CONTENTS

110

110

111

112

114

116

117

118

118

120

121

121

121

123

125

128

130

132

132

133

134

134

135

135

136

136

137

7.5 PLATFORM-BASED DATABASE ACCESS

7.5.1 Registering the environment database

7.5.2 Connecting the database

7.5.3 Binding environment properties with database records

7.6 INTERACTION BETWEEN VIRTUAL AND PHYSICAL

ENVIRONMENTS

7.6.1 Communication with the Puma robot

7.6.2 Communication with the LANSING robot

7.7 CONCLUSIONS

CHAPTER 8 THE RUN-TIME IMPLEMENTATION

8.1 INTRODUCTION

8.2 KAMVR RUN-TIME PLATFORM

8.2.1 User-environment interaction controls

8.2.2 Control environment and database interactions

8.2.3 Standalone machine controls

8.2.4 Cell controller

8.3 WORKING MECHANISM

8.3.1 Monitoring and control an environment in active mode

TABLE OF CONTENTS

138

139

139

140

141

141

143

146

147

148

149

149

150

152

154

155

156

8.3.2 Monitoring and controlling an environment in passive mode 156

8.4 RUNNING THE SYSTEM

8.4.1 Forming the task code

8.4.2 Environment modification and initialisation

8.4.3 Application configuration and simulation execution

CHAPTER 9 CONCLUSIONS AND FUTURE WORK

9.1

9.2

CONCLUSIONS

FUTURE RESEARCH

XI

158

158

160

163

165

166

169

REFERENCES

GLOSSARY OF TERMS

APPENDIX A

APPENDIXn

APPENDIXC

APPENDIXD

XII

TABLE OF CONTENTS

172

180

Al

BI - BI5

CI -CII

01-D53

LIST OF FIGURES

Figure 3.1 Illustration of the bottom-up approach 32

Figure 3.2 Building-block VE construction approach 33

Figure 3.3 Variant environment construction approach 34

Figure 304(a) 3D coding panel 40

Figure 3 o4(b) Task-based environment retrieval 40

Figure 4.1 KAMVR system architecture 48

Figure 4.2 VR devices used in the KAMVR system

(a) i-Glasses 50

(b) Data Glove 50

(c) Digitiser 50

Figure 4.3 Environment visualisers

(a) Superscape Visualiser 51

(b) Superscape Viscape 51

(c) Superscape 3D Control 51

(d) COSMO VRML Player 51

Figure 404 Constructing virtual workshop using the World Editor 52

Figure 4.5 Modelled handwheel in the Shape Editor 53

Figure 4.6 Superscape Resource Editor 53

Figure 4.7 KAMVR system workbench 55

Figure 4.8 Data and command flows in the KAMVR Module 1 56

Figure 4.9 Synthetic VE control mode 58

Figure 4.10 Domain-analysis coding scheme 60

Figure 4.11 Module 2 internal structure 63

Figure 4.12 Adjusting the position of virtual objects 64

Figure 4.13 Superscape VRT API structure (Courtesy oJSuperscape Co.Ltd) 65

Figure 4.14 Device communication 67

XIII

Figure 4.15 WWW On-line VME configuration

Figure 4.16(a) Real robot cell (photo)

Figure 4.16(b) Virtual robot cell

Figure 5.1 VE state transition model

Figure 5.2 Modelling structure of a virtual lathe

Figure 5.3 Snapshot of the virtual lathe

Figure 5.4 Modelling structure of a virtual milling machine

Figure 5.5 Virtual milling machine

Figure 5.6 Modelling structure of the virtual robot

Figure 5.7 A snapshot of virtual robot

Figure 5.8 Virtual template of robot cells

Figure 5.9 Virtual template of lathe cell

Figure 5.10 Virtual template of milling cell

Figure 5.11 Virtual template of elMs rooms

Figure 5.12 Virtual template of large scale virtual manufacturing

environment

Figure 5.13 The simulation loop imposed on the virtual lathe objects

Figure 5.14 The simulation loop imposed on the virtual miller objects

Figure 6.1 (a) Virtual environment scene graph

Figure 6.1 (b) A snapshot of the environment

Figure 6.2 KAMVR system database structure

Figure 6.3 Template environment reference file

Figure 6.4 Virtual object data file

Figure 6.5 Virtual object standard information file

Figure 6.6 Virtual object dynamic data file

Figure 6.7 Object static data file

Figure 6.8 Object shape data file

Figure 6.9 Environment standard information table

Figure 6.10 Template environment coding scheme

Figure 6.11 Environment constructed from a template VE

Figure 6.12 Manufacturing information composition

XIV

68

70

70

73

75

77

77

78

79

80

82

83

83

84

85

87

87

94

94

101

102

103

104

104

105

106

110

111

116

116

Figure 7.1 Virtual environment script header 122

Figure 7.2 Example of accessing shape property data

(a) Original object shape 125

(b) Modified object shape 125

Figure 7.3 Accessing object static properties 125

Figure 7.4 Virtual object static data 128

Figure 7.5 Interface for setting object shape properties 132

Figure 7.6 Interface of object static property 133

Figure 7.7 Interface of object dynamic property 134

Figure 7.8 Environment property interface 135

Figure 7.9 Firing event from a virtual environment

(a) SCL firing event carrying two arguments 138

(b) An application receiving the two arguments 138

Figure 7.10 Registering the environment database 139

Figure 7.11 Linking database and the VE application

(a) Referring a database in the application programme 140

(b) Selecting data files in the database 140

Figure 7.12 Connecting PUMA robot 142

Figure 7.13 Lansing robot control panel 143

Figure 7.14 The keyboard control combinations 144

Figure 7.15 Virtual control panel signal processing board 144

Figure 7.16 Virtual keyboard ASCII value configuration 145

Figure 8.1 KAMVR run-time platform 148

Figure 8.2 Viewpoint control menu 150

Figure 8.3 The VE navigation bar 150

Figure 8.4 Updated general object information 151

Figure 8.5 3D machine controller 152

Figure 8.6 Virtual robot control dialog 153

Figure 8.7 System platform device controller 154

Figure 8.8 Cell controller operation sequence editor 153

Figure 8.9 KAMVR run-time platform task coding environment 159

xv

Figure 8.10 Loaded environment

Figure 8.11 Modified virtual manufacturing environment

Figure 8.12(a) VE Initialiser

Figure 8.12(b) Initialised application environment

Figure 8.13 Application environment configuration

Figure 8.14 Simulation action - mounting different parts

Figure 8.15 Toggle the tool for part inspection

XVI

160

161

162

162

163

164

164

TABLES AND LISTS

Table 5.1 Features of the virtual template environments 81

Table 6.1 Object static and dynamic properties 115

Table 6.2 Machine tool knowledge 118

Table 7.1 Application platform utilities 136

List 6.1 (a) Environment definition in the scene graph script 95

List6.1(b) Object definitions 99

List 7.1 Virtual environment object data definition 122

List 7.2 Virtual environment data type 123

List 7.3 Object shape information 124

List 7.4 Object standard data section 126

List 7.5 Object dynamic data structure 129

List 7.6 Object rotational data properties definition 129

List 7.7 Collision data properties definition 129

List 7.8 Configurable environment properties 131

List 7.9 Data structure for accessing and configuring environment

viewpoints 131

XVII

CHAPTER I INTRODUCTION

CHAPTER]

INTRODUCTION

This introductory chapter provides a brief description of virtual reality and an

overview of the thesis. It highlights the relevant areas about virtual reality including

the technology itself, virtual reality systems, virtual environments and their

applications. Following is an overview of the research problems dealt within the

thesis and the research objectives.

1

CHAPTER I INTRODUCTION

1.1 THE VIRTUAL REALITY TECHNOLOGY

Virtual Reality (VR) is an emerging human-computer interface (IICI) technology. It

provides computer generated 3D digital environments in which users can realistically

interact with objects [Rheingold 1992 and Earnshaw et al. 1993]. The term "Virtual

Reality" has various meanings. In some cases, VR is considered a specific collection

of technologies, for example, a Head Mounted Display (HMD), Glove Input and

Three Dimensional (3D) Audio. In other cases, the term is stretched to include

conventional books, movies or pure fantasy and imagination. The United States

National Science Foundation (NSF) taxonomy [NSF 1992] has covered these.

However, the author for this research has adopted the definition of virtual reality

given by Zhao [1997]:

"Virtual Reality is a computer mediated system that deals with a three

dimensional digital environment that interacts with users in vision, sound,

touch, smell and taste. The users should be able to manipulate, control and

reconfigure this virtual environment and its complex data"

The three dimensional digital environment refers to computer generated visual,

auditory or other sensual outputs to the users within the computer, it may be a CAD

model, a scientific simulation, or a view into a database [Vince 1995].

Some people object to the term "Virtual Reality", saymg it is an oxymoron.

Alternative terms that have been used are Synthetic Environments, Cyberspace,

Artificial Reality, and Simulator Technology, to name a few.

VR applications have a wide spectrum, from games to architectural and business

planning, from medicine to design and manufacturing, from training to testing and

military use [Stampe et a1. 1993]. One category of applications is mainly focussed on

virtual environments that are similar to real ones, for example, 3D CAD or

architecture modelling, factory layout and process simulation [Banerjee et al. 1992,

Barnes 1996, Trika et al. 1997, and Gausemeier et al. 1998]. Another category of

applications provides ways of viewing from an advantageous perspective not possible

within the physical world, like scientific simulators, telepresence systems, air traffic

2

CHAPTER IINTRODUCTJON

control systems, space programmes, hazardous environmental operations and Nano

engineering [Evans et al. 1994, Massie and Salisbury 1994, Wilson et al. 1996, Sun

and Clapworthy 1996, Bennett 1997, and Zhao 1998]. Other applications are much

different from anything that people have ever directly experienced before, for

example, visualising the ebb and flow of the world's financial markets, navigating

large corporate information, digitising behaviour of micro-organisms, and predicting

engineering risk [Walczak 1996, Aouad et al. 1997, and Takalo et al. 1998].

Unlike technologies such as CAD, CAM and simulation, VR has manifested itself as

being an enabling technology recognised by the academic community, industry,

commerce and society as a whole, to have great potential in various, if not all,

disciplines. Despite the high expectation, and sometimes the hyper-exaggeration

(thanks to the media) about the state-of-the-art and the future of VR, the real

implementation of VR technology in engineering, particular for design and

manufacturing, is still in its incubation stage [Wilson 1996]. This is because VR

suffers from problems that come from the end users. In broad terms, those problems

can be viewed as three questions that require answers. (i) How can real-world data,

information, knowledge and experience be captured and usefully represented and

managed in VR form? (ii) How can virtual environments be constructed by the user

and not programmers and system developers? (iii) How can engineering disciplines

and situations be transposed from and to virtual environments?

The research presented in this work is to investigate solutions to the above problems.

Its aim is to provide an efficient virtual environment construction approach and VR

based application framework to facilitate manufacturing knowledge acquisition,

representation and management. The knowledge includes both simulation data and

information and intuitive engineering experience that are difficult to deal with using

conventional modelling and simulation techniques. The research has been conducted

from the perspective of VR applications rather than VR theory and related computing

techniques, but, to enable readers to follow the context of this work, some basics of

virtual reality and VR systems have been provided in the following sections.

3

CHAPTER I INTRODUCTION

1.2 VIRTUAL REALITY SYSTEMS

Generally, VR systems can be classified as: (i) immersive VR systems, (ii) desktop

VR systems, and (iii) augmented VR systems.

1.2.1 Immersive VR systems

Immersive VR is where the users are physically isolated from the real world

[Mckenna and Zeltzer 1992, Boman 1995, Roussos et al. 1999]. Immersion is

achieved by providing a spatial relationship between the users and the environment

through location and orientation tracking devices [Sowizral et al. 1993, Adam et al.

1995]. For example, a head tracking system allows the computer to generate correct

images for the user. The images are then sent to special display devices, such as, i

glasses or CAVE systems [Neira et al. 1992] to real-time update and render the virtual

scene according to the tracked head movement to provide user with the feeling of

"being there". Immersive VR devices can be classified into four types:

(1) Position and orientation trackers: These can be further divided into sourced or

sourceless device [Meyer 1992]. Sourced trackers uses spatial relations between a pre

defined base and sensor to determine the sensor's position and orientation relative to a

base. For example, an electromagnetic (EM) tracker uses a transmitter and receiver to

monitor users' movement and an ultrasonic tracker uses speaker and microphone to

record the spatial changes. Sourceless trackers do not need a pre-defined base but use

a 'global' reference such as the gravity or magnetic field of the earth. Current

commercial sourceless trackers are mainly used for measuring orientation, but not

position due to inaccuracies [Bricken 1994].

(2) Input devices: VR input devices are used to import customised data to update

a virtual environment [Jones 1999]. Typical VR input equipment includes data gloves,

data suits and space mouse. When used as an input device in VR applications, a data

glove controls a virtual hand within the synthetic environment. The user then interact

with the environment as if they were using natural hand gestures and spatial

movements, for instance, to select a virtual object by reaching out and grasping it.

4

CHAPTER I INTRODUCTION

(3) Display devices: VR display systems, depend on their relationship to the user,

can be classified as:

• Wall projection display: These devices use either a large computer screen or rear

projection display. Examples include ImmersaDesk and CAVE [Neira et al.

1992]. In the latter system, stereo-glasses are used for depth perception.

• Helmet mounted display (HMD): HMOs consist of a pair of Liquid Crystal

Display (LCD) or Cathode Ray Tube (CRT) display devices mounted on a helmet

worn by the user.

• Mechanical arm mounted display: These are similar to helmet-mounted displays

except that the display device is mounted on a mechanical arm that acts as both a

tracker and a support. Accuracy can be very high but freedom of movement is

restricted.

• Desktop display: These devices allow mono-scopic or stereo-scopic viewing on

computer screens. They can provide a "see-through-window" visualisation sense,

but the feeling of immersion is minimal.

(4) Haptic feedback devices: These provide a user with physical feeling such as

touch, warmth, coldness, smoothness and resistance [McNeely 1995]. These devices

can be classified as touch (tactile) feedback devices and force feedback devices.

Touch feedback provides synthetic sensation at the moment of contact with a virtual

object. Unlike the surface detail provided by touch feedback, force feedback gives a

much larger impression of the physics of the virtual world. Force feedback devices are

designed to imitate the forces that could be applied in the virtual world. The imitated

forces can be anything from the elastic resistance (when squeezing a rubber ball) to

large forces (that prevent the user's hand from penetrating a wall).

1.2.2 Augmented VR systems

Instead of immersing the user completely in a virtual environment, augmented reality

systems combine computer-generated imagery with a view of the real world [Boman

1995]. This is achieved with a spatially tracked, partially transparent head-mounted

device (HMD). An augmented VR system can be used to overlay information on real-

5

CHAPTER I INTRODUCTION

world objects, such as showing the location of a component on the inside of a

machine. Boeing Computer Services is developing such a system for use in

manufacturing, assembly, and repair work to replace the large form boards previously

used for these tasks [Mizel and David 1994].

1.2.3 Desktop VR systems

Immersion and augment VR are generally associated with various novel interface and

display techniques, they are not necessarily a pre-requisite for virtual reality. A

reasonably high level of involvement or feeling of immersion within a virtual

environment can be achieved using standard interfaces and displays [Young 1996].

Systems that work in this style are called desktop VR systems. For example,

Superscape VRT is a desktop VR system [VRT 5.0 Manual].

1.3 VIRTUAL ENVIRONMENT DEVELOPMENT

To develop a virtual reality system, the modelling of a realistic virtual environment is

one of the most difficult and demanding tasks [Codella et al. 1993]. Despite system

functions claimed by various vendors, the utilities for constructing VR environments

are still left for users because commercial VR systems need to remain as general as

possible to accommodate different users. The construction of VR environments is still

application specific and consequently involves time consuming processes. Different

types of virtual environment development tools are available on the market. From the

uscrs' point of view they can be classified as desktop or immersive, and either can be

stand-alone or networked (distributed) or both. According to the modelling methods,

those tools fall into three categories. One is the modelling toolkits that allow users to

construct virtual environments and then to use them from within the VR systems or to

export the file to other formats. Typical examples of this type are Superscape VRT

and Division dVS [Vince 1995]. The second category is the editorial software that

uses an independent description languages, such as Virtual Reality Modelling

Language (VRML) (an ISO standard file format) that describes virtual worlds

specially used on the Intcrnet [3D Web Consortium Incorporated 1997]. The third

category uses a VR Application Programmer Interface (API) which typically provides

a large number of facilities or programming functions to write 3D graphics

6

CHAPTER I INTRODUCTION

applications, for example, WorldToolkit [Sense8 Corporation 1992]. Some of these

systems can import virtual objects from other graphical software packages such as

AutoCAD, 3D Studio and ProEngineer.

Despite the fact that a great variety of virtual environment modelling tools are

commercially available, an efficient virtual environment constructing method is still

to be seen. Currently, virtual environment, especially large scale and complex ones

are created based on the following methods.

1.3.1 Application programme interface (API) methods

This essentially relies on a built-in VR system programming language library or

interface functions that enables advanced users to write system code using, say,

C/C++ or Java languages. The code developed by the users is normally compiled into

an executable program that generates a dedicated virtual environment. Examples of

VR systems that provide such a construction method are WorldToolKit, MR toolkit

[Shaw et al. 1993] and Reality-Built-for-Two [Blanchard et al. 1990].

These methods provide flexibility for environment developers to create a large and

complex virtual environment. However, they demand high-level programming skills

and the generated environments provide no flexibility for users to change and

reconfigure, when different applications requirements are involved.

1.3.2 Importing model methods

This method makes use of the modelling functions of other graphical packages to

create individual virtual objects or sub-models and then imports them into the data

buffer of a VR system. Some VR systems provide such methods to re-use existing

virtual models created elsewhere. These can significantly reduce the effect of

constructing a virtual environment from scratch.

Examples of this method can be found in the world editing process of Superscape

VRT, during which AutoCAD 3D models created in 'data exchange format' (DXF)

can be migrated into a virtual environment under construction. An advantage of this

7

CHAPTER 1 INTRODUCTION

method is that it allows input of other data forms such as sound data, video clips,

photo images and other media forms. For example, the Sense8 WUP system can

import a sound wave file and video clips from 3D Studio. It can also import VRML

based 3D models from Pro/Engineer [WorIdUp User Guide 1997].

However there are technical difficulties with this method, which seem to be

formidable to overcome as follows.

(i) Data converters are necessary and must be made available for the importing.

Technically, each data format requires its own converter to import the expected

models from other systems to a VR system. However, generally, in a VR system,

not all converters are made available.

(ii) Most imported data, unless in the VRML format, are not manageable once it

transfer into a VR system. The data imported to the VR system is often not

transparent and users can not control its 3D attributes.

1.3.3 Graphical environment authoriser methods

Currently, the most common way to build a virtual environment is using an

environment authoriser, which is a graphical user interface that works in a drag-and

drop manner similar to an ordinary CAD system.

This method relies on users to create a virtual environment with simple geometric

primitives such as points, lines, facets and volumes. Obviously it is time-consuming

and demands but for a great deal of CAD modelling skills. This method is reasonably

effective for constructing simple and regular geometric shapes, but for complex

virtual environment, it is a difficult method.

1.3.4 Virtual reality modelling language method

The Virtual Reality Modelling Language (VRML) is a script language to describe

YEs and an ISO standard (International Standard ISO/IEC 14772) for specifying 3D

virtual worlds networked via the Internet. The VRML environment on the World

Wide Web (WWW) can link to or be linked from other sources on the Internet, but

8

CHAPTER I INTRODUCTION

the use of VRML for constructing virtual environments is very much similar to the

API method (See Section 1.3.1).

1.4 VIRTUAL MANUFACTURING ENVIRONMENTS

VR manufacturing applications usually require one or more virtual manufacturing

environments (referred in the following text as VME) with meaningful (in both

graphical and simulation terms) constituent objects. The virtual objects can be

constrained to behave in a similar way to that of physical objects. A successful

implementation of VME is more informative and realistic than conventional 20

simulation programs, particularly for acquiring cognitive information, representing

scenario knowledge, understanding sophisticated problems and eliminating risks of

complex processes [Charitos and Rutherfold 1996]. It is justified by what can be

perceived and what can be done with it. The former is determined by its scale and

complexity, and the latter by the environment knowledge [Macedonia et al. 1995].

1.4.1 Large-scale and complex environment

According to the Advanced Interface Group (AI G) in the University of Manchester

[Cook et al. 1998], a Large Scale and Complex Virtual Environment can be defined

by the following:

• Complexity of graphical display: the complexities of a virtual environment are

defined by the detail and realistic level of virtual objects that it contains (it is

understood even the illusion of complexity can be achieved with "wall-papering"

techniques such as texture maps, this is not adequate if the VE is to be composed

of real objects offering the possibility of interaction).

• Number of objects in the environment: The real world is characterised by large

numbers of objects with many possibilities for interaction among them. For

instance, a complete manufacturing cell may include hundreds of objects, each

composed by various number of polygons.

• Complicated behaviour: The behaviour of objects in VEs are described in terms of

geometric transformations, and are often defined on a per object basis [Cook et

9

CHAPTER 1 INTRODUCTION

al. 1998]. Another common mechanism is to provide simulation code (e.g. SCL

from Superscape or Java) to individual objects. For a manufacturing application

this often does not work well because too many objects, activities and

interactions are involved.

• Number of users and their locations: A large-scale environment can be distributed

and shared through a computer network. The communication mode and data

interpretation will also contribute to its complexity.

1.4.2 Virtual manufacturing environment knowledge

Virtual manufacturing environment knowledge includes the information concerning

environment geometric information - for example, object size and position;

environment dynamic information - such as machine tool simulation and virtual

assembly data; manufacturing information - including manufacturing rules and

regulations, and the relationships among them. The early presentation type of

application projects is being replaced by more 'real' applications, which are used on a

day-to-day base and aim to solve real problems. For example, a German company has

developed a manufacturing knowledge-oriented virtual environment for BMW to

evaluate large press tools, which decreases the average evaluation time substantially

[Bullinger and Roessler 1998].

1.4.3 VE-based knowledge representation and acquisition

Many current implementations suffer problems mainly because manufacturing data

and information are defined from different knowledge sources, such as databases,

spreadsheets and drawings, that has to be collected and formally represented in the

application. Furthermore, a large proportion of manufacturing data and information is

based on experience, which is empirical and non-generic. The interpretation of the

majority of manufacturing knowledge entirely depends on the cognitive

understanding of humans. Systems such as modelling, planning, simulation and

artificial intelligence (AI) expert systems have employed rather formal and simplified

models to represent such knowledge in the form of formula, text, logic and rules. In

most cases, they have failed to solve the difficult problem of using empirical

knowledge and still have to rely on human intervention.

10

CHAPTER I INTRODUCTION

In contrast, the theme of VR and VE is not only to bring about automatic

computerised system functions to engineering applications, but also importantly to

incorporate human abilities into those computerised systems in a way that human

cognisance and senses to the real world can be utilised in a virtual environment,

where non-generic knowledge can be dealt with using formal computer programs.

1.5 APPLICA nON PROBLEMS

In spite of the great expectation of applying VR to factory layout, manufacturing

process planning, operation training, system testing and control validation. There are

few cases of practical industrial use of VR in manufacturing that have been reported

in the literature - apart from those described as prototypes and on-going projects.

Until recently, it is becoming more obvious that this is not because of the lack of

understanding of VR technology by manufacturing industry, rather it is due to the

difficulties in construction of virtual manufacturing environments and the lack of

effective methods and techniques to do so. Those difficulties can be described as

follows.

(1) A virtual manufacturing environment and its contents (virtual machines, tools,

and systems) must be abstracted from their physical forms and existence to low-level

hyper (or digital) details such as VR codes, 3D polygon rendering geometry,

animation elements and other virtual environment sensory factors. Those abstracted

low-level VR elements must have manufacturing semantic meanings so that a virtual

manufacturing environment can be constructed with not only visual resemblance, but

also functional similarity, to its physical counterpart. For example, a virtual model

must be constructed to have virtual dynamic control mechanisms that are able to

follow programmed instructions and perform manufacturing tasks in a virtual

environment. Abstraction of manufacturing reality into a VR model is not a generic

problem due to the diversity of manufacturing systems and application requirements.

So far little research method towards this problem has been reported in the literature.

(2) Most virtual manufacturing environments require large-scale and complex VR

models. Applying currently available construction methods to create even a

reasonably small-scale VR model, for instance, a machine cell, is a tedious and time-

11

CHAPTER I INTRODUCTION

consuming and expensive process [Zhao 1997]. Considerable research has been done

in this area. Recently a few well-known industrial VR system software houses have

shifted their efforts from developing shell VR systems to application-specific virtual

environments, but a satisfactory environment building method is still not available.

(3) A unique difficulty with virtual manufacturing environments is that they need

to be modelled in a higher degree of engineering accuracy than that of, say, virtual

environments for civil engineering and entertainment applications.

Precision in VR modelling is mainly constrained by the internal manufacturing data

rather than by the VR rendering or graphical visualisation effect. For example, an

artistically and realistically rendered virtual CNC machining cell may not be useful if

it is unable to detect collisions to avoid tool-breaking or wrongly access a machined

part feature.

(4) Another difficulty with virtual manufacturing environments is the

formalisation or representation of manufacturing knowledge in VR terms. A large

proportion of manufacturing data and information in a VR model is empirical and

non-generic. Although one of the strengths of a VR model is that it can deal with such

knowledge without a knowledge base, the data need to be strictly monitored and

managed within the model.

Incorporating a graphically correct (or even crude) VR model with complex, diversity

but well managed manufacturing database is a challenging problem [Zhao 1997].

(5) As a universal requirement for all virtual environments, user-based

reconfigurability is also a necessity of most virtual manufacturing environments. At

present, VR models are mostly created by VR specialists or programmers. The kind of

model structure and non-transparent modelling data left users little flexibility to make

any change on the model.

The research described in this thesis attempts to reduce these difficulties, with a

specific emphasis on, (i) establishing effective methods for rapid creation of large and

complex virtual manufacturing environments; (ii) providing techniques for acquiring

12

CHAPTER I INTRODUCTiON

manufacturing knowledge and managing manufacturing data within a virtual

manufacturing environment. In the first part, it is hoped that the methods could lead to

reconfigurable models. The research motivation of the second part is to make non

generic and empirical manufacturing knowledge accessible by future VR based

manufacturing systems such as VR process planning, system modelling, factory

layout, operation testing and control. A more detailed specification of the research

objectives is provided in Section 1.6.

1.6 RESEARCH OBJECTIVES

The research objectives can be summarised as follows:

(1) To establish a concept by which a virtual environment can be constructed

rapidly by users as well as VR specialists. This is to reduce the demand for users to

learn specialised virtual environments authorising toolkits and VR systems.

(2) To investigate virtual environment data structure and its modelling

relationships with manufacturing knowledge by constructing and analysing a series of

template manufacturing environments.

(3) To investigate a method of defining and formal ising manufacturing knowledge

in VR terms. This is to be used to identify the data link between environment contents

(and contexts) and manufacturing data, for example, machining parameters in a

milling operation, thus enabling environment design and manufacturing information

management to be unified into a single constructing process.

(4) To develop a database system that monitors and manages environment data as

well as manufacturing information both during and after the environment is being

built. The template environments created in (2) are used to help in populating this

database with specific manufacturing data.

(5) To establish an environment reconfiguration mechanism. This is to expose

environment and object properties to users for migrating VR models with run-time

control.

13

CHAPTER I INTRODUCTION

(6) To develop a prototype system which accommodates the essential

programming modules resulted from the above objectives. It is used as a run-time

platform to test the entire process of virtual manufacturing environment construction,

reconfiguration and use.

(7) To explore the virtual and real world communication by linking a virtual

model with its physical counterpart.

1.7 THESIS STRUCTURE

The work reported in this thesis starts from a general description of virtual reality

technology, systems and manufacturing applications in Chapter 1. The difficulties on

virtual environment construction in terms of geometric and simulation modelling,

manufacturing knowledge acquisition and representation are also briefly discussed in

this chapter. The research objectives of this project are then discussed. Chapter 2

presents a literature review of virtual reality applications in a manufacturing life-cycle

and VME construction systems. A novel approach for constructing VME based on the

classification and analysis of current conventional approaches is introduced in

Chapter 3. A modular system which uses the new approach and support environment

and application data management is described in Chapter 4. The construction of a

series of so-called template manufacturing environments for populating the system is

detailed in Chapter 5. Based on the template environment construction processes,

Chapter 6 introduces the data structure of virtual environments, and a database that

stores and manages the information. The database enables the migration of

environment and objects data with simulation control instructions, which allows a

VME to be modified and reconfigured for different applications. Chapter 7 describes

the programming techniques used for the purpose. The integrated computing platform

of the addressed system and an example to illustrate its working procedures are

presented in Chapter 8. The work is concluded in Chapter 9 with the recommendation

for future research.

14

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2

LITERATURE REVIEW

This chapter provides an overview of the key virtual reality and virtual environment

manufacturing applications, and existing approaches to constructing virtual

manufacturing environments that influenced the research.

15

CHAPTER 2 LITERATURE REVIEW

2.1 CONVENTIONAL MANUFACTURING SIMULATION

Modem manufacturing systems are capital-intensive due to their hardware and

software requirements [Viswanadham and Narahari 1992]. Simulating those systems

to gain a profound understanding of their complexities and to predict their

performance is critical in both system design and implementation, and is often

valuable for system management during their use [Narayanan 1997].

Conventional manufacturing simulation aims to facilitate this process by simulating

real-time systems that have a large number of interrelated processes and events on a

computer-based platform. These simulated activities occur sequentially and/or

concurrently under stringent time constraints, and require modelling the system

behaviour accurately to assure that they satisfy the application requirements.

Although conventional manufacturing simulation has been widely considered one of

the most useful tools for analysing and designing complex manufacturing systems

[Ozdemirel et al. 1993], it has two fundamental problems.

First, simulation modellers often encounter difficulties in transforming the real world

multi-dimensional, visual and dynamic characteristics into the one-dimensional,

textual and static representation required by traditional simulation languages (which

are usually represented by tables, graphics and statistics on a computer screen) [Ulgen

and Thomasma 1990, Adiga and Glassey 1991]. The result of such presentation

produced from the conventional simulation process is often hard to understand,

manipulate and utilise [Jones, 1993].

The second problem is due to the integration of design and manufacturing data

[Barnes 1996, Bejczy 1997, Gray 1997] for visualising large system models [Hirota

and Hirose 1995 and Kerttula et af. 1997]. For conventional simulation systems to

define manufacturing-related problems, visualise manufacturing facilities and layout,

evaluate environmental and ergonomic issues, for instance, are still difficult tasks

[Angster et af. 1994 and Vance 1996].

16

CHAPTER 2 LITERATURE REVIEW

One challenge in constructing a virtual environment for manufacturing simulation is

the representation of environment-based manufacturing knowledge and,

paradoxically, the simplification of data modelling, VE configuration and information

management processes.

Due to the diversity and complexity of virtual manufacturing environments, especially

for manufacturing simulation problems, the construction of those YEs needs to be

straightforward and involve as little computer programming as possible. Considering

the state-of-the-art of current VR systems and the modelling demands of most

manufacturing simulation tasks, an enabling system is a necessity to facilitate

manufacturing users, not computing programmers, to construct easily and reconfigure

rapidly large and complex YEs for a specific simulation task. This observation has

been made based on the extensive literature study on VR and its application in

engineering in general and manufacturing in particular. The following section in this

chapter documents these studies.

2.2 VR MANUFACTURING APPLICATIONS

To appreciate why and how VR and VE can be applied in various manufacturing

areas, this section describes a few typical cases that show the use of virtual reality in

manufacturing.

2.2.1 VR based rapid prototyping

To achieve accurate manufacturing processes and high product quality, industry is

applying various technologies and concepts for dealing with manufacturing problems

in the beginning of the product design stage. Concurrent engineering design for

manufacturing and integrated manufacturing are the most commonly applied practices

[Maxfield et al. 1995, Angster 1996, Barrus 1994]. A more recently developed

technology compliant with these technologies is rapid prototyping.

The Rapid Prototyping technique produces parts from a CAD modelling database

using some form of polymer or plastic material, these physical prototypes are often

expensive, especially for large components [Rosen et al. 1995 and Xiao et al. 1997].

17

CHAPTER 2 LITERATURE REVIEW

The ultimate development of rapid prototyping in terms of both speed, cost and

flexibility is virtual prototyping - the use of a 3D VR model of the product to explore

the proper manufacturing processes and to evaluate ergonomic performance of the

product prior to its physical construction [Chapman and Coddington 1994, Bennett

1997].

Kerttula [1997] and other researchers in the University of Oulu at Finland developed a

virtual prototyping environment for developing electronics and telecommunication

products. Immersive VR devices including PHANToM Haptic Device [Massie and

Salisbury 1994], Logitech 3D Head Tracker, body tracking device, stereoscopic

system and data glove were used in the project. The creation and building of a virtual

prototype using their system starts from defining the geometry of the virtual prototype

by converting data from a computer-aided-design (CAD) model, or by using

modelling tools to construct from scratch. The geometric model is represented using

OpenInventor graphic format. The virtual environment produces a visualisation model

by adding surface properties (colours, materials and textures). Then it generates the

haptic rendering model (force-feedback model) from the geometric model by

assigning the tactile and force feedback simulation parameters to each virtual plane in

the geometric model. The constructed geometric model and haptic model are used to

create the final simulation model, which by integrating with the VR hardware and

software form a comprehensive VE-based virtual prototyping system.

2.2.2 Process simulation and design validation

Very often, a constructed virtual prototype needs to be evaluated against real

manufacturing methods and processes to ensure its validity [Hollands and Mort 1994,

Jones and Iuliano 1997, Lee and Noh 1997]. Depending on the data format of the

virtual prototype, it is possible for a manufacturing operation to be driven directly by

the data from the virtual prototype. When the design is updated, the changes can be

implemented automatically in the manufacturing processes (such as machining and

inspection), that can avoid expensive redesign and physical testing.

Researchers in Washington State University developed a system that allows a product

design to be tested on a series of virtual machines. These machines are modelled

18

CHAPTER 2 LITERATURE REVIEW

according to their physical counterparts and are fully functional as real machines. A

product model was created using ProlEngineer and was imported through an internal

data translator of the system [Angster et al. 1994]. Similar projects were reported by

the University of Illinois and the Purdue University in the USA, the focus of those VR

based projects is to simplify the design of complex mechanical parts and to achieve a

one-off manufacturing [Trika et al. 1997].

2.2.3 Assembly planning and test

Assembly planning is another application of VR in manufacturing. Grasping and

moving virtual parts in a VE and placing them in the right position provides

significant insight into the assembly process [Ritchie et al. 1999]. YEs for virtual

assembly rely on a full kinematics simulation of a proposed assembly sequence to

evaluate potential insertion paths and to avoid clashes within an assembly path

[Connacher et al. 1995].

Banerjee [1999] at the University of Illnois used VR techniques in conjunction with

assembly constrains generated by heuristic rules to test parts features in the assembly.

The reasons for using VR in his project were: (1) the assembly processes are highly

visual, (2) a majority of assembly operations in factories are performed manually due

to difficulties in automation, therefore, demanding much involvement, and (3) there

are a number of assembly operations which require dextrous operation training.

Hence, VE becomes an ideal candidate for this highly visual and interactive task,

especially when operator training is becoming important [Banerjee et at. 1999].

2.2.4 NC programming and machining simulation

Another application of VR in manufacturing is to simulate the Computer-Numerical

Control (CNC) machine operations to verify machining or fixtures prior to the actual

machining. Current CAD/CAM systems provide tools for automatic Numerical

Control (NC) code generation. Those systems allow viewing of the tool path for

verification of NC code. Often, it is not the cutting tool itself but the chuck, head

stock, and other parts of the machine tool that could cause problems, for instance, a

tool-holder ramming the workpiece could cause several thousands of dollars of

19

CHAPTER 2 LITERATURE REVIEW

damage [Matsuda and Kimura 1997]. In VR-based machining simulation, this type of

problem can be alleviated.

Iuliano and Jones [1996] in the National Institute of Standards and Technology

(NIST) and Watanabe [1997] at Mitsubishi Electric Corporation proposed their

individual VR based NC programming and simulation systems. The former focused

on integrating different manufacturing systems into a VR computing framework to

simulate the complete loop of virtual manufacturing, where a part can be designed,

validated, machined, and assembled in a single environment. The latter was dedicated

to verify the virtual machining NC code that can be exported to the physical

equipment.

2.2.5 Factory layout design and cell control simulation

VR has been applied to factory and cell layout and automated cell control simulation.

Validation of the layout of a manufacturing facility through a VE allows the engineer

to visualise the facility dynamically, and modifying the design by real-time interacting

with the virtual objects for economic, ergonomic and safety reasons [Zetu et. al 1997].

Smith and lIeim [1999] have specifically pointed out that for manufacturing

environments where the third dimension is critical to system performance, interactive

three-dimensional display systems are much better to convey the information by

facility designers.

Gausemeier (et al.) [1998] from Heinz NixdorfInstitute in Germany has developed a

VE-based manufacturing cell layout system using the so-called "Construction Set". It

was applied to the development of a modular monorail transport system. The essential

components of the Construction Set include 3D models of the fundamental

construction elements such as building blocks, which are created using a conventional

3D CAD system. For modelling the behaviours of the system, a commercial VE

authoriser, SmartScene, was used [Multigen Inc., USA.]. A manufacturing cell layout

planning system has been developed by Korves and Loftus [1999] in the University of

Birmingham. They applied a similar building block-based approach using a pre-built

shop-floor model library. At system run-time, users select an equipment model by

using an immersive menu and then drag-and-drop into the virtual environment.

20

CHAPTER 2 LITERATURE REVIEW

In the aspect of cell control simulation, Orady and Osman [1997] in the University of

Michigan developed software for manufacturing cell control simulation by integrating

discrete event simulation techniques with virtual reality software, where the simulator

acts as the cell-activity administrator and the environment as the interaction front-end.

2.3 RELATED SYSTEMS

The VR and VME developing systems reviewed in this section cover the research

based VR hardware and software, and systems useful for developing manufacturing

application environments.

Researchers at the National University of Singapore followed an interactive and visual

approach to virtual world construction, which allows virtual world designers to work

with high-level environment design concepts [Singh et al. 1993, 1994 and 1995]. The

system was developed in two stages: Bricks and BrickNet.

• Bricks emphasises on modelling application knowledge to avoid only providing a

wide range of low-level primitive geometry. It used a self-developed frame-based

representation language [Loo 1991], and C for the modelling processes, the

application knowledge were possessed by the virtual environments in the form of

representative virtual objects and stored object activities.

• The BrickNet toolkit extends the sharing of objects on the computer network to

include dynamic object behaviour. This is achieved by combining a structured

organisational paradigm for virtual worlds with an interpreting language. Sharing

in virtual worlds is handled by transferring the program code that builds the

structure and executes the behaviour. The range of behaviours shared in BrickNet

include simple behaviour, virtual world dependent behaviour, reactive behaviour

and capability-based behaviour. Those object activities can be used to trigger each

other to form an action network.

The above research provided a method of constructing a virtual environment

following a logical concept. For example, to create a virtual kitchen, the process starts

21

CHAPTER 2 LITERATURE REVIEW

from sorting the relationships among kitchen objects and the possible ways a human

would interact with those objects. The related operational knowledge was created as

task procedures and stored with the referring objects. This approach overcomes the

shortcomings of "programming" an environment (which is normally a job for expert

programmers rather than application developers). The problem with this method,

however, is that the environment construction still requires the user to have

considerable object modelling knowledge, and the expected environment activities

still have to rely on system developers to code in which having limited run-time

reconfiguring capacity.

Environment Manager (EM) for VE construction and application data management

was developed by Wang and Green [1995] in the University of Alberta as a toolkit for

constructing single or multi-user VEs. A script file was developed for handling the

activities of VEs and objects, for example, to initialise or run the VE simulations.

Individual applications share information and cooperate with each other across the

Internet. EM reduces the effort required to produce a networked virtual world by

providing high-level support for application replication, network configuration,

communication management and concurrency control. It's composite modules

included:

• MR Toolkit: for virtual environments and objects geometric modelling. MR

applications are written in C and Fortran. The graphics programming adopted a

computer graphics library including GL, Phigs and Starbase.

• JACAD: a solid modelling and animation computer aided design system. It has a

key frame animation facility that is used to animate various motions of an object

without writing an OML object.

• OML: Object Modelling Language is a procedural programming language. It is

used to generate 3D objects, control object appearance, and behaviour. OML

behaviour is a procedure (method) that reacts to an incoming event or

combination of events, and typically generates some sort of change in the state

and appearance of the 3D object. Behaviour triggers other behaviour by sending

an event to the behaviour to be triggered.

22

CHAPTER 2 LITERATURE REVIEW

When using such a system, an application environment is created using OML. A MR

Toolkit program loads the compiled OML code for displaying each of the objects on

the computer display. The VR input and output (10) devices are then setup, the OML

dispatches the device-related events to an event interpreter and calls the interpreter

every frame to update the graphical and other 10 display.

Similar with the aforementioned "Brick and Bricknet" system, this system also

provided the utilities for managing virtual environment objects through a computer

network, and the environment animation and simulation are pre-programmed as task

scripts. The system uses graphical libraries and procedural programming languages to

model objects and environments and therefore requires users to have a strong

programming background.

Researchers in the University of Maryland [Turner et al. 1999] have developed VE

construction software - Metis, a toolkit for building immersive virtual environment

with environment-independent application computing components. The Metis toolkit

defines an application programming interface (API) on the simulator side, which

communicates via a network with a standalone viewer program that handles all

immersive display and interactivity. The aims of Metis are to create a simple software

structure that enables the rapid construction and efficient running of immersive virtual

reality applications. It provides several key functional components for rendering

virtual objects and environments on an immersive display using an application

programming interface (API) and a standalone viewer. An application built by the

API works in a client-server mode, where the environment simulation resides on the

server side and the user input and output on the client side. This design decouples the

application simulation and the visualisation, so they can be performed at different

rates and profits from parallel processing. The virtual environment developed using

Metis API specifies scenes in 3D space by creating a scene data structure containing

geometry, appearance and hierarchical information similar to that constructed in

VRML. Rather than using procedural programs (like most of the current commercial

VE editors) to control object activities, Metis uses a declarative approach that

constructs a network of predefined constraints. Thus, enabling complex relationships

and interactivity among virtual objects and users to be logically expressed.

23

CHAPTER 2 LITERATURE REVIEW

The Metis system enhanced virtual environment knowledge acquisition and

representation capabilities by allowing external data and knowledge sources to be

connected with the virtual environment through a separate knowledge processing

mechanism. This design embraced the power from professional simulation and

modelling software and reduced the overhead a virtual environment-rendering

package has to carry. However the system still needs its own environment modelling

language (a scripting language) to model an environment.

West and other researchers [1993] in the University of Manchester developed a VR

application developing system called AVIARY. It has followed an object-oriented

(00) hierarchy where a defined virtual environment with a set of attributes can be

inherited by all virtual objects in an instance of that environment. It also specifies a

set of constraints which govern the behaviour of those objects. This approach forms a

multiple inheritance hierarchy allowing new worlds to be defined in terms of existing

worlds rather than from scratch. A VIAR Y allows multiple worlds with different laws

to be concurrently activated. The implementation is composed of loosely connected

autonomous objects which execute simultaneously. Some objects will represent

objects in the virtual world, other objects act as device drivers for input and output or

provide services. An example of one type of object which performs a service is the

'object server' which provides an execution environment for other objects. In the

AVIARY system, a user of the environment was treated the same as any other object,

the object representing the user will normally communicate with at least one input

object and at least one output object with no restriction of the number of system users.

Based on the AVIARY system, researchers at the Advanced Interface Group (AIG) in

the University of Manchester has taken the research forward and developed a system

which tackles problems on constructing large-scale applications [Cook et al. 1998].

This system aimed to deliver the performance and flexibility required by the large

scale complex application environments, which addresses the graphics, interaction,

distribution and systems architecture problems. Similar to the Metis system described

above, this proposed system also separates the simulation task and environment

rendering process into two core components, Maverik and Deva: Maverik manages

the world as a participant perceives it, and Deva manages the "reality" behind this

perception. The Maverik has functions for optimised display management including

24

CHAPTER 2 LITERATURE REVIEW

culling, spatial management, interaction and navigation, and control of VR input and

output devices. It allows data exchange between its core functions and external

application data so that optimal representation and algorithms can be employed. Deva

extends Maverik to support the distributed applications and controls the environment

simulation.

This approach has merits over other aforementioned systems in two aspects, it

provided a structure which allows a large number of virtual objects with reasonable

geometric detail having dynamic and interactive features. The system relies on its own

geometric, simulation and interaction modelling functions (micro-kernal services) for

developing applications which might restrict its compatibility with other environment

authoring toolkits.

In contrast with the above systems, manufacturing applications using VR techniques

require more specific environment construction and knowledge management

approach. VR-SIM developed by Gimenez and Kirner (1997) integrated a

manufacturing simulation knowledge base with virtual reality software to validate real

time simulation system. It consists of a set of reusable software components to

facilitate the preparation of VR simulation sessions. It aimed to analyse the behaviour

of both the software system and the environment around it. VR-SIM provides its users

with pre-built environment objects and routines to connect these objects with the

user's software system. The system was composed by a real-time scheduler, an

environment manager, a communication manager and virtual reality components. The

prototype system was implemented with WorldToolKit (WTK).

An early model of a virtual environment based mechanical design environment was

developed by Barrus (1994) in Massachusetts Institute of Technology (MIT). The

goal of the project was to develop a simulated workshop for designers to do

conceptual design work while taking into account manufacturing processes

information. The virtual workshop contains a set of manually operated machines, for

instance, band saw, drill press, milling machine, radial arm saw, and table saw. Using

the handles and locks on each of the machines the user is able to create components

from a selection of materials in various sizes. The system does not present the

workshop as a whole environment but with only one machine visible at a time. The

25

CHAPTER 2 LITERATURE REVIEW

required machine being selected from a menu and the display is updated to show that

machine.

Washington State University developed a virtual reality based manufacturing design

system called VEDAM (virtual environment for design and manufacturing) [Angster

1996]. It intended to extend the capabilities of current parametric CAD/CAM systems,

and has been partially implemented to support virtual design, virtual manufacturing

and virtual assembly. The objectives were described as creating a system that allows

designers to incorporate virtual reality techniques into the design and process planning

stages of the product, while providing a flexible, expandable and customisable

environment directly linked to a parametric CAD/CAM system to analyse the entire

system and design and create a prototype of the integrated virtual product

development system.

As stated in their publications, a test implementation was tested with the following

features:

• Functioning virtual manufacturing equipment including a lathe, a mill, and a water

jet.

• Data converter which enables importing objects from parametric computer-aided

design (CAD) system, such as AutoCAD from AutoDesk Ltd., into virtual

environments.

• Allowing loading and verifying numerical control code created from a computer

aided-manufacturing (CAM) system.

• Real-time graphical presentation of machining processes.

• Automatic design modification based on the virtual manufacturing result.

VEDAM system explored several areas in which virtual reality can assist in the design

and manufacture of a product. These include parametric design changes within a

virtual design environment, virtual assembly, virtual manufacturing, and human

integrated design. The system has been linked to parametric design software -

Pro/Engineer. The proposed system has five main components, the Machine

Modelling Environment (MME), the Virtual Design Environment (VDE), the Virtual

26

CHAPTER 2 LITERATURE REVIEW

Assembly Environment (V AE), and the Virtual Manufacturing Environment (VME).

During a design session, the user would enter into the virtual environments via the

main interface to test designs or manufacturing ideas. VEDAM, combined with a

parametric CAD/CAM system, would provide a complete system for engineers to

evaluate potential designs and process plans. There are several areas in which further

research and development can be conducted, including the user-part interaction, the

user-machine interaction, and the control system for the virtual manufacturing

environment. The system was created on a Silicon Graphics Crimson workstation

with Reality Engine graphics. All classes were developed using C++ and the graphics

were created using Performer 2.0. The virtual reality hardware used in this

implementation include a Virtual Research VR4 helmet, a Virtual Technologies 22-

sensor Cyberglove, and an Ascension Flock of Birds tracking system with an ERT

and six birds.

The University of Bath developed an interactive virtual manufacturing environment

for part design based on a real workshop [Taylor et al. 1995]. It contains a 3-axis

MatchMaker milling machine, a Cyclone lathe, a robot, and a Roland modelling

machine. The system users can model a virtual environment by customising these

manufacturing resources and processes available in the real world. The user is then

able to manufacture new components adhering to their design specification using only

the available processes. The output of the processes is a geometric model of the new

component. It also claimed that the designer's actions could be translated into machine

codes for each of the processes that have been carried out. This method of design has

been termed Design By Virtual Manufacture, as the designer works within a computer

-generated factory and is constrained to produce components using only the machines

available within the factory, which contrasts with the tradition of design then check

for manufacturability. The system has been developed on a Silicon Graphics Onyx

RealityEngine2, using the Silicon Graphics Openlnventor 3D graphics toolkit and a

kernel geometric modeller.

Researchers in the University of Texas [Chuter et at. 1995] developed the

methodology of using an agent-based framework to specify a virtual environment. It

claimed it was flexible enough to support scheduling, planning, and behaviour

modelling. The implementation consisted of a heterogeneous, distributed interactive

27

CHAPTER 2 LITERATURE REVIEW

virtual environment using the virtual environment tool - DIVE. In their research,

agents referred to grouping a set of resources in the common operations, akin to a

class definition in object -oriented programming languages, and objects refer to class

instantiations. The VE development was used in the design or redesign of a

instantiation. The VE development was used in the design and redesign of a

manufacturing shop-floor. Information required for the construction of the VE

included: (i) domain specific information, such as the purpose of the VE, important

activities to be performed, resources involved in performing these activities, and the

constraints involved, (ii) tools and resources required to construct the VE, and (iii)

tools and resources required for interaction with and manipulation within the VE.

Objects that comprise an agent description collaborate with each other and each was

associated with an agent specification. In each mode the agent has three macro-states

of operation: Idle, Active and Down. The design of agents along with their

communication and behavioural models defines the final VM prototype. A complete

VM prototype defines a test-bed for the analysis of the system. For example, a surface

model is created using the system. A robot is constructed with the base of the robot

being defined as the top object and the joints being defined as sub-objects. Forward

and inverse kinematics algorithms were applied on the virtual robot. It has simulation

and communication functions supported by various agents. Communication within the

virtual manufacturing system is between agents. Every agent can generate input

events for other agents and each agent can become active upon receiving an input

event. The definition of the robot in an environment is using an ASCII definition file

similar to VRML.

Tian (el al.) [1997] in the Northwestern Polytechnic University developed a

simulation program, with a message-driven object-oriented programming system,

which promised a solution to two problems in VR programming - the complexity of

the world construction and the organisation of the structure of the program. In the

proposed system, all the descriptions of objects data were stored in a database which

had a direct link between a description and its corresponding geometrical model,

making it ready to be browsed. The system used object-oriented programming for

object definition, and adopted a message-driven mechanism to define and manage

object interactions. It relied on a message-driven object interaction management

28

CHAPTER 2 LITERATURE REVIEW

(MDOIM) system to deal with triggering messages and object responding functions.

MDOIM helps programmers to concentrate on the following aspects during the

software development, (a) find and define the necessary flow in the real world, (b)

construct related message response functions. When the definition task of a message

is completed, the system will run automatically with Message-Manager continuously

dispatching messages and objects to react with the message they receive. All

messages, including hardware messages and user-defined messages, are processed in

the same way so that all VR worlds built up with MDOIM share a uniform interface

of information exchange and processes.

MDOIM was different from WTK. The former was not a mere set of functions but a

program environment which was completely compatible with OOP and had a uniform

template for VR software development. Working with MDOIM, programmers can

concentrate on a child object's particular message response functions without

repeating coding inherited from its parents. The second benefit of MDOIM is its

ability to be expanded. As all the reaction in the system was triggered by messages,

the programs are organised by message response functions and the real driving force

in the system is the flow of messages. For communication between different virtual

worlds, a message translator was created. All virtual worlds register to a central

message translator that their messages related to interactions that may take place, and

during operation the trans-world interaction is realised by the delivering or

interpreting of messages by the message translator. This means the possibility of

merging different worlds without the need to rewrite programs completely will be an

aid for distributive software development.

Polis and other researchers [1995] in the Carnegie Mellon University in the USA used

a database for constructing large-scale virtual worlds by integrating information from

various sources. Such virtual world databases have significant applications in training,

planning, and autonomous-agent simulation. Virtual environment construction is

based on transforming heterogeneous sources data at multiple spatial resolutions into

a consistent geometric representation with a single scale and base line spatial

resolution.

29

CHAPTER 2 LITERATURE REVIEW

Sequeira [1999] has developed an integrated approach to the construction of textured

3D scene models of building interiors from laser range data and visual images. This

approach was a collection of algorithms and sensors within a prototype device for 3D

reconstruction, called Environmental Sensor for Telepresence (EST), which takes the

form of an autonomous mobile platform. The Autonomous EST (AEST) provides an

integrated solution for automating the creation of complete models. Embedded

software modules perform functions to triangulate the range data, register video

texture, and integrate data acquired from different capture points. The reconstructed

model is encoded in VRML format to access and view via the World-Wide-Web

(WWW).

2.4 DISCUSSION

The survey of VE applications show VE has promised many advantages over other

solutions, but (i) current VR software that builds the synthetic environment is a

tedious and painstaking process similar to that of the CAD drawing process. The

development work of virtual environments is mostly dependent on experienced

computer programmers, and (ii) the created virtual environments generally have

limited real application domain knowledge and are mainly for presentation with pre

defined animation and simulation routines, which generally have little flexibility for

re-configuration. The first problem is crucial for rapid application environment

construction and the second is critical to environment usage.

30

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION APPROACHES

CHAPTER 3

AN OVERVIEW OF THE VE CONSTRUCTION

APPROACHES

This Chapter is dedicated to the problems of rapid modelling and constructing virtual

manufacturing environments highlighted in Section 1.5 and to achieving the research

objectives specified in Section 1.6. It starts with an evaluation of existing approaches

and presents a novel approach called 'domain-analysis based top-down construction',

which overcomes some of the difficulties in the conventional VE construction

approaches. Techniques for representing manufacturing knowledge within virtual

environments are then reported based on this approach including the methods for

acquiring knowledge from the environments. The chapter concludes with a

description of the implementation of the approach.

31

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION APPROACHES

3.1 CONVENTIONAL APPROACHES TO CONSTRUCTING VIRTUAL

ENVIRONMENTS

The literature review showed that approaches to constructing virtual environments fall

into only three categories: (i) bottom-up generative approach, (ii) building-block

approach, and (iii) variant constructing approach.

3. J. J Bottom-up generative approach

As shown in Figure 3.1, the bottom-up approach constructs a virtual environment by

starting with a basic shape design using geometric primitives like points, arcs, lines

and facets. The shapes are often in 3D and used directly to construct more complex

3D virtual objects.

Application Interface

Virtual Environment

Figure 3.1 Illustration of the bottom-up approach

The virtual objects are 'accumulated' to form a virtual group that represents an

independent and meaningful virtual sub-world, for example, a virtual lathe. The

resulting virtual environment normally contains a single or a few virtual groups with

detailed geometric data and has a clear hierarchical structure. However, this approach

is time consuming when it is used for constructing large-scale complex virtual

environments, mainly due to its intensive graphical interactions that are fOlmd in most

32

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION APPROACHES

CAD systems. The constructed virtual environment often lacks of re-usability because

of its fixed hierarchy and is therefore difficult to reconfigure. Most commercial

application-pro gram-interface (API) based virtual environment toolkits adopt this

approach, for example, WorldToolKit (WTK) from Sense'8 .

3.1.2 Building-block approach

To overcome problems with bottom-up construction, a so-called 'building-block

approach' was proposed by Singh et al. [1995], Chuter et al. [1995], Wang et at.

[1995] for virtual environments with a large number of objects. It works in an event

mechanism in programming terms. TIllS approach relies on a library of pre-built

virtual objects that can be 'dragged' into the virtual environment and assigned

properties to about wruch events can be received, under what conditions and how to

react. When running the virtual environment, the virtual objects are activated by

event-chains which are simply a series of executable messages [Singh 1994]. The

structure of this approach is showed in Figure 3.2.

Figure 3.2 Building-block VE construction approach

This approach reduces the time to build virtual environments by using the virtual

object library, and the virtual environment can be easi ly expanded by adding or

changing event links [Karacali 1995]. However, the number of events, their types and

directions have to be pre-set at construction time and cannot be changed later. This

significantly restricts the capacity of environment re-configuration.

33

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION APPROACHES

3.1.3 Variant construction approach

According to Zhao [1998], the variant approach to constructing virtual manufacturing

environments uses a set of similar manufacturing tasks (for example, machining a part

with certain features) that can be represented by a single representative task. If a

specific virtual environment (for example, a lathe and a robot) exists in the database

that can accomplish this representative task, then it should be able to accomplish all

marginally similar tasks. A VR environment can be developed from this

representative environment. Figure 3.3 shows a simplified diagram of an

implementation based on this approach. The representative environment is called a

'master environment' and the representative task is called 'master task'. The master

task and the master environment are related to each other and stored together in the

virtual environment database. When a specific manufacturing task is required, it is

described in a similar format to that of the master task.

User
(nterface

Application
Requirements

Real
Environment

Virtual
Environment

databases

Manufacturing
Knowledgebase

Figure 3.3 Variant environment construction approach

To construct a given VR environment for a given manufacturing task, the index of the

formatted manufacturing task is first used to search the virtual environment database,

the system then performs the following operations:

(1) If a master task exists in the virtual environment database that is exactly the

same as the given task, then the master environments attached to that task will be

retrieved as a required environment.

34

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION APPROACHES

(2) If, in the virtual environment database, a master task that is the most similar to

the given manufacturing task, then the master environment attached to that master

task will be retrieved and modified to perform the required task. The amount of

modification depends on the similarity between the two tasks - the more similar, the

less modification required.

(3) If there is not a similar master task in the virtual environment database to the

given manufacturing task, then a new virtual environment has to be created from

scratch for the given manufacturing task. The given manufacturing task and the newly

created virtual environment will then be stored in the virtual environment database as

a new master task and master environment pair.

This variant construction approach is superior to the previous two approaches in that it

eliminates the needs for low level programming and graphical work and provides

users a rapid method for constructing large scale and complex virtual manufacturing

environments. It also allows an implementation independent from individual VR

systems and provides users with the maximum flexibility to design and use the

constructed environments [Zhao 1997]. However, this approach is highly application

oriented and company-specific and requires a considerable number of master tasks

and master environments to be initially established. It is therefore mainly useful for

large and relatively well established manufacturing applications, but less applicable to

frequently changing manufacturing systems.

In summary, the three approaches aforementioned aim to construct "exhibition-style"

environments, i.e., 3D models for display and manipulation. The literature survey

found the VE construction systems that can facilitate knowledge acquisition and data

management, especially for manufacturing applications, are often large and complex

both in their visual form and their internal data repository. Thus a more efficient

approach is needed.

35

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION APPROACHES

3.2 A DOMAIN-ANALYSIS BASED TOP-DOWN APPROACH

A domain analysis-based top-down approach is proposed in this research that can

satisfy three needs: (i) to provide a user-friendly and rapid method for the construction

of virtual manufacturing environments, (ii) to provide a reusable and re-configurable

mechanism of virtual environments for different manufacturing applications and (iii)

to allow the capture and presentation of manufacturing knowledge and manage

manufacturing data. The proposed approach was implemented with the aid of two

concepts: application domain analysis and top-down VE construction.

3.2.1 Application domain-analysis

Application domain-analysis attempts to understand, classify and abstract the real

world knowledge into a virtual environment and provide realistic guidance for the

constructing of the applied environment. For example, a virtual lathe would carry the

knowledge of its spindle speeds and the chuck would carry the knowledge of the

diameter range it could hold. The approach negates the need to encapsulate all the

knowledge in to a single environment.

Consider an environment designed for a process planner, the knowledge needed on a

machine tool would relate to spindle power available, job-type and machine capacity.

On the other hand, a plant layout designer will merely require data concerning the

machine footprint, and possibly, some safety factors. In this way the application

domain-analysis actually performs the task of identifying which part of the

manufacturing knowledge is going to be applied in a specific environment. In this

research, the domain analysis was based on a GT-like coding scheme (see Section

3.3.1 and Section 4.3.1).

3.2.2 Top-down VE construction

The top-down approach intends to avoid the time-consuming processes of

constructing an environment from scratch, or struggling with mastering an

environment authoriser. A set of representative manufacturing environments for

different application domains are constructed that can be used as templates as a

36

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION APPROACHES

starting point to develop an environment. A template environment has defined

properties such as suitable tasks, environment size, simulation level and interactive

mode which can be used to compare with the required application task and modified

to suit.

3.2.3 Operation mechanism

The operation of the approach can be described in four steps:

(1) Determining the application domain

Throughout this research, it is assumed that any virtual environment is constructed

with one or more specific application purposes in mind. Therefore, before a virtual

environment can be constructed, the domain of its applications needs to be known.

The importance of this step can be explained in the following example.

The lighting background of a virtual manufacturing workshop is irrelevant if the

virtual workshop is to be used for simulating a sequence of machining operations to

find out how a robot controlled loading and unloading system works. However, if a

virtual environment is for simulating a robot-based vision system for part recognition

in a machining cell, the accuracy of the background modelling will be extremely

important - the parameters that can be attributed to an accurate virtual background,

such as lighting, colouring and texture mapping, will decide the viability and usability

of the constructed virtual workshop.

In this research, determining the application domain of a virtual environment means

(i) specifying the application requirements, (ii) defining the environment attributes,

and (iii) determining a description scheme. Application requirements are specified

from the real world. Each participating aspect of this world is assigned an attribute

and those attributes are described by a description scheme (a detailed explanation of

such a scheme is in given Section 4.3). In this work, all applications are defined by a

range of application attributes that are in tum encoded in VR modelling data.

37

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION APPROACHES

(2) Selecting a candidate environment

This step requires a series of so-called template environments being constructed as

'foundations' for constructing new environments. These template environments (each

representing a typical manufacturing application) hold the essential manufacturing

resources with realistic geometric detail and simulation verified by real world

experiences and knowledge. Template environments are ideally stored in a highly

structured and logical computing format so that their data can be efficiently managed

(a database system was used in this research to complete this task).

Selecting a candidate (template) environment is actually the processes of abstracting

the application into a "construction task", which is encoded into a so-called 'task

code'. Since the code is based on Group Technology (GT) code, it can be used to

compare with a master task in the database, and to determine a task family within

which the application falls. The master task is used to retrieve the associated template

environment through an environment meta-code (see Section 4.3).

(3) Environment modification and configuration

The role of the template environments is to facilitate the environment construction

rather than to replace it. Once an environment is retrieved from the database, it

normally needs to be modified to suit a given application, for example, adding,

deleting, and changing objects. In some other cases, the environment and its

simulation will need to be configured either by setting the virtual environment

through directly manipulating the virtual objects and their properties at system run

time or through configuring the object simulation functions at environment design

time. Both ways have been implemented in this research (described in Chapter 7).

(4) Utilising the constructed environment

Conventional virtual environments built for specific manufacturing applications

usually design and store simulation functions as task procedures. The realism and

richness of the VE activities is a task for the application developer and has little to do

with the end-users. Since the target system attempts to shift the environment

38

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION APPROACHES

construction process from a development-centred approach to a more user-centred

approach, a real-time data exchanging mechanism is used to connect the database with

the environment properties to allow environments to be altered by updating database

records. Such a design opens the potential to control environment appearances and

activities by external data and knowledge sources, such as, modelling and simulation

packages, and expert systems, through the database.

3.3 IMPLEMENTATION

The implementation of the domain-analysis based top-down VE construction can be

divided into six phases, task coding design, template environment development,

database design, environment and database communication, virtual and physical

environment links and the development of a unified computing infrastructure.

3.3.1 Design application task coding scheme

The implementation of the new VE construction approach starts from designing a task

coding description system. A task in this research is taken to mean producing a part.

The task code is based on Group Technology (GT) for classifying task models to take

advantage of the parallelism between the GT code for virtual environment simulation

models and the GT code for manufactured parts. Given the part GT code, the

simulation environment should be able to suggest alternative manufacturing methods

and simulation scenarios based on the user requirements.

The format of a computerised task is a string of digits where each digit stands for a

specific task property. These properties are organised in three groups: (i) General

application information, including the type of environment application, the level of

detail, and the interaction mode. (ii) Part geometry information, including part type,

external shape and external shape elements, internal shape and internal shape

elements, plain surface machining, auxiliary holes and gear teeth. Rotational parts are

classified by their length/diameter ratio and non-rotational parts by their length and

lengthiheight ratios. (iii) Environment scale information decides the scale of the

environment. The task coding scheme provides the foundation for identifying VE

39

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION APPROACHES

applications in a rapid and accurate way, and will be used to weight the significance

of each of the environment properties.

The task coding process has been implemented as a classification programme that

enables the user to identify task attributes and describe them in a coded format. This

programme uses a 3D virtual encoding panel, as shown in Figure 3.4(a) that is similar

to a remote controller with a virtual liquid-crystal-display (LCD). Users have to

interpret application task attributes by pressing buttons on the panel to record it. At

any stage, a user can delete or insert new data. A built-in task encoding processor is

activated to record, interpret, and order the user task. The output from this process is a

string of task codes that can be used as a searching index to find a suitable

environment from the database.

Figure 3.4(b) shows an encoding interface to the coded environment. By dragging and

moving the slide bar users can browse the available tasks in the database. By

highlighting a task number, a graphical view will be displayed in the preview window.

The matched environment can be loaded by click the "Load Master Environment"

button.

U i r t ua I Envo i ron~Hm t Managemen tIn t er face

Master Task List

Master Task 135
Master Task 8S
Master Task 137
Master Task 138
Master Task 89
Master Task 113
Master Task 11
Master Task 12
Master Task 13
Master Task 14
Master Task 15
Master Tas k 16
Master Task 17
Master Task 18
Master Task 19
as.ter Task 213

Part Information

Prismat ic I I Rotat ional
1.-.. ___________ --' I £ancel II Q.K

Figure 3.4 (a) 3D encoding panel. (b) Task-based environment retrieval

40

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION APPROACHES

3.3.2 Constructing template environments

Like the variant approach described in Section 3.1.3, the top-down approach also

relies on a set of pre-defined virtual environments called templates. A template

encapsulates all the basic functions of similar environments. Various possibilities for

using an environment have been considered and designed into the templates. All a

user needs to do is to determine the best-fit template for a given application and to use

the application requirements to populate the template, which results the expected

environment.

From the system developing point of view, these possibilities relate to environment

comprehensiveness, object detail-level, simulation execution speed, information

exchange between software packages, and the communication between a virtual and

the real world.

The benefits of this approach come from the environment capabilities themselves and

their ability to be modified. The challenge of this work resides in the creation of an

environment coding system which can represent both parts of the information in an

integrated format. Because the application task is also represented by a string of codes

based on information input by the user, so the relation between the task code and the

environment code holds the key to the environment search and retrieval at system run

time. The program module dedicated to this problem is explained in Chapter 6.

To test the proposed new environment construction approach, and to accomplish the

formation of representative tasks, 5 template environments were created and analysed

(Chapter 5). Each contains a particular manufacturing device to fulfil the task

requirements. Every virtual environment and its objects are organised in a tree

structure called 'scene graph'. An information acquisition agent is used to manage the

environment data divided into 4 levels corresponding with the environment structure.

An agent is a dynamically linked program module (DLL) which encapsulates certain

knowledge acquisition skills and is able to communicate with other agents and

programs. The knowledge infrastructure of the virtual environment is classified and

explained in the following sections.

41

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION APPROACHES

(1) Environment level knowledge

Environment level knowledge is initially assigned when a manufacturing environment

is generated through the top-down approach. This concerns information such as name,

size and master object. It also deals with workshop spatial layout information,

including object size, position, and object relationships. Information such as dynamic

viewpoint route and VR peripheral configurations also belongs to this knowledge

level. This level information is vital when the environment is used to simulate

manufacturing cell level activities such as designing a factory or cell layout,

controlling inter-cell manufacturing resource flow, or scheduling production.

(2) Object level knowledge

Objects are not primitive shapes used as building blocks. They are complete working

systems where their physical counterparts are easily identifiable in the real world. For

instance, for a lathe or a robot, object level knowledge would include machine size,

weight, power input, machining capacity, tooling and fixture type information.

Machine operation procedures, for instance, detailed system behaviours are also

included.

(3) Element level knowledge

Element level knowledge encompasses physical information about virtual devices

such as element scaling, rotation, translation, and physical constraints, for instance,

the maximum distance a part moves. The physical characteristics such as restitution,

gravity, friction, velocity, acceleration, and collision are also attached at this

knowledge level.

(4) Object property knowledge

The object property knowledge is the lowest level in the knowledge management

hierarchy. It deals with the static properties of an object such as shape, size, position,

center of rotation, colour, lighting, and texture.

42

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION APPROACHES

The main application program, responsible for planning, scheduling, and simulation

software can interact with the virtual environment at different levels, so to provide

virtual environment flexibility and re-usability.

3.3.3 Database design

Most commercial VR software packages separate the environment editor from the

environment executor (or visualiser), so that once the design is finalised and

distributed, the user cannot change it except to perform the pre-defined tasks. Also,

environment authorisers store the environment as a readable script file or unreadable

binary code. For handling a few virtual environments, this method may be fine.

However, when the disk file list gets very long, the name of each makes less sense to

the user who wants to find and explore an environment. Due to this, it is unwise to

save each of the environments as a separate copy rather than just an index for all of

the distinctive objects and their static and dynamic features. Users can easily browse

through all the required information and construct the environment at run-time. This

research has an embedded database connection that enables users to retrieve an

environment or save changes into the database. This allows environment

modification at system run-time. Chapter 6 described such a structure in detail.

In computing terms, a virtual environment is a set of descriptive programming code

managed in a specific format and stored in a data file. The information involved in the

environment construction and knowledge acquisition is in many formats and therefore

difficult to manage. An introduction to the research on using database technology to

manage this information follows, a full explanation is given in Chapter 6.

(1) Analysis of stored data

The database is divided into virtual environment data for the rapid virtual

environment construction, and manufacturing data for the environment

implementation. The virtual environment data includes the world layout data, main

manufacturing equipment group information, object geometrical data, and dynamic

information. The manufacturing data includes master task description data, virtual

machine command and machine specification data.

43

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION APPROACHES

(2) Evaluation of database capabilities

A relational database model has been adopted whereby every template environment in

the developed database is described by a data file that has a cluster of data fields. The

manufacturing information such as tooling and machines is stored in separate files.

Every data file is related to other files in one-to-one, one-to-many, and many-to-many

relationships as required.

(3) Database interface and integration

A virtual environment manager has been developed to obtain data from the database

in response to a request from the user. To maintain consistency, all requests are

channelled through the Manager, although once the data access channel been set up

the application is free to access it as it wishes, without the necessity to incur the

overhead of the Manager. The Database Manager has three logical parts. The first is

concerned with physical data retrieval - the Database Interface. The central section,

Query Base, contains the rules and regulations for filtering, sorting, managing and

storing retrieved virtual environment data. Finally, the Application Interface is

concerned with representing data to the application and responding to requests

through dynamic link library modules.

(4) Database actions

The database and environment manager contain rules to automatically trigger

database actions when specific conditions are detected, to alert users when unusual or

interesting data conditions arise, or to automatically maintain pre-specified constraints

against the data.

3.3.4 Linking VE properties and database records

Every virtual environment is composed of a number of virtual object that form the

spatial layout of the environment. These virtual objects can have different tasks, some

provide landmarks to give users a visual impact when the environment is applied.

Others have dynamic characteristics such as animation or simulation. Every virtual

44

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION APPROACHES

object is composed of many low-level elements such as primitive shapes that have

static properties such as colour, lighting, texture, and even shape geometry that

determine their appearances in the environment. The layered structure used in this

allow the connection of the virtual environment information to the manufacturing

environment and facility knowledge so that the object in an environment is no longer

just a graphical representation of the real object but also has a meaningful counterpart.

Depending on the application, the system at run-time allows user to interact with the

environment in one of three modes: object-level interaction, machine-level interaction

or cell-level interaction.

3.3.5 Connecting the virtual and physical world

This research explored connecting the virtual and physical worlds through testing an

interface between the virtual and real robots (Puma 560 and LANSING lOll). An

interface card was designed to translate communication signals between the computer

and the robot control units. A communication scheme programmed using C language

initially connected the virtual environment with a physical manufacturing cell, which

contained an Audit lathe, a Bridgeport milling machine, a Puma560 robot and a

Lansing Robot. The virtual workshop receives and sends information from or to the

real equipment through RS-232 serial ports on a multi-port PC card (detailed In

Section 7.6).

3. 3. 6 Integrate function modules under a unified system structure

The proposed approach encompasses virtual environment construction, knowledge

representation and acquisition, manufacturing simulation and machine cell control

into a single platform. The name of the proposed system is 'Knowledge Acquisition

and Management in Virtual Reality', abbreviated to KAMVR. Its structure and

development is described in Chapter 4.

3.4 CONCLUSION

KAMVR avoids the tedious environment construction work of traditional virtual

environment systems and allows environment information handling using a structured

45

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION APPROACHES

computing tool. Conventional VR systems need to import data into their own format,

but KAMVR avoids this by interpreting application internal data structures in the

environment database system, which can take advantage of application specific .
knowledge tied to environment presentations.

46

CHAPTER 4 SYSTEM ARCHITECTURE

CHAPTER 4

SYSTEM ARCHITECTURE

This chapter describes a VR system for knowledge acquisition and management

(KAMVR) that demonstrates the viability of the domain-analysis based top-down VE

construction approach devised in Chapter 3. It provides an introduction to the structure of

the system and then describes each of its components.

47

CHAPTER 4 SYSTEM ARCHITECTURE

4.1 KAMVR SYSTEM ARCHITECTURE

KAMVR is an acronym for knowledge acquisition and management in VR. The

architecture of the system is shown in Figure 4.1. It has four layers. Each with its related

functional modules. Layer 1 is an interactive virtual environment interface used to create,

visualise and interact with the virtual environments. It also hosts the input/output (I/O) of

virtual reality peripheral devices such as HMD, electronic gloves, sound devices and

imaging systems.

USERS

Interactive 1
Application ...------"'"'-----, ...--______ ----"'''''''--_______ -,
Interface VE control ~ & ~

Layer I

System
Manager

Layer 2 I

_VJirtual Environmenlt AI uthoriser ViSU,aliser module

~ L
""-,7
Ta k Knowledge Device

description representation communication
and coding and acquisition and control
(Module 1) (Module 2) (Module 3)

~~ ~

VE B-DB '/I ~

Networking
and data

communication
(Module 4)

~
/

VE Manufacturing l Data Real Application
Database System Files Environment

Layer 3 I Layer4 I
Figure 4.1 KAMVR system architecture

48

CHAPTER 4 SYSTEM ARCHITECTURE

Layer 2 - the 'System Manager' - is the main knowledge handling and data management

layer with four constituent modules. The task description and coding module (Module 1)

is a programming utility for application domain-analysis and task coding based on the

template environments and manufacturing information stored in a VE database. The

knowledge representation and acquisition module (Module 2) supports the real-time data

exchange between the virtual environment content and the database for environment

retrieval, modification, and configuration. The device communication and control module

(Module 3) is a program for processing signals received from real world manufacturing

equipment. In the KAMVR system, an Audit lathe, a Bridgeport milling machine, a

PUMA 560 robot and a Lansing PWIOII robot were connected to demonstrate this

module. The networking and data communication module (Module 4) was developed for

manufacturing cell communication and Internet connection for VE-based on-line training.

The KAMVR System Manager forms the heart of the system structure and is pivotal for

connecting the virtual environment application interface with the database system and the

protocols of real manufacturing equipment.

Layer 3 is a dedicated VE-manufacturing database, which includes a database

management system (DBMS) and a VE database with domain-specific data files. It

manages the template virtual manufacturing environments and related manufacturing

tasks (see Section 3.2.2). Commercial database systems that have data access objects can

be directly integrated (in a plug-and-play mode) with the system.

Layer 4 contains the real manufacturing environment for virtual manufacturing based

process planning and workshop control.

4.2 INTERACTIVE APPLICATION INTERFACE

The interactive application interface is the top layer of the KAMVR system. Users

visualise and interact with a virtual environment in one of two ways through this layer: (i)

directly interact with the virtual environment using the default visualiser navigating and

editing tools, or (ii) through the VE control module in Layer 1.

49

CHAPTER 4 SYSTEM ARCHITECTURE

4.2.1 Visualiser interaction

This method is used to navigate and explore the manufacturing environment. To do this,

it supports VR peripherals, such as i-glasses, data gloves, and a 3D-digitiser as shown in

Figure 4.2.

(a) i-Glasses (b) Data glove (c) Digitiser

Figure 4.2 VR devices used in the KAMVR system

Additionally, the basic software components of Visualiser, virtual world editors,

graphical libraries, I/O configuration utilities form a complete VR system. Superscape

VRT software [VRT Manual 1997] was adopted for the visualiser interaction which

provided the following functions.

(1) Visualiser

The VE Visualiser provided by Superscape VRT is a program interface for users to view,

navigate, and manipUlate a virtual environment on computers or immersive VR devices.

Other commonly used visualisers include Visualiser, Viscape, 3D Control and Cosmo

Player as shown in Figure 4.3. The Visualiser employed in the KAMVR system provided

a tool set for connecting various VR peripherals, such as i-glasses, shuttle glasses, data

gloves, and sound devices. A Navigation Bar and Viewpoint Setting dialog box supports

static and dynamic viewpoint changing in a virtual environment. Special device drivers

were developed for connecting Visualiser with MicroScribe-3D digitiser, 5th GLOVE

data-glove, and VIRTUAL i-glasses.

50

CHAPTER 4 SYSTEM ARCHITECTURE

(a) Superscape Visualiser (b) Superscape Viscape

(c) Superscape 3D Control (d) COSMO VRML Player

Figure 4.3 Environment Visualisers

(2) World Editor

Superscape VRT provides a World Editor to create, sort, group, organise, and assign

virtual objects and functions in a graphical environment. It also enables real-time

interactions between the virtual world and users, and amongst virtual objects themselves.

The KAMVR system used it for developing the template virtual manufacturing

environments (see Chapter 5). Figure 4.4 shows an example of using the World Editor.

51

CHAPTER 4 SYSTEM ARCHITECTURE

Figure 4.4 Constructing a virtual workshop using the World Editor

Superscape VRT has a C-type simulation control language called Superscape Control

Language (SCL) for programming virtual object behaviours. This was used to perform

actions that are not undertaken by automatic system routines. SCL programs are

constructed from constants and variables, with support for arrays, pointers, functions,

arithmetic expressions, input/output, control and conditional structures. However, to

implement a complex manufacturing system, virtual events could occur during the

environment interactions, which are difficult to predict and simulate. For this reason, an

object-oriented environment construction and interaction using System Manager was

researched and developed which is explained in Section 4.2.2.

(3) Shape Editor

Every object in an environment uses a specified shape to define its geometry. The

template environments developed in KAMVR include a large number of shapes designed

to form complex virtual objects such as lathes, robots and other machines. The

Superscape Shape Editor uses vertices and facets to create 3D objects as shown in Figure

4.5. A bounding cube is always associated with an object and is used by VRT to sort an

object's spatial relationships and detect collisions in the VE. In KAMVR, SCL can be

used to construct 3D objects using procedure codes. World Editor uses object

descriptions from the Shape Editor to build virtual environments organised as a tree of

52

CHAPTER 4 SYSTEM ARCHITECTURE

objects in the environment. After the objects have been created and given all of their

necessary attributes and functions, the visualiser is activated to display the environment,

move and interact with it.

Figure 4.5 Modelled handwheel in the Shape Editor

(4) Resource Editor

The Resource Editor has been designed as an independent VR editor utility to develop

dialog boxes, menu bars and other controls for virtual object controls.

Figure 4.6 Superscape Resource Editor

53

CHAPTER 4 SYSTEM ARCHITECTURE

Combined with a corresponding SCL program, the Resource Editor enables users to

allocate buffer size and data addresses for control program parameters. This allows

customised interaction with a virtual environment through windows resources. Figure 4.6

shows a dialog window applied in the virtual environment for retrieving virtual objects

and standard information such as object size and position.

(5) Other editors

Other editors, including Image Editor, Layout Editor, Sound Editor and Keyboard Editor

provided by Superscape VR T system are affiliating editors for serving various virtual

environment design purposes. The KAMVR system was designed to allow these tools to

be facilitated through the VE control modules (See Section 4.2.2).

(6) System hardware

KAMVR was developed on a PC running under the Windows NT 4 operating system.

The configuration was a Pentium 100M CPU, 48M RAM, 1M graphics memory and 2G

hard disk. The hardware VR devices used were as follows:

• VIRTUAL i-glasses (as shown in Figure 4.2(a»: It has two full-colour 0.7 inch

Liquid Crystal Display (LCD) with a resolution of 180,000 pixels and 30 degree field

of view. The focus distance was fixed at 28cm with a 100% stereo overlap. The

interface was a stereo audio device. The Motion Tracker can record 3 motion types,

Yaw, Pitch and Roll, and respond to real-time LCD display update correspondingly.

The device is connected to the computer through the RS 232 serial port with a

sampling rate of 250Hz.

• 5DT Data Glove (as shown in Figure 4.2(b»: The device resembles to a normal glove

with five fingers and wrist attached with wires and sensors. It has 8 bits to define

resolution for each fingers (maximum 256 positions). The axes of the tilt sensor on

the hand waist can identify hand gesture for Roll and Pitch. It uses flexor sensor

54

CHAPTER 4 SYSTEM ARCHITECTURE

technology and measures the average flexure of each finger. The Data Glove uses the

serial port to communicate with the computer. The sampling rate is 200Hz.

• MicroScribe-3D Digitiser (as shown in Figure 4.2(c)): It has a position resolution of

O.13mm and position accuracy at 0.38mm. The maximum arm stretch distance is 50

centimetre. It also uses serial protocols to communicate, the data measured can be

recorded into an Excel datasheet for processing. Figure 4.7 shows the system

hardware connections.

Figure 4.7 KAMVR system workbench

4.2.2 VE Control module interaction

In contrast to the visualiser interaction, the VE control module interaction was designed

to be based on "message flow" controlled by a centralised controller. This type of

interface still needs a visualiser to display a VE on a displaying device. Superscape VRT

is used for this purpose, but it is implemented as an embedded computing object, not a

system as in visualiser interaction, in the centralised controller. The centralised controller

is a programme that has following functions:

55

CHAPTER 4 SYSTEM ARCHITECTURE

(1) Data flows and communication:

This function has been provided due to two underlying reasons: (i) Most commercial VR

systems have their own application program interface (API), programming functions and

libraries. This design brings VR programs the strength of integrity. However, it is

difficult to gain distributed control for the virtual environment. (ii) The virtual

environment related knowledge and data management process takes considerable

computer processing time and memory, which should be preserved for rendering the

virtual environment. In fact, this kind of data management can be fully carried out by

other standalone programs such as spreadsheet, database, and specialised mathematics

programs.

Embedded
VE Control

Object

Application
Programmer

Interface

• New CL editor
Data

Channel
• Direct Acces ing 1~C;::E:;m:::;::::z~

VRTdata Pl

System
Manager
Module 1

Figure 4.8 Data and command flows in the KAMVR Module 1

Figure 4.8 shows how the centralised controller handling data messaging and

communication using four program code blocks and four communication channels in

between of each pair. Every program block can transmit/receive command (events) from

others, this allows, for example, a user to load an environment on to the visualiser, and

56

CHAPTER 4 SYSTEM ARCHITECTURE

then explores it using the centralised controller functions. The user control activities can

be monitored and used for modifying virtual object information into a database using the

internal functions of the KAMVR System Manager. Vice versa, the updated environment

data retrieved from a database can also be used to modify an environment through the

virtual object property and database record links.

(2) Environment interactions

There are three environment interaction methods that have been provided by this

research:

(i) Control through the Windows based control resources: The virtual environment

control interface has application-oriented Windows controls such as dialog boxes,

file filters, combo boxes, radio buttons, and sliders. These controls have been

programmed to connect the virtual environment properties. The right side of Figure

4.9 shows an example of those controls that can receive messages sent by a virtual

object as the start trigger for mathematical calculation and logical conjecture.

(ii) Control through virtual objects and navigation tools: Similar with the standalone

visualiser interaction described in Section 4.2.1, this type of interaction interacts with

a specific environment through directly manipulating the virtual object in a 'click',

'push', 'drag and drop', and 'hold and tum' style. A difference from the visualiser

interaction is that all the activities can be used to trigger the communication and

control processes to other programs, such as the database and system manager (see

Figure 4.1).

(iii) Synthetic control: This method combines the advantages of the aforementioned two

controls, and gives more flexibility. It was used to create a fully functional virtual

lathe as shown in Figure 4.9.

57

CHAPTER 4 SYSTEM ARCHITECTURE

INTEGRATEO lllNTROlLEA

101"'*"-1 Tools POiI, ~

-<:J

~ ~
..c Si' 0 Q.

-; 0
:::I ~ - I
.... cr
:> ~

'" ~
~ Q.

.~ <"'l -<:J Objocl".",. ObjocilO 0
~ ~~ = -~

., - lIE......, lIE 10 0 = 1;i ~~
I LoodW .. ~ I loodO ... I

~~

R.,q.

Default VE Navigation Tools

Figure 4.9 Synthetic VE control mode

4.3 KAMVR SYSTEM MANAGER

The KAMVR Virtual Environment Manager connects the virtual environment application

interface with the environment database system and the protocols for real manufacturing

equipment. It has four separate functional modules.

4.3. J Task description and coding module

This module is designed as a programming utility for users to define an application into

the database and to retrieve template environment for modification. It was designed in

three steps. The first step is to design the data format for the task description. The second

step is to implement the description with a computer program. The third step determines

the procedures of retrieving an environment.

58

CHAPTER 4 SYSTEM ARCHITECTURE

(l) Task coding

The code format and structure are specified by a coding standard similar to Optiz

[Rajamani 1993]. Such a coding format was adopted because they are easy to

computerise and suitable for database management. This research devised a dedicated

coding scheme for two purposes. One is for data retrieval and the other is for task

classification as described in the following:

(i) Key object geometry section: The first section of the code defines the geometry of

the key virtual objects that are parts to be produced in the environment which

determines the landmark virtual objects such as lathes, mills and drilling machines

and their modelling detail. For instance, a rotational and a prismatic part require

different manufacturing equipment. For the rotational part, the LengthlDiameter ratio

will also affect the suitable machine tools. The key object geometry section has five

digits 0 I to 05 (see Figure 4.10 and Appendix A).

(ii) Virtual object population section: The number of virtual objects is related to the size,

scale, complexity and diversity of the virtual manufacturing system and, for this

reason, a secondary coding section defines the population of the virtual objects as

shown in Figure 4.10, this section has two digits S 1 and S2 (see Figure 4.10 and

Appendix A).

(iii) Application domain type: Application domain type is related to the purpose of a

virtual environment and the ways users interact. For instance, if a user attempts to

change the geometry and dimensions of a virtual component, as a machine process

would, then it must be controlled in a so-called "VR presentation" mechanism. If the

user wants to change the geometry or dimensions of the virtual component to only

view the changes of prior to post machining, then the virtual component can be more

quickly created through an insertion and deletion operation on the memory buffer.

KAMVR defines a three-digit code (RI, R2, and R3) to distinguish the type of

application (see Figure 4.10 and Appendix A).

59

CHAPTER 4 SYSTEM ARCHITECTURE

Section Digit Description of Digit Values

0 Rotational part
Gl

I Prismatic part (Part Type)
2 Complex shape

0 G I = 0, LID < I; G I = I, Shape = cube

G2 I GI = 0, I < LID < 15; GI = I, Shape = cuboid
(Shape)

2 G I = 0, 15 < LID <50; G I = I, Shape =composite

3 G I = 0, LID > 50; G I = I, Shape = triangular

0 Length of the part < 40mm

"
I Length of the part < 80mm - 2 Length of the part < 140mm ~

8 3 Length of the part < 180mm 0
~

C,!) 4 Length of the part < 200mm
t: G3

5 Length of the part < 250mm eIS
(Length) ~

~ 6 Length of the part < 500mm
CI .- 7 Length of the part < 800mm CI .-..CI

8 Length of the part < 1000mm CJ
eIS

~ 9 Length of the part < 1300mm

10(A) Length of the part < 2300mm

11(8) Length of the part < 2900mm

0 G I = 0, null; G I = I or 2, step

G4 I GI = 0, step shaft; GI = I, slot

(Feature) 2 G 1 = 0, pocket; G 1 = I, through hole

3 GI = 0, hole; G I = I, blind hole

G5 0 Metal
(Material) 1 Non-metal

SI 0 Small scale
~

(VE Scale) .~ I Large scale
rfl

s: S2 0 S 1 = 0, single; S 1 = I, less than 10000
(Quantity)

1 S 1 = 0, less than 10; S 1 = 1, greater than 10000

CI Rt 0 Geometric level low .- (Geo-Ievel) eIS
1 Geometric level high 8

0
0 Simulation level low Q

CI R2 I Simulation level medium .:: (Sim-Ievel) -eIS 2 Simulation level high CJ .-- Interaction mode: immersive c.. R3 0 c..
(Inter-mode) < 1 Interaction mode: desktop

Figure 4.10 Domain-analysis coding scheme

60

CHAPTER 4 SYSTEM ARCHITECTURE

The resulting computer task code is a combination of the three code sections in Figure

4.10. For example, if a key virtual object has the geometry code 13024, virtual object

population code 20, and the application domain code 1 ° 1. The complete task code can

then be formed as 1302420101.

(2) Task description program

The task description interface is a 3D-coding panel as shown in Figure 3.4. It has been

implemented as an interface that is floating on top of a current VE and serves as an

environment built-in control. The pseudo logic code for this interface is shown below.

if (Key Object Geometry equals to rotational)

environment primary object digit E2 generated

if (Virtual Environment Size equal to batch)

primary object quantity digit EO generated

secondary object type and object quantities digit E3 generated

if (Application Domain Type for simulation)

Environment primary function type digit El generated

Environment simulation detail level digit E4 generated

else (Application Domain Type for others)

Same as above

else (Virtual Environment Size equal to others)

Same as above

else if (Key Object Geometry equal to others)

61

Same as above

classification (meta-code)

load template environment list

get the closest code

start the best suitable environment

CHAPTER 4 SYSTEM ARCHITECTURE

The above pseudo logic makes use of an automatic sorting function provided by the

database system that allows any number of codes to be classified into families. The task

description and coding (Module I) allows the KAMVR system to (i) classify task codes

and form families when the database is set up or updated, and (ii) to receive a given task

code and use it as a search index to locate the task family into which this given code

calls. This leads to the next step, environment retrieval, described below.

(3) Environment retrieval

Before a virtual environment can be visualised or used, it needs to be retrieved from the

database and normally modified based on the given task. This is achieved in the

following steps:

• All template virtual environments are pointed to by their representative task codes. So

a given task code can be used to search the database for a matching template

environment.

• The matching environment file records are used to form an environment schema (see

Section 4.4) which contains information on the environment to be retrieved.

• The matched VE and its schema are loaded onto a buffer.

• The loaded VE is modified and changed to suit the given task.

62

CHAPTER 4 SYSTEM ARCHITECTURE

In system operation, those steps are mouse clicks on the Window controls, the

environment is automatically loaded on the embedded visualising window.

4.3.2 Knowledge representation and acquisition module

This module (Module 2) in the KAMVR system has three functions: run-time VE and

database communication, data acquisition and knowledge representation.

(1) Run-time VE and database communication

Each template environment in the database and its objects communicate with the database

when: (i) An event occurred and a message is dispatched from the virtual environment to

update a database record. For instance, when a certain condition in the environment is

fulfilled or a specific command is issued. (ii) Using the data record retrieved from the

database, the virtual environment and its object properties can be changed. For example,

the change can be made on-line by binding the virtual objects' properties with the

database fields, or made with a delay by using time-sequenced control for application

requirements. (iii) Saving the modified virtual environment into the database, or adding

or deleting specified objects. Figure 4.11 illustrates the data communication interface.

VE Editor VE Databases

Module 2

Figure 4.11 Module 2 internal structure

63

CHAPTER 4 SYSTEM ARCHITECTURE

The virtual environment visualising window is implemented in the KAMVR system as an

embedded object (see Section 4.2.2) acting as a VE control module interface. This design

enables the database record being bound with a virtual environment or virtual objects so

that it can be accessed by external application programs. A property of a virtual object is

bound with a specific field in a database so that when the users modify this property, the

control notifies the database that the property value has been changed and it requests the

record field to be updated. The database will then notify the control whether it is a

success or failure in response to the request.

This technique is typically used in database visualisation process and provides a visual

interface to the state of current database records. It is used by the KAMVR system for

VR simulation. For instance, as shown in Figure 4.12, when the user is moving a tool

towards a part, the distance between the cutter and the part is constantly checked. When

the distance is just about over the collision limit using visual checking, the data are

recorded to prevent a collision.

Figure 4.12 Adjusting the position of virtual objects

(2) Data acquisition

The data acquisition functions are developed as individual dynamic-linked-library

(DLLs). Users can decide (at system run-time) which set of modules need to be loaded.

64

CHAPTER 4 SYSTEM ARCHITECTURE

These DLLs help reduce unnecessary virtual environment overload and memory

requirement.

Figure 4.13 illustrates the implementation of DLLs. Two methods were used in the

development:

(i) Register a new SCL function: The SCL program uses the value returned by the

registered function to alter a VE by captured data

(ii) Direct manipulating the virtual environment data: Used for items that can not be

directly accessed by SCL, or for time-related functions. The API vector table

contains a set of pointers to all acquired data in VRT (such as world, shapes, and

palette data), so they can be located as specific items and be altered directly. This is

more closely linked to a particular world than the use of a SCL.

When saving a new template virtual environment into the database as a template

environment, a set of DLL modules (SaveStan, SaveStat, SaveDyn and SaveShp) are

used to extract the environment information (detailed in chapter 6) and save it in a series

of data files. Later these files are parsed into database tables. The DLLs library is

presented in Appendix B.

I VRT I I Application I

~ ~
Initialisation:
Register SCL r-API

Registration
r-

i I Exit:
Un register SCL

r---- Instruction r--..
table ...

r--
..... 1 I""'- NewSCL I-- SCL l Instruction r-I""'- VI

Figure 4.13 Superscape VRT API structure (Courtesy ojSuperscape Co. Ltd.)

65

CHAPTER 4 SYSTEM ARCHITECTURE

(3) Knowledge representation

The knowledge dealt with by the KAMVR system has been arranged and handled in two

levels, the 'self-oriented simulation' and the 'Social' behaviours. The former is

programmed within the virtual environment, and coupled with individual objects, groups

and controls. For instance, activate the "Start" button on the robot controller to start the

robot arm movement. The latter is programmed for advanced simulation activities. In this

research the work achieved so far is a virtual environment logic controller that can be

manipulated automatically by an application program or manually by users.

4.3.3 Device communication and control module

Module 3 links the virtual environment and objects with their physical counterparts. The

data exchange uses the serial port (RS 232). For handling multi-devices, in this research,

a multi-port serial card "PCL 844" was used, which provided eight serial ports. The

communication does not use handshaking signals, instead it uses a "Question - Answer"

mode with time intervals set by the computer CPU clock.

Figure 4.14 shows the connection between the system and the physical devices. The

detail specification and the working theory is provided in Chapter 7. A communication

control program (C language) connects VE with those devices, including an Audit lathe,

a Bridgeport milling machine, a Puma560 robot and a Lansing PWIOII Robot. Most have

a standard serial port, so that a two-way communication with the VE can be developed,

except for the Lansing robot which required a separate signal processing and controlling

device to enable the robot being controlled by the same communication format. It

included a signal interpreter board, a serial to parallel converter, and a control

switchboard (detailed in chapter 7). Currently, the system can check the start and stop

states of machines, and upload and download (from VE point of view) robot control

commands and operation files.

66

Serial-to
parallel

converter

r
VE and physical

environment controller

PC serial port
(RS 232)

PCL 844
multi-serial
port board

Signal-processing
board

LANSING
controller

CHAPTER 4 SYSTEM ARCHITECTURE

PI lMA contro ller

PUMA
manipulator

LANSING
manipulator

Figure 4.14 Device communication

4.3.4 Network and data communication module

Module 4 allows VME networking in two levels, local area networking (LAN) and wide

area networking (WAN). The LAN tackles the communication to a real world computer

integrated-manufacturing system through, for instance, the Ethernet. The WAN deals

with the distribution of a virtual environment on the global network, such as the Internet,

to allow VE to be accessed, configured and shared by users in geographically dispersed

locations. The experimental Website developed for this purpose in the research allows a

user to navigate a VE, customise the environment and the object specification, and

interactively control a virtual machine. Figure 4.15 shows a snapshot of the Internet

based virtual manufacturing environment.

67

On-line Machine Operation

Welcome to the Online Virtual Manufacturing
Envirorunent.

STEP 1; CONFIGURE vmTUAL LATHE

Set maximum spindle-speed (rpm)

13000

Set minimum spindle-speed (rpm)

1600

Set Max-Tail-Move-Dis (mm)

1500

CHAPTER 4 SYSTEM ARCHITECTURE

D

Figure 4.15 WWW On-line VME configuration

4.4 VIRTUAL ENVIRONMENT DATABASE

To deal with the environment information and manufacturing knowledge arranged in a

layered structure, a relational database model was designed and a commercial relational

modal based database management system (DBMS) Microsoft Access is adopted.

4.4.1 Data files

In the database design, every virtual environment is represented by its scene graph and

virtual object property data and stored in various database files. The database schema file

contains a range of code sections, each formed by various environment data that describe

the static and dynamic characteristics of the landmark virtual objects, its detail level and

simulation functions. Each of the schema variables forms a database field, and every

68

CHAPTER 4 SYSTEM ARCHITECTURE

virtual object represents a data record. The database can be integrated with a machine,

tool and fixture data to integrate the virtual environment with real world manufacturing

knowledge and rules.

4.4.2 VE Database management system

The VE DBMS in the KAMVR system is responsible for the following tasks:

(i) Accepting requests and quenes from the users in a standard structured query

language (SQL) format, for example, "SELECT-FROM-WHERE".

(ii) Respond to requests from the environment, for instance, retrieving the tool

information for a particular machine in the environment.

(iii) Connecting to a remote data source. Working with the "System Manager", this

function can establish the appropriate network connections to remote data sources.

(iv) Supporting the active database utilities for the real-time environment and database

communication. This research has explored using an active database design to

support the virtual environment event based database updating. An important part of

an active database system is a language for the expression of event - condition -

action rules (ECA rules) that defines the active behaviour of an application (Dayal

1988). The event in an ECA rule specifies an operation or situation to be monitored,

such as modifying a data value. In time-critical applications, events can also be

specified as timing constraints. When an event occurs, the condition is then

evaluated. If the condition is true, the action is triggered automatically by the

database system.

(v) Performing the routine database management functions such as creating tables and

deleting columns.

4.5 REAL APPLICATION ENVIRONMENT

As a test manufacturing environment, a Puma 560 robot, a Lansing robot, an Audit lathe,

and a Bridgeport milling machine have been created in a virtual environment and their

69

CHAPTER 4 SYSTEM ARCHITECTURE

functions simulated. The communication and control implementation will be described in

detail in chapter 8. Figure 4.16 (a) and (b) show the real and virtual robot cell layout.

Figure 4.16 (a) Real robot cell (Photo) (b) Virtual robot cell

4.6 CONCLUSIONS

The KAMVR system architecture allows an environment for a specified task to be

rapidly constmcted through the application-domain analysis (task coding) and template

based environment construction. The constructed virtual environment in this system can

be modified and configured using the data from a database, and users can interact with

the system through direct manipulation of the virtual environment and its inside objects

with or without VR peripheral devices. Users can also interact with Windows based

dialog boxes with editable interfacing objects such as a radio button, combo box, and list

box. The system communicates with the real world through a standard serial

communication port and can be connect with both local and global networks. The

KAMVR system has brought the potential of virtual environment reusability and eased

the effort in constructing large-scale complex virtual environment and simulation

developments. Chapter 5 to chapter 7 explains how the system was researched and

developed in more detail, while chapter 8 reports on the validation of the system.

70

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

CHAPTERS

TEMPLATE ENVIRONMENT CONSTRUCTION

AND ANALYSIS

The work described in this chapter focuses on the construction of template virtual

environments. The content and contexts of an environment are classified as objects,

simulation, interaction, knowledge and environment used by most commercial VR

systems. The classification is based on common environment modelling procedures.

The processes of modelling representative manufacturing machinery such as lathes,

milling machines, and robots are explained to explicitly illustrate the object geometric

construction and simulation design. Environments generated using templates are also

presented. The environment-based knowledge and acquisition representations are

investigated with an emphasis on the knowledge type, knowledge source, and

accessing knowledge.

71

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

5.1 VIRTUAL ENVIRONMENT MODELLING

In the KAMVR System, the template environments were constructed in a one-off'

process, and stored in the database. To build a specific environment, the user needs

only to retrieve and modify a suitable template environment, thus avoiding the need to

create an environment from scratch. The creation of a template environment is the

work of the system developers rather than the end user. To create those template

environments five modelling processes are involved as follows.

5.1.1 Virtual object modelling

A virtual object is a set of geometric data, and in most cases, a group of basic shape

elements that represents a real world object, i.e., a lathe or a robot. Virtual objects are

the building blocks for constructing a large-scale and complex virtual environment.

Virtual objects modelling can be done using a CAD system or VR authorising system.

If a CAD system is used, an exchange of data is required to the KAMVR database

based on one of the exchange standard interfaces like DXF, IGES, STEPS or VRML.

At present, KAMVR only support the VRML format. The exchange tools were

provided by Superscape VRT.

5.1.2 Virtual template environment modelling

The KAMVR database treats a virtual template environment as a collection of

associated virtual objects. Those objects are associated in such a way that each

possesses specific spatial and animation links with other virtual objects, user controls,

communication ports, and physical objects. The template environments were created

using the World Editor of Superscape VRT, by associating the virtual objects obtained

partially from VRML exchange models and partially created using the shape editor

within the Superscape VRT system. The texture, light, sound and other image

resources encapsulated within a virtual template environment were imported from

various media creating sources such as image editors, sound samplers and video clips.

72

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

5.1.3 State simulation modelling

State simulation was used to simulate agents, simulate virtual events and virtual

activities within a virtual environment. It also generates behaviour and actions of

virtual objects and responds to user interaction and control from physical devices. A

simple example is a virtual lathe that is activated by pressing it's "start" button or

stopped by switching off its virtual power supply. State Simulation functions provided

by the KAMVR System come from the simulation kernel of the Superscape VRT

system. The mode of a specific simulation state in a template virtual environment

within the KAMVR database is a scene graph with user controls. This graph is

retained in the database as part of a template environment. Figure 5.1 shows an

example of an environment simulation state transition model, it could be two

machines in an environment, for example, a lathe sends an event requesting a part to

be mounted, a robot receives the event and responds with demand activities. The

diagram could also represent active parts of a machine (Le. an action of one can cause

actions of others).

i 'D~;i~; (;';tiv~ p~-;i)-'''' r-D-;~ic~(~;-~~ti;~ p~rt) _ . ..,
I

Figure 5.1 VE state transition model

5.1.4 Interaction modelling

The KAMVR system provides all template virtual environments with two interaction

models: (i) application-environment interaction, and (ii) user environment interaction.

The first model is generated and maintained by modules 3 and 4 (see Figure 4.1),

hosting the interface and controls to and from physical devices and systems. The

73

CHAPTER 5 TEMPLATE ENVIRONMENTCONSTRUCTJON AND ANALYSIS

second model is generated and managed by modules 1 and 2 (see Figure 4.1),

providing interface and controls to and from the users. These two interaction models

formed part of the interface of a template environment.

5.1.5 Knowledge capture

Knowledge can be captured and stored using knowledge bases and databases. An

alternative is to train a neural network. Zhao [1998] proposed that a large-scale and

complex virtual environment could be built as a VR based knowledge repository. The

benefits of using such a digital environment as a knowledge base can be highlighted

as follows:

(i) Knowledge representation is intuitive and natural and does not rely on knowledge

formalisation such as logic, rules and formulae.

(ii) The users' involvement (immersive) in the environment eliminates the difficulties

in dealing with experience based knowledge.

(iii) Full users' interaction with 3D realism. Users can change and update the

knowledge by reconfiguring the virtual environment.

For each of the aforementioned five modelling elements used in the template virtual

environment construction, the following sections explain, with examples, use within

the research.

5.2 VIRTUAL OBJECT MODELLING

A virtual object is the basic construction block of a complex virtual environment, for

example, a virtual lathe or virtual robot. Virtual objects were modelled in a tree

structure to construct a virtual environment. In this way, the data structure of each

virtual object is similar, especially the geometric data. Other information such as

colour, lighting and animation is often rendered around the geometric data. A vector

table, which is a reference index to the internal data structure of the Superscape VRT

system (see section 7.2) was used to provide pointers to the different object data

sections so that an application can access the data of a virtual object directly.

74

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

5.2.1 Virtual lathe model

A virtual lathe was developed as a virtual object to simulate a real lathe. It included a

bed, head-stock assembly, tail-stock assembly, carriage assembly, quick-change

gearbox, lead-screw, feed rod, spindle speed selector, feed selector, clutch, cross slide,

compound rest, tool post, spindle and chuck. Figure 5.2 shows the virtual lathe model

structure.

Lathe Group

r··_··_··_·t-··_··_ .. _··_··_··J··_··_··_··_··_ .. _·t- .. _ .. _ .. _ .. _ .. _ _ .. _ .. ;
i Head-Stock Carriage Tail-Stock Base Stock I
I Holder Holder Holder . . .
, I

t:::::::::::::::. t::::.:::::::::::::::::::::;' -':::::::::::::.-::: i:::::::::::::~..:::::::::::::· _ .. _.'
Head-Stock
Assembly

Spindle &
Chuck

Dead Centre &
Quill

Control Tail-Stock
Unit Assembly

Handwheel
& Levers

L ... _. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _J ... _ •• _ _ •• _ •• _ •• _ ... _ •• _ •• _ •• _ •• _ ... _ -_ .. _ ... _ .. _ ... - .. _ .. _ .. -.. .._ .. - ... _ .. _ ... -
Compound Cross Slide

Rest

Apron I Tool Po" I
.. _ ~::...~::.:-:::...~::...~::...~::...~: :"'~::"'-':...~::...~::...i::...~::...~::... .. _ .. _ .. _ .. _"-'
Button, II Switch .. I EJ

Selectors I Displays I

Figure 5.2 Modelling structure of a virtual lathe

75

Hand
Wheels

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

The dynamic controls built in this virtual lathe are as follows:

• Spindle speed selector: This control is situated at the front of the Head-Stock. A

left mouse click on the disc will rotate the disc anti-clockwise through 36 degrees

(one position), whilst a right mouse click will rotate the disc one position in the

opposite direction. The speed setting is displayed on the control panel screen and

its value is passed to the spindle object when the virtual lathe starts operating.

• Switches and buttons: The control panel and the machine head stock have

switches and buttons to facilitate setting up the virtual lathe. Each has two or more

animation positions. For a two-state switch, a left mouse click toggles between the

two positions. If three or more positions are modelled, the left mouse click will

select a lower position, whilst a right click will select a higher position.

• Apron levers/Tail-Stock levers: The lever controls on the Apron and Tail-Stock

have two positions to lock/unlock certain parts. A mouse click toggles between

states.

• Tool post and saddle assembly control: Saddle assembly, top-slide and cross-slide

are moved by hand-wheels. To rotate clockwise, position the mouse pointer over

the specific hand-wheel, then press and hold down the right mouse button to start

activities. Movement can be stopped by releasing the mouse button. The left

mouse button was used to control the anti-clockwise rotation.

• Tail-Stock movement: The Tail-Stock can be moved backwards and forwards

along the lathe bed by positioning the mouse pointer, over the main body of the

Tail-Stock, and pressing and holding down the appropriate mouse button until the

Tail-Stock has moved a required distance. The clamp lever must be set to its 'OFF'

position to enable the Tail-Stock to be moved.

• Tail-Stock barrel: This is extended and retracted using the rotating hand-wheel

located at the back of the Tail-Stock (through mouse operations). The barrel clamp

lever must be set into the "OFF" position before the Tail-Stock barrel can be

extended, a message reminder is designed to remind the user of the state of the

barrel.

• Power lever: The power lever can be operated by the mouse pointer. Sound effects

are explored to indicate the machine 'running' and 'idle' states. Figure 5.3 shows

the constructed virtual lathe.

76

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

Figure 5.3 Snapshot of the virtual lathe

5.2.2 Virtual milling machine model

Mi ll ing
Group

.. _. __ i .. _ .. - .. _ .. - .. _ .. t ·· _ .. _ .. _ .. _ .. _ .. -1' _ .. _ .. _ .. _ .. _ .. -t. _ .. -,

Head Stock Contro ller Table Base Holder
Holder Holder Holder

1
'-- .. :-.. ..:, :-. ''':' :-.t :-. ''':' :-.. ..:, :-. ''':':-. ''':' :-.. ..:, :-.. ~ - . .:-::.:-::.:-::.:-::j':':-::':-::':-::':-::':-::':-::~' .- .. ,J

1 H ead Stock Spindle & Work Table c:J 1

Assembly Stub Arbor 1

1

Milling Saddle Knee 1
Tool Assembly

1 . .
.-_ ... _- .. ----_ .. _-----_ .. _--- :... .. - .. - .. - .. - .. - .. I- .. - .. - .. - .. - .. ~ -_ ... _ ... _ .. _ _ .. _ ... _ ... - -_ .. _ - ... _- .. -.

Controller
Support

Control Unit

1 .. _ •• _ .. _. _ •• _ •• _ .. _ .. _ .. _ •• _ .. _ .. _ .. 1

:- .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. -, .,_ .. _ .. _ .. _ .. _ .. _.. .._ .. _,
i I Buttons I Sw;tches i ~ ~ !
: Selectors I D;splays I : EJ c:=J :
I. _ _ _ _ _ _ _ _ _ _ .. L .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ . . I

Figure 5.4 Modelling structure of a virtual milling machine

77

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

Similar to the processes involved in constructing the virtual lathe, a virtual milling

machine was also developed as a virtual object. The development starts with the

design of the structure of the milling machine, and then assigns dynamic features to

relevant components. Figure 5.4 shows the modelling structure of a conventional

column-and-knee-milling machine.

This virtual object provides controlled motion to the virtual worktable in three

mutually perpendicular directions. (i) Through the knee moving vertically along the

way at the front of the column, (ii) through the saddle moving transversely along the

way on the knee, (iii) through the table moving longitudinally on the way on the

saddle. Figure 5.5 shows the snapshot of the constructed virtual milling machine.

Figure 5.5 Virtual milling machine

5.2.3 Virtual robot model

The virtual robot object is constructed for simulating robot tasks, and for testing the

communication between a virtual robot and its physical counterpart (see Section 7.6).

The virtual robot is constructed based on a PUMA 560 industrial robot that has six

links and a base. Six groups of virtual objects were used to construct the robot. Each

group contains information about how a particular link can be translated or rotated,

around which axis, and towards which direction. In addition, two small cubical

objects are used to simulate the robot gripper, which is located at the top of the robot

78

CHAPTER 5 TEMPLATE ENVIRONMENTCONSTRUCTfON ANDANALYS/S

upper arm. The gripper has two states - open and closed. Figure 5.6 shows the

modelling structure of the virtual robot.

PUMA
Robot Group

,. .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _1._ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _
I

I Base Group

I Column
I Lowerarm Group

Upperarm Group

Gripper Group

Group

_ ... _ - .. _ ... _ .. _ .. _ .. _ .. - .. _ .. _ .. _ .. _ ... - .. - ... - ... _ .. _ .. - - ... _ ... - .. - ..

.. _ _ .. _ .. -."_."_."_ .. _ ..

Gripper

-,
I

.. _ .. _ .. _ .. J

f'-"-"-"-"-" "-"-"-"-"-"-'
· · I

· . L. •• _ •• _ .. _ •• _ .. _ .. _ •• _ .. _ .. _ .. _ .. _ .. J

Figure 5.6 Modelling structure of the virtual robot

The robot can be controlled using a VRT dialog-based command interface. This

interface allows the user to enter specific commands. The robot can also be controlled

through an application program interface, which allows easy control of any of the six

joints by selecting the joint and specifying an angle of rotation. The constructed robot

model is showed in Figure 5.7.

79

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

Figure 5.7 A snapshot of the virtual robot

5.3 MODELLING TEMPLATE ENVIRONMENTS

5.3.1 The modelling criteria

Template environments built in this research have adopted certain guidelines, (i) the

virtual objects must be representative and informative, (ii) the virtual environments

should be re-configurable by users, (iii) application information must be able to be

visualised, (iv) external data sources can be connected to the environments and

information exchange functions should be provided. For meeting these guidelines, the

template environments were modelled with the following specified criteria.

(1) A balance must be kept between the environment detail level and the overall

environment size, this was found to be crucial. Individually, every virtual object

inside a virtual environment will influence the realism of the virtual world. However,

too much detail on to unimportant objects increases rendering time and reduces the

rendering speed. Only essential foreground should be modelled in detail, other

background objects should be defined as rough polygons only.

80

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

(2) Virtual object(s) must be prioritised according to their significance of

environment representation in a virtual environment. The most significant objects

should be used as landmarks to distinguish the virtual environments, and to be used as

searching keys for the database.

(3) The simulation controls and interactions (described in Section 5.4 and 5.5)

between users and virtual objects must be defined specifically before the modelling

process is started.

(4) The run-time data communication interface must be provided so that users at

run-time can modify an environment, and the controls for the environment are not

restrained by a pre-determined simulation task. This enables a template environment

to be used for a series of similar applications. Chapter 7 describes the run-time

platform for environment implementation.

5.3.2 The construction of template environments

Five fully functional template environments were built in the research and saved in

the database (see Chapter 6). Each of the templates can perform a series of similar

manufacturing tasks. Table 5.1 shows the typical features of these template

environments, described by their primary resources, secondly resources, and the tasks

they are capable of performing.

VME Name Primary Secondly Job Type Simulation Main Task
Resources Resources Control

Robot Cell Puma robot Lansing robot Robot control Rotation and Control
object handling object picking simulation

Lathe Cell Lathe Lathe Turning Rotation and Rotational parts
processes interaction

Milling Miller Rotator table Facing Cutter rotation Non-rot parts
Cell and movement Facing

Job Cell Lathe and Robot and Machining and Aggregate of Layout
miller conveyor transportation individuals management

Large-scale Transportation Other Layout design Environment Layout and
Workshop belt machines visual isation navigation walk-through

Table 5.1 Features of the virtual template environments

81

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

Each template has distinctive features as follows:

(1) Robot Cell: This virtual template environment includes two robots and three

control computers. By clicking on the virtual robot start button, each robot can adjust

its arm position and return to the "Home" position. Each of the robot components can

be controlled to perform certain actions and the "Stop" button on the control unit

terminates all robot movement. Figure 5.8 shows the robot cell.

Figure 5.8 Virtual template of robot cells

(2) Lathe Cell: This template environment includes two virtual lathe objects.

Depending on the application, they can be set with similar or different machining

capability. As explained in Section 5.2.2, the virtual lathe object has functions similar

to its physical counterpart and can be controlled using its virtual parts such as levers

and hand-wheels or by using a virtual control panel. Figure 5.9 shows the lathe cell.

82

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

Figure 5.9 Virtual template of lathe cell

(3) Milling Cell: The milling cell template has a milling machine, a lathe, and a

rotating table. The milling machine can perfonn true milling operations. The rotating

table is used for transporting parts and is controlled by a mouse or keyboard. By

clicking "Up" "Down" 'Left", and "Right" arrows keys, the table can adjust its

height tum to specific directions and transport a part to a pointed machine. Figure

5.10 shows the template milling cell.

Figure 5.10 Virtual template of the milling cell

83

CHAPTER 5 TEMPLATE ENVIRONMENTCONSTRUCTJON AND ANALYSIS

(4) Job Cell: This template environment is a virtual job cell, including machining,

transportation and stock sites. These sites have their own individual simulation

functionality that can be activated by different users and other environment events.

They can also be controlled in a co-ordinated sequence. Figure 5.11 shows a snapshot

of the template environment.

Figure 5.11 Virtual template of ClMs rooms

(5) Large-scale Workshop Environment: The virtual template environment of

large-scale manufacturing systems is designed for user to locate objects in a large

scale virtual environment through navigation and exploration tools. Figure 5.12 shows

the overview of the virtual environment.

84

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

Figure 5.12 Virtual template of large scale virtual manufacturing environment

Five virtual template environments have so far been created in the research. It is

apparent that the more template environments that exist in the system database, the

less construction work is demanded from the users to construct a particular virtual

environment for a given task.

5.4 TEMPLATE ENVIRONMENT SIMULATION

Simulation provided for the above template environments was classified as: (i) self

imposed simulation, such as gravity, restitution, and animation, (ii) functional actions,

including movement, rotation, and collision, (iii) interaction actions, for instance, a

machine is activated by pressing the "Start" button. An interaction always involves

more than one virtual object. A simulation control language was (SCL) used in

designing the simulation actions. In SCL, a simulation contains a user-defined

function, a pointer to a virtual object with which the simulation task is associated, and

a priority value that specifies the order in which the task is executed relative to other

tasks as the simulation runs. The simulation coding is mainly enforced on the virtual

objects rather than virtual environments. Figures 5.13 and 5.14 show the simulation

actions for the lathe and milling machine objects. The simulation loops in both cases

85

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

(Figure 5.13 and Figure 5.14) follow a pre-defined sequence, starting from mounting a

part on the worktable, and then setting machining parameters using the 3D control

panel. The machines can be started by pressing the start button or by lifting the power

lever, and then the machining simulation mimics the real machining activities.

Operations can be recorded in a data file and stored in the database. When the

operations are finished the part can be unloaded and the machines may be switched

off or wait for reloading.

5.5 INTERACTING WITH A VIRTUAL TEMPLATE ENVIRONMENT

User-environment interactions were investigated for virtual environment navigation,

exploration, and object control.

5.5.1 Environment navigation

Environment navigation is to dynamically view a virtual environment and its inside

objects through multi-viewpoints or defined navigation routes. It enables users to

view a virtual model from physically an "impractical" distance and angle. In this

work, environment navigation is achieved through bringing user to the virtual objects,

attaching a viewpoint on moving objects to check, say part alignment with tools and

fixtures, and to eliminate potential collisions. The dynamic navigation routes are also

used to give users an overview of the virtual environment and help them become

familiar with the environment layouts. A virtual environment navigation path stores a

series of positions and orientations in world co-ordinates. These routes can be used to

guide the viewpoint or move to other entries in the environment. Routes can be

recorded, edited, saved, loaded, and played back. For instance, when attaching a

viewpoint on to a cutting tool, the recorded route of a simulation loop will represent

the tool path. Navigation routes are made up of a set of discrete data elements, each

element storing an absolute position and orientation. A file is created when a route is

saved and this file can be edited as a simple ASCII file if users want to make a change

within a text editor.

86

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

Figure 5.13 The simulation loop imposed on the virtual lathe objects

87

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

FigureS.l4 The simulation loop imposed on the virtual miller objects

88

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

5.5.2 Environment exploration

Environment exploration helps users understand a virtual environment design,

functions and use. Using the virtual workshop shown in Figure 5.12 as an example,

the virtual machines in the workshop have their own identity plates as a texture image,

which users can move closer to and see the plates. For equipment without such an

identity plate, users can move the mouse cursor over it, if the cursor changes its shape

that means the object has a message to show. When the users click on this object, an

alert box or a speech bubble with the name of the object and other related information

will pop up.

5.5.3 Object control

A user in the environment control mode may also want to control a virtual object

using experience or 'trial and error'. For instance, a user may react to system training

instructions to locate special training equipment, through resources such as dialogue

and a command box. The alert box used to show the machine information has been

linked to another detailed control dialog to support these operations. The user control

information is important for knowledge acquisition, so the operation parameters are

saved in a buffer and can be exchanged with the corresponding database fields. This

type of control and data communication is described in Chapter 7.

5.6 KNOWLEDGE SOURCES AND CAPTURE

Most virtual environments reported in the literature are developed as built-in

subroutines and stored as a geometry data file. At the run-time, the data file will be

loaded into the memory and display on a computer output device. It is apparent that

the more environment simulation actions are considered and programmed, the more

complex the environment will be and the more knowledge will be "embedded" into

this environment.

To use a simple virtual environment in representing a wider range of simulation

situation or knowledge without using excessive hard-coded program routines and

89

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

complex data files, a virtual environment should be provided with two basic

functions.

(i) A data communication with the physical environment so that it can be logged on

to knowledge sources (such as a normal manufacturing database, a spreadsheet

and a text document) and extracts the knowledge from those sources and use it to

reconfigure its own contents (see section 7).

(ii) Defining the captured data into its internal format (SeL) and interpret the data

into environment object attributes. This function is to represent the physical data

and knowledge into a visualised format as follows.

5.6.1 Data interpretation

Data interpretation deals with the translation of data, from external sources, into a data

format that the environment can understand, and then apply those data in updating the

environment and object attributes. The environment data can also be converted back

into external data compatible to the external data source.

This work has considered two types of external knowledge sources. One is the

database that is designed in Microsoft Access format. The database stores the basic

information about machine tools and robots. This information has also been used in

creating the template manufacturing environment. The other external knowledge

source is the physical robots from which operations and control data are transmitted

directly into a virtual environment. The data from both types of knowledge sources is

interpreted into primitive data blocks to define the elementary simulation action such

as translation, rotation, scaling and shearing of a virtual object. The format of the

interpreted data complies with the environment modelling data format (See Section

6.2 and 6.6).

5.6.2 Knowledge representation

After the data from an external data source has been interpreted into basic simulation

elements, it needs to be synthesised into higher level actions (more meaningful

information) such as starting or stopping a lathe, loading or unloading a component

90

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION AND ANALYSIS

and detecting a robot arm collision. This work regards this data synthesis as

knowledge representation. Currently this work can only synthesise the data from the

database sources. Due to the real-time limitation of data communication between a

virtual environment and a physical one, the data from a physical source has not been

able to be synthesised into useful knowledge. This remains a challenge for future

investigation. At present, the work can interpret data from a physical robot and send it

to the database.

There are two simple techniques that were devised for knowledge syntheses, (i) a SCL

based data link designed using Dynamic Data Exchange (DDE) and Microsoft's

Active X functions, (ii) a " data binding" program that assigns the external source

data to the template environments as environment properties. The implementation of

these two techniques aims to achieve two aspects of knowledge representation. One is

for data completeness and the other is data synchronisation. Data completeness

requires a full dual-communication between the virtual environment and the database.

Data synchronisation requires that every change made in either the virtual

environment or the database will be reflected and changed accordingly at the other

end. These processes are described in more detail in Chapter 7.

5.7 CONCLUSIONS

The construction of template environments is a development process carried out by

system developers, not by the users. Once a considerable number of templates are in

place, they can be used by the users to rapidly build their own complex environments.

91

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

CHAPTER 6

DATA MANAGEMENT WITHIN VIRTUAL

ENVIRONMENTS

This chapter presents a data structure for the virtual environment database in the

KAMVR system. Rather than saving each of the environments as an individual

database file, a novel data structure was developed to enable the database to store only

an index number of each environment using a 'General Reference' table. The retrieval

of a virtual environment relies on the index to load related information from the

General Reference and other environment property tables. The chapter starts with the

description of the environment structure, and shows how it is used in constructing

template environments. The database design is explained and its merits discussed.

Finally, relationships between the database files and manufacturing information based

on the structure are explored.

92

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

6.1 OVERVIEW OF THE ENVIRONMENT DATA

In KAMVR, data stored and managed by the database falls into two main categories -

environment data that are used in constructing VEs, and physical manufacturing data

that used for controlling and operating environments. For environment data, the

database stores only the essential information of the template environments sufficient

to enable users to construct their own environments. For physical manufacturing data,

the database stores the information for helping users to establish controls about

machines, tools, and simulation actions in their applications.

6.2 THE HIERARCHY OF ENVIRONMENT DATA

A template virtual environment in the KAMVR system is compressed into a basic tree

structure - called a scene graph - before being saved in the database. All rendering

information such as colour, texture, lighting, animation and simulation data are

formatted and stored as data records in different data files. The amount of support for

retrieving environment scene graphs, and assembling the rendering data around the

graph depends on the robustness of the database.

In computing terms, the virtual environment is held in the database is done so by

assembling virtual objects into a hierarchical scene graph and then controlling them

according to the transformation nodes. The scene graph dictates how the environment

is rendered on the screen. For instance, users can create a light source, and specify its

location in the scene graph such that it only affects the objects under its branch of the

scene graph. The operations being imposed on the scene graph can determine:

• Whether or not a polygon surface should be rendered in culling mode.

• Whether or not a Z-buffer should be used.

• How a virtual object is transformed in 3D co-ordinates.

• The level of detail that the data should be presented.

• How an object is grouped.

• And, how the environment is controlled.

93

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

For a better understanding of the concept of the scene graph and providing a

foundation for work reported on data acquisition and management (introduced in later

sections), imagine a virtual environment as a 3-D space filled with empty transparent

cubes, each cube can be filled by geometric and property data. These cubes have

unique ID numbers and any two of them are inter-related through a link chain forming

the relationships such as parent, child and sibling.

Figure 6.l(a) shows one simple scene graph with seven objects, where Object 1 is the

parent object of Object 2, 3 and 4, Object 5 and Object 6 are siblings and have the

same parent - Object 3. In terms of meaningful virtual objects, this environment is

composed by a single object group 'Tail Group' (extracted from the Lathe machine

model described in Section 5.2.1). There are five objects in the 'TaiIGroup', two

levers, the tail stock, the dead center, and the handwheel. In addition the environment

has a default 'RootObject' (Object 0), which defines the virtual universe, and is the

parent for all other objects in the environment. Figure 6.1(b) shows a snapshot of the

virtual environment.

Figure 6.1 (a) Virtual environment scene graph (b) A snapshot of the environment

The scene graph of the virtual environment is then populated with other rendering

data describing object appearances and dynamics. The complete virtual environment

scene graph (shown in Figure 6. 1 (a)) with its related data to be loaded and displayed

are listed in List 6.1(a) and List 6.1 (b):

/* Object 0, Define the virtual universe */
Chunk: Standard
/* Mandatory data section for all objects */

Name : " RootObject " /* Name of t he object */

94

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

Number:
Size:

o /*Automaticalluy assigned object number */
2147483647 2147483647 2147483647

position: 0 0 0
Type: 65535
Layer: 0
DFlags: E

End Chunk /* End of a data section */
Chunk: ViewPoint
/* Define the observation viewpoints */

Number: 100 /* Maximum 100 viewpoints */
Subchunk /* Define each of the viewpoint */

Number: 1
Type: 35 /* define viewpoint type such as fly or walk */
View: 0
Point: 0
Frames: 1
Position: 0 Frame: 0 Type: StraightMove Pos: 2024377 26064

1995529
Rotation: 0 Frame: 0 Type: Relative Offset: 4000 6304 0

Zoom:Ox2000
Subchunk /* more viewpoints definitions */

Number: 2
Type: 35
View: 0
Point: 0
Frames: 1
Position: 0 Frame: 0 Type: StraightMove Pos: 2028478 23760

1991656
Rotation: 0 Frame: 0 Type: Relative Offset: 2944 5808 0 Zoom:

Ox2000
End Chunk
Chunk: Colours
/* define the environment background colour */

Number: 6 /* 6 hexadecimal RGB values, three for one colour */
OxD5 Ox07 OxFF OxE8 Ox03 OxFF /* ground and sky colour */

End Chunk
Chunk: LightSource
/* Define environment lights */
Brightness: 2048
Offset: -724 1448 -1254
Rotation:
BeamWidth:

OxOOOO OxOOOO OxOOOO
o

Dispersion: 200
Colour: OxFF OxFF OxFF
BeamEdge: 0
Flags: pOo

End Chunk

List 6.1 (a) Environment definition in the scene graph script

List 6.1 (a) shows the 'RootObject' definition uses the format of a data chunk (marked

by the token 'Chunk'), which is a data section that defines a specific type of property.

Each object can have a single (mandatory Standard chunk) or multiple chunks. Inside

95

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

each of the chunks, there are number of detailed data fields for further defining the

property of a virtual object. For example, in the 'Standard' data section, virtual object

name (text data type), object number (integer data type), size and position (integer

data type) are declared, and in the 'Colours' data section, the environment background

colours are defined. For each individual colour used in the environment, three

hexadecimal numbers (range from 0 to 255, or OxOO to OxFF) are used to represent the

original colour - red, blue, and green (RGB).

The difference between the 'RootObject' and other virtual objects in an environment

is that the 'RootObject' is actually the virtual environment, which defines the size of

the VE boundary and sets other environmental parameters such as viewpoint number

and positions. The VE background colour and lighting are also defined in the

'RootObject' .

A similar format has been used in defining other objects in the environment

positioned under the 'RootObject' in the scene graph tree by using the token 'Children'.

The 'Children' token is also used to define further parent-child relationships among

these objects. List 6.l(b) shows other objects of the environment in the scene graph

script.

Children:
/* Object 1, the TailGroup */
Chunk: Standard

Name:
Number:

"TailGroup"
1

Size: 9989 5739 3427
Position: 2013787 18794 2002813
Type: 65535
Layer: 0
DFlags: rE

End Chunk
Chunk: Rotations
Initial: OxOOOO OxOOOO OxOOOO
Centre: 4787 2870 1691

End Chunk
Chunk: InitPos
position: 2012816 18794 2002813

End Chunk

Children:
/* Object 2, the deadcenter */

Chunk: Standard

96

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

//Defintion for the deadcenter object
End Chunk
Chunk: InitPos
//Initial position of the object
End Chunk

/* Object 4, the handwheel */
Chunk: Standard
//definition for the handwheel object
End Chunk
Chunk: Rotations
//Rotational data
End Chunk
Chunk: SCL
short
fixed

mx, my;
rx, ry;

resume (1, 0);
if (activate (me, 0»
{

mx=mousex;
my=mousey;

ry=yrot (parent (me»;
while (mouseb && xpos (#4»0

&& xpos (#4)<1100 && yrot (#2)==135)
{

xrot (me)=ry+mousex-mx;
waitf;

xpos (#4)+=ry+mousex-mx;
waitf;

if (xpos (#4)<=0 I I xpos (#4»=1100)
xpos (#4)=ixpos (#4);

}
clrtrig (me, 0);

}
end
End Chunk

/* Object 3, the tailstock */
Chunk: Standard
//Definition of the tail stock object
End Chunk
Chunk: SCL
short mx, my;
fixed rx, ry;

resume (1, 0);
if (activate (me, 0) && zrot (#3)==90)

{
mx=mousex;
my=mousey;

ry=yrot (parent (me»;
while (mouseb)

97

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

{
xrot (me)=ry+mousex-mx;
waitf;

xpos (#l)+=ry+mousex-mx;
waitf;

}
clrtrig (me, 0);

end
End Chunk
Chunk: Colours

Number: 37
Ox2F Ox1D Ox1A Ox1D Ox1D Ox2F Ox2F Ox2F Ox2F Ox2F Ox1D Ox2F

Ox26 Ox1B Ox25 OxIC
Ox29 Ox1D Ox28 Ox1F Ox19 Ox1A Ox21 Ox24 Ox29 Ox2C Ox2F Ox2F

Ox29 Ox19 Ox1E Ox21
Ox26 Ox29 Ox2F Ox2F Ox26

End Chunk

Children:
/* Object 5, Lever 1 */
Chunk: Standard
//Definition of the lever 1
End Chunk
Chunk: J:nitPos
//Initial position data
End Chunk
Chunk: SCL
resume (0, 1);
if (activate (me, 13»

yrot (#2)=135;
waitf;

if (activate (me, 0»
yrot (#2)=180;

waitf;
end
End Chunk
Chunk: Rotations
//Rotational data
End Chunk

/* Object 6, Lever 2 */
Chunk: Standard
//Definition of Lever 2
End Chunk
Chunk: Bubble
//Speech Bubble definition to display control message
End Chunk
Chunk: SCL
resume (0, 1);
if (activate (me, 0) && zrot (#3)<85)
{

while (mouseb)

zrot (#3)+=45;

98

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

waitf;

sptext {me)="Tailstock moveable";
waitfj

}

if {activate (me, 13) && zrot (#3»SO)
{

while (mouseb)
{

zrot {#3)-=4Sj
waitfj

sptext (me)="Tailstock locked";
waitf;

}
end
End Chunk
Chunk: Colours
//define applied colour numbers and values
End Chunk
Chunk: LitCols
//define initial colours
End Chunk
Chunk: Rotations
//Rotational data
End Chunk
End Children
End Children
End Children
End File

List 6.1 (b) Object definitions

List 6.1 (b) shows that some objects are wrapped by a group object. Because a group

object has its own distinctive co-ordinating system that differs to the virtual

environment, so every component in this group will have two different data sets to

identify its spatial state - one relative to the environment, another relative to the

group. The purpose of a transformation is to place and rotate an object in the scene

relative to various other co-ordinating systems. Transformations accumulate as you

traverse down the scene graph tree. Any data section started with a 'Children' token

uses the co-ordinating system of its parent to define the positional and orientation

properties of itself. For example, the 'Lever l' object (which is the immediate child of

the 'TaiIGroup' object) uses the co-ordinating system of 'Tail Group' for its relative

position and orientation. So the absolute spatial data of the 'Lever l' object is its

99

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

relative value plus the offset of its parent co-ordinating system from the one in the

virtual universe.

Another important data section in this structure is the 'SCL' chunk, which stores the

coded simulation procedures in the environment. These simulation procedures need to

be programmed by the VE developer at the environment design time, and attached to

specific virtual objects with little or no flexibility of reconfiguration. Also, due to the

fact at the simulation results acquired from running these coded procedures are only

presented in the environment, so the information exchange between the environment

dedicated simulations and application data sources is difficult. A solution to these

problems requires a virtual environment and its object data to be organised in a

highly-formatted computing structure for easy management. The following sections

will concentrate on reporting the creation of such a data management system. More

detail on environment reconfiguration and information exchange will be described in

Chapter 7.

6.3 THE DEVELOPMENT OF AN ENVIRONMENT DATA STRUCTURE

As shown in the script file, a virtual environment with only a few simple objects can

be organised in a long list of code. A practical application for a large-scale and

complex virtual manufacturing environment that will have considerably more objects

and much more complex properties, which would culminate with thousands of lines

of program code that would be difficult to read, query, modify and manage.

6.3.1 The database of the environment

A database for storing and managing a virtual manufacturing environment has been

designed to overcome this problem. It would need the following attributes:

• All of the template virtual environment can be stored in the database accurately

and completely

• Given a virtual environment index number, all objects belonging to that

environment and their properties can be retrieved

100

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

• Given a virtual object number, the environment or environments to which it

belongs to can be identified.

• A virtual environment can be modified by altering database records, adding or

deleting objects.

>I<

MVEID
MVEName
Envcode
TaskDescription
EnvSize
Primary Res
SecondaryRes
Simulation Type
MVEDir
LastUpdate

vrobjID
MVEID
TotLen
ShpNum
Layer
Parent
Child
Sibling

>I<

VirObjID
MVEID
XSize
VSize
ZSize
XPos

! VPos
. ZPos

IXSize
IVSize
T7C:i..,,c,

>I<

VirObjID
MVEID
XDrive
VDrive
ZDrive
XExtern
VExtern

, ZExtern
. XVel
VVel

· 711,,1

>I<

VirObjID
MVEID
Vis Dis
InvDis
Replace
SorXPos
SorVPos
SorZPos
SorXSize

.=J SorVSize

• >I<

VirObjID
MVEID
ShpNum
SXSize
SVSize
SZSize
NumFacets
NumLines
NumPoints

Figure 6.2 KAMVR system database structure

Figure 6.2 shows the structure of such a database. It has six data files - General

Reference, Object List, Standard Information, Dynamic Information, Static

Information, and Shape Information - and is organised in a relational database format.

Data fields MVEID (which refers to template virtual environment identification

number) and VirObjID (which refers to virtual object identification number) are used

as key data fields for setting the data relationships in the database. Each data file is

explained in the following.

101

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

6.3.2 General template environment reference file

This file stores descriptive information of all the constructed template environments,

such as environment ID number, environment name, environment code (which refers

to the environment application domain introduced in Section 3.4.1 and 4.3 .1), primary

object and secondary object, and editing and updating information. The key data field

in this table is a unique environment identification number - MVEID. This file has a

one-to-many relationship with the virtual object file in the database. For example, a

template environment can have only one record in the reference file ('GeneraIRef),

however, in the virtual object file ('ObjectList'), many object records can have the

same value of the MVEID field. Figure 6.3 shows the general reference table. At

system run-time, this table acts as an index for users to search and retrieve a template

environment.

1 askDescription
Em/Size
PrimaryRes
SecondaryRes
Simulation Type
MVEDlr
LastUpdate

Text
Number

I Text
IText

-- - Number

t·

Number
Text
Text
Date/Time

Master environment ID number.
Master (Template) virtual environment name.
Master (Template) environment description code.
Suitable tasks description. .
Master environment complexity and size information.
Environment primary resource code. -
Environment secondary resource code.
Simulation functions.
Master virtual environment file..!ocation.
Last updating date.

Figure 6.3 Template environment reference file

6.3.3 Virtual object file

Many virtual objects are repeatedly used in environment construction. Therefore, it is

uneconomic to duplicate an individual copy in the database. The only information

vital for keeping a clear track of those objects is (i) in which environment an object

properties are recorded, and (ii) the distinctive object ID number in that environment.

For the first information, MVEID provides the solution, and for the second, the

VirObjID data field does. The combination of these two data fields is sufficient to

uniquely identify an object. Figure 6.4 shows the data file schema, where the code

length of an object, its basis shape number, the object layer, its relative object

102

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

information in the environment scene graph tree are stored In corresponding data

fields.

1m ObjectList : Table 1!!Il!l13

CiJ Vir:9bjID
CiJ MVEID

Tot Len
ShpNum
Layer
Parent
child
Sibling

Field Name

~Nu~er _
Number
Text
Number

INumb~r
Number

Oescri tion
Virtual object ID. _assigned by world editor.
Belonging environment ID.

_ Totall~g~h of the o~Lect descri~tio~ction (in bytes).
Shape number for which the object created upon.
Object layer information.
Parent object ID number.
Child ID (if any).
Next siblin abje'ct ID (if any). -- - - ------

Figure 6.4 Virtual object data file

6.3.4 Standard information

A user can identify a specific object from querying the environment reference table

and the object data table. They can also find out how many objects exist in an

environment. However, except for the general reference and description information,

those tables do not provide "visual" data that is essential for constructing

environments and objects. Those data cover a wide spectrum from object geometry to

object appearance and dynamic. In the database, these data have been put into 4 data

files - Standard Information, Static Information, Dynamic Information, and Shape

Information - each focuses on a specific aspect. All the data fields have an integer

data type in the four data files for the convenience of scanning and storing data from

an environment into the database (see detail in Section 6.4).

Standard information refers to data that is essential for the computer to provide and

di splay (render) an environment (scene graph). The standard data are used in defining

the scene graph using place-holders (see Section 6.2.1). The standard information

table stores the place-holders' spatial information, for instance, initial and current

sizes and position, as well as their transformation nodes data (Section 6.2.2), such as

rotation and rotation centres. Figure 6.5 shows the design of the standard information

file.

103

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

1m Standardlnfo: Table I!lliJl3

~ VirQbjID
MVEID
XSize

Field Name Oescri tion
Virtual object 10 number. __

Number Master environ~~nt ID number:-
. Number ---ri Virtual obj~t bounding ~ox X ~ize.::.;.,--__ _

YSiz~ i Numbe-r - Virtu<!9bject bounding bo~ Dize.
ZSize i Number- Vir~ual objecU~ounding box Z size.
XPos Number Virtual object bounding box X position.
YPos Number ,Virtual object bounding box Y position.
ZPos ' Number Virtual object bounding box Z position.
IXSize ' Number Virtual object bounding box initial X size.
IYSize Number Virtual object..bounding box initial Y size.
IZSize Number VirtgaLobjectbounding box initial Z size.
!XPo~ _______ Number Virtual object bounding box initial X osition.
IYPos Number Virtual gbject bounc!Qg box initial V PQ~J1l·o"'n""'.-_---<
IZPos Number Vir~al.9bject bo_ullding box initial Z position.
XCenter Number Object X center point, vital for object rotation.
VCenter i Number Object Y center point, vital for object rotation.
ZCenter ,Number Object Z center pOint, vital for object rotation.
VptNum Number Number of viewpoints.
VptAttached ____ Number Obi~ctJp be.Jlttached by th~ viewpoint._
VptConObj _ Nl,!.mber __ .'yie~e£in! cQ.ntrolling object_. __

Figure 6.5 Virtual object standard information file

6.3.5 Dynamic information

Once virtual object spatial information is defined, its dynamic data will decide its

capacity for performing simulation tasks. An object's activities in an environment can

be seen as one of three types, scaling, rotation, and translation. They will be affected

by factors such as external driving force, gravity, friction, and restitution. The

database file that tackles this part of the data is the dynamic data file (see Figure 6.6.)

MYEID __
XDrive
VDriv.!l •
ZOrive

X~t.!lrJL..
VEx tern
ZExtern
~Vel
Wei
ZVel
~Frlctio·n
VFrictlon
ZFrlction
XAngv
VAngy
ZAngv
XRot

I

I Number
'Number

Number
' Number

____ . ~rnb~ __
. Number
'Number
Number
Number
Number

'Number
Number
Number
Numb~r ,_

'Number
Number

. Number

Virtual objetc 10 .
I Master environment ID numbe r. -
Object driving force along X (abstracted fromthe vector) .
Object driving for~along} (abs.\@cted from the_yector).
Obj~ct driving ~orce all,'ng Z (abstracted from tbe vector). _

..;_O~i~lexternaiJorce.lllongX.(a_~~tr ac,t}l91rom ~e vect.Qr). _
Object external force alof.lg V (abs.tra.cted frClm ~h~.vector) •
Object external fo~c~. along Z (abstracte.d fr9m the vegor).
O,bject velocity. aio,ng ~ (abstracted from the vec!or) .
Object,Yeloc!,l;y alongY (abs~acted from the ve£~r).
O~iect .v~ 19city,alor1,g ~ (abstr~~t~df!o_m th~ y~.ctgr) .
Obi~ct friction along _XJabs~racted from the ve£tor).
Object friction along V (abstracted/rom the y~ctor).
.object friction along ZJabstracted from the vector) ,
Object angular v_~~Y.2[Q.l}g!C. _

I Obje.ct. angular velocity al.ong ,V. __
ObOect angulor velocity along Z.

Object rotation along x. - -

Figure 6.6 Virtual object dynamic data file

104

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

6.3.6 Static information

Static data deal with environment properties such as colour, lighting, texture, and

distance, which defines the appearance of an object. The design of the static

information table includes fields defining object colour and texture, as well as data

fields defining how an object is displayed, such as the sorting box for surface hiding

and the distancing replacement. The data file design is shown in Figure 6.7.

1m Staticlnfo : Table !Iii) t3
Field Name Descri tion

~ VirObjID Number 1 Virtual object ID number.
MVEID Number Master environment ID number.
VisDis Number Object visible distance.
InvDis Number Object invisable distance.
Replace Number _ -i Replacing object ID number ~
SorXPos Number _ _ Sorting box X position.
SorVPos Number Sorting box V position.
SorZPos Number ' Sorting box Z position.
SorXSize Number Sorting box X size.
SorVSize Number Sorting box V size. -
SorZSize Number - l 'tl'"],,, Z ,I",
ColXSize Number - Collision cuboid X size
colVSize Number - Collision cuboid- V size. -
ColZSize I Number Collision cuboid Z size.
ColXOff Number The X-offset value of the origin or the collision cuboid.
Colvoff Number J The"y oFts~t value ofJhe-origiQ of the collision cuboid.
Colzoff Number ,The Z offset value of the origin of the collision cuboid.
IColXSize Number Initial collision cuboid X size
IColVSize Number Initial collision cuboid V size
IColZSize Number initial collision cuboid Z size
IColXOff

~

Number j The 1,10.1 value of the X off"t, .
IColVOff Number The initial value of the V offset~-
IColZOff Number The initial value of the Z offset~-- - - --
AttFacet I Number __ .. Facet_number which another oqj~ct~ttached.
AttObject 'Number The object nLJmber attached on the facet. :

_I '

Figure 6.7 Virtual object static data file

6.3.7 Shape data

So far all the data fields defined from the aforementioned data files act on the place

holding cubical volumes, it is the shape or so-called 3D model data that will

eventually fill in those volumes. This research did not undertake a detailed

exploration of object geometric data. However, the shape reference data are registered

in the KAMVR for object retrieval purposes. It includes base shape number,

construction points list, number of lines and facets. Figure 6.8 shows the shape data

file.

105

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

1m Shapelnfo : Table I!lIiIEf
Field Name

~ VirObjID
MVEID
ShpNum
SXSize
SVSize
SZSize
NumFacets
NumLines
NumPoints

Number
Number
Number

Deseri tion
Virl ual object ID number. _
Master environment ID number.
Shape reference number.

j Shape X size.
Shape V size.
Shape Z size.
Number of facets constructing the shape.
Number of lines of the shape.
Number of the points of the shape.

Figure 6.8 Object shape data file

6.4 RECORDING TEMPLATE ENIRONMENTS

To use the database, it first needs to be populated with template environment data.

This can be done in two ways as follows.

6.4.1 Recording the data Jor a single object

Four automatic data acquisition programs have been designed and programmed to

record the data for a single object. Each deals with a specified data file. These four

programs have a similar structure and work in a similar way. All have been registered

as new Superscape VRT functions, namely, SaveStan, SaveDyna, SaveStat, and

SaveShp. The function SaveStan records object standard infom1ation, which is

mandatory for constructing and displaying an object. The others records object

dynamic, static, and geometric information.

The method of implementing those four programs within Superscape VRT can be

described in the following steps:

(1) Declaring the function in a compiler to register the SaveStan function in the

structure. The function record is defined as,

static T COMPI LEREC NewSCL=

" SaveStan", //New command name

0, //Fun ction code

106

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

Ox20, //2 input, 0 output

0, //Compiler code

E_PROCEDURE,//Procedure type

//None return value

E_SSOBJNUM, //Input object number

E_SSINTEGER,//Input environment ID

} :

(2) Taking an object ID number from the environment data stack and using it as a

function parameter. The user input function parameters are retrieved from a program

stack and assigned to data variables. For instance,

MVEID=PopN(E_SSINTEGER);

ObjNum=PopN(E_SSOBJNUM);

//Get template environment ID

//Get object number

(3) Locating the relevant object property data section and retrieving the memory

address. This is to locate the position of each property data section in memory. The

following code gives examples of how this is achieved.

Object=ChunkAdd(ObjNum,E_CTSTANDARD): //Standard data section

InitSize=ChunkAdd(ObjNum,E_CTINITSIZE): //Initial object size

InitPos=ChunkAdd(ObjNum,E_CTINITPOS): //Initial rotation data

Rotation=ChunkAdd(ObjNum,E_CTROTATIONS): //Rotation data section

Viewpoint=ChunkAdd(ObjNum,E_CTVIEWPOINT)i //Viewpoint data

(4) Accessing the data sections and recording the data into the database. After the

individual object property data sections are located and the data addresses are

returned, the next step is to access the data stored in the memory sections and record

them into a text file. The following is an example.

fprintf(f,"%ld\t", Object->Std.XSize)i

fprintf(f,"%ld\t", Object->Std.YSize):

fprintf(f,"%ld\t", Object->Std.ZSize):

fprintf(f,"%ld\t", Object->Std.XPos):

fprintf(f,"%ld\t", Object->Std.YPos):

fprintf(f,"%ld\t", Object->Std.ZPos);

fprintf(f,"%ld\t", InitSize->Isz.IXSize);

fprintf(f,"%ld\t", InitSize->Isz.IYSize);

107

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

fprintf(f,"%ld\t", InitSize->Isz.IZSize);

fprintf(f,"%ld\t", InitPos->Ips.IXPos);

fprintf(f,"%ld\t", InitPos->Ips.IYPos);

fprintf(f,"%ld\t", InitPos->Ips.IZPos);

fprintf(f,"%ld\t", Rotation->Rot.XCentre);

fprintf(f,"%ld\t", Rotation->Rot.YCentre);

fprintf(f,"%ld\t", Rotation->Rot.ZCentre);

fprintf(f,"%ld\t", Viewpoint->Vpt.NumVPs);

fprintf (f, "%ld\ t", (Viewpoint->Vpt. View) ->ObjView) ;

fprintf (f, "%ld\t \n", (Viewpoint->Vpt. View) ->ObjCon) ;

The four programs have been developed using C++ and Superscape's API

(application program interface) Developing Kit (SDK). In Chapter 7, the environment

data acquisition is also implemented using a similar method, but the final recorded

data are not to a text file. The data are saved to the database directly through the

ODBC (Open Database Connectivity) mechanism (Section 7.5). The detailed

implementation of these four data recording programs is included in Appendix B.

6.4.2 Scanning all objects in an environment

As opposed to recording individual objects, the task of scanning all the objects in a

complex environment can be tedious. However, the problem is alleviated by using

Superscape's simulation control language (SCL) and the scene graph tree data

structure. The following code illustrates the method used in this research to save all

the environment information in a single file.

obnum current, top; //Object type variables

if(activate(me,O))

top = 'RootObject'; //Sets the scanning entrance

while (child(current) !=top) //Exhausts all objects on tree

{

current child (current);

while(current != top)

if(sibling (current) !=top)

108

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

{

current = sibling (current) i

while (child (current) !='RootObject')

{ //Records object data

current = child (current) i

SaveGen('current')i

SaveDyn('current') i

SaveSta('current') i

SaveSha('current') i

}

}

else

current parent (current) i

}

}

In this example, the "top" variable was assigned a "RootObject" which is the top of

the scene graph tree. When acquiring an object information, this variable is assigned

the number of the referred object. The first "while" loop keeps assigning the variable

"current" to its child object's until the loop reaches the bottom of the tree. It then lets

data acquisition functions save an object information. The second "while" loop

traverses the tree backwards until it reaches the starting point. Inside of the second

"while" loop, the program continually checks to see whether the current object has a

sibling whilst performing the task. When it reaches the end of the sibling list, the

program moves one level up. When finally the current variable is equal to the top

object in the tree, the process is finished.

The information recorded in the intermediate file can be converted into a database file

using a text file parser. This project used Microsoft Access text parser. Figure 6.9

shows the generated environment standard information table.

109

VirObjlO

-

438
313
578
575
580
569
552
540
535
530
517
224
135
46
43
40
37
36
33
30
27
24
23
20
17
14

.eord: '.l~ . .!.i .'. '.

1

...

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

MVEID 1 XSize 1 YSlze 1 ZSize
5 24.8253 160?83 92711 - -5 248253 160583 9271 1
5 39999 39999 39999
5 39999 39999 39999
5 79999 126479 87647
5 133894 135070 120742
5 137494 154102 176242
5 167863 135463 96431
5 ..95999 154399 103999
5 95999 154399 103999
5 134791 14?I59 79191
5 159997 79997 63997
5 159997 79997 63997
5 159997 79997 63997
5 39999 39999 39999
5, 71415 1000 295620
5 89757 1000 473072
5 84425 1000 277306
5 69918 1000 171 202
5 69918 1000 171202
5 69918 1000 171202

.5 ~99..18 1000 171202
5 69918 1000 171202
5 84425 1000 277306
5 84425 1000 277306
5 69918 1000 171202

94 ~.I.I f •• }Of 94 ~M ' ~ ·1

1 XPos
0
0

41 8286
421294
537876
566586
557372
602417
710388
714011
43472
25652
29044
20534

2271560
893061
683072
637777
542049
542049
267338
267338
227441
207034
207034
267338'

1 YPos

•• w"

-

1 ZPos 1 •

0 706456
0 1049115
0 827264
0 453376
0 257298
0 1275401 -
0 633910
0 356676
0 1074274
0 878253
0 58465
0 239522
0 358754
o 483492

300 2213655
o 225276
o 329240
o 574773
o 827230
o 1017087
o 1249884
o 111 0546
o 1167669
o 834078
o 638126

o ~~~~~~
--""'-"';'---"">--

Figure 6.9 Environment standard information table

6.5 ENVIRONMENT CONSTRUCTION FACILITATED BY THE DATABASE

To construct an environment using the data recorded in the database, only four steps

are necessary. (i) Retrieval of a template environment and its scene graph, (ii) retrieve

and render the base-shape geometry, (iii) search for static information and assign it to

the virtual objects, and (iv) retrieve dynamic data to form simulation tasks and to set

up objects' interactions.

6.5.1 Constructing the scene graph of an environment

A scene graph can be built from scratch, or by loading an existing one directly from a

virtual environment description file, and modified. The first method is applied in the

bottom-up approach presented in Chapter 3, and adopted in the template environment

construction. Basically it is a CAD modelling process and demands the skill of using

environment-authoring tools. The second method requires file format conversion and

graph reconstruction. In this work, the second method is used. When constructing an

environment, users do not need to build an environment from scratch, but to

110

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

customise the closest scene graph of a template environment by insertion, deletion

and data modification.

Bit EO Bit El Bit E2 ; Bit E3 Bit E4
Env-Type Func-Tvve Primary-Obj ilst&2nd Obj-Nurrl Detail-Level

•••••••• •••••••••••••••••••••••• N.

Millin!! linit (0)

Robot Cell (I)
Vertical Lathe (0)

Weldin!! Unit (2) Horizontal Lathe (I)
•••••• ••••• HH •• ___ •• _ •• _ ••••••

~ e Production Cell (0) Turning Unit (3)
Single & Single (0)

Geometric Shapes (0)
~ CNC Lathe (2)

-= Inspection Unit (4) Single & Multi (I) ;1
(j

Electrical Goods (0) Lathe and Robot (3) it Functional Object (1) ~ Assembly
bJ Mechanical Parts (I)

Multi & Single (2)

= Line III .• Automobile (2) Multi & Multi (3) "C
C Miscellaneous (3)
U

••••••• .. • ••• .. """ H •••••• -= Stock Room (2) ~

e .. -_._." .. -.-..... "

= C Monitor Wall (0)

"" Shapes (0) ~

= Others (3) Control Panel (I) Keyboard Based (I) I I
~ Control Room (2) I l Full Simulation (3)

Others (2) 1
.................................... ~

I _. __ ._ .. _.
0

I ••••••••••• •••• • ••••••••••••••••••••••••• H • _••....•...•.. __ ._ ... _ 0

I
0

Figure 6.10 Template environment-coding scheme

6.5.2 Retrieving a scene graph oj template environments

The retrieval of a template environment is achieved by using an environment code

which indexes to the suitable environment for a specific simulation task. Every

constructed template environment in the database has a unique index code based on a

coding scheme shown in Figure 6.10.

The template environment code has five digits, each represents a specific

characteristic of the environment and has a value range to define its strength level.

The characteristics relate to the environment type, primary object, and simulation

ability. For example, for a manufacturing cell, the environment type code will be O.

Otherwise, the digit value is chosen from 1 and 3. The primary and secondary object

digit (lst&2nd Obj-Num) decides the process capacity of an environment. The

simulation level digit decides the available simulation functions in an environment,

the lower the digit value the less simulation activities are available. It is important to

point out that the presented hybrid environment-coding scheme is an experimental

111

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

prototype. It can be expanded and refined to fit with other more comprehensive

environment categorising schemes.

6.5.3 Modify scene graph

Since the database stores only a limited number of templates, usually modification on

a retrieved template environment is needed when a specific environment is to be

constructed. The fewer the templates in the database, the more modifications will be

needed. However, after the system has been used for a period of time, more template

environments can be created and added into the database and the amount of

modification will be reduced.

Scene graph modifications can be simplified into adding, deleting and moving objects

around the graph tree. For example, the object insertion is a process of filling the data

structure and locating the position in the graph tree where the object will be placed.

This includes three steps.

Step 1: Retrieving data

This is to retrieve the data from the database to construct a place-holder (described in

Chapter 7). The retrieval process is in fact a data query process. The query code is as

follows:

SELECT Object_properties //Essential place-holder's data

FROM table reference //Involved table reference

WHERE search condition //Retrieval conditions

For example, if a user wants to create a cubic object in the environment scene graph,

the query for searching for a stored cube object, its size and position would be

programmed as below:

SELECT GeneraIRef.MVEID, GeneraIRef.MVEName,

ObjectLists.VirObjID, StandardInfo.XSize, StandardInfo.YSize,

Standardlnfo.ZSize,

Standardlnfo.XPos, StandardInfo.YPos, Standardlnfo.ZPos,

112

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

FROM ((GeneralRef INNER JOIN ObjectLists ON GeneralRef.MVEID

ObjectLists.MVEID) INNER JOIN StandardInfo ON

ObjectLists.VirObjID = StandardInfo.VirObjID)

WHERE (("MVEID"=l) AND ("XSize" == "YSize" == "ZSize"))i

The returned values of the query result are:

VirObjID = Ii MVEID Ii

Xsize = 1000; Ysize 1000; Zsize =1000;

Xpos = 2000500; Ypos = 1000; Zpos = 2000500;

Step 2: Construction of the main objects

The following step is to apply the returned data to an environment rendering process.

This process requires a direct access to the internal data structure of the rendering

buffer. It is programmed as dynamic-link-library functions similar to those developed

for recording environment information (see Section 6.4). The format of the buffer

can be represented as a structural code as follow:

static struct liThe buffer structure

T STANDARD Std; IIDeclare basic object data

IIEnd mark for the data short Term;

Buffer=

} ,

E_CTSTANDARD, sizeof(T_STANDARD),

sizeof(T_STANDARD)+sizeof(short), IITotal size

0,

0,0,

NULL, NULL,

0, IICompiler requirements

XSize,YSize,ZSize, IIPlace-holder size

XPos,YPos,ZPos, IIPlace-holder position

4000,

0,0,

0,0,

o IIFills to complete the structure

113

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

-1 //Data section end mark

} i

These functions are embeded as default procedures to enable users modifing an

environment by entering function parameters at run-time.

Step 3: Traversing the scene graph tree

One reason to have a hierarchical structure to hold the template scene data is to help

define the position and orientation relationships between objects in the environments.

For instance, to build a composite object in the scene, the object is treated as a single

object in relation to the rest of the scene. Its individual parts are considered to be a

collection of distinct objects in relation to this composite object. In KAMVR, the

object can be moved around the scene graph tree by directly calling the VRT

functions. The VRT functions check the relative information of the object, such as

child, parent and sibling. Then the object is moved around in the tree through calling

other functions, for instance, adopting and re-linking to put the object in a different

position.

6.5.4 Assigning object properties

After the object cubical bounding volume (or place-holder) is formatted and inserted

in the scene graph tree, the next step is to assign static and dynamic properties' data to

the object. Although strictly speaking, object shape properties also belong to static

information and can be imported from the database. However, it would require much

more memory and computing time to accomplish such a complex process.

To avoid this difficulty, the function for assigning object properties takes two

parameters, shape number and an integer-type array that holds the property ID index.

Since the placeholder is already being created and attached to the scene graph, this

function only inserts the allocated spatial space with the shape geometry and the

properties. Table 6.1 shows the object properties that can be added to the object

placeholders.

114

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

Property ID Attribute Property ID Attribute

0 Standard 16 Bending

1 Colours 17 Null

2 Initial Colours 18 Speech bubble

3 Rotations 19 Null

4 Distancing 20 Collisions

5 Angular velocities 21 Initial position

6 Null 22 Dynamics

7 Animations 23 Lit colors

8 Null 24 Initial lit colours

9 Null 25 Null

10 Animated colours 26 Textures

11 Null 27 Sorting cuboid

12 Null 28 Textures used

13 Null 29 Sounds used

14 Light source 30 Null

15 Initial size -1 End of list

Table 6.1 Object static and dynamic properties

Figure 6.11 shows a constructed environment based on a template environment that

has been modified using property data retrieved from database. Ten transportation belt

sections have been inserted, and the machines were duplicated with different locations

to fit in the layout.

115

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

Figure 6.11 Environment constructed from a template VE

6.6 CONJUGATING MANUFACTURING DATA AND VE

Manufacturing knowledge and data are not essential for environment construction and

is certainly too big an operation to be managed in a single database. Manufacturing

knowledge can come from many different formats such as drawings, spreadsheets,

rules, experiences and even expert systems. In this research, methods have been

attempted to provide a mechanism to conjugate VE with manufacturing knowledge.

Generally speaking, manufacturing information can be classified as facility

information, machining activity information and process knowledge as shown in

Figure 6.12.

Figure 6.12 Manufacturing information composition

116

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

As introduced in section 6.3, a virtual environment is composed of virtual objects,

virtual objects in tum are composed of further sub-components. Every individual

virtual object has its static and dynamic properties, which are stored in the database.

KAMVR links virtual objects with classified manufacturing data through the database

as a bridge. For this purpose, manufacturing data are classified as static or dynamic

data.

6.6.1 Static manufacturing data

Static data includes the facility information concerning machines and cutting tools.

Table 6.2 shows the physical and functional facts, and data about machines and

cutting tools, which influence the machining conditions, optimising processes and the

selection of machines and cutting tools.

General attributes of machines and cutting tools include their names, the category

number of machines and cutting tools, the maximum power of the machines and the

cutting tool materials.

The machine names and numbers are used only as index information to identify

individual machines and cutting tools. When the final process plan is produced, for

instance, the name and the number of machines and cutting tools should be referenced

to indicate what type of machines and cutting tools are used for a machining process.

The power of a machine process serves as boundaries for the maximum and minimum

machining parameters used to control the metal removing rate in the machining

processes. Also the cutting tool materials must be defined for determining the correct

cutting speeds, depths of cut, cutting feeds and tool life within the limitations of

machining parameters provided by individual machines.

117

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

Category Information

General Attributes Machine names and numbers

Machine powers

Cutting tool name and number

Cutting tool material

Machine Movements Machining movements

Auxiliary movements

Motion primitives

Coordinate frames and datum

Cutting Tool Geometry Cutting tool types

Cutting tool forms

Cutting primitives

Capacities of machines and tools Dimension capabilities

(Machining activities and process Attainable accuracy

knowledge) Machining parameters

Capacity primitives

Table 6.2 Machine tool knowledge

6.6.2 Dynamic machining activities

The machine tool dynamic activities are simplified as translation, rotation, scaling,

and changing appearance. In this way, all the activities that occur in a machining

process can be seen as a composite activity assembled from primitive motions.

Machine movements can be described by so-called fundamental movements, each

having its own moving and rotating direction along a coordinate axis with a defined

step unit. Any other machine movements can be assembled from the algebraic

calculation and matrix transformation of multiple primitive motion units.

6.7 CONCLUSIONS

The KAMVR database system developed in this work stores and manages various

environment information in an explicit manner that enables the user to query object

118

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS

information and modify the environment scene graph. Manufacturing data captured

within an environment is categorized according to its VR features (static and

dynamic). The database currently only has a limited manufacturing information data

file and the link to the environment table is through a one-to-one mode.

119

CHAPTER 7 ENVIRONMENT CONFIGURA TION AND COMMUNICATION

CHAPTER 7

ENVIRONMENT CONFIGURATION

AND COMMUNICATION

This chapter starts with the concept of configurable virtual environments and then

describes the methods and techniques for its implementation using the layered

environment structure presented in Section 3.3.2 to define multi-level object

properties. Object properties are essential for application programs or user defined

systems to access and configure the environment at system run-time. To verify those

methods and techniques, and to achieve a demonstrable environment, this chapter also

presents a real-time database access mechanism where records can be bound with

environment properties to allow the automatic update of the environment database. A

case study of connecting physical robots with a virtual environment is used to explain

the communication processes.

120

CHAPTER 7 ENVIRONMENT CONFIGURA TION AND COMMUNICATION

7.1 CONFIGURABLE VIRTUAL ENVIRONMENTS

A virtual environment designed for a specific application is difficult to reuse due to its

fixed object properties, pre-programmed simulation controls and human-environment

interactions [Mironov 1998]. A configurable virtual environment has the potential to

overcome this problem through a run-time and application-based configuration

interface to rearrange and reset its contents and controls to meet different application

requirements.

In Section 3.3.1, it was stated that a virtual environment can be constructed in a

hierarchical layered structure, where each layer has its explicit functions that are

exposed to application programmes. In this way, communications and controls can be

established between the virtual environment and the application programmes. The

following sections describe in detail how this was achieved.

7.2 ACCESSING ENVIRONMENT PROPERTIES

From a user point of view, an ordinary VR environment is in fact a "canned data

block" that can only allow users to view it from various pre-defined perspectives. An

essential feature of a configurable environment is that it should allow users to directly

access its data, or at least its properties, to achieve the following outcomes:

7.2.1 Configuring environment data structure

In fact, an environment is a data file that is loaded into memory at run-time. For

example, in Superscape VRT, it is a data buffer referenced by pointers.

The first part (256 bytes) of the file contains a standard header that describes general

information about the environment (e.g. environment name, see Figure 7.1).

Following the header there is an object list defined in C "struct" format as shown in

list 7.1.

typedef struct

121

CHAPTER 7 ENVIRONMENT CONFIGURA TfON AND COMMUNICA TION

Object data member variables

T OBJDATACHUNK

List 7.1 Virtual environment object data definition

y!ew S~L ~etting. EdlOJ !ielp

: Ed,. World DD

Script conversion of file R08OCE~l . VLD

Type : lIRLD
Title : "'n'n'r"

"Vorld fil e R08OCE~l.VLD revision 1
"Saved fro. VRT version 5 . 10'n'r"
"'K1A"

;-----Layers----------------------

Chunk : LayerNames
NUlIILayers: 2
!lalle : "Default"
!lame : "Syste."

End_Chunk

; -------0bject 0---------------------
Chunk : Standard

lIalle : "RootObject"
!lullber : 0
Size : 2147483647 2147483647 214748364
Position : 0 0 0
Type : 65535
Layer : 0
DFlags : E

End_Chunk
Chunk : VievPoint
!lumber : 100
Subchunk

lJ,.",,}o. ... · 1

Qelele Cancel II UK

Figure 7.1 Virtual environment script header

_ 15' 'x

Following the object list definition is the data section defined as C "unjon" and called

T WORLD CHUNK, see List 7.2. Therefore, a pointer can be used to access the entire

data structure and its data members. For example, the size of a virtual object can be

located by a pointer p , which points to the STANDARD data section,

XSize = p ~ Std.XSize .

typedef union

T STANDARD

T ANGVELS

T ANIMATIONS

T ANIMCOLS

T ATTACHMENTS

Std ; //The standard data section

Ang ; //Object angular velocity section

Ani i //Animation movement definition

Acl i //Animation colour data

Att i //Specify objects attachment

122

CHAPTER 7 ENVIRONMENT CONFIGURATION AND COMMUNICATION

T AUTOSOUND

T BENDING

T BUBBLE

T COLLISION

T COLOURS

T DEFCOLS

T DEFLITCOLS

T DISTANCE

T DYNAMICS

T INITPOS

T INITSIZE

T LIGHTSOURCE

T LITCOLS

T ORIGINALCOL

T PROPERTIES

T ROTATIONS

T SCL

T SHOOTVEC

T SORTING

T TEXTINFO

T TEXTURES

T TRANSLATE

T TRIGSCL

T TRIGSCL

T VIEWPOINT

T MATERIAL

T_WORLDCHUNK;

Asn; //Sound definition

Ben; //Shape bending control

Bub; //Speech bubble definition

Cln; //Collision detection setting

Col; //Object colour data

Def; //Initial colouring of the object

Dlc; //Initial colouring when lighting

Dis; //Distance replacement setting

Dyn; //Object dynamic information

Ips; //Object initial position

Isz; //Object initial size

Lig; //Lighting source definition

Lit; //Object lit colour

Ocl; //Original colour setting

Prp; //Object properties

Rot; //Rotational definition

SCL; //Simulation control program

Sho; //Define projectiles path

Sor; //Object spatial position sorting

Tex; //Text relate to the Object

Txr; //Object surface texturing

Spx; //Translation table for textures

Glo; //Global simulation execution trigger

Loc; //Local simulation execution trigger

Vpt; //Viewpoint setting data

Mat; //Object material type information

List 7.2 Virtual environment data type

T _ WORLD CHUNK is organised in four blocks according to its accessing methods:

(i) shape properties, (ii) static properties, (iii) dynamic features, and (iv) general

information.

7.2.2 Configuring object shape properties

Object shape property data are the lowest level of information in the data hierarchy.

These define object geometry in terms of points, lines and facets. By directly

123

CHAPTER 7 ENVIRONMENT CONFIGURATION AND COMMUNICATION

accessmg and altering these data, users or application programs can change the

geometric appearance of individual objects through a sub-data section derived from

T_ WORLDCHUNK. This derived sub-data section is listed in List 7.3.

typedef union

T ANIMCOLS

T COLOURS

T FACETCHK

T LINECHK

T LITCOLS

T POINTSCHK

T SCL

T SHAPESIZE

T TEXTINFO

T TEXTURES

T TRANSLATE

T NORMALS

T SHAPECHUNKi

Acli

COli

Faci

Lini

Liti

Pnti

SCLi

Siz;

Texi

Txri

Spxi

Nori

//Shape animation colour

//Shape colour

//Defines the facets make up the shape

//Define the lines of facet

//Colouring when lighting

//Define points make up the shape

//Shape construing program

//Shape size

//Shape related text

//Texture of the shape

//Translation table for textures

//Normalise shape angles

List 7.3 Object shape information

Accordingly, a set of operation functions were designed to access the shape

properties, they are:

• ChPoPos - accessing the absolute position of a specific point

• ChSpSize - accessing the size of a specific object and its geometric properties

• ChLitCol - accessing the lit colour properties

• ChColor - accessing the colour information and related texture properties.

124

CHAPTER 7 ENVIRONMENT CONFIGURATION AND COMMUNICATION

(a) Original object shape (b) Modified object shape

Figure 7.2 Example of accessing shape property data

Figure 7.2 shows a snapshot of a milling machine work table. The first is the original

design and the second shows how it can be changed using functions ChSpSize and

ChLitCol.

7.2.3 on figuring object slatic properties

Object static properties are parameters defining a virtual object's appearance, position

and orientation in an environment. Figure 7.3 shows a flow chart of how these

properties are accessed.

Start I-

1 No

Check the validity of -
object number

.1.

Find the required
data section

~

Modify the data
values

~

Push the result back
into rendering engine

Figure 7.3 Accessing object static properties

125

CHAPTER 7 ENVIRONMENT CONFIGURATION AND COMMUNICATION

The object static properties are accessed and changed from an object's standard data

which is defined in List 7.4.

typedef struct

unsigned short

long

void *

void **
unsigned short

long

unsigned short

long

unsigned short

T_STANDARD;

ChkType,Length,

TotLen,Number;

Child, Sibling;

Parent;

List;

MaxChunk;

XSize,YSize,ZSize,

XPos,YPos,ZPos,

DiagDis;

Type, Layer;

DFlags,OFlags;

Trigger;

List 7.4 Object standard data section

The above data structure contains the standard infonnation that is common to all

objects, which include:

• ChkType The data "chunk" type

• Length The length of the data chunk

• Tot Len Total length of the whole object description

• Number ID number uniquely assigned to an object

• Child Offset in the buffer between the start of this object to its first child

• Sibling Offset in the buffer between the start of this object to its first sibling

• Parent Absolute address of the parent object

• List A pointer to the start of object address list

• MaxChunk The index number of the largest chunk in the object

• XSize, YSize, ZSize The size of the object bounding cube

• XPos, YPos, Zpos The position of the object relative to its parent

• DiagDis Not used

126

CHAPTER 7 ENVIRONMENT CONFIGURA TION AND COMMUNICATION

• Type The index of the shape that this object based on

• Layer Layer number this object belongs to

• DFlags Flags reflecting the data structure of the object

• OFlags Flags reflecting the object status

• Trigger Flags indicating the object event types

The implementation of accessing the object static properties is by dynamic-linked

library (DLLs), which:

• Defines a pointer to each data section;

• Pops operation parameters from the environment data stack;

• Finds data address for the specific object properties;

• Pushes the address back to the return stack as a writable pointer;

• Sends the property to render engine as a variable.

The designed functions for accessing the object static data are:

• ChObjSz - accessing the environment data section which contains object size to

configure its geometry

• ChOblnSz - accessing the object initial size to change its dimension

• ChObjPos - accessing the object positional information to alter its 3D position

• ChOblnPo - accessing the object initial position to set up its starting point

• ChObjCol - accessing the object colouring information to configure its colouring

property

• ChObLiSo - accessmg the object lighting source information to change it's

lighting property

• ChObjTex - accessmg the object texture information to configure its surface

property

Figure 7.4 shows the result of the configuration attained through these functions. It is

an environment of a virtual lathe that is fully configurable on the static object

properties.

127

CHAPTER 7 ENVIRONMENTCONFIGURATJON AND COMMUNICATION

; Ed,t \!IOIld 6Ei

Chunk :
Name :

Standard
'ApronHolder'
98 Number:

Size :
Position :
Type :

10515 15725 13782
2010995 11076 1994982
65535

Layer : o
DFlags : E

End_Chunk
Chunk : In i tPos
Position : 2010995

End_Chunk

Children :

: -----Object

Chunk: Standard

11076 1994982

4----------------
Na.me : 'Vice - Handle[4]'
Number : 4
Size : 1000 6681 1000
Position : 9220 488 4723
Type : 38
Layer : 0
DFlags : r

End_Chunk
Chunk: Ini tPos

Pos ition : 9220 488 4723
End_Chunk
Chunk : SCL
.. (. (I .. ""' ,

•

frint

ileiete Cancel II OK

Figure 7.4 Virtual object static data

7. 2. 4 Configuring dynamic properties

:::

Accessing and changing the dynamic properties of an object follows a similar

approach, but different handles are assigned to different data sections that contain the

dynamic properties including collision, rotation and translation. List 7.S to 7.7 shows

the data sections defmed for accessing these dynamic properties.

typedef struct

unsigned short

long

long

short

short

unsigned short

short

short

ChkType , Length ; //Data t ype and length

MType , IMType;

Fuel , I Fuel ;

Collided , CollCube ;

Flags ;

Coupled ;

Grav , IGrav;

Climb , IClimb ;

128

CHAPTER 7 ENVIRONMENT CONFIGURATION AND COMMUNICATION

T LONGVECTOR

T LONGVECTOR

T LONGVECTOR

T VECTOR

long

T VECTOR

char

T VECTOR

T LONGVECTOR

T LONGVECTOR

T LONGVECTOR

T MATRIX

T LONGVECTOR

short

short

T DYNAMICS;

Drive, IDrive;

External, IExternal;

MaxForce, IMaxForce;

GroundFric, IGroundFric;

Mass, IMass;

DeltaR;

Spare1[10];

Restitution,IRestitution;

Vel, IVel;

MaxVel, IMaxVel;

CofG;

MotI;

Stiction;

Objln,ObjOn,GVel;

Spare3,Spare4,Spare5;

List 7.5 Object dynamic data structure

typedef struct

unsigned short

short

unsigned short

long

T ROTATIONS;

ChkType,Length;

XRot,YRot,ZRot,

IXRot, IYRot, IZRot;

Spare;

XCentre,YCentre,ZCentre;

List 7.6 Object rotational data properties definition

typedef struct

unsigned short

unsigned short

T COLLSPEC

T COLLISION;

ChkType,Length;

NumColls;

Collision [1] ;

List 7.7 Collision data properties definition

129

CHAPTER 7 ENVIRONMENT CONFIGURATION AND COMMUNICATION

The functions designed for accessing and configuring these data sections are:

• SetObjMo - accessing movement information including rotation, translation and

scaling.

• SetExFor - accessing object external force information

• SctOb Vel - accessing object velocity information

• SetIn V el - accessing object initial velocity information

• SetObRot - accessing object rotational information

• SetlnRot - accessing object initial rotational information

7.2.5 Configuring general environment properties

List 7.8 and 7.9 show the definitions of global environment properties including the

environment name, type, general data description, scene graph definition and

navigation control path.

typedef struct

long Value;

long Min;

long Max;

} T PROPERTY_LONG;

typedef struct

long Offset;

long Length;

long Strings;

} T_PROPERTY_STRINGi

typedef struct

float Value;

float Min;

float Max;

} T PROPERTY_FLOAT;

typedef struct

130

CHAPTER 7 ENVIRONMENT CONFIGURATION AND COMMUNICATION

short Value;

} T_PROPERTY_BOOL;

typedef struct

unsigned short

union

Type;

T PROPERTY LONG Long;

T PROPERTY STRING String;

T PROPERTY FLOAT Float;

T PROPERTY BOOL Bool;

Value;

} T_PROPERTYDEF;

typedef struct

unsigned short

unsigned short

unsigned short

T PROPERTYDEF

T_PROPERTIES;

ChkType,Length;

NurnProperties;

Changed;

Property[l);

List 7.8 Configurable environment properties

typede£ struct

unsigned short

Length,ObjView,ObjCon,ObjMis,ObjFir,ShootVec, Point;

unsigned short

CurFrame, TotFrame, NumPosCont, NurnRotCont, OldZoom;

unsigned char

T POSCONT

T_VIEW;

typedef struct

unsigned short

unsigned short

T VIEW

T_VIEWPOINT;

VPLock,Type;

PosCont[l];

ChkType,Length;

NumVPs;

View[l);

List 7.9 Data structure for accessing and configuring environment viewpoints

131

CHAPTER 7 ENVIRONMENT CONFIGURA TfON AND COMMUNICATION

The functions for accessing and configuring the global environment data include:

• ChgVwPnt - accessing viewpoint setting information to configure the viewpoint,

e.g. viewpoint position and orientation

• SetLong - accessing object "Long" property flag

• SetFloat - accessing object "Float" property flag

• SetString - accessing object "String" information

• SetBool - accessing object "Boolean" information

7.3 MIGRATING ENVIRONMENT PROPERTIES

With the configurable data structures and corresponding accessing functions

introduced in Section 7.2, the next step is to migrate object properties from an

environment' s internal file or buffer to an external application in a way that can allow

users to make any change and control on them.

7. 3.1 Extracting and migrating shape properties

Figure 7.5 shows a snapshot of an interface that can extract shape data of a virtual

object. This interface (and other interfaces shown later in this section) was specially

designed as an add-on module to most applications with DDE functions so that once

the object properties are extracted from an environment's repository data pool, they

are automatically streamlined to the application database or data buffers.

ShpName JCOI<

ShplD J1'::'1-;::-3 -------------;

ShpCol 112

ShpXSize 110.900

ShpYSize 1.10000

ShpZSize 14000

M rS'hpUgh~ l... ,

OK Cancel

Figure 7.5 Interface for setting object shape properties

132

CHAPTER 7 ENVIRONMENT CONFIGURATION AND COMMUNICATION

This mode also allows users to change the data between such data transfer. Similarly,

when the application's data are to be pipe-lined back to the environment, the interface

functions operate in the same way.

7. 3. 2 Extracting and migrating object static properties

Static properties are exposed in a similar style as the shape properties. For example,

when object name, ID number, position, size and colour properties are extracted, users

can set them into a virtual environment according to a given rendering requirement.

Figure 7.6 shows the static property interface. It works in a similar style to that of the

object shape property shown in Figure 7.5.

ObiName IHandwheel

ObjlD 12

XPos 12000000

YPos 10

ZPos 12016424

XSize 14277

YSize /3982

ZSize 13576

IXPos 12000000

IYPos 1300

IZPos 12000000

IXS ize 14000

IYSize 14000

IZSize 14000

ObjColor 112

r ObjLight

~ Vis/lnvis

1
•······ .. · .. /'·;Ii'· .. • .. · .. ··]1 Cancel
~ y ... ~.~............' ---..I

Figure 7.6 Interface of object static property

133

CHAPTER 7 ENVIRONMENT CONFIGURA TION AND COMMUNICATION

7. 3.3 Extracting and migrating object dynamic properties

The dynamic properties including translation, rotation and external force are extracted

and migrated using an object dynamic property interface as shown in Figure 7.7.

XMove lJoo.Q
YMove 10
ZMove JO

XAot 139.0

YAol Jo
ZAot 10
'XAngV 10
YAngV 1127.5

ZAngV 10
XVel 10
Wei 10
ZVel 10

P' Collision

n Trigger

Figure 7.7 Interface of object dynamic property

Using this interface, users can set-up object dynamic functions such as movement and

rotation speed. In Figure 7.7, the example object has been given an angular velocity of

127.5 degree along Y axis. The "Collision" and "Trigger" check boxes allow object

collision detection and object triggering flags (default functions) to be setup.

7. 3. 4 Extracting and migrating global environment properties

Finally, for the global environment data and user navigation control data, a global

property interface was designed to extract and convey data about the environment

name, indexing code, general task and viewpoint control. Figure 7.8 shows a snapshot

of this interface. It works in a similar way to those described above.

134

CHAPTER 7 ENVIRONMENT CONFIGURA TION AND COMMUNICATION

WldName Jroom4

WldlD

Description IM ~n!Jfacturing w()!kcell

Viewpoint J 4

M LongPrp.

R StringPrp

P; FloatPrp

rv BooleanPrp

L OK

Figure 7.8 Environment property interface

7.4 SETTING AND UTILISING PROPERTIES

If the configurable environment is to send or to receive from an application, the data

properties have to be in a format that can be readable by both ends. Also, the data

must be flexible for users to change and update during the transition between the

environment and the application. For this reason, an application run-time shell

platform was designed to accomplish the task (see Section 8.2). Before describing this

platform, it is necessary to explain the techniques and methods used in designing it

and how to set and utilise the object properties.

7. 4.1 Setting the simulation triggers for an environment

The property types, setting methods, and application events of the system are

generalised in Table 7.1.

A virtual object in the virtual environment can take the input of event signals, change

its own properties and output new events to other objects. This is achieved by pre

defined control programs written in an environment simulation language (SCL in this

research). The input events can be of three types: time-based events, action-based

events, and condition-based events. For starting the pre-programmed simulation

program, triggering functions such as "SetTrigger" has been used as control signals.

135

CHAPTER 7 ENVIRONMENT CONFIGURA TION AND COMMUNICATION

An application program can control the environment simulation loop by calling a

function at system run-time.

Properties Type Methods Type Events Type

Shape properties Trigger methods Initialising event

Static properties Counter methods Clearing event

Dynamic properties Marker methods Environment event

World properties V iewpoint methods Device event

Property setting methods State event

Pointing device methods

Table 7.1 Application platform utilities

7.4.2 Setting environment counters

During a conditional environment simulation, by calling a condition-based function,

an application program can have a multi-entry-point to the environment, to gain

flexible control over the environment. A virtual robot cell control simulation

presented in Chapter 8 is set-up in this way. The run-time functions supporting this

setting are "SetMarker", "GetMarker", "SetCounter", and "GetCounterM.

7.4.3 Setting object properties

Perhaps the most useful environment setting methods derived in this research are

those that directly manipulate individual object properties. The system enables eight

such methods.

• GetLongProperty - taking an object number, and its property name as parameters,

returning the object long type property value

• SetLongProperty - taking the object number, its property name, and a long type

value as parameters, setting the value to the pointed object property

• GetFloatProperty - taking an object number, and its property name as parameters,

returning the object float type property value

136

CHAPTER 7 ENVIRONMENT CONFIGURATION AND COMMUNICATION

• SetFloatProperty - - taking the object number, its property name, and a float type

value as parameters, setting the value to the pointed object property

• GetStringProperty - taking an object number, and its property name as parameters,

returning the object string type property value

• SetStringProperty - - taking the object number, its property name, and a string

type value as parameters, setting the value to the pointed object property

• GetlloolProperty - taking an object number, and its property name as parameters,

returning the object boolean type property value

• SetlloolProperty - - taking the object number, its property name, and a boolean

type value as parameters, setting the value to the pointed object property

7.4.4 Receiving environment events

When a control or simulation event occurs in a virtual environment - such as an object

collision, time limit reached or a certain condition is fulfilled in a simulation loop - an

environment signal is sent to a container program. It is then passed to the application

program. Suppose a user wants to move the cursor from point A to point B, and

acquire the mouse position change during the operation. By declaring two integer

variables in the environment simulation program to hold the mouse position, the real

time mouse movements can be passed to the application through firing an event

carrying these two variables to the container program. Figure 7.9(a) and (b) has shown

the firing event simulation program and the real-time mouse position display in the

run-time platform.

137

CHAPTER 7 ENVIRONMENT CONFIGURATION AND COMMUNICATION

(a) SCL firing event carrying two arguments

(b) An application receiving the two arguments

Figure 7.9 Firing event from a virtual environment

7.5 PLATFORM-BASED DATABASE ACCESS

The implementation of a virtual environment and database interaction at system run

time was achieved using Microsoft's open-database-connectivity (ODBC). It is a

database application program interface, which enables a container program to access

data from various databases and connecting with application operations. The

procedure of this accessing method process is described in the following:

138

CHAPTER 7 ENVIRONMENT CONFIGURA TION AND COMMUNICA TION

7. 5,1 Registering the environment database

Before the environment database can be linked to an application environment, it needs

to be registered in the Open Database Connectivity (ODBC) utility in the operating

system (in this work, Microsoft WindowsNT 4). By registering it in the Data Source

Administrator, the environment database address, name, and other information are

saved and can be referred by external application programs as a Data Source. Figure

7.10 shows the registering of the environment database VMEI that was introduced in

Section 6.3.

(lW D BCD ala S Duree Adminislr alOl 6 £i

User DSN 1 System DSN I File DSN I Drivers I Tracing I Connection Pooling I About I
.user Data Sources:

Name
dBASE Files
Excel Files
FoxPro Files
MS Access 97 Database
Text Files
Visual F oxPro 0 atabase
Visual F oxPro Tables
ED
VMEOEBUG

10 river
Microsoft dBase Driver (",dbf)
Microsoft Excel Driver (",xis)
Microsoft FoxPro Driver (",dbf)
Microsoft Access Driver (",mdb)
Microsoft Text Driver (",txt; ",csv)
Microsoft Visual FoxPro Driver
Microsoft Visual FoxPro Driver
Microsoft Access Driver (",mdb)
Microsoft Access Driver (", mdb)

Agd .. ,

Bemove

~onflgure" ,

An DDBC User data source stores information about how to connect to
the indicated data provider. A User data source is only visible to you,
and can only be used on the current machine,

lo....._o_K_--'I . Cancel .BPpfy

Figure 7.10 Registering the environment database

7. 5, 2 Connecting the database

After the environment database is registered, it needs to be connected to the

application program. Figure 7.11 (a) and (b) shows the connection of the registered

database and its data files.

139

CHAPTER 7 ENVIRONMENT CONFIGURATION AND COMMUNICATION

Database Options 013

Datasource----------,.-==:,..-------.l r--
O

-
K
--'

r. .QDBC:

r QAO:

I O!,E DB:

jVME1

Advanced-------------:c-l

P Detecf fty Q,flll.lmos

(a) Refering a database in the application program

Select Database Tables DEI

Dynamiclnfo
GeneralRef
o biectLists
Part Description
Query1
Shapelnfo
Standardlnfo
Staticlnfo
Task Description
Tool Description

Ir·· · .. ··OR······ .. ····l)
"'·I· .. · .. ·• .. ··•·····•········ .. ~

Cancel

(b) Selecting data files in the database

Figure 7.11 Linking database and the VE application

7. 5.3 Binding environment properties with database records

The data binding of the environment and object properties with corresponding data

fields enables environment monitoring, updating and recording. There are two

possibilities in this process, retrieving data from the database for environment

modification, and recording data or events from the environment to the database. As

shown in Figure 7.11, a "dynaset" type data record is applied in the program that

keeps synchronisation between the database data and the environment data. The

access to the environment and properties of an object has been implemented by the

"getProperty" and "setProperty" functions introduced in Section 7.4. Depending on a

user's requirement, a modified object can be saved in a new record by calling the

140

CHAPTER 7 ENVIRONMENT CONFIGURATION AND COMMUNICATION

database utility function (provided by C++ function library) "CRecordset::AddNew(

)", or saved in an existing record by calling the "Update()" function, then move the

data into the record set's member variables, and finally update the data record using

the "Update()" function.

7.6 INTERACTION BETWEEN VIRTUAL AND PHYSICAL

ENVIRONMENTS

The virtual and physical environment communication has been implemented in a

serial communication mode (standard RS232) for two reasons: (i) most modern

manufacturing equipment has a built-in serial port (in this work, the PUMA robot, the

CNC lathe and the CNC miller, see Figure 4.14 in Chapter 4). (ii) serial

communication is reliable and accurate for long distance data communication (the

drawback is the data transfer rate is relative low). The following sections explain the

KAMVR system communication functions using a PUMA and LANSING robot as a

case study. The former has a serial port and the latter has not.

7. 6.1 Communication with the Puma robot

The PUMA 560 robot has a PC based robot controller interfaced with an ageing,

inflexible Unimation Mark II controller. The simple hardware servo control was

replaced with a software based control strategy. To communicate with multiple

peripheral devices, an eight port intelligent RS-232 interface board (PCL-844) was

installed in the host computer. All the physical equipment was linked with the host

computer through this interface. The PUMA robot has a built-in 10-pin DIN RS-232

port, only the data transmit (Tx), receive (Rx) and the ground (GND) pins were used.

The data communication is controlled by the software (see Appendix D) with the

computer internal clock monitoring the time intervals, so that handshaking pins are

not necessary. The communication signal format was set at 9600b/s with no parity bit.

Each data pack has 8 data bits and 1 stop bit. The communication software was

programmed in C code. The working procedures are shown in Figure 7.12.

141

CHAPTER 7 ENVIRONMENT CONFIGURA TION AND COMMUNICA TION

Run-time Platform

Flush input buffer

Read in 100 bytes

Send command

Figure 7.12 Connecting the PUMA robot

It first checks if the multi-port PCL-844 board has been installed and the referred port

has been opened, task-specific functions that come with the communication board are

used in the program to check the return values. If the state is correct, then the program

tries to read the signals from the robot control unit. If they are available, the control

program reads and saves them into a pre-defined host computer buffer. Next, the users

can read the message from the buffer and decide which command is to be sent to the

robot. The program is designed to support both command and fi le level

communication with the ability to transfer space point records and arm joint

information.

142

CHAPTER 7 ENVIRONMENT CONFIGURATION AND COMMUNICATION

7. 6.2 Communication with the LANSING robot

The LANSING robot had a "teaching-playback" system and a sequential descriptive

language for controlling the operation sequence. Because there was no ready-made

standard serial or parallel communication port it was necessary to develop a single

way communication device for the physical link between the host computer and robot

control unit. A major part of this work was to simulate the control instructions of the

LANSING control panel. Figure 7.13 shows a snapshot of the physical control panel.

The left and bottom side of the figure shows a grid system to locate each of the

buttons on the panel.

@ J @ @ ® ® 0 '

Figure 7.13 Lansing robot control panel

There is a 50-way connector in the LANSING controller to transfer the user

instructions input through the control panel to a central processor. It was found to

have a similar electrical working mechanism to a conventional keyboard with 16

high-voltage (5v) ways and 14 zero-voltage ways to give a maximum 224

combinations. Figure 7.14 shows the combinations for each button on the control

panel. The same grid as shown in Figure 7.13 was used to identify the keys. For

example, The "DISP 1" button (8A) is controlled by pin 10 (Ov) and 17(5v) on the

connector.

143

CHAPTER 7 ENVIRONMENTCONFlGURATION AND COMMUNICATION

8 + + + + I - + I - +- + - + - +
10 11 10 34 0 16 10 35 4031 1217 12 3 4 12 16 12 J S

7 - +- + + + - + + + - + - +- +- +- +- + - + -
8 25 182 618 24 18 27 18 23 18 28 18 22 1829 4016 40 1 740 1 12 I! 12 Jj 1214 12 37

6 - -+ - + - + - + + + - + - + / - + / - of - + - +- +
3225 3226 3224 32 21 32 23 3228 3222 32 ~9 10 3 38 11 3834 38 11 38 35

5 - + - + - + - + - + - + - + - + - + - + - -+ - -+ - + - + - +
1925 1926 1924 1927 1923 19 2B 1922 1929 3917 39 34 39 16 38 I ! 38 3 3814 38 31

4 - +- t- +- +- +- + - + - +- +- + - -+ I / I I 3125 31 26 3124 3127 31 23 31 2B 3122 31 29 3935 3915 3936

3'
- , + - -+- +- +- +- +- +- + I I I - +- +
2.0 25 2026 2024 2027 2023 2028 202 20 29 13 11 13 35

2 - -+- + - + - +- +- + - +- + - -+ - +- +- ' + - +
30 25 3026 3024 130 27 3023 o 28 3022 3029 11 17 11 34 1116 13 34 13 15

1 - -+- +- +- +- +- +- + I - I - +- - ..
2125 21 26 21 24 21 27 1 2J 21 2 8 21 22 11 35 13 1613 36

A B C 0 E F G H r ' J K LIM N 0

Figure 7.14 The keyboard control combinations

A device was designed to simulate the control panel, so that the virtual control panel

could send instructions to the real robot. The device has two CMOS 4067 analogue

switches, which are Integrated Circuit (IC) chips having a 16~channel multiplexer,

four binary control inputs and one common pin. Figures 7.15 shows the signal

processing board diagram.

II !C 4051ae
CON '-" 'Ie: :J

IL.; CKl CR.
~CtC6 CU,
~C H " CIUO
---' CH4 elll

'I~ L-.-..t CHJ CMl

~~~; CMI ' rrrnI CIU 4 
~ '.0 eM I .. 

.-i/o . ~ .. 
- :-

.. 
IMg •• ~ ~ •• .. 

,.....-;: .. 
·0 

r;::::~ ~ ; 
;-~ :!F 

10 

~il F,,~ t-
JC .c onn 

~,F 
COM Ve ep ~n== UND CN' CliO 

';:::::j CI16 eft''! 

1111 1 e;~ 1 ~: : COl 

~ CHI J 
!cOl CHI 

~ 
,.1 C tl\ 3 .]I CH I f::H14 

.-i ' .0 e lll 

Co • • '"i~ 

Figure 7.15 Virtual control panel signal processing board 

Every combination of input signal can determine an output channel that is connected 

with the common pin. The circuit board was designed to use a PC generated serial 

signal (8 data bits) to select two output pins (one from each chip) and a dual-way 

144 



CHAPTER 7 ENVIRONMENT CONFIGURA TfON AND COMMUNICATION 

linked through the common pins so that the host computer could imitate the robot 

control panel signals and control activities. A serial/parallel converter, a developed 

signal processing board and a switch board were used to support the link (see Figure 

4.14). The control program was designed to recognise the users' command in the form 

of ASCII code. Each code consists of 8 binary bits (4 high data bits D7- D4 and 4 low 

data bits D3- DO), so a single ASCII character can generates two inputs for the signal 

processing board to imitate a keystroke. For example, the ASCII number 50 is 

represented by 00110010 in binary format, the four high bits 001 1, and the four lower 

bits 0010, are used as inputs for the two IC chips, which results in one of the 16 

output pins from each chip being connected through the common pin and creating the 

request circuit (in this case, equal to the key 8A being stroked). The design enabled a 

software based virtual control panel to be created. Figure 7. ] 6 shows the ASCII 

number configuration for the virtual keyboard. 

0000 0010 0100 0110 1000 1010 1100 1110 
07D6D504 0001 0011 0101 0111 1001 1011 1101 1111 

(Pin No. )(14)(15)(16) (17)(22)(23)(24)(25)(26 )(27)(28) (29) (34){35)(36)(37) 
o 3020100 3~ 50 194 210 

0010(10) E;-O 1\-0 C-8 G-8 

35 51 ~~:> ~:' . .l OOll( 11) K-2 I-2 -2 -1 
0-1 20 36 52 196 212 228 244 

0100(12) N- - L-7 N-O L-O M-O 0-8 M- 0-7 
21 37 53 197 213 229 

0101(13) N-2 1.-1 L-3 L-2 N-3 N-1 
70 86 102 119 134 150 Hi6 102 

0110(10) G-7 E-7 C-7 1\-7 B-7 0-7 F-7 1-1-7 
71 07 103 119 135 151 167 163 

0111(19) G-5 E-5 C-5 1\-5 B-5 0-5 F-5 1-1-5 
72 88 104 120 136 152 168 194 

1000(20) G-3 E-3 C-3 1\-3 B-3 0-3 F-3 H-3 
73 09 105 121 137 153 169 

100](21 ) G-l E-l C-1 1\-1 B-1 0-1 F-l 
74 90 106 122 136 154 170 106 

1010(30) G-2 E-2 C-2 1\-2 B-2 0-2 ["-2 H-2 
75 91 107 123 139 155 171 107 

t01 l13l) G-4 E-4 C-4 1\-4 B-4 0-4 F-4 H-Ij 

76 92 106 124 HO 156 172 100 
1100(32) G-6 E-6 C-6 1\-6 8-6 0-6 F-6 H-6 

13 29 1\5 61 205 221 237 253 
1101j38) 1'1- 5 L-5 N-6 L-6 M-6 0-6 M-5 Q-5 

30 46 62 . 206 222 238 
1110(39) J-4 K- 5 I-5 J-5 1-4 K-I\ 

31 47 63 207 223 
111Ul\0) K-7 1-7 J-7 J-8 J-6 

Figure 7.16 Virtual keyboard ASCII value configuration 

145 



CHAPTER 7 ENVIRONMENT CONFIGURA TION AND COMMUNICATION 

7.7 CONCLUSIONS 

This chapter described the method of exporting the environment and object properties 

to a database and external programs. Using the this method, virtually all the data in an 

environment can be accessed, controlled and modified at environment run-time 

without the need for off-line editing. This enables an environment to be customised by 

the user and enhance the usability and flexibility of the environment. Furthermore, 

this method also enables template environments to be accessed and the database to be 

updated. 

146 



CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

CHAPTER 8 

THE RUN-TIME IMPLEMENTATION 

This chapter reports how the modules developed in this research were integrated into a 

system. It also shows the results of testing the KAMVR system for user-envirorunent 

interaction, envirorunent-database interaction, envirorunent simulation, and virtual 

environment and real world interactions. 

147 



CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

8.1 INTRODUCTION 

To verify the domain-analysis based top-down virtual environment construction approach 

and the KAMVR system development based on it, an integrated "module-container" 

program was coded using C++. In this program, the template environments, the database, 

and the application program interface are all embedded entities, which enable the 

template environments to be developed using various environment authorisers, and allow 

users to customise a specific environment for given simulation tasks. 

~').Un""ed . XuVf2 1lI9E1 

INTEGRATED CONTROLLER 

10 
Object name ObiecllD 

lP"ft19 1117 

Roady 

3D Control Environment Visualiser Application controls Database Utilities 

Figure 8.1 KAMVR run-time platfonn 

Figure 8.1 shows a snapshot of the program interface. It consists of three parts: 3D 

control environment visualiser, application controls and database utilities. For simplicity 

the following sections, refer to this program as the run-time platfonn. The run-time 

platform provides control or monitoring of the VB and applications activities. There are 

six "textfield" components, two used to monitor the VE or object state. Information, such 

148 



CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

as the machining state (running or idle), simulation timing (in milli-second), and mouse 

cursor position (to identify which object is activated), can be displayed. Other text fields 

are used to display information retrieved from the database such as object name, 

identification number, its environment name, and the environment number. The toggle 

buttons on the run-time platform allow the retrieving of environment from the database 

and the loading of specific objects according to the user input from the aforementioned 

textfields. 

8.2 KAMVR RUN-TIME PLATFORM 

8.2.1 User-environment interaction controls 

When operating KAMVR, users can directly interact with the virtual environment 

through manipulating virtual objects, changing viewpoints, or moving around the virtual 

space. 

(1) Viewpoint control: A pull-down menu has been designed to control viewpoint 

positions according to user inputs. As shown in Figure 8.2, the "Navigator" menu can be 

activated by choosing a different viewpoint number, a virtual environment pre-set 

viewpoints position will be adopted to display the environment. 

149 



CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

~D~I~~~~I~~I~~~I~~I~~' ~le~l~i~~~~II~~ ~ Viewpoint 2 
Vewpoint 3 
Viewpoint 4 

8ii'Wt1·t.iii+W 
More .... 

Figure 8.2 Viewpoint control menu 

INTEGRATED CONTROLLER 

P' Visfln-M tool for impection 

Get VE St~te . I 

Object n~me ObjectiD 

Ipert21 148 
VE neme VElD 

14 J4 

(2) Environment navigation: Except using the default viewpoints to explore an 

environment, navigation is also possible by using the three icons on the environment 

navigation bar as shown in Figure 8.3. By toggle and drag the left icon, a dynamic 

viewpoint will move up, down, left and right. The middle icon moves the viewpoint 

forward and backward, rotating it left and right, while the right most icon supports tilting 

the viewpoint up and down. 

Figure 8.3 The VE navigation bar 

8.2.2 Control environment and database interactions 

The purposes of the run-time environment and the database interaction are: (i) to update a 

database record when a certain condition in the environment is fulfilled or special events 

150 



CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

occurred, (ii) to retrieve data for controlling environment properties and (iii) to store the 

environment for later reference. All three tasks require a run-time environment and 

database communication interface. The implementation of such an interface includes two 

steps: sharing information between the environment visualiser and container program, 

and data exchange between the container program and the database. The first step relies 

on the data migrating approach introduced in Chapter 7. The second step requires a 

database-access tool. 

The run-time platform provides a set of database access tools. By using the container 

control icons, menu items, and the text fields, data records saved in the database can be 

browsed and displayed. For example, the data record saved in the standard file in the 

database can be retrieved and displayed in the text fields. Figure 8.4 shows the retrieved 

database table of the environment "workce1l4". 

INTEGRATED CONTROLLER 

Machines l Tool. Palt. I 

~d~ 

Obiecl ;,. 

41 

1: 
5 133 13! 1: 
5: 176242 
5< 96431 ;0, 
5: 039!19 7' 

s: 103999 71 
51 79191 4 
Z 63!197 2 . 

I. I • r 
~ Genelel Masto, VltUei Environment Inlo"T\lItion~ 

Reset About I 

Diaplay Gone,eI VE riOfmation 

Figure 8.4 Updated general object information 

151 



CHAPTER 8 THE RUN-TIME IMPLEMENTA TION 

Except for the general VE and database controls, the simulation control functions in the 

run-time platform have been classified into two levels, functions concerning standalone 

machine controls and functions concerning cell activities. 

8.2.3 Stand alone machine controls 

Stand alone machine controls are mainly achieved through Machine Controllers attached 

on the primary and secondary objects in the environment. There are three different types 

of machine controller available on the run-time platform, object based 3D machine 

controller, 2D control dialog box, and a container menu-based controller. 

(1) 3D machine controller: as shown in Figure 8.5. It is usually attached on a 

machine. It controls machine parameters such as spindle speed. In this case, if the mouse 

cursor is moved to the right side of the controller, and the number keys pressed, the speed 

will be displayed in the LCD panel. If the selected speed is in the spindle speed range, 

then the new speed is adopted by the controller, otherwise, an error message occurs. 

Figure 8.5 3D machine controller 

(2) Environment-based 2D dialog controller: For controlling the robot an edit box 

takes user input, i.e. individual axis number and degrees of rotation. Other control 

components such as radio boxes, buttons, and slide bar are used to set up the move step 

size and control arm activities. Figure 8.6 shows the robot control unit dialog box. 

152 



CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

t!"". Untilled - XuVE 2 1!!Ir;l13 
fie .Edit !;eU·Controlet Machlne-Centroler Qataba&e Navigator yoew J:ielp 

INTEGRAT ED CONTROLLER 

Robo t Con tro l Unl t 

Robe t oon t,..o un I t .. co. ... 1 n9 ooun t r:r 

~ 
06 <!lIS 046 

A,I ... /2 

About I 

Reody 

Figure 8.6 Virtual robot control dialog 

(3) Run-time platform menu-based control: vanous machlne control dialog boxes 

have been provided for controlling common manufacturing equipment. Figure 8.7 shows 

a conveyor controller that can be used to start or stop the conveyor, control rotation 

moving speed and direction. The control dialog is started by clicking on the . platform 

"Machine-Controller" item, then selecting the "Conveyer". The menu items also provide 

the basic functions of connecting the virtual machlne controller with the physical 

machine control unit by assigning each machine an individual serial port on the serial 

card (see Section 4.3.3 and Section 7.6). 

153 



CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

INTEGRATED CONTROUER 

Conveye, Controll", EJ 

Di,ection r Fo,wllfds ('I Backwards 

r. Slop 

Figure 8.7 System platform device controller 

8.2.4 Cell controller 

The cell controller interface is designed mainly for testing the time-sequenced control of 

a manufacturing cell. Those individual control commands form the sequence file, which 

link a series of pre-programmed actions performed by devices in the virtual robot world. 

As the sequence file plays, line by line, the actions will occur in the virtual world. Figure 

8.8 shows the cell controller operation sequence editor. 

154 



CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

.. }Unlitled . XuVE2 !!Ira f3 

Sequence E d,lor 
INTEGRATED CONTROLLER 

E ditoring mac:hrlino sequence. 

Figure 8.8 Cell controller operation sequence editor 

8.3 WORKING MECHANISM 

At system run-time, the run-time platform program must be aware what is occurring in 

the environment for two reasons. Firstly, the container program is a holder for various 

ftmction modules in the system, which co-ordinates other modules' requirements for data 

and instructions. Secondly, the container program dispatches event messages in the 

KAMVR system. In other word, the role of the container in the system is merely a 

message collector, the actual processing and management of information is dealt with by 

different application modules, for instance, a database system or a "if-then" knowledge 

base. There are two ways to get information from the environment and simulation in 

computing terms: passive mode and active mode (the operation code is provided in 

Appendix C). 

155 



CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

8.3.1 Monitoring and controlling an environment in active mode 

When running a simulation in the environment, conditions or thresholds can be set to 

monitoring the state of the simulation. If a condition is fulfilled or a threshold broken, 

then the VE sends a message to the application program using an internal function: 

fireevnt. This fireevnt can transfer two parameters (long type data) to the application and 

waits for the application to respond. For example, if two objects collided in the 

environment, their object IDs can be passed to the application program to be processed. 

The following code demonstrates the environment sending messages to the platform 

(actual code is programmed in SCL). 

/*Configure machine specification*/ 

MachineConfig[] = property(~MachineName", ~property[]"); 
/*Taking user input settings from various controllers*/ 

ApplicationSetting[] = input[]; 

/*Check event occurred*/ 

If (EventOccurs) 

/*Passing object 10 to container*/ 

Fireevnt(ObjIO); 

/*Object data retrieved by container and processed*/ 

wait; 

/*Oecide the route for the simulation and interaction*/ 

Marker = property (~Machine", ~Marker"); 

/*Running simulation routes*/ 

If (marker) {simulation instructions} 

8.3.2 Monitoring and controlling an environment in passive mode 

The paSSIve mode is used to configure an environment or send instructions to the 

environment during a simulation loop. For example, if a user wants to set a move 

distance of an object, the run-time platform calls the functions "setLong" to send the 

parameter to the SCL program in the environment, the received value gives the boundary 

of the simulation program (see Section 7.4). Two collided objects can activate an 

application process, which results in a command that forces the two objects to be 

156 



CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

separated by a specific distance. The following code shows the process to configure a 

virtual lathe with simulation parameters (in contrast with active mode VE and application 

communication, the control processes for passive mode are programmed in the run-time 

platform using a C++ program). 

m_3dcontrol.SetLongProperty("Lathe", "MaxSpinSpeed", 

m_strElement[O]); 

m_3dcontrol.SetLongProperty("Lathe", "MinSpinSpeed", 

m_strElement[l]); 

m_3dcontrol.SetLongProperty("Lathe", "MaxTailMove", 

m_strElement(2)); 

m_3dcontrol.SetLongProperty("Lathe", "MaxSpinSpeed", 

m_strElement[3]); 

m_3dcontrol.SetLongProperty("Lathe", "MaxSpinSpeed", 

m_strElement[4)); 

m_3dcontrol.SetStringProperty("Lathe", "Cutter", m_strElement[5]); 

where, "m_3dcontrol" is the current VE visualiser object name. "SetLongProperty" is the 

default visualiser class method, which takes three arguments, virtual object name, 

property name, and the property value. The above VE configuration program sets the 

lathe object in the environment with a user defined object property values. 

In the environment's simulation program section (SCL), the user-defined parameters are 

received to control a machine's dynamic behaviour. For example, the user (or application 

programme) defined lathe properties are transferred into an environment and being 

assigned to variables in the lathe simulation program. 

/*Declare long type variables*/ 

long MaxSpinSpeed, MinSpinSpeedi 

/*Assign them with retrieved property values*/ 

MaxSpinSpeed = property ("Lathe", "MaxSpinSpeed"); 

MaxSpinSpeed = property ("Lathe", "MaxSpinSpeed"); 

/* Define the object dynamic activities*/ 

if(currentspinspeed < MinSpinSpeed) 

157 



CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

exit (1); 

else if(currentspinspeed > MaxSpinSpeed) 

exit (2); 

else {zrot(me)= currentspeed} 

8.4 RUNNING THE SYSTEM 

To demonstrate the run-time platform, consider a user wants to create a machining 

environment where parts features will be produced in certain quantities. The process 

starts from recording information about the machined features, the number of parts and 

the type of operations required to form a task code. This code will be used as an index to 

search a suitable template environment in the database. The suitable environment name is 

used to retrieve the template environment and load it into a rendering buffer for display. 

Finally, the template environment is modified and configured to perform the required 

simulation tasks. The three sub-sections below explain in more details how the run-time 

platform performs these activities. 

8.4.1 Forming the task code 

Task coding is carried out by the user through a 3D coding panel. For the first time user, 

the coding instructions can be displayed in an information dialog (pressing "I" on the 

keyboard). This shows a definition of each task digit and its options (described in Section 

4.3.1). For example, a non-metal shape with a hole and pocket would have a code 21631 

as shown in Figure 8.9. The production size (small scale production) and the application 

type (training) are coded as 10 and 121 individually. The entire task for machining the 

part is then given as 2163110121. 

158 



CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

Pl". Untitled · XuV£2 I!!Ir;JEJ 
~- !:ietp 

""",hi InlOlllldh on H EJ 

/ *Vhen setting a tas k code . press the G-button • 
for editting the part geo~etry code . or 
5-button for production scale code. or 
R-button for application type code . If error 
occur . press RESET . when satisfied . press 
ENTER.*/ 

(1) part geo~etry section 

Gl : Part type digit. It has three choices. 
rotational part . 1 - pris~atic part . 2 -

INTEGRATED CONTROLLER 

M!IChine. 1 Tool, Pals I 
d p~121~ 

~~d 
~~~ 
r Vit/inW 1001 for inspection

Objecl name Object fO

10 10
VE name VElD

10 10

L04dWOIk! I Load Oola I
Reset AbOO

Figure 8.9 KAMVR run-time platform task coding environment

Based on the meta-code generating program in Section 4.3.1.2 and Task Classification

method developed by Zhao [1998], the meta-code for retrieving an environment of the

application requirements would be 03111 . The closest template environment code in the

database is template environment 4 with an environment code (Envcode) as 03311 . The

name of this environment ("workce114") is used to set the argument of an internal

function "SetSrc(Filename)". This function loads the environment into a visualiser.

Figure 8.10 shows this environment to include a lathe, a milling machine, transportation

rollers and two robots. All of those manufacturing machines and transportation devices

have default simulation functions (see section 5.2 to section 5.4).

159

CHAPTER 8 THE RUN-TIME IMPLEMENTATION

l .. Unhlled - XuVf2 !If;) Ei

INTEGRATED CONTROLLER

Machi1e.1 Tool. Palts I
P~tl ~~

~ p¥t51~

~~~ 
r Visf..,vis tool fOf inspection 

GetVf State I 
1° 10 
OI)tect nome Object 10 

/POft21 148 
Vf name VE 10 

14 14 

Load WOfId I Load Oat. I 
Reset I, About 

Reedy 1"1 __ ._.-. 

Figure 8.10 Loaded environment 

8.4,2 Environment modification and initialisation 

After the environment is loaded, users can explore it using the navigation bar, or observe 

the environment from various default viewpoints (see Section 8.2.1), and activate the 

default animation and simulation functions. In this way the user can quickly become 

familiar with the environment and its control and behaviour. 

To demonstrate the data exchange function between the virtual environment and the 

database, the virtual lathe was changed along the X-axis 5000 steps (units) in the 

database. The environment simultaneously changes its layout and its overall size will be 

reduced by 10 percent. Figure 8.11 shows a snapshot of the modified environment. In 

addition to changing the environment layout and object size, the modification functions 

in the run-time platform also include: add, delete or duplicate objects (in this application, 

160 



CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

the robot and the transportation roller might be removed to enhance the display frame 

rate). 

rI--. UnhUcd . XuVE2 l!lril Ei 
file ;'dit._ .(;en·Controier ~achi1e.Controlel 12ataba:e ~~ator y_ tiel!> 

D 1w?;1 rill ti' 1 ~ ll I ~ 14141.1.11.!.J 
INTEGRATED CONTROLLER 

Ready 
_____________ GI1 

Figure 8.11 Modified virtual manufacturing environment 

Before the system can be configured for a specific application and simulation, it needs to 

be initialised. This is done through the initialisation dialog box (activated by clicking the 

Initialiser menu item in the Cell-Controller menu, see Figure 8.8) shown in Figure 

8.l2(a). Four option buttons are available. The "Init-Pos" and the "Init-Size" buttons set 

objects that have initial size and initial position properties to their original values. The 

"Init-Trigger" and "Init-Flags" buttons clear remaining user configuration settings (from 

the last environment application) by resetting the animation flags, returning the dynamic 

objects to their home position, and cancelling all the randornised interaction triggers. To 

initialise the entire retrieved environment in this demonstration, all four buttons have 

been clicked. Figure 8. 12(b) shows a snapshot of the resulting initialised environment. 

161 



CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

Initialiser a 
Initialising Virtual World------:;l 

Reset all position 

Reset all size 

Reset all trigger 

Reset all flags 

Figure 8.12(a) VE Initialiser 

,;:Tr: Unlolled · XuV£2 Br;}13 
~_ Help 

INTEGRATED CONTROLLER 

Object name 

Jpaft21 

VEMne VE 10 
14 ,..;.14------1 

Figure 8 .12(b) Initialised application environment 

162 



CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

8.4.3 Application configuration and simulation execution 

To customise the loaded environment, the run-time platform accesses the simulation 

functions in the environment (see Section 7.4) for the property setting. A setting dialog is 

activated and popped-up by clicking the menu items of the "Machine-Controller" menu 

(see Figure 8.7). The machine setting dialog allows users to set the machine operation 

parameters step by step, or load a stored set-up file in one step. In tlllS example, the 

machine setting only concerns the virtual lathe, and is through a step-by-step procedure. 

Figure 8.13 shows the defined machine parameters in the dialog. In addition, by clicking 

the "GetField" button, the virtual lathe setting data can be retrieved from the dynamic 

datafile in the database. 

~). Unlolled · XuVE2 I!Ir.;JEi 
fde Edit ,Cel·Controlier M~enine·Con!roler llalabase NavigatOl \(rew J:lelp 

INTEGRATED CONTROLLER 

M<!Chines Tool: Pert, I 

Mac hin!! COflfi'lUlation Ei ~ p~t21~ 
Step·by·,tepseUing------
MalCSpi'ldIeSpeed 13600 GetF1eld1 

1300 'GeiFoek!l 

1750 

Id 10 

VE name VE 10 
14 ""'1.---

Reedy 

Figure 8.13 Application environment configuration 

163 



CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

Finally, the configured environment can be used to simulate the machining activities. 

Figure 8.14 shows snapshots of changing different components on the lathe (by clicking 

the buttons on the platform named from "Part 1 " to "Part 9"). Figure 8.15 show snapshots 

of toggling the tool on a milling machine to view the processed component (by selecting 

the "Vis/invis" selection box). 

Figure 8.14 Simulation action - mounting different parts 

.... _---
Figure 8.15 Toggle the tool for part inspection 

164 

r~ __ ..J!III~~ 

... "" ... I 
r=-- r;;;;;r-
0l000I _ """",D ...-,.-
"' _ \ell 

J r-r-
I .... - 1 ....... 1 
.2::W~ 



CHAPTER 9 CONCLUSION AND FUTURE WORK 

CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

This chapter concludes the thesis and recommends the future research. 

165 



CHAPTER 9 CONCLUSION AND FUTURE WORK 

9.1 CONCLUSIONS 

This research started with a survey of existing VR research and VR projects that are 

mainly related to manufacturing applications. Problems were specified for this 

research and thereafter a research strategy was established to deal with the difficulties 

that had been involved in constructing virtual environments, acquiring and 

representing environment knowledge and interfacing the environments with real 

applications. 

The survey showed that the difficulties in the construction of virtual environments are 

most due to the so-called "bottom-up" geometric modelling process that often 

demands a great amount of labour-intensive computing operations and specialised 

programming techniques. The focuses of the end-users are restricted to this modelling 

process rather than the application purposes of the built environments. Hence the final 

built environments are inherently 3D graphical models that are lack of vital and useful 

application information or knowledge. 

The survey also revealed that the difficulties in constructing virtual environments are 

closely related to the complex and indirect relationships between the geometric and 

behavioural attributes of the individual virtual objects within the virtual environments 

and the application databases. There had been a lack of a clear mapping between the 

information encapsulated within the virtual environments and the real knowledge 

defined in an application database (for example, a manufacturing database). A 

straightforward solution to this problem was to enforce the virtual environments by 

using pre-defined simulation functions or simulation programmes. This is however 

based on the assumption that all the attributes of the virtual objects within the virtual 

environments do not necessarily to be altered by the users even if the real application 

requirements are to be changed. Various commercial VR software and research 

prototype VR systems have adopted different mechanisms to provide users with 

reasonably less restricted access to the virtual environments, but offer the users little 

flexibility to configure and modify the constructed environments. 

The survey also indicated that the interface between the data modelled within a virtual 

environment (for instant, a virtual machining cell) and the real data of an application 

166 



CHAPTER 9 CONCLUSION AND FUTURE WORK 

(for instant, a robot) is not only a challenging VR modelling problem, but also a 

bottleneck task for VR-based real-time simulation and control. 

Based on the findings from the survey, the research had objectives that were set for 

fundamental solutions to the aforementioned problems. To achieve those objectives, a 

so-called "domain-analysis based top-down" virtual environment construction 

approach were established in this research. To implement and validate this approach, 

a system named KAMVR was designed and developed. With this system, users can 

construct a virtual manufacturing environment rapidly without the lengthy process of 

building one from scratch. The system also enables the user to reconfigure an 

environment and to interface its internal data with external physical systems through 

specific interface protocols. 

The research has its novelty and contributions toward virtual environments and their 

applications in following aspects: 

• It has provided generic solutions for the fundamental problems that currently 

restrict the rapid construction of complex and large scale virtual environments. 

This resulted in the establishment of a (application) domain-analysis based top

down construction approach. This novel approach relies on the concept of 

application-oriented template environments that are built in a layered structure. 

Such a structure allows the users to reconfigure the environment according to 

classified (or object-oriented) data blocks like scene graph (3D cubical volumes 

or so-called place-holders) and environs attributes (object static and dynamic 

properties classified according to their natures). All virtual environment data is 

managed in an environment database system and can be used to construct 

different virtual environments and to control specific application tasks at run

time. An application task coding-scheme was developed to establish the 

relationships between the application requirements and the virtual environment 

modelling data and to index the template environments onto manufacturing data 

in the database. 

• The research laid a basis for integrated data management (for managing both 

virtual environment data and manufacturing information) in VR based 

167 



CHAPTER 9 CONCLUSION AND FUTURE WORK 

application systems. This could be further explored to establish new methods 

and to design new computing programmes for acquiring real manufacturing 

knowledge from physical manufacturing systems and representing the 

knowledge in virtual environments. With conventional virtual environments, 

representing real application data is a one-off process in which all the 

knowledge such as object appearance, simulation and operation interactions has 

to be implemented as pre-defined and pre-programmed modules and then 

embedded in the environments. The more knowledge an environment has, the 

more the computing overhead becomes and the poorer the run-time 

performance. The development of the environment data management in this 

research has enabled a precise one-to-one relationship between a virtual object 

model and its real world counterpart, which allows real world knowledge to be 

stored separately from the virtual environment data blocks (such as simulation 

programs and operation parameters). Currently, the research has achieved a 

flexible data management method, but physical information or external data 

sources (like user input) communicate with the virtual environments only at run

time or if necessary, through the database system, when the users are modifying 

or reconfiguring the virtual environments. This needs to be further researched to 

enable users to reconfigure the virtual environments in real-time, that is, the 

virtual environments and the physical systems could be communicate with each 

other in a close-loop in real-time. 

• The research also provided an integrated software system. The functional 

modules of this system have enabled various phases of the domain-analysis 

based top-down environment construction. These modules were unified in a 

single run-time platform, where each module can perform its own tasks as well 

as communicating with other modules through a message collecting and 

distributing mechanism. 

• Through building and testing a virtual robot and a real robot communication 

interface, this research has provided a new method of using VE to achieve 

realistic 3D simulation and real-time control for manufacturing operations. 

168 



CHAPTER 9 CONCLUSION AND FUTURE WORK 

The research in its present form has its limitations where further research is required 

and more development work should be provided: 

• The concept of the domain-analysis top-down environment construction 

approach and the derived KAMVR system are based on the desk-top virtual 

reality systems, the application of which to an immersive virtual reality system 

may not be straightforward due to the structural difference of the two type of 

VR programmes. It could be possible to use the work provided in this research 

only if adequate VR peripherals devices drivers are designed as integrated parts 

of the data base protocols of the KAMVR system. This mostly requires a great 

deal of development and VR programming work rather than new research 

efforts. 

• The coding scheme in the research has brought a method for classifying virtual 

environments by focusing on both the users' application requirements and the 

physical system characteristics. However the current scheme system only has 

limited digits for representing the crude but general application information. It 

should be ideal use specific manufacturing coding methods for specific 

simulation scenarios. Whether or not this is practical and achievable to apply 

different coding systems onto different manufacturing tasks is an issue that need 

further investigation. 

• The KAMVR system IS developed as a research prototype to verify the 

proposed VE construction concepts and approaches. The application of the 

system is generally for manufacturing simulation and training. Different users 

such as lectures, researchers, post- and under-graduate students have tested it in 

different occasions. It was also presented in seminars, national and international 

conferences, and journal publication, including demonstrations to industrial 

visitors. A general feedback from those occasions is that the future 

implementation of the specific system tools and functions for specific 

application areas is a most important part of the work to bring the system onto 

the users desktop. 

169 



CHAPTER 9 CONCLUSION AND FUTURE WORK 

9.2 FUTURE RESEARCH 

In the KAMVR system, the environment construction data are stored in an external 

commercial database that in its present form communicates with the environment 

visualiser through the "object-linking" mode. Because of this, the data transfer are 

very much limited in its efficiency and capacity by the connection tools, for example, 

the ODBC utility. If a user wants to change the database structure during the 

environment run-time, the current database is inflexible for this task. An internal 

database system that forms part of the rapid environment construction and knowledge 

acquisition system would be an ideal solution. It could provide a self-defined data 

definition language (DOL) and data manipulation language (DML) specifically 

designed to handle environment data with minimum environment construction and 

visualisation time. 

The environment task-coding scheme is fundamental part for developing an useful 

virtual environment for a specific application. The future research for this part is to 

take the advantage of the parallelism between the GT code for simulation models and 

the GT code for manufactured parts. Given the GT code of a part, the simulation 

environment should be able to suggest alternative manufacturing methods and a 

complete simulation scenario (based on various manufacturing criteria such as cost 

and shop floor load). That will provide a guideline for system analysis and conceptual 

model development by systematically identifying user goals and physical system 

characteristics. 

Further research is also necessary on the development of converting tools for 

translating various external data and knowledge sources (for example, the "if - then" 

rule base) into a unified environment data format. This could overcome the difficulties 

in exchanging the VRML data from, say, ProE CAD model to the Superscape VRT 

Visualiser and to prevent the data loss and data distortion. Media exchange utilities 

could be developed to support importing multimedia data such as sound, image and 

animation into the database. 

The current real world communication provided by the KAMVR system is mainly 

serial port based, even it has the highest data transfer the exchange rate is low. The 

170 



CHAPTER 9 CONCLUSION AND FUTURE WORK 

multiple physical devices that are connected with the VE to the hosting computer rely 

on a software program to control the port allocation and file operations like open, 

close, read, and write. The synchronisation between the VE and the physical devices 

operations was found to be a difficult problem. A more sophisticated approach could 

be to use ATM and ETHERNET via TCP/IP format communication to extend the 

ability of the KAMVR system. 

The on-line KAMVR system could also allow several users to interact in the same 

environment while at different locations. The research for this purpose needs to be 

extended to the use of distributed database systems and other methods of retrieving 

data for environment construction and configuration. 

Finally KAMVR has been implemented with a data glove based interaction and stereo 

sound effects. It is anticipated that using full-immersive VR techniques would provide 

more realistic effects. For example, with HMO and haptic devices, the environment 

operation interface could be improved by avoiding any programming based object 

control skills. Also with 3D sound effects, it could provide multimedia information to 

aid users explore unfamiliar sound-based environments. These functions, however, 

demands extensive low-lever programming work to establish the peripheral drivers 

that in turn need to be integrated with the KAMVR system. 

171 



REFERENCES 

References 

3D Web Consortium Incorporated, 1997. The Virtual Reality Modelling Language 
(VRML'97). International Standard ISO/lEe 14772-1:1997. 

Adam, J., Zikan, L., Karel, M., and Banner, D., 1995. Videometric Head Tracker for 
Augmented Reality Applications. Proceedings of SP IE - The International Society for 
Optical Engineering, Bellingham, W A, USA. 

Adiga, S., and Glassey, C., R., 1991. Object-oriented simulation to support research in 
manufacturing systems. International Journal of Computer Integrated Manufacturing, 
29(12), pp2529-2542. 

Angster, S. R., Gowda, S., Jayaram, S., 1994. Feasibility Study for Ergonomic Design. 
IFIP 5.0 Workshop on virtual prototyping. 

Angster, S. R., 1996. VEDAM: Virtual Environments for Design and Manufacturing. 
Ph.D. Dissertation, Washington State University, USA. 

Aouad, G., Child, T., Marir, F., Brandon, P., 1997. Developing a Virtual Reality Interface 
for an Integrated Project Database Environment. Proceedings of the 1997 IEEE 
Conference on Information Visualisation, Ch.50, pp.192-197, ISBN 0-81-868076-8. 

Banerjee, P., Montreuil, B., Moodie, C. L. and Kashyap, R. L., 1992. A Modelling of 
Interactive Facilities Layout Designer Reasoning Qualitative Patterns. International 
Journal of Production Research, Vol. 30, No.3, pp433-453. 

Banerjee, A., Banerjee, P., and Ye, N., 1999. Assembly Planning Effectiveness Using 
Virtual Reality. Presence-teleoperators and Virtual Environments, Vol. 8, No.2, 
pp.204-217 ISBN 1054-7460. 

Barnes, M., 1996. Virtual Reality and Simulation. Proceedings of the 1996 Winter 
Simulation Conference, Ch.213, pp101-11O, ISBN 0-78-033383-7. 

Barrus, J. W., 1994. The Virtual Workshop: A Simulated Environment for Mechanical 
Design. Ph.D. Dissertation, Massachusetts Institute of Technology. 

Bejczy, A.K., 1997. Virtual Reality in Manufacturing. Re-Engineering for Sustainable 
Industrial Production, Ch.46, pp48-60, ISBN 0-41-279950-2. 

Bennett, G. R., 1997. The Application of Virtual Prototyping in the Development of 
Complex Aerospace Products. Aircraft Engineering and Aerospace Technology, 

172 



REFERENCES 

Vo1.69, No.1, ppI9-25, ISSN 0002-2667. 

Blanchard, C., Burgess, S., Harvill, Y., Lanier, J., Lasko, A., Oberman, M., 1990. Reality 
built for two: A virtual reality tool. Proceedings of the 1990 ACM Symposium on 
Interactive 3D Graphics, pp35-36. 

Boman, D. K., 1995. International survey: virtual-environment research. Computer, IEEE 
Computer Society, pp57-65. 

Bricken, W., CoCo, G., 1994. The Veos Project. Presence: Teleoperators and Virtual 
Environments, MIT Press, Boston, 3(2), 111-129. 

Bullinger, H. J., and Roessler, A., 1998. Advances in Bridging the Gap: Using Virtual 
Reality to Enhance Productivity. Virtual Environments '98 - Proceedings of the 
Eurographics Workshop, ppl-7, ISBN 3-211-83233-5. 

Chapman, D. A. and Coddington, R C., 1994. Using a Virtual Reality System For 
Machine Design. Proceedings of The 5th International Conference of Computers in 
Agriculture, Ch.150, pp87-92, ISBN 0-92-935546-6. 

Charitos, D. and Rutherfold, P., 1996. Guidlines for the Design of Virtual Environments. 
The proceeding ofUK-VRSIG'3. 

Chuter, J, C., Ramaswamy, S., and Barber, K. S., 1995. A Virtual Environment For 
Construction and Analysis of Manufacturing Prototypes. Proceedings of the 
Computers in Engineering Conference. 

Codella, C., Jaliti, R., Koved, L. and B. J., 1993. A Toolkit for Developing Multi-User, 
Distributed Virtual Environments. Proceedings of the IEEE Virtual Reality Annual 
International Symposium (VRAIS'93), Seattle, Washinton, USA. 

Connacher,1I. I., Jayaram, S., 1995. Virtual Assembly Design Environment. Proceedings 
of the Computers in Engineering Conference and the Engineering Database 
Symposium, ASME 1995, pp875-885. 

Cook, J., Hubbold, R, and Keates, M., 1998. Virtual Reality for Large-Scale Industrial 
Applciations. Future Generation Computer Systems, Vo1.14, ppI57-166. 

Earnshaw, R A., Gigante, M. A. and Jones, H., 1993. Virtual Reality System. Academic 
Press, ISBN 0-12-227748-1. 

Evans, D. F., Bartelme, M. J., and Iwai, N., 1994. Essential Methods and Emerging 
Concepts for Developing Virtual Driving Environments. Proceedings of the IMAGE 
VII Conference, Image Society, Tempe, Arizona, pp121-131 

Gausemeier, J., Grafe, M., Wortmann, R, 1998. Layout of Manufacturing Systems with 

173 



REFERENCES 

VR-based Construction Sets. Proceedings of the - Virtual Environments '98 -
Eurographics Workshop, Springer Computer Science, ISBN 3-211-83233-5. 

Gimenez, A.M., and Kirner, T.G., 1997. Validation of Real Time Systems Using a 
Virtual Reality Simulation Tool. Proceedings of the 1997 IEEE International 
Conference on Systems, Man, and Cybernetics, Vol 5, Ch.790, pp1586-1591, ISBN 0-
78-034054-x. 

Gray, J.C., 1997. Virtual Reality and Operational Design. Visions of Tomorrow
Improving the Quality of Life Through Technology, Vo1.1997, Ch.29, No.3, pp185-
190, ISBN 1-86-058098-x. 

Hirota, K. and Hirose, M., 1995, Simulation and Presentation of Curved Surface in 
Virtual Reality Environment Through Surface Display. Proceedings of the Virtual 
Reality Annual International Symposium '95, Ch,29, pp211-216, ISBN 0-81-867084-
3. 

Hollands, RJ. and Mort, N., 1994. Manufacturing Systems Simulation Mixed Mode and 
Virtual Reality Simulation. Fourth International Conference on Factory 2000-
Advanced Factory Automation, Ch.99, No.398, pp651-657, ISBN 0-85296626-1. 

Iuliano, M., and Jones, A., 1996. Controlling Activities in a Virtual Manufacturing Cell. 
Proceedings of the 1996 Winter Simulation Conference, Ch.213, pp1062-1067, ISBN 
0-78-033383-7. 

Jones, K. C. 1993. Virtual Reality for Manufacturing Simulation. Proceedings of the 
Winter Simulation Conference, New York, USA, pp883-887. 

Jones, A., and Iuliano, M., 1997. A Virtual Manufacturing Testbed. Proceedings of the 
1997 IEEE International Conference on Systems, Man, and Cybernetics, Vols.I-5, 
Ch.790, pp737-742, ISBN 0-78-034054-x. 

Jones, P. 1999. Three-Dimensional Input Device with Six Degrees of Freedom. 
MECHATRONICS, Vo1.9, No.7, pp717 - 729. 

Karacali, 0., 1995. Towards User Oriented Object Modelling in Virtual Reality, 
Proceedings of the IEEE Southeast CON'95-Visualize The Future, Ch.91, pp454-460, 
ISBN 0-78-032642-3. 

Kerttula, M., and Salmela, M., and Heikkinen, M., 1997. Virtual Reality Prototyping - a 
Framework for the Development of Electronics and Telecommunication Products. 
Proceedings of the 8th IEEE International Workshop on Rapid System Prototyping, 
Ch.22, pp2-11, ISBN 0-81-868064-4. 

Korves, B., and Loftus, M., 1999. The Application of Immersive Virtual Reality for 
Layout Planning of Manufacturing Cells. Journal of Engineering Manufacture, 

174 



REFERENCES 

Vo1.213, No.1, pp87-91, ISSN 0954-4054. 

Lee, K.I., and Noh, S.D., 1997. Virtual Manufacturing System - A Test Bed of 
Engineering Activities. CIRP Annals 1997 Manufacturing Technology, VoI.46/1/1997, 
Ch.114, pp347-350, ISBN 3-90-527727-1. 

Loo, P. L., 1991. The Starship Manual - Version 2.0. ISS TR91-54-0. Institute of System 
Science, National University of Singapore, Singapore. 

Macedonia, M. R., Zyda, M. 1., Pratt, D. R., Barham, P. T. and Zeswitz, S., 1995. 
NPSNET: A Networksoftware Architecture for Large Scale Virtual Enviornments. 
Presence: Teleoperators and Virtual Environments, MIT Press, Boston, 3(4). 

Massie, T., and Salisbury, J., 1994. The PHANToM Haptic Interface: A Device for 
Probing Virtual Objects. Proceedings of the ASME Winter Annual Meeting, 
Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. 

Matsuda, M., and Kimura, F., 1997. Generation of Milling Data in a Virtual 
Manufacturing Framework. Information Infrastructure Systems for Manufacturing, 
Ch.39, pp277-288, ISBN 0-41-278800-4. 

Maxfield, 1., Fernando, T. and Dew, P., 1995. A Distributed Virtual Environment for 
Concurrent Engineering. Virtual Reality Annual International Symposium'95, ISBN 0-
8186-7084-3/95. 

Mckenna, M., and Zeltzer, D., 1992. Three Dimensional Visual Display Systems for 
Virtual Environments. Presence, VoU, pp421-458. 

McNeely, Burdea, W., Hannaford, G., and Hirose, B., 1995. Whither Force Feedback. 
IEEE Annual Virtual Reality International Symposium, Los Alamitos, CA, USA. 

Meyer, K., Applewhite, H. L., and Biocca, F. A., 1992. A Survey of Position Trackers. 
Presence, Vol.1, No.2, pp73-200. 

Mironov, S., 1998. Simulation of an Intelligent Objects Behaviour in a Virtual Reality 
System. New Approaches to High-Tech Materials: Non-destructive Testing and 
Computer Simulations in Materials Science and Engineering, Vo1.3345, Ch.54, 
pp285-288, ISBN 0-81-942792-6. 

Mizel, 0., and David W, 1994. Virtual Reality and Augmented Reality in Aircraft Design 
and Manufacturing. Wescon Conference Record, Wescon, Los Angeles, CA, USA. 

MultiGen: SmartScene Version 1.1, 1997 Release Notes, MultiGen Inc., San Jose, USA, 
1997. 

Narayanan, S., and Bodner, D. A., 1997. Research in Object-Oriented Manufacturing 

175 



REFERENCES 

Simulations: An Assessment of the State of the Art. IlE Transaction. 

Neira, C., Sadin, C., and Daniel, J., 1992. Cave. Audio Visual Experience Automatic 
Virtual Environment. Communications of the ACM, Vo1.35, No.6, pp65-72. 

NSF, 1992. US Government's National Science Foundation. Computer Graphics, Vo1.26, 
No.3, ACM SIGGRAPH. 

Orady, E.A., and Osman, T.A., Bailo, C.P., 1997. Virtual Reality Software for Robotics 
and Manufacturing Cell Simulation. Computers & Industrial Engineering, Vol. 33, 
No.I-2, pp87-90, ISSN 0360-8352. 

Ozdemirel, N. E., Mackulak, G. T., and Cochran, J. K., 1993. A Group Technology 
Classification and Coding Scheme for Discrete Manufacturing Simulation Models. 
International Journal of Computer Integrated Manufacturing, 31(3), pp579-601. 

Polis, M., Gifford, S. and McKeown, D., 1995. Automating the Construction of Large
Scale Virtual Worlds. 1995 IEEE Computer, pp 57-65, ISSN 0018-9162. 

Rajamani, D., 1993. Classification and Coding of Components for Implementing a 
Computerised Inventory Control-System for a Television Assembling Industry. 
International Journal of Production Economics, Vo1.32, No.2, pp133-154 ISSN 0925-
5273. 

Rheingold, H., 1992, Virtual Reality, ISBN: 0749308893, MANDARIN, London. 

Ritchie, J. M., Dewar, R. G., and Simons, 1. E. L., 1999. The Generation and Practical 
Use of Plans for Manual Assembly Using Immersive Virtual Reality. Proceedings of 
the Institution of Mechanical Engineers, Vo1.213, No.5, pp461-474, ISBN 0954-4054. 

Rosen, D. W., Bras, 8., Mistree, F., Goel, A., 1995. Virtual Prototyping for Product 
Demanufacture and Service Using a Virtual Design Studio Approach. ACME 
Computers in Engineering Conference. 

Roussos, M., Johnson, A., Moher, T., Leigh, J., Vasilakis, C., and Barnes, C., 1999. 
Learning and Building Together in an Immersive Virtual World. Presence
Teleoperators and Virtual Environments, 1999, Vo1.8, No.3, pp247-263. 

Sequeira, V., Ng, K., Wolfart, E., Goncalves, 1. G. M., and Hogg, D., 1999. Automated 
Reconstruction of 3D Models from Real Environments. Isprs Journal of Photo 
Grammetry and Remote Sensing, Vo1.54, No.1, pp.I-22 ISSN 0924-2716. 

Shaw, C., Green, M., Liang, 1., and Sun, Y., 1993. Decoupled Simulation in Virtual 
Reality with the MR Toolkit. ACM Transactions on Information Systems, 11(3), 
pp287-317. 

176 



REFERENCES 

Singh, G., Nordhausen, B., Bhonsle, S., and Thennarangam, S., 1993. A Software Toolkit 
for Network-Based Virtual Worlds. Proceedings of the InterCH1'93 Research 
Symposium, Amsterdam, Netherland. 

Singh, G., Serra, L., Fairchild, K., and Poston, T., 1994. Visual Creation of Virtual 
Design Environments and Virtual Worlds Research at ISS. Presence, Vol.3, No.1. 

Singh, G., Serra, L., Png, W., & Ng, H., 1994. BrickNet: A Software Toolkit for 
Network-Based Virtual Worlds. Presence: Teleoperators and Virtual Environments, 
3(1), ppI9-34. 

Singh, G., Serra, L., Png, W., Wang, A, and Ng, H., 1995. BrickNet: Sharing Object 
Behaviours on the NET. Proceeding of IEEE Virtual Reality Annual International 
Symposium (VRAIS'95), ppI9-25, ISBN 0-8186-7084-3. 

Smith, R P., and Heim, 1. A., 1999. Virtual Facility Layout Design: the Value of an 
Interactive Three-Dimensional Representation. International Journal of Production 
Research, Vol.37, No.17, pp3941-2957. 

Sowizral, H., Barnes, A, and James, C., 1993. Tracking Position and Orientation in a 
Large Volume. 1993 IEEE Annual Virtual Reality International Symposium, IEEE 
Service Center, Piscataway, NJ, USA 

Stampe, D., Roehl, B., and Eagan, 1., 1993. Virtual Reality Creations: Explore, 
Manipulate, and Create Virtual Worlds on Your PC, The Waite Group, Inc., Waite 
Group Press, California. 

Sun, W. and Clapworthy, G. 1., 1996. Modelling Figure Animation for Virtual 
Environments. Proceedings of the UK-VRSIG'3. 

Takalo, J., Ensomaa, 1., and Plomp, J., 1998. A Hierarchical Virtual Environment for a 
Machine Fault Diagnostic Application. Future Generation Computer Systems, Vol. 14, 
No.3-4, pp 179-184. 

Taylor, R, Bayliss, G., Bowyer, A, and Willis, P., 1995. A Virtual Workshop For 
Design By Manufacture. 15th ASME International Computers in Engineering 
Conference, Boston USA 

Tian, B., Zhu, R. M., Wang, Q. T., and Dai G. Z., 1997. Message-Driven Object-Oriented 
Programming: A Promising Solution to Virtual Reality Construction. 1997 IEEE 
International Conference on Intelligent Processing Systems, Beijing, China. 

Trika, S. N., Banerjee, P., and Kashyap, R L., 1997. Virtual Reality Interface for 
Feature-Based Computer-Aided Design Systems. Computer-Aided Design, Vo1.29, 
No.8, pp565-574. 

177 



REFERENCES 

Turner, R., Li, S., and Gobbetti, E., 1999. Metis - an Object-Oriented Toolkit for 
Constructing Virtual Reality Applications. Computer Graphics Forum, Vol.18, No.2, 
pp122-130. 

Ulgen, O. M., and Thomasma, T., 1990. SmartSim: An Object Oriented simulation 
program generator for manufacturing systems. International Journal of Computer 
Integrated Manufacturing, 28(9), ppI713-1730. 

Vance, J. M., 1996. Virtual Reality: What Potential Does it Hold for Engineering? 
Proceedings of the International Conference on Mechanical Design and Production. 
Vo1.2. 

Vince, J., 1995. Virtual Reality System, ISBN 0-201-87687-6, Addision-Wesley 
Publishing Company. 

Viswanadham, N. and Narahari, Y., 1992. Performance Modelling of Automated 
Manufacturing System, ISBN 0-13-658824-7. 

VRT Manual, 1997. Superscape Co.Ltd, UK. 

Walczak, K., 1996. Integration of Virtual Reality and Multimedia Data in Databases. 
Proceedings of the International Workshop on Multimedia Database Management 
Systems, Ch.21, pp80-84, ISBN 0-81-867469-5. 

Wang, Q. J., Green, M. and Shaw, C., 1995. EM- An Environment Manager for Building 
Networked Virtual Environments. Virtual Reality Annual International Symposium '95, 
ISBN 0-8186-7084-3/95. 

Watanabe, II., and Ohashi, K., and Takahashi, N., and Kato,K., Fujita, S., 1997. Virtual 
Manufacturing Workcell for Engineering. Architectures, Networks, and Intelligent 
Systems for Manufacturing Integration, Vo1.3203, Ch.22, pp116-124, ISBN 0-81-
942635-0 

West, A. l, Howard, T. L. J., Hubbold, R. J., Murta, A. D., Snowdon D. N., and Butler, 
D. A, 1992. AVIARY - A Generic Virtual Reality Interface for Real Applications. 
Proceedings of the Virtual Reality Systems Conference, (also published in Virtual 
Reality Systems, R.A Earnshaw, M.A Gigante and H. Jones (Eds), Academic Press, 
1993, pp 213-236.) 

Wilson, J. R., Cubb, S., Cruz, M. D. and Eastgate, R., 1996. Virtual Reality for Industrial 
Application Opportunities and limitations, Nottingham University Press. ISBN 1-
897676-573. 

WorldUp User's Guide, version 4, Sense8 Co.Ltd. 

WorldToolkit Reference Manua I, version 7, Sense8 Co.Ltd. 

178 



REFERENCES 

Xiao, P., Li. G., Yang, M., 1997. The Application of Virtual Reality to Product 
Development of Automobile Parts and Spares. 1997 IEEE International Conference 
on Intelligent Processing Systems, VoU and 2, Ch.412, ppI752-1755. 

Young, P., 1996. Virtual Reality Systems, Survey ofVR and VRML Systems. 
http://www.dcs.ed.ac. uk/-dcs3 py /pages/workl documents/ VR -survey /index.html, 
University of Durham. 

Zetu, D., Schneider, P., and Banerjee, P., 1997. A Fast Data Input Model For Virtual 
Reality-Aided Factory Layout And Material Handling Decision Support. 1997 ASME 
Computer in Engineering Conference, Sacramento, California. 

Zhao, Z. X, 1997. Constructing and Managing Complex Virtual Worlds for 
Manufacturing Applications. Proceedings of UKVR-SIG Annual Conference, Brunel 
University, UK. 

Zhao, Z. X, 1998. A Variant Approach to Constructing and Managing Virtual 
Manufacturing Environments. International Journal of Computer Integrated 
Manufacturing, VoUl, No.6, pp485-499. 

179 



GLOSSARY OF TERMS 

Glossary of Terms 

GOOF: Six Degrees of Freedom. Ability to move in three spatial directions and orient about three 

axes passing through the center of the object. 

absolute values: Position and orientation within a virtual space as measured from a single, 

constant point of origin - the virtual universe. 

accelerator: Specialized hardware that increases the speed of graphics calculations. 

ambient light: Naturally occurring illumination arising from outside the apparatus. 

animation: recorded sequence of object activities. 

API: Application Programmers Interface. 

articulation: Objects composed of several parts that are separably moveable. 

artificial reality: Simulated spaces created from a combination of computer and video systems 

(also called virtual reality). 

augmented reality: The use of transparent glasses on which a computer displays data so that 

the viewer can simultaneously view computer generated and real world scenes. 

autonomy: Performance or action of the object on the rule of physics, biology, or a virtual world, 

but not by independent decision of a human operator. 

backdrop: The stationary background in a virtual world. The boundary of the world which cannot 

be moved or broken into smaller elements. 

BOOM: Binocular Omni-Orientation Monitor. A 3-D display device suspended from a weighted 

boom that can swivel freely so the viewer can use the device by bringing the device up to the 

eyes and viewing the 3-D environment while holding it. The boom's position and orientation 

communicates the user's point of view to the computer. 

bounding Box: Also known as Extents Box (smallest box that surrounds an object). The term 

bounding box sometimes refers to the fact that extents boxes can be made visible in the 

scene. 

Browser: Indexes, lists or animated maps, to provide a means of navigating through the physical, 

temporal, and conceptual elements of a virtual world. 

CAVE: VR world projected on the walls and ceiling of a room to give the illusion of immersion. 

child object: A scene graph node that is a direct descendent of another (parent) node. 

collision detection: Intersection testing of objects at either the bounding box level or at the 

polygon level. 

coordinates: A set of data values that determine the location of a paint in a space. The number 

of coordinates corresponds to the dimensionality of the space. 

180 



GLOSSARY OF TERMS 

coordinate system: A positional system, containing X, Y, and Z components, by which three

dimensional entities can be described. 

culling: Removing invisible pieces of geometry and only sending potentially visible geometry to 

the graphics subsystem. Simple culling rejects entire objects not in the view. More complex 

systems take into account occlusion of some objects by others, e.g. a building hiding trees behind 

it. 

data glove: A glove wired with sensors and connected to a computer system for gesture 

recognition and navigation through a virtual environment. Known generically as a "wired glove." 

data source: an instance of a database management system. 

depth cueing: Use of shading, texture, color, interposition, or other visual characteristics to 

provide a cue for the distance of an object from the observer. 

dynamics: The rules that govern all actions and behaviors within the environment. 

environment: In VR terms, this is a computer-generated model that can be experienced by an 

observer as if it were a place. 

force feedback: An output device that transmits pressure, force or vibrations to provide the VR 

participant with the sense of resisting force, typically to weight or inertia. This is in contrast to 

tactile feedback, which simulates sensation applied to the skin. 

function: A scheme used in event-driven programs where the program registers a callback 

handler for a certain event. The program does not call the handler directly but when the event 

occurs, the handler is called, possibly with arguments describing the event. 

geometry: A collection of polygons (composed of vertices) used to model physical objects. 

group node: A scene graph node that has children, but no other properties. 

GUI: Graphical User Interface. 

haptic interfaces: Use of physical sensors to provide users with a sense of touch at the skin 

level, and force feedback information from muscles and jOints. 

head tracking: Monitoring the position and orientation of the head through various tracking 

device. 

hidden surface: A surface of a graphics object that is occluded from view by intervening objects. 

hierarchy: Used in the context of scene graphs, hierarchy refers to how the nodes in a scene 

graph are organized and the relationship of one node to another. 

HMO: Head Mounted Display. A set of goggles or a helmet with tiny monitors in front of each eye 

to generate images seen by the wearer as three-dimensional. Often the HMO is combined with a 

head tracker so that the images displayed in the HMO change as the head moves. 

Immersion: The observer's emotional reaction to the virtual world as being part of it. 

Interface: A set of devices, software, and techniques that connect computers with people to 

perform tasks. 

181 



GLOSSARY OF TERMS 

inverse kinematics: A specification of the motion of dynamic systems from properties of their 

joints and extensions. 

KAMVR: A computing system developed in the University of Derby for dealing with virtual 

environment-based knowledge, its acquisition and management. 

latency: Lag between user motion and tracker system response, sometimes measured in from 

as. Delay between actual change in position and reflection by the program. Delayed response 

time. 

LCD: Liquid Crystal Display. Display devices that use bipolar films sandwiched between this 

panes of glass. They are lightweight and transmissive or reflective, and are often used in HMOs. 

LOO: Level-of-detail. A model of a particular resolution among a series of models of the same 

object. Greater graphic performance can be obtained by using a lower LOD when the object 

occupies fewer pixels on the screen or is not in a region of significant interest. 

matrix: An array of data used as mathematical entity for representing position and orientation in 

3D space. 

model: A computer-generated simulation physical things or events. 

navigation: Purposeful motion through virtual space. 

objects: Discrete 3-D shapes within the virtual world that a user can interact with. 

OOSC: Open Database Connectivity. A programming utility for linking applications with various 

database management system. 

perspective: The rules that determine the relative size of objects on a flat viewing surface to give 

the perception of depth. 

pitch: The angular displacement of the lateral axis about a horizontal axis perpendicular to the 

lateral axis. 

polygon: A display element that consists of an area enclosed by a set of by a set of broken 

straight lines. 

presence: A feeling of being immersed in an environment, able to interact with object there. A 

defining characteristic of a VR system. 

real time: Action taking place with no perceptible or significant delay after the input that initiates 

the action. 

rendering: Generation of a graphical image from mathematical models of three-dimensional 

objects, i.e. a scene. 

roll: Angular displacement about the lateral axis. 

rotation: The turning of an object so that it has a different orientation. 

scene: The virtual world being displayed. 

scene graph: A scene graph is a hierarchical arrangement of nodes (such as geometry, light, 

fog, and positional information) representing objects in a simulation. A universe can 

contain more than one scene graph. 

182 



GLOSSARY OF TERMS 

scene graph tree The scene graph is arranged as an upside down tree, where the root is on the 

top and the branches and leaves are on the bottom. 

SDK: Superscape Developers Kit, a C function library for API programming. 

sibling object: Children of the same parent node are siblings. 

spatial navigation: Self-orientation and locomotion in virtual worlds. 

SQl: Structured Ouery language. A specialized programming language for sending queries to 

databases. Most industrial-strength and many smaller database applications can be addressed 

using SOL. Each specific application will have its own version of Sal implementing features 

unique to that application, but all Sal-capable databases support a common subset of SOL. 

tactile displays: Devices that provide tactile and kinesthetic sensations. 

telemanipulation: Robotic control of distant objects. 

teleoperator: Person doing telemanipulation. 

telepresence: Remote control with adequate sensory data to give the illusion of being at that 

remote location. 

tracker: A device that provides numeric coordinates to identify the current position andl or 

orientation of an object or user in real space. 

universe: The collection of all entities and the space they are embedded in for a VR world. 

viewpoints: Points from which ray tracing and geometry creation occurs. The geometric eye point 

of the simulation. 

virtual environments: Realistic simulations of interactive scenes. 

virtual prototype: Simulation of an intended design or product to illustrate the characteristics 

before actual construction. Usually used as an exploratory tool for developers or as a 

communications prop for persons reviewing proposed designs. 

virtual reality. A computer system used to create an artificial world in which the user has the 

impression of being in that world with the ability to navigate through the world and manipulate 

objects in the world. 

virtual world: Whole virtual environment or universe within a given simulation. 

visualisation: The ability to graphically represent abstract data that would normally appear as 

text and numbers on a computer. 

VRT: 3D authoring studio from Superscape Co. Ltd. for virtual environment editing. 

WAN: Wide Area Network. Any internet or network that covers an area larger than a single 

building or campus. 

WWW: World wide Web. A hypermedia system that allows you to browse through lots of 

information using a browser. It is a preferred method of presenting and accessing information on 

the Internet. 

yaw: The angular displacement about the vertical axis. 

183 



APPENDIXA 

Appendix A: KAMVR task coding scheme 

G 1: Describes the type of key virtual object, which can have one of three values 0, 1 

and 2. 0 is for a rotational object, 1 is for a prismatic object, and 2 is for a 

complex shape. 

G2: For a rotational object, it represents the length-diameter ratio (LID). It has 4 

options, 0 for LID ratio less than 1, 1 for LID ratio greater than 1 and less than 15, 

2 for LID ratio greater than 15 and less than 50, and 3 for LID ratio greater than 

50. If the object is a prismatic or complex shape, the digit represents the shape, 0 

for a cube, 1 for a cuboid, 2 for a composite, or 3 for a triangular shape. 

G3: Defines the length of the part. It has 12 options, 0 for length of less than 40mm, 1 

for greater than 40mm and less than 80 mm, until B (Hexadecimal) for less than 

2900mm. 

G4: Defines features of the object. If the object is rotational, the digit has 4 options, 0 

for no features, 1 for a stepped shaft, 2 for a pocket, 3 for a hole. For a non

rotational object, 0 for step milling, 1 for slot milling, 2 for a through hole, 3 for a 

blind hole. 

G5: Defines the material, 0 for metal or 1 for non-metal. 

S 1: Defines the scale of a virtual manufacturing environment, where 0 stands for large 

scale and 1 for small scale. 

S2: Provides details description of the environment. Depending on the scale digit, if it 

is a large scale environment, then 0 is for object quantities greater than 10000, 1 

is for less than 10000. Otherwise, 0 for greater than 10, 1 for single object. 

Rl: Geometry detail level digit, 0 for low, 1 for high. 

R2: Simulation level digit, 0 for low, 1 for medium, 2 for high. 

R3: Interaction mode digit, 0 for immersive, I for desktop. 

A-I 



APPENDIXB 

Appendix B: Function modules for VE data acquisition 

/* 
This program has registered a new SCL function - "SaveStan", 
which taking an object number from data stack as function parameter, 
and then writting the object standard information into a ASCII file. 
*/ 

/*Included header files*/ 

#include "APP DEFS.H" //Defines various short cuts and values 
//for the short cut 

#include 
#include 
#include 
#include 

<stdio.h> 
<stdlib. h> 
<string.h> 
<ctype.h> 

/*Internal function declaration*/ 

static void vrtcall SCL_Saverl(void); 

/* 
Defined function properties 
*/ 

short App_Init(void); 
short App_Exit(void); 

/*New SCL function declaration*/ 

static T COMPILEREC 

command 

'procedure' 

parameter type is 

object number 

parameter type is 

number represents MVEID 

static short 

NewSCL= 
{ 

} ; 

SCLCode; 

"SaveStan", //Name of the new 

0, 
Ox20, 

0, 

//Function code 
//2 input, 0 output 

//Compiler code 

E_PROCEDURE,//Function type is 

E_SSNONE, //None return value 
E_SSOBJNUM, //First input 

//virtual 

E_SSINTEGER,//Second input 

//an interger 

//Deinstallation code 

B-1 



/*Application initialisation*/ 

short App_Init(void) 
( 

APPENDIXB 

SCLCode=RegisterSCL(&NewSCL,SCL_Saverl);//Register new SCL 
function 

if(SCLCode<O) //Checking 
registration result 

return(E_ERROR); 
return(E_OK); 

/*Application exit,unregisters SCL instructions*/ 

short App_Exit(void) 
{ 

UnRegisterSCL(SCLCode); 

return (E_OK) ; 

/*Internal function definitions*/ 

static void 
( 

vrtcall SCL_Saverl(void) 

short ObjNum; 
input value 

short MVEIO; 
master 

//Oeclare variable for holding 

//Oeclare variable for holding 

//environment 10 

/*Oeclare pointers pointing to the object attribute data 
structure*/ 

T WORLOCHUNK *Object, *1nitSize, *1nitPos, *Rotation, 
*Viewpolnt; // 

FILE *f; 
information 

//File pointer for saving object 

/*This two values will be used as combined external key values 
in the data file*/ 

MVEIO=PopN(E_SSINTEGER); 
the stack 

ObjNum=PopN(E_SSOBJNUM); 

//Get master environment 10 from 

//Get object number from the 
stack 

/*Find addresses of required attributes data section*/ 

Object=ChunkAdd(ObjNum,E_CTSTANOARO); 
1nitSize=ChunkAdd(ObjNum,E_CT1N1TSIZE); 
1nitPos=ChunkAdd(ObjNum,E_CTINITPOS); 

Rotation=ChunkAdd(ObjNum,E_CTROTAT10NS); 
Viewpoint=ChunkAdd(ObjNum,E_CTV1EWP01NT); 

/*retrieving and saving information in a file*/ 

if (Object !=NULL) 
{ 

B-2 



f=fopen("Stansardlnfo.txt", "a"); 

fprintf(f,"%ld\t", Object->Std.Number); 
fprintf(f,"%ld\t", MVEID); 

fprintf(f,"%ld\t", Object->Std.XSize); 
fprintf(f,"%ld\t", Object->Std.YSize); 
fprintf(f,"%ld\t", Object->Std.ZSize); 
fprintf(f,"%ld\t", Object->Std.XPos); 
fprintf(f,"%ld\t", Object->Std.YPos); 
fprintf(f,"%ld\t", Object->Std.ZPos); 
fprintf(f,"%ld\t", InitSize->Isz.IXSize); 
fprintf(f,"%ld\t", InitSize->Isz.IYSize); 
fprintf(f,"%ld\t", InitSize->Isz.IZSize); 
fprintf(f,"%ld\t", InitPos->Ips.IXPos); 
fprintf(f,"%ld\t", InitPos->Ips.IYPos); 
fprintf(f,"%ld\t", InitPos->Ips.IZPos); 
fprintf(f,"%ld\t", Rotation->Rot.XCentre); 
fprintf(f,"%ld\t", Rotation->Rot.YCentre); 
fprintf(f,"%ld\t", Rotation->Rot.ZCentre); 
fprintf(f,"%ld\t", Viewpoint->Vpt.NumVPs); 
fprintf (f, "%Id\ t", (Viewpoint->Vpt. View) ->ObjView) ; 
fprintf (f, "%Id\t\n", (Viewpoint->Vpt. View) ->ObjCon); 

fclose (f) ; 

B-3 

APPENDIXB 



APPENDIXB 

/* 
This program has registered a new SCL function - "SaveDyna", 
which taking an object number from data stack as function parameter, 
and then writting the object dynamic information into a ASCII file. 
*/ 

/*Included header files*/ 

#include "APP DEFS.H" //Defines various short cuts and values 
//for the short cut 

#include 
#include 
#include 
#include 

<stdio.h> 
<stdlib.h> 
<string.h> 
<ctype.h> 

/*Internal function declaration*/ 

static void vrtcall SCL_Saver2(void); 

/* 
Defined function properties 
*/ 

short App Init(void); 
short App=Exit(void); 

/*New SCL function declaration*/ 

static T COMPILEREC 

command 

'procedure' 

parameter type is 

object number 

parameter type is 

number represents MVEID 

static short 

NewSCL= 
{ 

} ; 

SCLCode; 

/*Application initialisation*/ 

short App_Init(void) 
{ 

"SaveDyna", //Name of the new 

0, 
Ox20, 

0, 

//Function code 
//2 input, 0 output 

//Compiler code 

E_PROCEDURE,//Function type is 

E_SSNONE, //None return value 
E_SSOBJNUM, //First input 

//virtual 

E_SSINTEGER,//Second input 

//an interger 

//Deinstallation code 

B-4 



APPENDIXB 

SCLCode=RegisterSCL(&NewSCL,SCL_Saver2)i//Register new SCL 
function 

if(SCLCode<O) //Checking 
registration result 

return(E_ERROR)i 
return (E_OK) i 

/*Application exit,unregisters SCL instructions*/ 

short App_Exit(void) 
{ 

UnRegisterSCL(SCLCode)i 

return (E_OK) i 

/*1nternal function definitions*/ 

static void 
{ 

vrtcall SCL_Saver2(void) 

short ObjNumi 
input value 

//Oeclare variable for holding 

short MVE10i //Oeclare variable for holding 
master 

//environment 10 

/*Oeclare pointers pointing to the object attribute data 
structure*/ 

T WORLOCHUNK *Object, *Oynamics, *AngVel, *Rotationi 

FILE *fi 
information 

//File pointer for saving object 

/*This two values will be used as combined external key values 
in the data file*/ 

MVE10=PopN(E_SS1NTEGER)i 
the stack 

ObjNum=PopN(E_SSOBJNUM)i 

//Get master environment 10 from 

//Get object number from the 
stack 

/*Find addresses of required attributes data section*/ 

Object=ChunkAdd(ObjNum,E_CTSTANOARO)i 
Oynamics=ChunkAdd(ObjNum, E_CTDYNAMICS)i 
AngVel=ChunkAdd(ObjNum, E_CTANGVELS)i 
Rotation=ChunkAdd(ObjNum, E_CTROTAT10NS)i 

/*retrieving and saving information in a file*/ 

if(Object!=NULL) 
{ 
f=fopen("Dynamic1nfo.txt", "a")i 

fprintf(f,"%ld\t", Object->Std.Number)i 
fprintf(f,"%ld\t", MVE10)i 

/*Note: 3D vector data, not array*/ 

B - 5 



fprintf(f, "%ld\t", (Dynamics->Oyn.Drive) .x); 
fprintf(f, "%ld\t", (Dynamics->Dyn.Drive) .y); 
fprintf(f, "%ld\t", (Dynamics->Oyn.Orive) .z); 
fprintf(f, "%ld\t", (Oynamics->Oyn.External) .x); 
fprintf(f, "%ld\t", (Oynamics->Oyn.External) .y); 
fprintf (f, "%ld\ t", (Oynamics->Oyn. External) . z) ; 
fprintf(f, "%ld\t", (Oynamics->Oyn.Vel) .x); 
fprintf(f, "%ld\t", (Oynamics->Oyn.Vel) .y); 
fprintf(f, "%ld\t", (Oynamics->Oyn.Vel) .z); 
fprintf(f, "%ld\t", (Oynamics->Oyn.GroundFric) .x); 
fprintf(f, "%ld\t", (Oynamics->Oyn.GroundFric) .y); 
fprintf(f, "%ld\t", (Oynamics->Oyn.GroundFric) .z); 
fprintf(f,"%ld\t", AngVel->Ang.XAngV); 
fprintf(f,"%ld\t", AngVel->Ang.YAngV); 
fprintf(f,"%ld\t", AngVel->Ang.ZAngV); 
fprintf(f,"%ld\t", AngVel->Rot.XRot); 
fprintf(f,"%ld\t", AngVel->Rot.YRot); 
fprintf(f,"%ld\t", AngVel->Rot.ZRot); 
fprintf (f, "%ld\ t", (Oynamics->Oyn. IOri vel . x) ; 
fprintf (f, "%ld\ t", (Oynamics->Oyn. IOri ve) . y) ; 
fprintf (f, "%ld\ t", (Oynamics->Oyn. IOri vel . z) ; 
fprintf (f, "%ld\ t", (Oynamics->Dyn. IExternal) . x) ; 
fprintf (f, "%ld\ t", (Oynamics->Oyn. IExternal) . y) ; 
fprintf (f, "%ld\ t", (Oynamics->Oyn. IExternal) . z) ; 
fprintf (f, "%ld\ t", (Oynamics->Oyn. IVel) . x) ; 
fprintf (f, "%ld\ t", (Oynamics->Oyn. IVel) . y) ; 
fprintf(f, "%ld\t", (Oynamics->Oyn.IVel) .z); 
fprintf (f, "%ld\t", (Dynamics->Dyn. IGroundFric) .x); 
fprintf (f, "%ld\ t", (Oynamics->Oyn. IGroundFric) . y) ; 
fprintf (f, "%ld\ t", (Dynamics->Oyn. IGroundFric) . z) ; 
fprintf(f,"%ld\t", AngVel->Ang.IXAngV); 
fprintf (f, "%ld\t", AngVel->Ang. IYAngV) ; 
fprintf (f, "%ld\ t", AngVel->Ang. IZAngV) ; 
fprintf(f,"%ld\t", AngVel->Rot.IXRot); 
fprintf(f,"%ld\t", AngVel->Rot.IYRot); 
fprintf (f, "%ld\ t \n", AngVel->Rot. IZRot) ; 

fclose(f); 

8-6 

APPENDIXB 



APPENDIXB 

/* 
This program has registered a new SCL function - "SaveStat", 
which taking an object number from data stack as function parameter, 
and then writting the object shape information into a ASCII file. 
*/ 

/*Included header files*/ 

#include "APP DEFS.H" //Defines various short cuts and values 
//for the short cut 

#include 
#include 
#include 
#include 

<stdio.h> 
<stdlib. h> 
<string.h> 
<ctype.h> 

/*Internal function declaration*/ 

static void vrtcall SCL_Saver3(void)i 

/* 
Defined function properties 
*/ 

short App_Init(void)i 
short App_Exit(void)i 

/*New SCL function declaration*/ 

static T COMPILEREC 

command 

'procedure' 

parameter type is 

object number 

parameter type is 

number represents MVEID 

static short 

NewSCL= 
{ 

} i 

SCLCodei 

/*Application initialisation*/ 

short App_Init(void) 
{ 

"SaveStat", //Name of the new 

0, 
Ox20, 

0, 

//Function code 
//2 input, 0 output 

//Compiler code 

E_PROCEDURE,//Function type is 

E_SSNONE, //None return value 
E_SSOBJNUM, //First input 

//virtual 

E_SSINTEGER,//Second input 

//an interger 

//Deinstallation code 

B-7 



APPENDIXB 

SCLCode=RegisterSCL(&NewSCL,SCL Saver3);//Register new SCL 
function -

if (SCLCode<O) //Checking 
registration result 

return(E_ERROR); 
return(E_OK); 

/*Application exit,unregisters SCL instructions*/ 

short App_Exit(void) 
{ 

UnRegisterSCL(SCLCode) ; 

/*Internal function definitions*/ 

static void 
{ 

vrtcall SCL_Saver3(void) 

short ObjNum; 
input value 

//Oeclare variable for holding 

short MVEIO; //Oeclare variable for holding 
master 

//environment 10 

/*Oeclare pointers pointing to the object attribute data 
structure*/ 

T WORLOCHUNK *Object, *Color, *Oistance, *Sorting, *Collision, 
*Attachment, *LightSrc, *LitColor, *Texture; 

FILE *f; 
information 

//File pointer for saving object 

/*This two values will be used as combined external key values 
in the data file*/ 

MVEID=PopN(E_SSINTEGER); 
the stack 

ObjNum=PopN(E_SSOBJNUM); 

//Get master environment ID from 

//Get object number from the 
stack 

/*Find addresses of required attributes data section*/ 

Object=ChunkAdd(ObjNum,E_CTSTANOARO)i 
Color=ChunkAdd(ObjNum,E_CTCOLOURS); 
Distance=ChunkAdd(ObjNum,E_CTDISTANCE); 
Sorting=ChunkAdd(ObjNum,E_CTSORTING); 
Collision=ChunkAdd(ObjNum,E_CTCOLLISION); 
Attachment=ChunkAdd(ObjNum,E_CTATTACHMENTS); 
LightSrc=ChunkAdd(ObjNum,E_CTLIGHTSOURCE); 
LitColor=ChunkAdd(ObjNum,E_CTLITCOLS); 
Texture=ChunkAdd(ObjNum,E_CTTEXTURES)i 

/*retrieving and saving information in a file*/ 

if(Object!=NULL) 

B-8 



f=fopen("StaticInfo.txt", "a"); 

fprintf(f,"%ld\t", Object->Std.Nurnber); 
fprintf(f,"%ld\t", MVEID); 

APPENDIXB 

fprintf(f,"%c\t", Color->Col.Colour); 
fprintf(f,"%ld\t", Distance->Dis.VisDist); 
fprintf(f,"%ld\t", Distance->Dis.InvDist); 
fprintf(f,"%ld\t", Distance->Dis.RepIace); 
fprintf(f,"%ld\t", Sorting->Sor.XPos); 
fprintf(f,"%ld\t", Sorting->Sor.YPos); 
fprintf(f,"%ld\t", Sorting->Sor.ZPos); 
fprintf(f,"%ld\t", Sorting->Sor.XSize); 
fprintf(f,"%ld\t", Sorting->Sor.YSize); 
fprintf(f,"%ld\t", Sorting->Sor.ZSize); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->XSize); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->YSize); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->ZSize); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->XOff); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->YOff); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->ZOff); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->IXSize); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->IYSize); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->IZSize); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->IXOff); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->IYOff); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->IZOff); 
fprintf (f, "%ld\ t", (Attachment->Att. Att) ->Facet) ; 
fprintf(f, "%ld\t", (Attachrnent->Att.Att)->Object); 
fprintf(f,"%ld\t", LightSrc->Lig.XVOff); 
fprintf(f,"%ld\t", LightSrc->Lig.YVOff); 
fprintf(f,"%ld\t", LightSrc->Lig.ZVOff); 
fprintf(f,"%ld\t", LightSrc->Lig.IXVOff); 
fprintf(f,"%ld\t", LightSrc->Lig.IYVOff); 
fprintf(f,"%ld\t", LightSrc->Lig.IZVOff); 
fprintf(f,"%ld\t", LightSrc->Lig.Bright); 
fprintf(f,"%ld\t", LightSrc->Lig.IBright); 
fprintf(f,"%ld\t", LightSrc->Lig.BeamWidth); 
fprintf(f,"%ld\t", LightSrc->Lig.IBearnWidth); 
fprintf(f,"%ld\t", LightSrc->Lig.Dispersion); 
fprintf(f,"%ld\t", LightSrc->Lig.IDispersion); 
fprintf(f,"%ld\t", LightSrc->Lig.BeamEdge); 
fprintf(f,"%ld\t", LightSrc->Lig.IBeamEdge); 
fprintf(f,"%ld\t", LightSrc->Lig.ColR); 
fprintf(f,"%ld\t", LightSrc->Lig.ColG); 
fprintf(f,"%ld\t", LightSrc->Lig.ColB); 
fprintf(f,"%ld\t", LightSrc->Lig.IColR); 
fprintf(f,"%ld\t", LightSrc->Lig.IColG); 
fprintf(f,"%ld\t", LightSrc->Lig.IColB); 
fprintf(f,"%c\t", LitColor->Lit.LitCol); 
fprintf(f,"%ld\t", Texture->Txr.NTextures); 
fprintf (f, "%Id\ t", (Texture->Txr. Tex) ->Facet) ; 
fprintf (f, "%ld\t\n", (Texture->Txr. Tex) ->Texture); 

fclose (f); 

B-9 



APPENDIXB 

/* 
This program has registered a new SCL function - "SaveShp", 
which taking an object number from data stack as function parameter, 
and then writting the object shape information into a ASCII file. 
*/ 

/*Included header files*/ 

#include "APP DEFS.H" //Defines various short cuts and values 
//for the short cut 

#include 
#include 
#include 
#include 

<stdio.h> 
<stdlib.h> 
<string.h> 
<ctype.h> 

/*Internal function declaration*/ 

static void vrtcall SCL_Saver4(void); 

/* 
Defined function properties 
*/ 

short App Init(void); 
short APp=Exit(void); 

/*New SCL function declaration*/ 

static T COMPILEREC 

command 

'procedure' 

parameter type is 

object number 

parameter type is 

number represents MVEID 

static short 

NewSCL= 
{ 

} ; 

SCLCode; 

/*Application initialisation*/ 

short App_Init(void) 
{ 

"SaveShp", //Name of the new 

0, 
Ox20, 

0, 

//Function code 
//2 input, 0 output 

//Compiler code 

E_PROCEDURE,//Function type is 

E_SSNONE, //None return value 
E_SSOBJNUM, //First input 

//virtual 

E_SSINTEGER,//Second input 

//an interger 

//Deinstallation code 

B - 10 



APPENDIXB 

SCLCode=RegisterSCL(&NewSCL,SCL_Saver4)://Register new SCL 
function 

if(SCLCode<O) //Checking 
registration result 

return(E_ERROR): 
return(E_OK): 

/*Application exit,unregisters SCL instructions*/ 

short App_Exit(void) 
{ 

UnRegisterSCL(SCLCode): 

return (E_OK) : 

/*Internal function definitions*/ 

static void 
{ 

vrtcall SCL_Saver4(void) 

short ObjNum: 
input value 

//Oeclare variable for holding 

short MVEIO: //Oeclare variable for holding 
master 

//environment 10 

/*Oeclare pointers pointing to the object attribute data 
structure*/ 

T WORLOCHUNK *Object: 

/*Oeclare pointers pointing to the shape attribute data 
structure*/ 

T SHAPECHUNK *ShpSize, *Facet, *Line, *Point: 

FILE *f: 
information 

//File pointer for saving object 

/*This two values will be used as combined external key values 
in the data file*/ 

MVEIO=PopN(E_SSINTEGER): 
the stack 

ObjNum=PopN(E_SSOBJNUM): 

//Get master environment 10 from 

//Get object number from the 
stack 

/*Find address of required object data*/ 

Object=ChunkAdd(ObjNum,E_CTSTANDARD): 

/*Find addresses of required shape attributes data section*/ 

ShpSize=(*C ShapeAdd) [Object->Std.Type]: 
Facet=(*C ShapeAdd) [Object->Std.Type]: 
Line=(*C ShapeAdd) [Object->Std.Type]: 
POint=(*C_ShapeAdd) [Object->Std.Type]: 

/*retrieving and saving information in a file*/ 

B-11 



if(Object!=NULL) 
{ 

f=fopen("Shapelnfo.txt", "a"); 

fprintf(f,"%ld\t", Object->Std.Number); 
fprintf(f,"%ld\t", MVEID)i 
fprintf(f,"%ld\t", Object->Std.Type); 

fprintf(f,"%ld\t", ShpSize->Siz.XSize); 
fprintf(f,"%ld\t", ShpSize->Siz.YSize); 
fprintf(f,"%ld\t", ShpSize->Siz.ZSize)i 
fprintf(f,"%ld\t", Facet->Fac.NumFacets)i 
fprintf(f,"%ld\t", Line->Lin.NumLines); 
fprintf(f,"%ld\t", Point->Pnt.NumPoints); 

fclose (f) i 

B - 12 

APPENDIXB 



APPENDIXB 

/* 
This program has registered a new SCL function - "ObjList". 
It scans all objects inside a virtual environment in terms of 
their name, base shape number, position in the scene graph tree, 
parent, children, and sibling relationships. And then writting 
the objects information into a ASCII file. 
*/ 

/*Included header files*/ 

#include "APP DEFS.H" //Defines various short cuts and values 
//for the short cut 

#include 
#include 
#include 
#include 

<stdio.h> 
<stdlib.h> 
<string.h> 
<ctype.h> 

/*Internal function declaration*/ 

static void vrtcall SCL_Saver5(void); 

/* 
Defined function properties 
*/ 

short App_Init(void); 
short App_Exit(void); 

/*New SCL function declaration*/ 

static T COMPILEREC 

command 

'procedure' 

parameter type is 

object number 

parameter type is 

number represents MVEID 

static short 

NewSCL= 
{ 

} ; 

SCLCode; 

/*Application initialisation*/ 

"ObjList", //Name of the new 

0, 
Ox20, 

0, 

//Function code 
//2 input, 0 output 

//Compiler code 

E_PROCEDURE,//Function type is 

E_SSNONE, //None return value 
E_SSOBJNUM, //First input 

//virtual 

E_SSINTEGER,I/Second input 

/Ian interger 

/IDeinstallation code 

B-13 



short App_Init(void) 
{ 

APPENDIXB 

SCLCode=RegisterSCL(&NewSCL,SCL_Saver5);//Register new SCL 
function 

if(SCLCode<O) //Checking 
registration result 

return(E_ERROR); 
return(E_OK); 

/*Application exit,unregisters SCL instructions*/ 

short App_Exit(void) 
{ 

UnRegisterSCL(SCLCode); 

return(E_OK); 

/*Internal function definitions*/ 

static void 
{ 

vrtcall SCL_Saver5(void) 

short ObjNum; 
input value 

//Declare variable for holding 

short MVEID; //Declare variable for holding 
master 

//environment 10 

/*Oeclare pointers pointing to the object attribute data 
structure*/ 

T WORLOCHUNK *Object, **Parent; 

FILE *f; //File pointer for saving object 
information 

/*This two values will be used as combined external key values 
in the data file*/ 

MVEIO=PopN(E_SSINTEGER); 
the stack 

ObjNum=PopN(E_SSOBJNUM); 

//Get master environment 10 from 

//Get object number from the 
stack 

/*Find address of required object data*/ 

Object=ChunkAdd(ObjNum,E_CTSTANOARD); 
Parent=Object->Std.Parent; 

/*retrieving and saving information in a file*/ 

if(Object!=NULL) 
{ 
f=fopen("ObjList.txt", "a"); 

fprintf(f,"%ld\t", Object->Std.Number); 
fprintf(f,"%ld\t", MVE10); 
fprintf(f,"%ld\t", Object->Std.TotLen); 
fprintf(f,"%ld\t", Object->Std.Type); 

B - 14 



APPENDIXB 

fprintf(f,"%ld\t", Object->Std.Layer); 

/*Get the parent object number through its absolute address*/ 
fprintf(f, "%ld\t", (*Parent)->Std.Number); 

/*if has child object, and sibling*/ 
fprintf(f,"%ld\t", Object->Std.Child); 
fprintf(f,"%ld\t", Object->Std.Sibling); 

fclose(f); 

B - 15 



APPEND/XC 

Appendix C: Run-time platform and SCL communication code 

1* The following codes are abstracted from the container programme 
for communicating virtual environments and database.*1 

II CXuVE2Set implementation 

IMPLEMENT_DYNAMIC (CXuVE2Set, CRecordset) 

CXuVE2Set: :CXuVE2Set(CDatabase* pdb) 
: CRecordset(pdb) 

11{{AFX_FIELD_INIT(CXuVE2Set) 
I/Record set from the GeneralRef Table 
m MVEID = _T(""); 
m MVEName = _T(""); 
m_Envcode = _T(""); 
m_PrimaryRes = _T(""); 
m SecondaryRes = T(""); 
17Record set from-the ObjectLists Table 
m_VirObjID _T("");; 
m Tot Len = T(""); 
m_ShpNum = =T(""); 
m_Layer = _T(""): 
m Parent = _T("");; 
m Child = _T("");; 
m Sibling = T(""); 
/7Record set-from the Property Tables 

////Record set from the Manufacturing data Table 
m Part ID = 0; - -m Part Name = T(""); 
m=part=category = 0; 
m_Machining_process 
m_Shape = 0; 

_T(''''); 

m Dimension = 0; 
m_Raw_material_form _T(""); 
m Feature list _T(""); 
m-Build method = _T(""); 
m_nFields = 9; 
I/))AFX_FIELD_INIT 
m_nDefaultType = dynaset; 

CString CXuVE2Set::GetDefaultConnect() 
( 

return _T("ODBC;DSN=VME1"); 

CSt ring CXuVE2Set::GetDefaultSQL() 
( 

return _T("[GeneraIRef)"); 

void CXuVE2Set::DoFieldExchange(CFieldExchange* pFX) 
{ 

//({AFX FIELD MAP(CXuVE2Set) 
pFX->SetFieldType(CFieldExchange::outputColumn); 

c - 1 



APPEND/XC 

IIEnvironment tables record set exchange 

Ilpart tables record set exchange 
RFX_Int(pFX, _T("[Part 10]"), m_Part_ID); 
RFX_Text(pFX, _T("[Part Name]"), m_Part_Name); 
RFX_Int(pFX, _T("[Part category]"), m_Part_category); 
RFX_Text(pFX, _T(" [Machining process]"), m Machining process); 
RFX_Int(pFX, _T("[Shape]"), m_Shape); - -
RFX_Int(pFX, _T("[Dimension]"), m_Dimension); 
RFX Text (pFX, T("[Raw material form]"), m Raw material form); 
RFX-Text(pFX, -T("[Feature list]"), m Feature list); 
RFX -Text (pFX, - T (" [Build method]"), m -Build method); 
II}}AFX_FIELD_MAP - -

I*The main class of handling environment and container programme 
communications, XuVE2View.cpp : implementation of the CXuVE2View 
class*1 

#include "stdafx.h" 
#inc1ude "XuVE2.h" 

#inc1ude "XuVE2Set.h" 
#inc1ude "XuVE2Doc.h" 
#inc1ude "XuVE2View.h" 
#include "Machine.h" 
#include "MVE.h" 

I*Enable the direct interaction between the two parts. By clicking 
the buttons on the container, different parts will be displayed*1 
IMPLEMENT_DYNCREATE(CXuVE2View, CRecordView) 

BEGIN MESSAGE MAP(CXuVE2View, CRecordView) 
-11{{AFX=MSG_MAP(CXuVE2View) 

ON_BN_CLICKED{IDC_LOAD_WORLD, OnLoadWorld) 
ON_BN_CLICKED(IDC_ABOUT_BTN, OnAboutBtn) 
ON_BN_CLICKED(IDC_TOGGLE_TOOL, OnToggleTool) 
ON BN CLICKED(IDC PARTl, OnPartl) 
ON=BN=CLICKED{IDC=PART3, OnPart3) 
ON BN CLICKED{IDC PART4, OnPart4) 
ON-BN-CLICKED(IDC-PART5, OnPart5) 
ON-BN-CLICKED(IDC-PART6, OnPart6) 
ON-BN-CLICKED(IDC-PART7, OnPart7) 
ON-BN-CLICKED{IDC-PART8, OnPart8) 
ON-BN-CLICKED{IDC-PART9, OnPart9) 
ON=BN=CLICKED{IDC=PART2, OnPart2) 
ON BN CLICKED(IDC TOOL INFO, OnToo1Info) 
ON-BN-CLICKED(IDC-MACHINE, OnMachine) 
ON-BN-CLICKED{IDC-LOAD DATA, OnLoadData) 
ON=NOTIFY(TCN_SELCHANGE, I DC_TAB 1 , OnSelchangeTabl) 
II} }AFX MSG MAP 
II Standard-printing commands 
ON COMMAND(ID FILE PRINT, CRecordView::OnFilePrint) 
ON=COMMAND(ID=FILE=PRINT_DIRECT, CRecordView::OnFilePrint) 
ON COMMAND(ID FILE PRINT PREVIEW, 

CRecordView::OnFilePrintPrevie~) 
END_MESSAGE_MAP() 

IIEnvironment configuration 

C-2 



APPEND/XC 

void CXuVE2View::DoDataExchange(CDataExchange* pOX) 
{ 

CRecordView::DoDataExchange(pDX)i 
11{{AFX_DATA_MAP(CXuVE2View) 
DDX_Control(pDX, IDC_TABl, m_resources); 
DDX_Control(pDX, IDC_SUPERSCAPEl, m_3dcontrol); 
DDX_Text(pDX, IDC_EDITl, m_xpos); 
DDX_Text(pDX, IDC_EDIT2, m_ypos); 
DDX_FieldText(pDX, IDC_FIELDl, m_pSet->m_MaxSpindleSpeed, 
mySet); 
DDX_FieldText(pDX, lDC_FIELD2, m_pSet->m_MinSpindleSpeed, 
m_pSet) ; 

IILoading environment from local disk 

void CXuVE2View::OnLoadWorld() 
{ 

only. 

II TODO: Add your control notification handler code here 
CString m_Filename; 
FILE *f; 

char *FileName=NULL; 

IICan only load XVR worlds so create a filter for this filetype 

char BASED CODE szFilter[] = "Superscape XVR (*.xvr) I*.xvrl I"; 

IICreate and handle an open dialog box. 
CFileDialog *dialog; 
CSt ring exten; 

dialog = new CFileDialog(TRUE,"XVR",NULL, NULL,szFilter); 
if (dialog->DoModal() == lOOK) 
{ 

IINow handle file open procedures. 
exten = dialog->GetFileExt()i 
exten.MakeUpper(); 
if (exten == "XVR") 
{ 

IIJust inform the user that we are loading a world. 
MessageBox("Loading selected 

world.", "Message",MB_ICONlNFORMATlON+MB_OK); 

m Filename = dialog->GetPathName(); 
f-= fopen(dialog->GetPathName(), "rb"); 
if (f == NULL) 
{ 

MessageBox("Can't open selected 
file.", "ERROR",MB_OK + MB_ICONSTOP); 

else 
( 

return; 

IISet the source for the world to the file 
selected in the open dialog. 

m_3dcontrol.SetSrc(m_Filename); 
} 

fclose (f) ; 

C - 3 



delete dialog; 

IIControlling the appearances of the objects 
void CXuVE2View::OnToggleTool() 

APPEND/XC 

II TODO: Add your control notification handler code here 
UINT m_check; 

IIHandle the tool checkbox. If checked, tool is OFF otherwise 
tool is ON. 

if ( (m_check=IsDIgButtonChecked( IDC_TOGGLE_TOOL ) ) == 0) 
m_3dcontrol.SetBooIProperty("Cutter","Propb",FALSE); 

else 
m_3dcontrol.SetBooIProperty("Cutter","Propb", TRUE); 

IIChanging default part 
void CXuVE2View: :OnPartl() 
( 

II TODO: Add your control notification handler code here 
m_3dcontrol.SetMarker(1,1); 

void CXuVE2View: :OnPart2() 
{ 

II TODO: Add your control notification handler code here 
m 3dcontrol.SetMarker(1,2): 

void CXuVE2View::OnPart3() 

II TODO: Add your control notification handler code here 
m_3dcontrol.SetMarker(1,3); 

IIGetting current tool information 

void CXuVE2View::OnTooIInfo() 
{ 

II TODO: Add your control notification handler code here 
IIGet the position data. 
long m_xpos m_3dcontrol.GetLongProperty("slotl", "X 

Position") ; 
long m_ypos m_3dcontrol.GetLongProperty("slotl", fly 

Position"); 
IIRefresh the data display on the dialog. 
UpdateData(FALSE); 

IIHandling event fired from the environment 
BEGIN EVENTSINK MAP (CXuVE2View, CRecordView) 

17{{AFX EVENTSINK MAP(CXuVE2View) 
ON EVENT(CXuVE2View, IDC SUPERSCAPE1, 6 1* SCLEvent *1, 

OnSCLEve~tSuperscapel, VTS_I4 VTS 14) 
II}}AFX_EVENTSINK_MAP 

END EVENTSINK_MAP() 

void CXuVE2View::OnSCLEventSuperscapel(long argl, long arg2) 

C-4 



APPENDIXC 

II TODO: Add your control notification handler code here 
m_ObjID = argl; 

IIarg2 is the total movie length in ms. 
m Timer = arg2; 

IIRefresh the data display on the dialog. 
UpdateData(FALSE); 

IISet simulation parameters and markers 

void CMySettingDlg::OnDiverLoop() 
{ 

IIPass over the parameter to the lathe. 
m_3dcontrol. SetBoolProperty ("Lathe", "mainswitch", m_marker); 

IISet the marker to stop user turn on machine 
m_3dcontrol.SetMarker(2,1); 



/*Simulation program (partial) on the lathe*/ 

//Configure machine specification 

short Marker, eventcounter, Obj10, timer, P=O, speed; 
long MachineConfig[), settting[); 

MachineConfig[O] property (" Lathe-Holder" , "property1" ) ; 

MachineConfig[l] property("Lathe-Holder", "property2" ) ; 

MachineConfig[2) property ("Lathe-Holder" , "property3" ) ; 

MachineConfig[3] property (" Lathe-Holder" , "property4" ) ; 

MachineConfig[4) property ("Lathe-Holder" , "property5" ) ; 

MachineConfig[5) property("Lathe-Holder", "property6") ; 

//Taking user input settings from various controllers*/ 

if(activate("#12", 0)) 

speed = rot(me)/30; 

switch (speed) 

case 0; 

Setting[O) 1; 

case 0; 

Setting [0] 2; 

else if (activate("#13",0) 

//Check event occurred 

if(eventcounter == 1) 

//Passing object 10 to container 

Fireevnt(Obj10, timer); 

//Object data retrieved by container and processed 

wait (1000) ; 

//Decide the route for the simulation and interaction 

Marker = property ("Machine", "Marker"); 

C-6 

APPEND/XC 



//Running simulation routes 

it (Marker == 1) 
{ 

zrot (me)=O; 
resume (0, 2); 
if (actchild (me, 0)) 
{ 

while (mouseb) 
waitt; 

sound (1, 64, -100000, 0); 
repeat (3) 
{ 

zrot (me)+=12; 
waitf; 

++P; 
if (P==10) 

P"'O; 
actchild (me, 0); 

if (actchild (me, 13)) 
{ 

while (mouseb) 
waitt; 

sound (1, 60, -100000, 0); 
repeat (3) 
{ 

zrot (me)-=12; 
wait t; 

--Pi 
if (P"'=-l) 

P=9; 
actchild (me, 13); 

it (Marker 2) 
{ 

xrot ('Vice - Handle[4] ')=90; 
resume (0, 2); 
if (activate (me, 0) 
{ 

it (xrot ('Vice - Handle[4] '»80 && xrot 
('Vice - Handle[4] ')<100) 

h=l; 
it (xrot ('Vice - Handle(4] '»40 && xrot 

('Vice - Handle[4] ')<60) 
h=2; 

switch (h); 
case 1: 
{ 

repeat (3) 
{ 

xrot ('Vice - Handle[4) ')-=15; 
waitt; 

xangv ('chunk')"'zrot ('SAFE:dial'); 
waitt; 

case 2: 
{ 

repeat (3) 

C-7 

APPEND/XC 



xrot ('Vice - Handle[4] ')+=15; 
waitf; 

xangv ('chunk')=Oi 
waitf; 

else if(Marker 3) 
{ 

short 
fixed 

mx, my; 
rx, rYi 

resume (1, 0); 
if (activate (me, 0) && zrot ('Vice - Handle[210] ')==90) 
{ 

mx=mousex; 
my=mousey; 
ry=yrot (parent (me)); 
while (mouseb) 
{ 

xrot (me)=ry+mousex-mx; 
waitf; 
xpos ('TailGroup')+=ry+mousex-mx; 
waitf; 

clrtrig (me, 0); 

else if(Marker == 5) 
{ 

short mx, my; 
fixed rx, ry; 

resume (1, 0); 
if (activate (me, 0)) 
{ 

mx=mousex; 
my=mousey; 
ry=yrot (parent (me)); 

APPEND/XC 

while (mouseb && xpos ('NewCone'»O && xpos ('NewCone')<1100 
&& yrot ('handle2')==135) 

xrot (me)=ry+mousex-mxi 
waitf; 
xpos ('NewCone')+=ry+mousex-mx; 
waitf; 
if (xpos ('NewCone')<=O I I xpos ('NewCone'»=1100) 

xpos ('NewCone')=ixpos ('NewCone'); 

clrtrig (me, 0); 

//quill or tail stock locker 
resume (0, 1); 
if (activate (me, 0) && zrot ('Vice - Handle[210] ')<80) 
{ 

zrot ('Vice - Handle[210] ')+=45; 
wai tf; 
sptext (me)="Tailstock moveable"; 
wai tf; 

if (activate (me, 13) && zrot ('Vice - Handle[210] '»55) 

C - 8 



zrot ('Vice - Handle[2l0] ')-=45; 
waitf; 
sptext (me)="Tailstock locked"; 
waitf; 

else 
{ 
//Apron holder 
short mx, my; 
fixed rx, ry; 

resume (1, 0); 
if (activate (me, 0)) 
{ 

mx=mousex; 
my=mousey; 
ry=yrot (parent (me)); 
while (mouseb) 
{ 

zrot (me)=ry+mousex-mx; 
waitf i 
xpos ('ApronHolder')+=ry+mousex-mx; 
waitfi 

clrtrig (me, 0); 
} 

if (first) 
{ 

marker (1)==0; 
invis ('P-Contour-turn')i 
invis ('P-Boring'); 
invis ('P-Drilling')i 
invis ('P-Parting'); 
invis ('P-Shoulder-face'); 
invis ('P-Sra-turn'); 
invis ('P-Taper-Boring'); 
invis ('P-Taper-turn')i 
invis ('P-Threading')i 

else 
{ 

if (marker (1)==1) 
{ 

vis ('P-Contaur-turn'); 
invis ('P-Boring'); 
invis ('P-Drilling'); 
invis ('P-Parting'); 
invis ('P-Shoulder-face'); 
invis ('P-Sra-turn'); 
invis ('P-Taper-Boring'); 
invis ('P-Taper-turn'); 
invis ('P-Threading'); 
marker (1)==0; 

else 
{ 

if (marker (1)==2) 
{ 

invis ('P-Cantaur-turn'); 

C-9 

APPEND/XC 



vis ('P-Boring'); 
invis ('P-Drilling'); 
invis ('P-Parting'); 
invis ('P-Shoulder-face'); 
invis ('P-Sra-turn'); 
invis ('P-Taper-Boring'): 
invis ('P-Taper-turn'); 
invis ('P-Threading'); 
marker (1)==0; 

else 
{ 

if (marker (1)==3) 
{ 

invis ('P-Contour-turn'); 
invis ('P-Boring'): 
vis ('P-Drilling'); 
invis ('P-Parting'); 
invis ('P-Shoulder-face'); 
invis ('P-Sra-turn'): 
invis ('P-Taper-Boring'); 
invis ('P-Taper-turn'): 
invis ('P-Threading'); 
marker (1)==0: 

else 
{ 

if (marker (1)==4) 
{ 

invis ('P-Contour-turn'); 
invis ('p-Boring'): 
invis ('P-Drilling'): 
vis ('P-Parting'): 
invis ('P-Shoulder-face'); 
invis ('P-Sra-turn'): 
invis ('P-Taper-Boring'); 
invis ('P-Taper-turn'); 
invis ('P-Threading'); 
marker (1)==0: 

else 
{ 

if (marker (1)==5) 
{ 

invis ('P-Contour-turn'); 
invis ('P-Boring'); 
invis ('P-Drilling'); 
invis ('P-Parting'); 
vis ('P-Shoulder-face'): 
invis ('P-Sra-turn'); 
invis ('P-Taper-Boring'); 
invis ('P-Taper-turn'); 
invis ('P-Threading'); 
marker (1)==0; 

else 
{ 

if (marker (1)==6) 
{ 

invis ('P-Contour-turn'); 
invis ('P-Boring'); 

c - 10 

APPEND/XC 



} 

} } } } 

invis ('P-Drilling'); 
invis ('P-Parting'); 
invis ('P-Shoulder-face'); 
vis ('P-Sra-turn'); 
invis ('P-Taper-Boring'); 
invis ('P-Taper-turn'); 
invis ('P-Threading'); 
marker (1)==0; 

else 
{ 

if (marker (1)==7) 
{ 

invis ('P-Contour-turn'); 
invis ('P-Boring'); 
invis ('P-Drilling'); 
invis ('P-Parting'); 
invis ('P-Shoulder-face'); 
invis ('P-Sra-turn'); 
vis ('P-Taper-Boring'); 
invis ('P-Taper-turn'); 
invis ('P-Threading'); 
marker (1)==0; 

else 
{ 

if (marker (1)==8) 
{ 

invis ('P-Contour-turn'); 
invis ('P-Boring'); 
invis ('P-Dri1ling'); 
invis (' P-Parting') ; 
invis ('P-Shoulder-face'); 
invis ('P-Sra-turn'); 
invis ('P-Taper-Boring'); 
vis ('P-Taper-turn'); 
invis ('P-Threading'); 
marker (1)==0; 

else 
{ 

if (marker (1)==9) 
{ 

invis ('P-Contour-turn'); 
invis ('P-Boring'); 
invis ('P-Dri1ling'); 
invis ('P-Parting'); 
invis ('P-Shoulder-face'); 
invis ('P-Sra-turn'); 
invis ('P-Taper-Boring'); 
invis ('P-Taper-turn'); 
vis ('P-Threading'); 
marker (1)==0; 

C-ll 

APPEND/XC 



APPENDIXD 

Appendix D: Virtual and real manufacturing cell communication 

/*--robot main menu--*/ 
'include "stdio.h" 
'include "graphics.h" 
'include "stdlib.h" 
'include "head-c.h" 
'include "conio.h" 
'include "dos.h" 
'include "ctype.h" 
'include "math.h" 

void mainl(); 
void mainn ( ) ; 
void menuu(); 
void mouse(),mousea(); 
void mouse_function(); 
void show_mouse(); 
void get_mouse(); 
void hide_mouse(); 
void init_mouse(): 
void mainll () : 
void main22(): 
void edit ( ) : 
void jobteach(): 
void progteach(): 
void playback(); 
void split_space(); 
void test fileO(char filename[20]): 
void test-filel(char filename[20]); 
void test-file(char filename[20]): 
void puma-com(),bpot com(),audit com(): 
void receiving com();receivingl com(); 
void transmit com(),transmitO com(),transmitl com(),transmitOl com(); 
void test_save(char data[lOO]),command_test()~menu(): 
void nett(),rec_com(),trans_com(),transO_com(): 
void send_file_name(),wait(),get_file_name(); 
void robot_init(); 
namecomp(); 
charact(); 
monitor_com(); 
chmov (); 

FILE * fileptr=NULL; 

unsigned int xl,yl,n; 
unsigned short int buttons; 
char str[2S], strl[20), strname[SO) , address[SO], midvar[SO]; 
char *name, *namel,namexu(20); 
char chv; 
unsigned int i, x, pos,posl, pos2, name_pos; 
unsigned int filesize(); 

main () 
{ 

char chi 
int X,Yi 
int driver, mode; 
register int i; 
driver=DETECT; 
mode=O; 

0-1 



initgraph(&driver, &mode, "c:\\tc\\bgi"); 

settextstyle(DEFAULT_FONT,HORIZ_DIR,3); 
setbkcolor(MAGENTA); 
Quttextxy(140,60,"INDUSTRIAL ROBOT"); 
Quttextxy{lOO,lOO,"LOCAL NETWORK SYSTEM"); 
settextstyle(TRIPLEX_FONT,HORIZ_DIR,l); 

Quttextxy(200,400,"Please Input Your Choice"); 
Quttextxy(200,440,"by Mouse Cursor"); 
settextstyle(TRIPLEX_FONT,HORIZ_DIR,l); 

setfillstyle(SOLID_FILL,LIGHTBLUE); 
bar3d(79,223,159,375,20,1); 
outtextxy(94,231,"< 1 >"); 
outtextxy(91,259,"PUMA"); 
outtextxy(91,299,"ROBOT"); 
outtextxy(91,339,"WORLD"); 

setfillstyle(SOLID_FILL,GREEN); 
bar3d(279,223,359,375,20,1); 
outtextxy(294,231,"< 2 >"); 
Quttextxy(283,259,"LANSING"); 
outtextxy(283,299,"ROBOT"); 
outtextxy(283,339,"WORLD"); 

setfillstyle{SOLID_FILL,RED); 
bar3d(479,223,559,375,20,1); 
outtextxy(494,231,"< 3 >"); 
Quttextxy(495,259,"END"); 
outtextxy(495,299,"OF"); 
outtextxy(495,339,"WORK"); 

gotoxy(l,l); 
show_mouse(); 

/* init_mouse(); */ 
do 

{ 
get_mouse(); 
gotoxy{l,l); 
printf("%d,%d",xl,yl); 

if{xl>=lO&&xl<=20&&yl>=28&&yl<=47&&buttons==1) 

} 

hide_mouse{); 
cleardevice(); 
mainl(); 

/* if{{ch=getch{))=='l') 
{ 

cleardevice{); 
mainl{); 

} */ 
if{xl>=35&&xl<=45&&yl>=28&&yl<=47&&buttons==1) 

( 

hide_mouse{); 
cleardevice{); 
mainn{); 

) 

if (xl>=60&&xl<=70&&yl>=28&&yl<=47&&buttons==1) 

D-2 

APPENDIXD 



} 

hide_mouse(); 
closegraph(); 
exit (0); 

}while(buttons!=3); 
cleardevice(); 
exit (0); 

return 0; 
} 

void mainl ( ) 

int x,y,c; 

settextstyle(TRIPLEX_FONT,HORIZ DIR,4); 
setbkcolor(LIGHTBLUE); 
outtextxy(200, 120, "WELCOME TO"); 
outtextxy(145,220,"DNC COMMUNICATION"); 
settextstyle(TRIPLEX_FONT,HORIZ_DIR,l); 
outtextxy(250,400,"CLICK TO START"); 
do 

{ 

get_mouse(); 
if (buttons==l) 

{ 

cleardevice ( ) ; 
menu(); 

} 

}while(buttons!=3); 

void menu () 
{ 

int x,y,c; 
/* int driver,mode; 

register int i; 
driver=DETECT; 
mode=O; 
initgraph(&driver,&mode,"c:\\tc\\bgi"); */ 

APPENDIXD 

setbkcolor(LIGHTBLUE); 
settextstyle(TRIPLEX_FONT,HORIZ_DIR,l); 
outtextxy(120,50,"DNC for Flexible Manufacturing System"); 
setfillstyle(SOLID_FILL,RED); 
bar3d(128,144,536,184,0,0); 
outtextxy(140, 150,"1. Communication for PUMA Robot"); 
setfillstyle(SOLID_FILL,RED); 
bar3d(128,192,536,232,O,0); 
outtextxy(140,200,"2. Communication for AUDIT Lathe"); 
setfillstyle(SOLID_FILL,RED); 
bar3d(128,240,536,280,0,0); 
outtextxy(140,2S0,"3. Communication for Bridgeport"); 
setfillstyle(SOLID_FILL,RED); 
bar3d(128,296,S36,336,0,O); 
outtextxy(140,300,"4. Communication for NETWORK SERVER"); 
setfillstyle(SOLID_FILL,RED); 
bar3d(128,344,S36,384,0,O); 
outtextxy(140, 350, "S. PCB Assembly"); 

D - 3 



setfillstyle(SOLID_FILL,RED); 
bar3d(128,392,536,432,O,O); 
outtextxy(140,400,"6. EXIT"); 
outtextxy(2l0,450,"[ Enter Your Choice J"); 

gotoxy(l,l); 
show_mouse(); 
do 

( 
get_mouse(); 
if(xl>=16&&xl<=67) 
( 

if(yl>=18&&yl<=23&&(buttons==lI Ibuttons==2)) 
( 

hide_mouse(); 
puma_com () ; 
closegraph(); 

} 

if(yl>=24&&yl<=29&&(buttons==11Ibuttons==2)) 
{ 

hide_mouse(); 
closegraph(); 
audit_com() ; 

} 

if(yl>=30&&yl<=35&&(buttons==11Ibuttons==2)) 
( 

hide_mouse(); 
closegraph(); 
bpot_com () ; 

} 
if(yl>=37&&yl<=42&&(buttons==lI Ibuttons==2)) 
( 

hide_mouse(); 
closegraph(); 
nett_com (); 

} 

if(yl>=43&&yl<=48&&(buttons==11Ibuttons==2)) 
{ 

hide_mouse(}; 
assembly () ; 
closegraph(); 

} 
if(yl>=49&&yl<=54&&(buttons==11Ibuttons==2)) 
( 

hide_mouse(); 
cleardevice(); 
main () ; 

} 

}while(buttons!=3); 
/* do 

( 
c=getch(); 

switch (c) 
( 

case'l': 
puma_com(); 
cleardevice(}; 
break; 

case' 2' : 
audit_com () ; 

D- 4 

APPENDIXD 



break; 

case' 3' : 
bpot_com(); 
break; 

case' 4' : 
nett_com(); 
break; 

case' 5' : 
assembly(); 
cleardevice(); 
break; 

case' 6' : 
II restorecrtmode(); 

II clrscr(); 
II exit(O); 

cleardevice(); 
main () ; 
break; 
default: 

I I exit (0) ; 
break; 

APPENDIXD 

}while(c!='1' && c!='2' && c!='3'&& c!='4'&&c!='S'&&c!='6'); *1 

void puma_com() 
( 

0) 

int 
int 
char 
char 
char 

i,j, port, portl,stat,statl; 
card no, total port, data item; 
data(20),filen~me[20); -

w_data[20),command[20); 
ch,str[20); 

restorecrtmode(); 
clrscr(}; 
printf("Reset the moxa cards .... \n"); 
if ((card_no = sio_reset(}) == O} 
( 

printf("No Card Found !\n"); 
exit(O); 

printf("Total Card: %d\n", card_no); 

printf("Read the ID ..•. \n"); 
for (i = 1; i <= card_no; i++) 
( 

printf("(%d)\tSerial no: %d", i, sio id(i)); 
printf("\tMapping %X\n", sio_bank(i}); 

printf("Setting port 7 to 9600, N, 8, l .... \n"); 
port = 7; 
if ( sio_ioctl(port, B9600, BIT 8 P NONE 

printf("Port #%d IOCTL error !\n", port); 

D- 5 



/* 

/* 

exit (0); 

for(port=6;port<=13;port++) 
( stat=sio open(port); 
if(stat != 0) -
(printf("Port #%d can not be opened!\n",port); 

exit (O);} 
} 

/* port=8; 
statl=sio_enableTX(port); 
if(stat1!=O) 

( printf("PORT 8 TRANSMIT ERROR\N"); 
exit (0); 

} */ 
printf("Read information from PUMA Controller .... \n"); 
do 

( 
while(kbhit()==O) 
( 

port=7; 
statl=sio_read(port,data,lOO); 

/* sio_timeout(50); 
statl=sio_linput_t(port,data,100,13); */ 
if (stat1>=O) 

( 

data[statl]=O; 
printf("%s",data); 

} 

else exit (0); */ 

if((i=sio_read(port,data,lOO))==O) 
( 
printf("No data received\n"); 
exit (0); 
} 

APPENDIXD 

else if (i = sio_read(port, data, 100)) < 0) ( 
printf("Port #%d READ error,i= %d !\n", 

port,i); 

do 
( 

exit (0); 

else if (i) ( 
data [i) = 0; 
printf("%s",data); 

*/ 

ch=getch(); 
switch (ch) 
( 

case 'N': 
case 'n': 

w_data[O] = Chi 
w_data[l] = '\r'; 
sio_write(7,w_data,2); 

/* if((i = sio_write(7,w_data,2)) < 0) ( 
if((i = sio_write(6,w_data,2)) < 0) 

D-6 



printf("\naaa"); 
exit (0); 

break; 
default: break; 

} 

*/ 

APPENDIXD 

}while(ch!='n' && ch!='N' && ch!='.' && ch!='y' && 
ch!='Y'); 

}while(ch!='.' && ch!='y'); 
II command_test(); 

for ( ; ; ) 

printf("\n\nInput the program file name:"); 
gets(filename); 
if (strcmp(filename,"esc")==O I I strcmp(filename,"ESC")==O) 

command_test(); 
break; 
} 

test_file(filename); 

void test file(char filename[20)) 
{ 

FILE *fp,*testfile; 
char p_data(20); 
int 

port,i,temp_c,read_statu,data_item,ask_sign=O,find_file_end=O; 
char data(20); 

if (access("test.dat",OO)==O) 
remove("test.dat"); 

if «fp=fopen(filename,"r+"))==NULL) ( 
printf("cannot open file\n"); 
return; 

} 
data[O]='\O'; 
for(ii) 
{ 

data_item=Oi 
for (;;) 

{ 

if «p_data[data_item)=getc(fp))==EOF) 
{ 

find_file_end=O; 
breaki 

if (p_data[data_item)==10 I I 

p_data[data_item)='\r'; 
data_item++; 
p_data[data_item]=O; 
break; 

data item++; 

D-7 



if (find_file_end==l) 
break; 

if (sio_write (7,p_data,data_item+l) <=0) 
{ 

APPENDIXD 

printf("port #%d write error !\n",7); 
exit(O); 

read_statu=O; 
ask_sign++; 
while (read_statu==O) 
{ 

port=7; 
if ((i = sio_read(port,data,lOO)) < 0) 
{ 

printf("Port #%d READ error,i=%d !\n", 
port,i); 

} 

} 

exit (0); 

else if(i) 
{ 

if (read_statu==2) 
brea ki 

read statu=O; 

data[i] = 0; 
printf("%s",data); 
test_save(data); 
if((testfile=fopen("test.dat","a"))==NULL) 

{ 

printf("Can not open file\n"); 
getch () ; 
exit (1) ; 

} 

fprintf(testf!le,"%s",data); 
fclose(testfile); 

if (ask_sign==l) 
{ 

if (strchr(data, '\r') !=NULL) 
read_statu=l; 

if (strchr(data, '?') !=NULL) 
read_statu=l; 

if (strchr(data, '*') !=NULL && ask_sign>2) 
read_statu=2; 

1* - test_save(data); *1 
strcpy(p_data,""); 

fclose (fp) i 
command_test(); 
exit(O)i 

void test_save(char data[20]) 

FILE *testfile; 
char filename[20],num[4]; 
int x; 

D- 8 



if((testfile=fopen("test.dat","w+"))==NULL) 
( 

printf("can not open file\n"); 
getch(); 
exit (1) ; 

/* for (x=1;x<=500;x++); 
printf("Enter the Line_Num: "); 
fscanf (stdin, "%s", num); * / 
fprintf(testfile,"%s",data); 

fclose(testfile); 

void command_test() 
/* send the command to the controller */ 

char str[20), endch='x'; 
int driver,mode; 

for ( i ;) { 

if ( endch=='?') 
// printf("\nPlease input data: " ); 

gets (str) ; 
strcat(str,"\r")i 
sio_write(7,str,strlen(str)); 
endch=get_data(str); 

printf("\nlnput the command_line:\n")i 
gets (str) i 
if(fileptr!=NULL) fclose(fileptr); 
if(!strcmp(str,"esc")) main(); 

APPENDIXD 

/* the exit of the unlimited recursion */ 
strcat(str,"\r")i 
sio_write(7,str,strlen(str)); /* send the command to puma 

controller 
and the controller runs the command */ 

endch=get_data(str)i 

void audit_com () 
( 

int 
int 
char 
char 
char 

restorecrtmode(); 
clrscr()i 

i, port, port1; 
card no, total port; 
data(20),filename[20); 

w_data[20); 
Chi 

printf("Reset the sio cards .... \n"); 
if ((card_no = sio_reset()) == 0) 
( 

printf("No Card Found !\n"); 
exit(O); 

printf("Total Card: %d\n", card_no); 

printf("Read the ID .... \n"); 
for (i = 1; i <= card_no; i++) 
{ 

D -9 



printf("(%d)\tSerial no: %d", i, sio id(i)); 
printf("\tMapping %X\n", sio_bank(i)); 

printf("Setting port 3 to 300, N, 7, 1 .... \n"); 
port = 3; 

APPENDIXD 

if ( sio_ioctl (3, B300, BIT_7 I P_EVEN I STOP 1) != 0) 
( 

c1rscr(); 

printf("Port #%d IOCTL error !\n", port); 
exit (0); 

printf("\nDo you want to receive file from the audit 
machine?\n"); 

printf(" 'Y' or 'N' ?"); 

do 
( 

ch=getch(); 
switch (ch) 
( 

case' Y' : 
case'y' : 
receiving_com(); 
exit (0); 
break; 

case'N': 
case 'n': 
transmit_com(); 
break; 
default: 
break; 
} 

}while(ch!='y' && ch!='Y' && ch!='n' && ch!='N'); 

void receiving_com() 
( 

lnt 
int 
char 
char 
char 
FILE 

i, port, port1,read_statu=0; 
card no, total port; 
data[20l,filename[20l; 

w_data[ 20 l; 
chi 
*testfile; 

if((testfile=fopen("test.dat","w"))==NULL) 
printf("can not open fi1e\n"); 
getch () ; 
exit(l); 

} 
printf("\nReceive File from AUDIT Lathe Machine .... \n"); 

read statu=O; 
fori;;) 

{ 
port=3; 
if ((i = sio read(port, data, 100)) < 0) ( 

printf("Port #%d READ error !\n", port); 
exit (0); 

else if (i) { 

D - 10 



data[i] = 0: 
printf("%s",data): 
fprintf(testfile,"%s",data): 
if (strchr(data, '\n') !=NULL) 

read_statu++: 

APPENDIXD 

if (strchr(data, '%') !=NULL && read_statu>l) 
break: 

fclose(testfile); 

void transmit_com() 

int c: 

printf("\nDo you want to transmit file to the audit 
machine?\n"): 

do 
{ 

printf(" '¥' or 'N' ?"): 

c=getch(): 
switch(c) 
{ 

case'Y' : 
case' y' : 
transmitO_com(): 
break; 

case'N' : 
case'n' : 
menu () ; 
exit(O); 
break; 
default: 
exit (0) ; 
break; 
} 

}while(c!='¥' && c!='y' && c!='N' && c!='n'); 

void transmitO_com() 
{ 

int i, port, portl; 
char data[20],filename[20]; 
char w_data[lOO]; 

printf("\nTransmit File to AUDIT Lathe Machine .... \n"); 
for ( ; ; ) 
{ 

printf("\n\nInput the program file name:"); 
scanf("%s",filename); 
if (strcmp(filename,"esc")==O I I strcmp(filename,"ESC")==O) 

menu () ; 
test_fileO(filename); 

D - II 



void 
{ 

APPENDIXD 

test fileO(char filename[20]) 

FILE *fPi 
char p_data[20]i 
int port,i,temp c,read statu,data item, find file end=O; 
char test_in(50); - - --
char data(20); 

if ((fp=fopen(filename,"r+"))==NULL) { 
printf("cannot open file/n"); 
return; 

do 
{ 

data_item=O; 
for (;i) 

{ 

if ((p_data[data_item)=getc(fp))==EOF) 
{ 

find_file_end=1; 
break; 

if (p_data[data_item]==10 I I 

p data[data item)='\n'; 
data_item++; 
p_data [data_item] =0; 
break; 

if (find_file_end==1) 
breaki 

if (sio_write (3,p_data,data_item+1) !=O) 
{ 

printf("port #Id write error !\n",2)i 
exit(O); 

}while(find_file_end!=1); 
fclose (fp) i 
menu()i 
exit (0); 

void bpot_com () 

int 
int 
char 
char 
char 

i,port, port1; 
card_no, total_port; 

data(20),filename[20],temp_data[20),old_data[20)i 
w_data(20); 
ch,*ptr; 

restorecrtmode(); 
clrscr () ; 

D -12 



printf("Reset the sio cards .... \n"); 
if ((card_no = sio_reset()) == 0) 
{ 

printf("No Card Found !\n"); 
exit (0) ; 

printf ("Total Card: %d\n", card_no); 

printf("Read the ID .... \n"); 
for (i = 1; i <= card_no; i++) 
{ 

printf("(%d)\tSerial no: %d", i, sio id(i)); 
printf("\tMapping %X\n", sio_bank(i)); 

printf("Setting port 4 to 9600, N, 8, 1 .... \n"); 
port = 4; 

APPENDIXD 

if sio_ioctl(4, B9600, BIT_7 I P_EVEN I STOP_2) != 0) 
{ 

printf("Port #%d IOCTL error !\n", port); 
exit(O); 

printf("read line lctrl status \n"); 
port=4; 

if(sio lctrl(4,C RTSIC DTR)<O) { 
p~intf("por~ #%d Ictrl error!\n",port); 
exit(O); 
} 

printf("port 4 line lctrl 
status:%04x\n",4,sio_lctrl(4,C_RTSIC_DTR)); 

printf("read line status from port 4 \n"); 
port=4; 
printf("port 4 line 

status:%04x\n",4,sio_lstatus(4)); 

clrscr()i 
printf("\nDo you want to receive file from the brigeport 

machine7\n"); 
printf(" 'Y' or 'N' 7"); 
do 
{ 

ch=getch(); 
switch (ch) 
{ 

case'Y' : 
case'y' : 
receivingl_com(); 
exit (0); 
break; 

case'N' : 
case'n': 
transmitl_com(); 
menu (); 
break; 
default: 
break; 
} 

D-13 



}while(ch!='y' && ch!='Y' && ch!='n' && ch!='N'); 

void receiving1_com() 
{ 

int i, j, port, portl, read statu=O; 
int card_no, total_port; 
char data(20),filename[20); 
char w_data(20), *ptr; 
char ch, temp_data(20), 01d_data(20); 
FILE *testfile; 

if((testfile=fopen("test.dat","w"))==NULL) 
printf("can not open file\n"); 
getch(); 
exit (1) ; 

APPENDlXD 

printf("\nReceive File from Bridge PORT Milling Machine .... \n"); 
read_statu=O; 
for ( ; ;) { 

port=4; 
if ((i = sio read (port, data, 100)) < 0) ( 
printf("Port #%d READ error !\n", port); 
exit (0); 

} 

else if(i) ( 
data[i) = 0; 
printf("%s",data); 
fprintf(testfile,"%s",data); 

strcpy(temp_data,data); 
if (old_data[strlen(old_data)-l]=='E') 

if (temp_data[O]=='N' && temp_data[l]=='D') 
read statu=l; 

if (old data[strlen(01d_data)-2]=='E' && 

old_data[strlen(old_data)-l)=='N') 
{ 

if (temp_data[O]=='D') read_statu=l; 

if (read_statu!=l) ( 
for (;;) { 

} 

if ((ptr=strchr(temp_data, 'E'))==NULL) 
break; 

if (strlen(ptr)<3) 
break; 
if (ptr[l]=='N' && ptr(2)=='D') { 
read_statu=l; 
break; 

} 

ptr=strchr(ptr,ptr[l]); 
strcpy(temp_data,ptr); 

for (i=1;i<=10000;i++) i++; 
if (read statu==l) { 

if (strchr(temp_data, '\n') !=NULL) 
break; 

} 

strcpy(old_data,data); 

D - 14 



} 

} 

fclose(testfile); 

void transmitl_com() 
{ 

int c; 

APPENDIXD 

printf("\nDo you want to transmit file to the bridgeport 
machine?\n"); 

do 
{ 

printf(" 'Y' or 'N' ?"); 

c=getch(); 
switch(c) 
{ 

case'Y' : 
case' y' : 
transmitOl_com(); 
menu () ; 
break; 

case'N' : 
case'n' : 
menu (); 
exit (0); 
break; 
default : 
exit (0); 
break; 
} 

}while(c!='Y' && c!='y' && c!='N' && c!='n'); 

void transmitOl_com() 
{ 

int 
char 
char 

i, port, portl; 
data[20),filename[20); 

w_data[20); 

printf("\nTransmit File to BridgePort Milling Machine .... \n"); 
for(;;) 
{ 

void 
{ 

printf("\n\nlnput the program file name:"); 
scanf("%s",filename); 
if (strcmp(filename,"esc")==O I I strcmp(filename,"ESC")==O) 

break; 
test filel(filename); 

test_filel(char filename[20)) 

FILE *fp; 
char p data[20); 
int port,i,temp_c,read_statu,data_item,find_file_end=O; 
char test_in[50); 
char data[20); 

D - 15 



APPENDIXD 

if ((fp=fopen(filename,"r+"))==NULL) ( 
printf("cannot open file/n"); 
return; 

do 
{ 

data_itern=O; 
p_data [data_iteml =02; 
data_item++; 
p_data [data_item] =0; 
sio_write(4,p_data,data_itern+1); 
data_item=O; 
p_data [data_item] =0; 
sio_write(4,p_data,data_item+1); 

data_item=O; 
p_data[data_iteml=13; 
data_itern++; 
p_data[data_itern]=13; 
data_item++; 
p_data [data_item] =13; 
data_item++; 
p_data [data_item] =10; 
data_item++; 
p_data [data_item] =0; 
sio_write(4,p_data,data_itern); 
data itern=O; 
for (;;) 
{ 

if ((p_data[data_item]=getc(fp))==EOF) 
{ 

find_file_end=l; 
break; 

if (p_data[data_item]==10 I I 

p_data[data_item]=O; 
break; 

if (find_file_end==l) 
break; 
if (sio_write(4,p_data,data_item+l) !=O) 
{ 

} 

printf("port #%d write error !\n",2); 
exit (0); 

}while(find_file_end!=l); 
p_data[data_itern]=03; 
data_itern++; 

p data[data item]=O; 
- - sio_write(4,p_data,data item); 

fclose (fp); 
menu () ; 
exit(O); 

D-16 



int 
int 
char 
char 
char 

i,j, port, portl; 
card_no, total_port; 
data[100],filename[20]; 

w_data[10]; 
ch, c [2] ; 

restorecrtmode(); 
clrscr(); 
printf("Reset the sio cards .... \n"); 
if «card_no = sio_reset()) == 0) 
{ 

printf("No Card Found !\n"); 
exit (0); 

printf("Total Card: %d\n", card_no); 

printf("Read the ID .... \n"); 
for (i = 1; i <= card_no; i++) 
{ 

printf("(%d)\tSerial no: %d", i, sio id(i)); 
printf("\tMapping %X\n", sio_bank(i)); 

printf("Setting port 0 to 9600, N, 8, 1 .... \n"); 
port = 0; 

APPENDIXD 

if ( sio_ioctl(O, 89600, 8IT_8 I P NONE I STOP_2) != 0) 
{ 

clrscr () ; 

printf("Port #%d IOCTL error !\n", port); 
exit (0) ; 

printf("\nDo you want to receive file or command from Network 
Computer? 'Y' or 'N' ?"); 

do 
{ 

ch=getch(); 
switch (ch) 
{ 

case'Y' : 
case'y' : 
sio_write(O,"s",I); 
dol 
sio read(O,c,I); 
}whIle(! (strchr(c, '. ') !=NULL)); 
rec_com () ; 
break; 

case'N' : 
case'n' : 
trans_com(); 
break; 
default: 
exit (0); 
break; 
} 

}while(ch!='y' && ch!='Y' && ch!='n' && ch!='N')i 
return 0; 

D - 17 



FILE 
char 
int 
union{ 

char 

*fp; 
ch,fname[20),data[20); 
port,i; 

c [2) ; 
unsigned int count; 
}cnt; 

APPENDIXD 

printf("\n\n\nReceive File or command from Network 
Computer .... \n"); 

void 
char 
{ 

char 
int 

printf("Receiveing file %s\n",fname); 
remove(fname); 
if((fp-fopen(fname,"w"))--NULL) { 

printf("cannot open input file\n"); 
exit (0); 

sio_write(0,".",2); 
sio_read(O,data,l); 
cnt.c[O]-data[O]; 
sio_write(0,".",2); 
sio_read(O,data,l); 
cnt.c[l]-data[O]; 
sio_write(0,".",2); 
fori; cnt.count; cnt.count--) 
I 

if ((i - sio read(O, data, 20)) < 0) { 
printf("Port #%d READ error !\n", 5); 

exit(O); 

else if(i) 
I 

} 

data[i] = 0; 
printf("%s",data); 
fputs(data,fp); 

fclose (fp) ; 
printf("\nFile %s has been received.\n"); 
printf("\nPress any key to continue.\n"); 

get_file_name (f) 
* f; 

ch[2],data[20],temp[2]; 
i; 

printf("Receiver Waiting ... \n"); 
dol 
sio read(0,data,2); 
}whlle(! (strchr(data,'?') !-NULL)); 
sio_write(O,".",l); 
fori;;) { 

D - 18 



} 

void 

sio_write(O,".",l); 
do{ 
sio_read(O,data,2); 
*f=data[O); 
ch[O)=*f; 
}while(ch[O)=='?'); 
for(i=1;i<=30000;i++) i++; 
f++; 
if ( ch [ ° ) == , \ 0 ' ) 
break; 

wait () 

char c(2); 
c[O)='\O'; 
do{ 
sio_read(O,c,2); 
} while (c (0) ! =' ?' ) ; 

void trans_com() 

int c; 
char ch[2]; 

APPENDIXD 

printf("\n\n\nDo you want to transmit file to Network 
Computer? 'Y' or 'N' ?"); 

do 
{ 

c=getch(); 
switch(c) 
{ 

case'Y': 
case'y' : 
sio_write(O,"r",l); 
ch [ ° ) = , \ ° ' ; 
dol 
sio_read(O,ch,l); 
}while (! (strchr (ch,'.') !=NULL»; 
transO_com () ; 
break; 

case'N': 
case'n' : 
exit(O); 
break; 
default: 
exit(O); 
break; 
} 

}while(c!='Y' && c!='y' && c!='N' && c!='n'); 

void transO_com() 
{ 

FILE 
char 

*fPi 
fname[20], buffer(2),data[20],ch[2]; 

D - 19 



int i,data_item; 

union 
char c[2]; 
unsigned int count; 

cnt; 
send file name(fname); 
buffer[O]~'\O' ; 
if«fp=fopen(fname,"r"))==NULL) ( 

} 

printf("cannot open input file\n"); 
exit(O); 

ch [0] =' \ 0' ; 
printf("sending file %s\n",fname); 
cnt.count=filesize(fp); 
printf("File size %d\n",cnt.count); 
ch[O]=cnt.c[O]; 
sio_write(O,ch,I); 
wait () ; 
ch[O]=cnt.c[I]; 
sio_write(O,ch,I); 
dol 

buffer[O]=getc(fp); 
if(ferror(fp)) ( 

} 

printf("error reading input file"); 
break; 

if(!feof(fp)){ 
for(i=1;i<=30000;i++) i++; 
sio_write(O,buffer,I); 
} 

while(!feof(fp)); 
fclose (fp); 
printf(" \n\nThe file have been sent out\n"); 

unsigned int filesize(fp) 
FILE *fp; 
( 

unsigned long int i; 

i=O; 
dol 

getc (fp) ; 
i++; 
}while(!feof(fp)); 
rewind (fp) ; 
return i-I; 
} 

void 
char 
{ 

send_file_name(fname) 
*fname; 

char buffer[2],ch[2]; 
printf("\n\nTransmitter Waiting ... \n"); 
printf("\n\nlnput the file name:"); 
scanf("%s",fname); 
if (strcmp(fname,"esc")==O I I strcmp(fname,"ESC")==O) 
exit (0); 

D- 20 

APPENDIXD 



do 
sio_write(O,"?",l); 
sio_read(O,ch,l); 
while ( ! (strchr (ch, , . ' ) ! =NULL) ) ; 

printf("\n\nsending filename %s\n",fname); 
for ( ; ;) { 

dot 
buffer[O)=*fname; 
sio_write(O,&buffer,l); 
sio_read(O,ch,l); 
while (ch (0) ! =' . ' ) ; 

fname++; 
if (* fname==' \ 0') { 
sio_write(O, '\0',1); 

} 

printf(" \n\nThe filename have been sent out\n"); 
break; 

get_data(char *cmdline) 
int port, i,j=l, rlt=l; 
char anychar, endch='x', data(100), *p,ch; 
do { 

port=7; 
if ((i= sio_read(port, data, 100)) < 0) 

APPENDIXD 

/* read the result after the controller run the command str 
*/ 

} 

printf("Port I%d READ error !\n", port); 
ex1t(O); 

rlt=O; if ( (i==O)&(j==O)&(endch=='. ') 
/* the exit of the unlimited recursion 

if (i) { 
j=O ; 
data[il=O; 
printf("%s",data); 
endch=data[i-11; /* 
p=strchr(data, '?'); 
if (p!=NULL ) return 

set the.end status 

while (rlt) ; 

'?' . . , 

if ( (cmdline [01 ==' 1 ' ) I I (cmdline [0 1 ==' L') ) { 
printf(" save? (Y/N): "); 
anychar=getch(); 
if ( (anychar=='y') I I (anychar=='Y') ) { 

sio_write(7,cmdline,strlen(cmdline))i 
write_data(cmdline); 

return endch; 

write_data(char * cmdline) 
{ 

int port, i,j=l, rlt=li 
char endch='x', data[1001; 
char *fname, *filename; 
FILE *fPi 

0- 21 

*/ 

*/ 



filename= strchr(cmdline, I '); 

split_space(fname,filename); 
if ( (fp=fopen(fname,"w+") )==NULL) 

printf("Cannot open file"); 
exit (1); 

} 

do { 
port=7; 
if ((i= sio_read(port, data, 100)) < 0) 

APPENDIXD 

1* read the result after the controller run the command str 
*1 

} 

printf("Port I%d READ error !\n", port); 
exit (0); 

rlt=O; if ( (i==O)&(j==O)&(endch=='.') 
1* the exit of the unlimited recursion 

1* 

if (i) { 
j=O; 
data[i)=O; 

printf(" I am ZJX 
fprintf(fp,"%s",data); 
endch=data [i-1); 1* set 

while 
fileptr=fp; 

return 0; 

rlt) ; 

") ; * I 

the end status 

void split_space(char * out, char* str) 
{ 

int t=O; 
do { 

if (isspace(str[t))) t++; 
else { 

*out=str[t]; 
t++; 
out++; 

while(! str[t)=='\O'); 
*out='\O'; 

assembly () 
{ 

char *power; 
int k; 
float delayl; 

cleardevice(); 
restorecrtmode(); 

robot_init(); 

II monitor_com(); 

printf("\nPlease input your name: H); 
gets(name): 
strlwr(name); 

D- 22 

*1 

*1 



posl=strlen(name); 

printf("\n"); 

for (i=O; i<=posl-l; i++) 
{ strname[i)='?'; } 

charact(); 

for (i=O; i<=posl-l; i++) 
{ midvar[i)=strname[i); 

strrev(name); 
charact(); 
strcpy (namexu,"do move home"); 
monitor_com(); 
strcpy (namexu, "ex main3"); 
monitor_com(); 
strcpy (namexu,"ex main2"); 
monitor_com(); 

/1 printf("The Input Name is 

for (i=O; i<=posl-l; i++) 
{ 

if ( midvar[i]=='?') 
{ 

\n "); 

midvar[i)=strname[posl-i-l]; 

II printf("%c", midvar[i)); 
if (i==O) 

{ strcpy (namexu,"do set lo=p21"); 
monitor_com(); 
for (k=l; k<=lOO; k++) II this is for delay. 

{ 
delayl=sin (k); 
} 

chmove(); 

if (i==l) 
{ strcpy (namexu,"do set lo=p22"); 

monitor_com(); 
for (k=l; k<=lOO; k++) II this is for delay. 

{ 
delayl=sin (k); 
} 

chmove(); 

if (i==2) 
{ strcpy (namexu,"do set lo=p23"); 

monitor_com() ; 
for (k=l; k<=lOO; k++) II this is for delay. 

{ 

delayl=sin (k); 
} 

chmove(); 

if (i==3) 
{ strcpy (namexu,"do set lo=p24"); 

monitor_com () ; 

D-23 

APPENDIXD 



APPENDIXD 

for (k=l; k<=lOO; k++) II this is for delay. 
( 

delayl=sin (k) ; 
} 

chrnove(); 
} 

if (i==4) 
{ strcpy (narnexu, "do set lo=p25"); 

monitor corn () ; 
for (k=l; k<=100; k++) II this is for delay. 

( 
delayl=sin (k) ; 
} 

chmove(); 

if (i==5) 
strcpy (narnexu, "do set lo=p26") ; 
monitor corn () ; -
for (k=l; k<=lOO; k++) II this is for delay. 

( 
delayl=sin (k) ; 
} 

chrnove(); 
} 

if (i==6) 
{ strcpy (narnexu, "do set lo=p27"); 

monitor corn () ; 
for (k=l; k<=lOO; k++) II this is for delay. 

( 

delayl=sin (k) ; 
} 

chrnove()i 

if (i==7) 
{ strcpy (narnexu, "do set lo=p28"); 

monitor corn ( ) ; 
for (k=l; k<=lOOi k++) II this is for delay. 

( 
delayl=sin (k) ; 
} 

chrnove()i 
} 

if (i==8) 
{ strcpy (narnexu, "do set lo=p29"); 

monitor corn ( ) ; 
for (k=l; k<=lOO; k++) II this is for delay. 

( 
delayl=sin (k) ; 
} 

chmove()i 
} 

if (i==9) 
{ strcpy (narnexu, "do set lo=p20")i 

monitor corn () i 
for (k=li k<=lOO; k++) II this is for delay. 

( 

delayl=sin (k) i 
} 

chrnove()i 

D-24 



main () ; 

getch(); 
return 0; 

charact() 
{ 

for (i =1; i<=28; i++) 
position */ 

{ if (i==l) 
( chv='a'; 

namecomp(); 
} 

if (i==2 ) 
( chv='b'; 

namecomp () ; 

if (i==3) 
( chv='c'; 

namecomp(); 
} 

if (i==4) 
{ chv='d' ; 

namecomp(); 
} 

if (i==5) 
{ chv='e'; 

namecomp(); 
} 

if (i==6) 
( chv='f'; 

namecomp(); 
} 

if (i==7 
{ chv='g' ; 

namecomp () ; 
} 

if (i==8 ) 

{ chv='h'; 
namecomp(); 

if (i==9 ) 

{ chv='i'; 
namecomp()i 

} 

if (i==10 ) 

APPENDIXD 

/* locat the charaters and 

0- 25 



APPENDIXD 

chv='j'i 
namecomp () ; 

if ( i==ll ) 

{ chv='k'i 
namecomp(); 

} 

if (i==13 ) 

{ chv='l'i 
namecomp()i 

if (i==13 ) 

{ chv='m'i 
namecomp(); 

if (i==14 ) 

{ chv='n'i 
namecomp(); 

if (i==15 ) 

{ chv='O'i 
namecomp()i 

if (i==16 ) 
{ chv='P'i 

namecomp()i 

if (i==17 ) 

{ chv='q'i 
namecomp(); 

if (i==18 ) 

{ chv='r'i 
namecomp()i 

if ( i==19 ) 

{ chv='S'i 
namecomp ( ) i 

if (i==20 ) 

{ chV='t'i 
namecomp(); 

if (i==21 ) 

{ chv='U'i 
namecomp()i 

if (i==22 ) 

{ chv='V'i 
namecomp ( ) ; 

if (i==23 ) 

{ chV='W'i 
namecomp () ; 

if (i==24 ) 

{ chv='x'i 
namecomp()i 

if (i==25 ) 

{ chv='Y'i 

D - 26 



APPENDL,(D 

namecomp(); 
} 

if (i==26 ) 

{ chv='z'; 
namecomp()i 

if (i==27 ) 
{ chv=' , . , 

namecomp()i 

if (i==28 ) 

{ chv=' . ' ; 
namecomp(); 

return 0; 
) 

chmove () 

int k; 
float delayl; 

if (midvar [ij ==' a') 
{ strcpy (namexu," ex aa ") ; 

monitor com () i 

for (k=l; k<=lOO; k++) II this is for delay. 
{ 

delayl=sin (k) ; 
} 

if (midvar [i j ==' b' ) 
{ strcpy (namexu," ex bb") ; 

monitor com () ; 
for (k=l; k<=lOO; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
} 

if (midvar[ij=='c' ) 
{ strcpy (namexu," ex cc") ; 

monitor com () ; 
for (k=l; k<=lOO; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
) 

if (midvar [i j ==' d' ) 
{ strcpy (namexu," ex dd") ; 

monitor com () ; 
for (k=l; k<=lOO; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
} 

if (midvar[ij=='e') 
{ strcpy (namexu," ex ee") ; 

D -27 



APPENDIXD 

monitor com() i -
for (k=l; k<=100; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
} 

if (midvar [i) ==' f'} 
{ strcpy (namexu," ex ffll); 

monitor com() ; 
for (k=l; k<=100; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
} 

if (midvar[i]=='g' ) 
{ strcpy (namexu," ex gg") ; 

monitor com() ; 
for (k=l; k<=100; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
) 

if (midvar[ij=='h' ) 
{ strcpy (namexu," ex hh") ; 

monitor com() ; 
for (k=l; k<=100; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
) 

if (midvar [i) ==' i') 
{ strcpy (namexu,"ex ii ") ; 

monitor com () ; 
for (k=l; k<=100; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
) 

if (midvar [i) ==' j') 
{ strcpy (namexu," ex j j ") i 

monitor com () ; 
for (k=l; k<=100; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
) 

if (midvar [ij ==' k') 
{ strcpy (namexu,"ex kk") ; 

monitor com() ; 
for (k=l; k<=100; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
} 

if (midvar[ij=='l') 
{ strcpy (namexu," ex 11") ; 

monitor com () ; 
for (k=l; k<=100; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
) 

D -28 



APPENDIXD 

if (midvar[i]=='m' ) 
{ strcpy (namexu, "ex rom"); 

monitor com() ; -
for (k=l; k<=lOO; k++) II this is for delay. 

( 

delayl=sin (k) ; 
} 

if (midvar [i) =='n') 
{ strcpy (namexu,"ex nn") ; 

monitor com() ; 
for (k=l ; k<=lOO; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
} 

if (midvar[i]=='o' ) 
{ strcpy (namexu,"ex 00") ; 

monitor com() ; 
for (k=l; k<=lOO; k++) II this is for delay. 

( 

delayl=sin (k) ; 
} 

} 

if (midvar [i) ==' p' ) 
{ strcpy (namexu, "ex pp") ; 

monitor com() ; 
for (k=l; k<=lOO; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
} 

if (midvar[i]=='q' ) 
{ strcpy (namexu,"ex qq") ; 

monitor com () ; 
for (k=l; k<=lOO; k++) II this is for delay. 

( 

delayl=sin (k) ; 
} 

if (midvar[i]=='r') 
{ strcpy (namexu,"ex rr") ; 

monitor com () ; 
for (k=l; k<=lOO; k++) II this is for delay. 

( 

delayl=sin (k) ; 
} 

if (midvar[i]=='s') 
{ strcpy (namexu,"ex ss") ; 

monitor_com() ; 
for (k=l; k<=lOO; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
} 

if (midvar[i]=='t') 
{ strcpy (namexu,"ex tt") ; 

monitor com() ; -

D-29 



for (k=lj k<=lOOj k++) II 
{ 

delayl=sin (k) j 

} 

if (midvar[i]=='u' ) 
{ strcpy (namexu,"ex uu") j 

monitor com () j -
for (k=l; k<=lOO; k++) II 

( 

delayl=sin (k) ; 
} 

if (midvar[i]=='v' ) 
{ strcpy (namexu," ex Vv") j 

monitor com() i -
for (k=li k<=lOOj k++) 

( 

delayl=sin (k) i 
} 

if (midvar[i]=='w' ) 
{ strcpy (namexu," ex ww") ; 

monitor com () ; 
for (k=l; k<=lOO; k++) 

( 

delayl=sin (k) ; 
} 

if (midvar [iJ ==' x') 
{ strcpy (namexu," ex xx") ; 

monitor com (); 
for (k=li k<=100; 

{ 

delayl=sin (k) ; 
} 

} 

if (midvar[iJ=='y') 
{ strcpy (namexu," ex 

monitor com() ; 
for ( k=l; k<=100; 

{ 

delayl=sin (k) ; 
} 

} 

if (midvar [iJ ==' z') 
{ strcpy (namexu," ex 

monitor com () ; -
for (k=li k<=lOOj 

( 
delayl=sin (k) j 

} 

namecomp () 
{ 

k++) 

yy") i 

k++) 

zz ") ; 

k++) 

II 

II 

II 

II 

II 

this 

this 

this 

this 

this 

this 

this 

D- 30 

APPENDIXD 

is for delay. 

is for delay. 

is for delay. 

is for delay. 

is for delay. 

is for delay. 

is for delay. 



char *ptr; 

I I clrscr () ; 

strcpy(str, name)i 
ptr = (char *) memchr(str, chv, strlen(str»)i 
if (ptr) 

{ 

APPENDIXD 

II printf("The character %c", chv, " is at position: %d\n", ptr 
- str)i 
II printf("\n present string is %s ", ptr)i 

name1=ptri 
II printf("the name1 is %s\n", name1); 

pos=ptr-stri 
II printf("the pos is%d\n", pOS)i 

strname[pos)=chVi 
} 

II else 
II printf("The character was not found\n")i 

II getch(); 
return 0; 

void robot_init() 
{ 

0) 

int 
int 
char 
char 
char 

i,j, port, port1,stat,stat1i 
card_no, total_port,data_itemi 
data(20),filename[20); 

w_data[20),command[20)i 
power, ch,str(20); 

restorecrtmode(); 
clrscr(); 
printf("Reset the moxa cards .... \n"); 
if ((card_no = sio_reset(» == 0) 
{ 

printf("No Card Found !\n")i 
exit (0) i 

printf("Total Card: %d\n", card_no)i 

printf("Read the 10 . ... \n")i 
for (i = 1i i <= card_noi i++) 
{ 

printf("(%d)\tSerial no: %d", i, sio_id(i))i 
printf("\tMapping %X\n", sio_bank(i»i 

printf("Setting port 7 to 9600, N, 8, 1 .... \n"); 
port = 7i 
if ( sio_ioctl(port, B9600, BIT 8 P NONE 

printf("Port I%d IOCTL error !\n", port)i 
exit (0) i 

for (port=6;port<=13;port++) 
{ stat=sio_open(port); 
if(stat != 0) 

D - 31 



(printf{"Port I%d can not be opened!\n",port); 
exit (O) ; } 
) 

printf{"Do you want to run the power on program? \n"l; 
power=getch{li 
if ( power=='Y'1 I power=='y') 
( 

printf{"Read information from PUMA Controller .... \n"); 
do 

( 

while{kbhit{)==O) 
( 

port=7; 
statl=sio_read{port,data,lOO); 

if (statl>=O) 
( 

data[statl]=O; 
printf{"%s",data); 

} 

do 
{ 

ch=getch{); 
switch (ch) 
{ 

case 'N': 
case 'n': 

w_data[O] = Chi 
w_data[l] = '\r'; 
sio_write{7,w_data,2); 

break; 
default:breaki 

APPENDIXD 

}while{ch!='n' && ch!='N' && ch!='.' && ch!='y' && 
Ch!='Y')i 

}while{ch!='.' && ch!='y'); 
II for power switch. 

II strcpy (namexu,"cal"); 
II monitor_com{); 

moni tor_com ( ) 

*1 
char 

1* send the monitor command to the controller, It accepts 
the monitor varibale "strl" and send to Robot Controller 

endch='X'i 

D- 32 



I I for ( ; ;) ( 
II if( endch=='?') 

l*printf("\nPlease input data: " ); *1 
II gets(strl); 

II strcat(strl,"\r"); 
II sio write(7,strl,strlen(strl)); 
II endch=get data(strl)i 

I I } -
II printf("\nlnput the command_line:\n")i 
strcpy (strl, namexu)i 
if(fileptr!=NULL) fclose(fileptr}; 
II if(!strcmp(strl,"esc")) menu()i 

APPENDIXD 

1* the exit of the unlimited recursion *1 
strcat(strl,"\r"); 
sio_write(7,strl,strlen(strl)); 1* send the command to puma 

controller 

endch=get_data(strl); 

II } 
} 

void mainn () 
( 

int xl,yl,ci 
/* int driver, mode; 
register int i; 
driver=DETECT; 

and the controller runs the command *1 

mode=O; 
initgraph(&driver,&mode,"c:\\tc\\bgi"); *1 

settextstyle(TRIPLEX_FONT,HORIZ_DIR,4); 
setbkcolor(CYAN); 
outtextxy(200,120,"WELCOME TO"); 
outtextxy(145,220,"LANSING ROBOT WORLD"); 
settextstyle(TRIPLEX_FONT,HORIZ_DIR,l)i 
outtextxy(250,400,"CLICK TO START"); 
do 

( 

get_mouse(): 
if (buttons==l) 

( 
cleardevice(); 
menuu()i 

} 

}while(buttons!=3); 
1* getch()i 
cleardevice()i 
menuu()i *1 

void menuu ( ) 
{ 

int c: 
1* int driver,mode; 
register int ii 
driver = DETECT: 
mode = 0: 
initgraph(&driver,&mode,"c:\\tc\\bgi"): */ 

D - 33 



setbkcolor(LIGHTRED); 
settextstyle(TRIPLEX_FONT,HORIZ_DIR,l); 
outtextxy(120,50,"Selection of Lansing Robot Control H); 
setfillstyle(SOLID_FILL,CYAN); 
bar3d(128,144,488,184,O,O); 
outtextxy(140,150,"1. Mouse and Screen Method"); 
setfillstyle(SOLID_FILL,CYAN)i 
bar3d(128,192,488,232,O,O); 
outtextxy(140,200,"2. User Friendly Teaching Method"); 
setfillstyle(SOLID_FILL,CYAN); 
bar3d(128,240,488,280,O,O); 
outtextxy(140,250,"3. EXIT"); 
outtextxy(210,400," Enter Your Choice "); 
gotoxy(l,l); 
show_mouse(); 
do 

{ 

get_mouse(); 
if(xl>=16&&xl<=61) 
{ 

if(yl>=18&&yl<=23&&(buttons==11Ibuttons==2)) 
{ 

hide_mouse(); 
cleardevice(); 
mouse(); 

} 

if(yl>=24&&yl<=29&&(buttons==11Ibuttons==2» 
{ 

} 

hide_mouse(); 
closegraph(); 
mainll () ; 

if (yl>=30&&yl<=35&& (buttons==l I Ibuttons==2» 
{ 

} 

hide_mouse(); 
cleardevice(); 
main(); 

}while(buttons!=3); 
/* do 

( 

c=getch(); 
switch (e) 
{ 

case'l': 
cleardeviee(); 
mouse(); 
break; 

case'2': 
closegraph(); 
mainll () ; 
break; 

case'3': eleardeviee()i 
main () i 
break; 

default: 
break; 

}while(c!='l' && c!='2' && c!='3'); */ 
} 

0- 34 

APPENDIXD 



void mouse ( ) 
{ 1* request auto detection *1 
1* int driver = DETECT, mode, errorcode; *1 

int i; 

1* initialize graphics, local variables*1 
II initgraph(&driver, &mode, "c:\\tc\\bgi"); 

1* read result of initialization */ 
II errorcode = graphresult(); 
II if (errorcode != grOk) 1* an error occurred *1 
II { 

APPENDIXD 

II printf("Graphics error: %s\n", grapherrormsg(errorcode)); 
II printf("Press any key to halt:"); 
I I getch () ; 
II exit(l); /*terminate with error code *1 
II 

1* midx = getmaxx() / 2; 
midy = getmaxy() I 2; */ 

setbkcolor(BLUE); 
setfillstyle(EMPTY_FILL, getmaxcolor()); 
settextstyle(DEFAULT FONT,HORIZ DIR,l); 
1* draw the 3-d bar */ -
setfillstyle(SOLID_FILL,RED); 
bar3d(592,16,623,47,0,0); 
outtextxy(593,30,"EXIT"); 
setfillstyle(SOLID_FILL,GREEN); 
bar3d(592,56,623,87,0,0); 
outtextxy(596,64,"JOB"); 
outtextxy(593,76,"SAVE"); 
bar3d (592,96,623,127, 0, 0); 
outtextxy(593,104,"SAVE"); 
outtextxy(596,116,"END"); 
setfillstyle(SOLID_FILL,LIGHTGRAY); 
bar3d(16,152,87,183,0,0); 
outtextxy(28,166,"DISP 1"); 
bar3d(96,152,167,183,0,0); 
outtextxy(108,166,"DISP 2"); 
bar3d(176,152,247,183,0,0); 
outtextxy(188,166,"DISP 3"); 
bar3d(256,152,327,183,0,0); 
outtextxy(268,166,"DISP 4"); 
bar3d(384,152,415,183,0,0); 
outtextxy(392,166,"UP"); 
bar3d(472,152,503,183,0,0); 
outtextxy(486,166,"1"); 
bar3d(512,152,543,183,0,0); 
outtextxy(526,166,"2"); 
bar3d(552,152,583,183,0,0); 
outtextxy(566,166,"3"); 
bar3d(592, 152, 623, 183, 0, 0); 
outtextxy(606,166,"4"); 

bar3d(16,192,47,223,0,0) ; 
outtextxy(17,200,"CALL"); 
outtextxy(30,212,"n"); 
bar3d(56,192,87,223,0,0); 

D- 35 



outtextxy(57,200,"CALL"); 
outtextxy(70,212,"xl"); 
bar3d(96,192,127,223,O,O); 
outtextxy(104,200,"DO"); 
outtextxy(110,212,"n"); 
bar3d(136,192,167,223,O,O); 
outtextxy(144,200,"DO"); 
outtextxy(137,212,"WHIL"); 
bar3d(176,192,207,223,O,O); 
outtextxy(190,206,"C"); 
bar3d(216,192,247,223,O,O); 
outtextxy(230,206,"D"); 
bar3d(256,192,287,223,O,O); 
outtextxy(270,206,"E"); 
bar3d(296,192,327,223,O,O); 
outtextxy(310,206,"F"); 
bar3d(344,192,375,223,O,O); 
outtextxy(345,206,"LEFT"); 
bar3d(384,192,415,223,O,O); 
outtextxy(398,206,"H"); 
bar3d(424,192,455,223,O,O); 
outtextxy(425,206,"RIGH"); 
bar3d(472,192,503,223,O,O); 
outtextxy(473,200,"PAGE"); 
outtextxy(476,212,"CTL"); 
bar3d(512,192,543,223,O,O); 
outtextxy(513,200,"MACH"); 
outtextxy(513,212,"LOCK"); 
bar3d(552,192,583,223,O,O); 
outtextxy(556,200,"OUT"); 
outtextxy(560,212,"ON"); 
bar3d(592,192,623,223,O,O); 
outtextxy(593,200,"MEAS"); 
outtextxy(600,212,"ON"); 

bar3d(16,232,47,263,O,O); 
outtextxy(20,240,"PFM"); 
outtextxy(30,252,"n"); 
bar3d(56,232,87,263,O,O); 
outtextxy(64,246,"IF"); 
bar3d(96,232,127,263,O,O); 
outtextxy(97,246,"THEN"); 
bar3d(136,232,167,263,O,O); 
outtextxy(137,246,"ELSE"); 
bar3d(176,232,207,263,O,O); 
outtextxy(190,246,"8"); 
bar3d(216,232,247,263,O,O); 
outtextxy(230,246,"9"); 
bar3d(256,232,287,263,O,O); 
outtextxy(270,246,"A"); 
bar3d(296,232,327,263,O,O); 
outtextxy(310,246,"B"); 
bar3d(384,232,415,263,O,O); 
outtextxy(385,246,"DOWN"); 
bar3d(472,232,503,263,O,O); 
outtextxy(473,246,"EDIT"); 
bar3d(512,232,543,263,O,O); 
outtextxy(513,246,"DIAG"); 
bar3d(552,232,583,263,O,O); 
outtextxy(553,246,"TAPE"); 
bar3d(592,232,623,263,O,O); 

D- 36 

APPENDIXD 



outtextxy(593,246,"MONI"); 

bar3d (16,272,47,303,0,'0) : 
outtextxy(17,286,"BEGN"): 
bar3d(56,272,87,303,O,O): 
outtextxy{60,286,"END"); 
bar3d(96,272,127,303,O,O); 
outtextxy(97,286,"WAIT"); 
bar3d(136,272,167,303,O,O); 
outtextxy(140,286,"OUT"): 
bar3d(176,272,207,303,O,O); 
outtextxy(190,286,"4"); 
bar3d(216,272,247,303,O,O); 
outtextxy{230,286,"5"); 
bar3d(256,272,287,303,O,O); 
outtextxy(270,286,"6"); 
bar3d(296,272,327,303,O,O); 
outtextxy(310,286,"7"); 
bar3d(344,272,375,303,O,O); 
outtextxy(348,280,"JOB"); 
outtextxy(345,292,"STEP"); 
bar3d{384,272,415,303,O,O); 
outtextxy(385,280,"PROG"); 
outtextxy(385,292,"STEP"); 
bar3d(424,272,455,303,O,O); 
outtextxy(428,286,"TWO"); 
bar3d(472,272,503,303,O,O); 
outtextxy(476,280,"JOB"): 
outtextxy(473,292,"TECH"); 
bar3d{512,272,543,303,O,O); 
outtextxy(513,280,"PROG"); 
outtextxy(513,292,"TECH"); 
bar3d(552,272,583,303,O,O); 
outtextxy(553,280,"PLAY"); 
outtextxy(553,292,"BACK"); 
bar3d(592,272,623,303,O,O); 
outtextxy(593,280,"MODE"); 
outtextxy{606,292,"xl"); 

bar3d(16,312,47,343,O,O); 
Quttextxy(20,326,"AND"); 
bar3d(56,312,87,343,O,O); 
outtextxy(64,326,"OR"); 
bar3d(96,312,127,343,O,O); 
outtextxy(100,326,"EOR"): 
bar3d(136,312,167,343,O,O); 
outtextxy(140,326,"NOT"); 
bar3d(176,312,207,343,O,O); 
outtextxy(190,326,"O"); 
bar3d(216,312,247,343,O,O); 
outtextxy(230,326,"1"): 
bar3d(256,312,287,343,O,O): 
Quttextxy(270,326,"2"); 
bar3d{296,312,327,343,O,O): 
outtextxy(310,326,"3"); 
bar3d(344,312,375,343,O,O); 
Quttextxy(348,326,"JOB"); 
bar3d(384,312,415,343,O,O); 
outtextxy(385,326,"PROG"); 
bar3d(424,312,455,343,O,O); 
Quttextxy{428,326,"ONE"); 

D- 37 

APPENDIXD 



bar3d(16,352,47,383,O,O); 
outtextxy(17,366,"ENTR"); 
bar3d(56,352,87,383,O,O); 
outtextxy(57,366,"CONS"); 
bar3d(96,352,127,383,O,O); 
outtextxy(100,366,"DUP"); 
bar3d(136,352,167,383,O,O); 
outtextxy(137,366,"REMV"); 
bar3d(176,352,207,383,O,O); 
outtextxy(190,360,"/"); 
outtextxy(177,372,"HEXA"); 
bar3d(216,352,247,383,O,O); 
outtextxy(230,366,"-"); 
bar3d(256,352,287,383,O,O); 
outtextxy(270,366,"."); 
bar3d(296,352,327,383,O,O); 
outtextxy(310,366,","); 
bar3d(472,352,543,383,O,O); 
outtextxy(488,366,"RESET"); 
bar3d(552,352,623,383,O,O); 
outtextxy(562,366,"RECOVER"); 

bar3d(16,392,47,423,O,O); 
outtextxy(20,400,"JOB"); 
outtextxy(20,412,"END"); 
bar3d(56,392,87,423,O,O); 
outtextxy(60,400,"CLR"); 
outtextxy(60,412,"CTR"); 
bar3d(96,392,127,423,0,0); 
outtextxy(100,400,"ADD"); 
outtextxy(100,412,"CTR"); 
bar3d(136,392,167,423,O,O); 
outtextxy(140,400,"CHK"); 
outtextxy(140,412,"CTR"); 
bar3d(176,392,207,423,O,O): 
outtextxy(184,406,"SP"); 
bar3d(216,392,247,423,0,0); 
outtextxy(230,406,"+"); 
bar3d(256,392,287,423,O,O); 
outtextxy(270,406,"*"); 
bar3d(296,392,327,423,O,O); 
outtextxy(310,406,"&"); 
bar3d(344,392,375,423,0,0); 
outtextxy(348,406,"DEL"); 
bar3d(384,392,415,423,O,O); 
outtextxy(388,406,"CHG"); 
bar3d(424,392,455,423,O,O); 
outtextxy(428,406,"ADD"); 
bar3d(472,392,543,423,0,O); 
outtextxy(488,406,"START"); 
bar3d(552,392,623,423,O,O); 
outtextxy(558, 406, "SERVO ON"); 

bar3d(16, 432, 47,463,0,0); 
outtextxy(20,440,"SEL"); 
outtextxy(17,452,"MREG"); 
bar3d(56,432,87,463,0,0) ; 
outtextxy(60,440,"CLR"); 
outtextxy(57,452,"MREG"); 
bar3d(96,432,127,463,0,0); 

D - 38 

APPENDIXD 



outtextxy(lOO,440,"ADD"); 
outtextxy(97,452,"MREG"); 
bar3d(136,432,167,463,O,O); 
outtextxy(137,440, "UNIT"); 
outtextxy(137,452,"MREG"); 
bar3d(176,432,207,463,O,O): 
outtextxy(177,446,"CNCL"); 
bar3d(216,432,247,463,O,O); 
outtextxy(220,440,"RUB"); 
outtextxy(220,452,"OUT"); 
bar3d(256,432,327,463,O,O); 
outtextxy(280,446,"SET"); 
bar3d(384,432,415,463,O,O)i 
outtextxy(385,446,"TECH"); 
bar3d(472,432,543,463,O,O); 
outtextxy(492,446,"STOP"); 
bar3d(552,432,623,463,O,0): 
outtextxy(553,446,"SERVO OFF"): 

/* settextstyle(DEFAULT FONT,HORIZ DIR,l): 
outtextxy(592,23,"UNIT~); -
outtextxy(592,35,"MREG"); 
outtextxy(592,29,"EXIT"): */ 
/* int xl,yl,c: 

int driver, mode; 
register int i; 
driver==DETECT; 
mode=O: 

initgraph(&driver, &mode, "c:\\tc\\bgi"): 
setbkcolor(LIGHTBLUE): 
settextstyle (TRIPLEX_FONT, HORIZ_DIR, 1): 
restorecrtmode(): 
clrscr (); * / 
outtextxy(120, 50, "KEYBOARD OF LANSING ROBOT"): 

/* bar3d(15,15,576,143,O,O):*/ 
/* bar3d(): */ 
mouse_function(); 

} 

void mouse_function() 
{ 

FILE *fp; 
char fn[20): 

gotoxy(l,l); 
show mouse(): 

/* inIt_mouse():*/ 
do 

{ 

get_mouse(): 
gotoxy(l,l): 
printf("%d,%d",xl,yl); 

if (xl>=74&&xl<=77&&yl>=2&&yl<=5&&buttons==1) 
{ 

/* cleardevice(): 
outtextxy(l50,50,"ARE YOU ALRIGHT"): 
menuu(): */ 
hide_mouse(): 
cleardevice(); 

menuu(): 
/* exit (0): */ 

} 

D - 39 

APPENDIXD 



1* if(xl>=74&&xl<=77&&yl>=7&&yl<=lO&&buttons==1) 

printf("Please input file name: H); 
gets(fn); 

if((fp=fopen(fn,"w"))==NULL) 
( 

} 

printf("Can not create file\n"); 
return; 

printf("Please input JOB procedure:\n"); 
} * I 

if(yl>=19&&yl<=22) 
( 
if(xl>=2&&xl<=lO&&buttons==1) 

( 
sio_putch(13,50); 
sound(2500); 
delay(200); 
nosound () ; 

II sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 

if(xl>=13&&xl<=20&&buttons==1) 
( 
sio_putch(13,194); 
sound(2500);delay(100);nosound(); 
sio_putch(13,O); 

} 
if(xl>=22&&xl<=30&&buttons==1) 

( 
sio putch(13,34); 
sou~d(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 

if(xl>=32&&xl<=40&&buttons==1) 
( 
sio putch(13,210); 
sound(2500);delay(100);nosound(); 
sioyutch(13,0); 

} 

if(xl>=48&&xl<=51&&buttons==1) 
( 

} 

sio putch(13,207); 
sound(2500);delay(lOO);nosound()i 
sio_putch(13,O); 

if (xl>=59&&xl<=62&&buttons==1) 
( 
sio_putch(13,52); 
sound(2500);delay(lOO);nosound(); 
sio_putch (13,0) ; 

} 

if(xl>=64&&xl<=67&&buttons==1) 
( 

} 

sio putch(13,196); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O)i 

if (xl>=69&&xl<=72&&buttons==1) 

D -40 

APPENDIXD 



sio putch(13,36); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 

if(xl>=74&&xl<=77&&buttons==1) 
{ 

} 

sio_putch(13,212); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

if(yl>=24&&yl<=27) 
{ 

if(xl>=2&&xl<=5&&buttons==1) 
{ 

sio_putch(13,118); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13, 0); 

} 
if(xl>=7&&xl<=10&&buttons==1) 

{ 
sio_putch(13,134); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

) 
if(xl>=13&&xl<=15&&buttons==1) 

{ 
sio putch(13,102); 
sound(2500);delay(lOO);nosound(); 
sio_putch (13,0); 

) 
if(xl>=17&&xl<=20&&buttons==1) 

{ 

) 

sio putch(13,150); 
sound(2500);delay(lOO);nosound(); 
sio_putch (13,0); 

if (xl>=22&&xl<=25&&buttons==1) 
{ 

sio_putch(13,86); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O) ; 

) 
if(xl>=27&&xl<=30&&buttons==1) 

{ 
sio putch(13,166); 
sound(2500);delay(100);nosound(); 
sio_putch (13, 0) ; 

} 
if(xl>=32&&xl<=35&&buttons==1) 

{ 

sio_putch(13,70); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=37&&xl<=40&&buttons==1) 

{ 
sio putch(13,182); 
sound(2500);delay(lOO);nosound(); 

D - 41 

APPENDIXD 



sio_putch(13,O); 
} 

if(xl>=43&&xl<=46&&buttons==1) 
{ 

sio_putch(13,47); 
sound(2500);delay(100);nosound(); 
sio_putch (13, 0) ; 

} 

if(xl>=48&&xl<=51&&buttons==1) 
{ 

sio~utch(13/63); 
sound(2500);delay(100);nosound(); 
sio_putch (13, 0); 

} 
if(xl>=53&&xl<=56&&buttons==1) 

( 
sio_putch(13,31); 
sound(2500);delay(100);nosound(); 
sio_putch (13, 0); 

} 
if(xl>=59&&xl<=62&&buttons==1) 

( 
sio_putch(13,20); 
sound(2500);delay(lOO)inosound()i 
sio_putch(13,0); 

} 
if(xl>=64&&xl<=67&&buttons==1) 

( 

sio putch(13,228); 
sou~d(2500);delay(lOO);nosound()i 
sio~utch(13,0); 

} 
if(xl>=69&&xl<=72&&buttons==1) 

( 

sio_putch(13,4); 
sound(2500);delay(lOO);nosound()i 
sio_putch(13,0); 

} 

if(xl>=74&&xl<=77&&buttons==1) 
( 

} 

sio_putch(13,244); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

if(yl>=29&&yl<=32) 
( 
if(xl>=2&&xl<=5&&buttons==1) 

{ 

sio_putch(13,124); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=7&&xl<=10&&buttons==1) 

( 

sio_putch(13,140); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=13&&xl<=15&&buttons==1) 

D-42 

APPENDIXD 



sio putch(13,108); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 

if(xl>=17&&xl<=20&&buttons==1) 
{ 

sio_putch(13,156); 
sound(2500):delay(lOO);nosound{); 
sio_putch(13,O)i 

} 
if(xl>=22&&xl<=25&&buttons==1) 

{ 
sio_putch(13,92); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=27&&xl<=30&&buttons==1) 

{ 

} 

sio_putch(13,172); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

if (xl>=32&&xl<=35&&buttons==1) 
{ 
sio_putch(13,76); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=37&&xl<=40&&buttons==1) 

{ 
sio putch(13,188}; 
sou;d(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=48&&xl<=51&&buttons==1) 

{ 

} 

sio putch(13,223); 
sou;d(2500);delay(lOO);nosound(); 
sio_putch(13,O)i 

if (xl>=59&&xl<=62&&buttons==1) 
{ 

} 

sio putch{13,61); 
sou;d(2500);delay(lOO);nosound(); 
sio_putch(13,O) ; 

if (xl>=64&&xl<=67&&buttons==1) 
( 
sio putch(13,205); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

I 
if(xl>=69&&xl<=72&&buttons==1) 

{ 

sio_putch(13,45) ; 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=74&&xl<=77&&buttons==1) 

{ 

D·43 

APPENDIXD 



} 

} 

sio_putch(13,221); 
sound(2500)idelay(lOO);nosound(); 
sio_putch(13,O); 

if(yl>=34&&yl<=37) 
( 

if(xl>=2&&xl<=5&&buttons==1) 
{ 

sio_putch(13,119); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O)i 

} 
if(xl>=7&&xl<=lO&&buttons==1) 

{ 
sio_putch(13,135); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 

if(xl>=13&&xl<=15&&buttons==1) 
{ 
sio_putch(13,103); 
sound(2500);delay(100);nosound(); 
sio_putch(13,O); 

} 
if(xl>=17&&xl<=20&&buttons==1) 

{ 

sio putch(13,151)i 
sound(2500)idelay(lOO)inoSound()i 
sio_putch(13,O)i 

} 
if(xl>=22&&xl<=25&&buttons==1) 

{ 
sio putch(13,87)i 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O)i 

} 

if(xl>=27&&xl<=30&&buttons==1) 
{ 
sio_putch(13,167)i 
sound(2500)idelay(lOO)inosound()i 
sio_putch(13, 0) i 

} 
if(xl>=32&&xl<=35&&buttons==1) 

( 

sio putch(13,71); 
sound(2500);delay(100)inoSound(); 
sio_putch(13, 0) i 

} 
if(xl>=37&&xl<=40&&buttons==1) 

( 
sio_putch(13,183)i 
sound(2500);delay(100)inosound(); 
sio_putch(13,O) ; 

} 
if(xl>=43&&xl<=46&&buttons==1) 

( 

sio_putch(13,62); 
sound(2500)idelay(100)inosound()i 
sio_putch(13, 0) i 

D-44 

APPENDIXD 



if(xl>=48&&xl<=51&&buttons==1) 
{ 

} 

sio_putch(13,206)i 
sound(2500)idelay(lOO)inosound()i 
sio_putch(13,O)i 

if (xl>=53&&xl<=56&&buttons==1) 
{ 

sio_putch(13,46)i 
sound(2500);delay(lOO);nosound()i 
sio_putch(13,O); 

} 

if(xl>=59&&xl<=62&&buttons==l} 
( 
sio_putch(13,29)i 
sound(2500};delay(lOO);nosound(); 
sio_putch(13,O); 
bar3d(15,15,576,143,3,l) i 

} 

if(xl>=64&&xl<=67&&buttons==1) 
{ 
sio_putch(13,237); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=69&&xl<=72&&buttons==l} 

( 
sio putch(13,13); 
sound(2500};delay(lOO);nosound(); 
sio_putch(13,O}; 

} 

if(xl>=74&&xl<=77&&buttons==1) 
{ 

} 

sio putch(13,253}; 
sound(2500);delay(lOO);nosound(); 
sio_putch(13, 0) i 

if(yl>=39&&yl<=42) 
( 
if (xl>=2&&xl<=5&&buttons==1) 

{ 

} 

sio putch(13,123)i 
sound(2500)ide1ay(lOO);nosound()i 
sio_putch(13,O); 

if (xl>=7&&xl<=lO&&buttons==1) 
( 
sio_putch(13,139); 
sound(2500);delay(lOO);nosound()i 
sio_putch(13,O); 

} 

if(xl>=13&&xl<=15&&buttons==1) 
( 
sio putch(13,107); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=17&&xl<=20&&buttons==1) 

D -45 

APPENDIXD 



sio_putch(13,155); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=22&&xl<=25&&buttons==1) 

{ 

} 

sio_putch(13,91); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

if (xl>=27&&xl<=30&&buttons==1) 
{ 
sio_putch(13,171); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=32&&xl<=35&&buttons==1) 

{ 
sio_putch(13,75); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=37&&xl<=40&&buttons==1) 

{ 
sio_putch(13,187); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=43&&xl<=46&&buttons==1) 

{ 
sio putch(13,222); 
sound(2500) ;delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=48&&xl<=51&&buttons==1) 

{ 
sio putch(13,30); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=53&&xl<=56&&buttons==1) 

( 

} 

sio putch(13,238); 
sound(2500);delay(lOO);nosound(}; 
sio_putch(13,O); 

if(yl>=44&&yl<=47) 
( 
if(xl>=2&&xl<=5&&buttons==1) 

{ 

} 

sio_putch(13,120): 
sound(2500):delay(lOO):nosound(); 
sio_putch(13,O); 

if(xl>=7&&xl<=lO&&buttons==1) 
{ 
sio_putch(13,136)i 
sound(2500);delay(lOO);nosound(); 

D·% 

APPENDDrD 



s i ° _pu t ch ( 13, 0) i 

} 
if(xl>=13&&xl<=15&&buttons==1) 

( 

sio_putch(13,104)i 
sound(2500);delay(100);nosound(); 
sio_putch(13,0); 

} 

if(xl>=17&&xl<=20&&buttons==1) 
( 

sio_putch(13,152)i 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=22&&xl<=25&&buttons==1) 

( 
sio_putch(13,88)i 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

) 
if(xl>=27&&xl<=30&&buttons==1) 

( 

} 

sio_putch(13,168); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

if (xl>=32&&xl<=35&&buttons==1) 
( 
sio putch(13,72); 
sound(2500);delay(100);nosound(); 
sio_putch (13, 0) ; 

) 
if(xl>=37&&xl<=40&&buttons==1) 

( 
sio putch(13,184); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 

if(xl>=59&&xl<=67&&buttons==1) 
( 
sio putch(13,53); 
sound(2500)idelay(lOO);nosound(); 
sio_putch (13, 0); 

} 
if(xl>=69&&xl<=77&&buttons==1) 

( 

} 

sio_putch(13,213); 
sound(2500);delay(lOO);nosound(); 
sio_putch (13, 0); 

if(yl>=49&&yl<=52) 
( 
if(xl>=2&&xl<=5&&buttons==1) 

( 
sio putch(13,122); 
sound(2500)idelay(100);nosound(); 
sio_putch(13,O); 

} 

if(xl>=7&&xl<=10&&buttons==1) 

0-47 

APPENDIXD 



sio_putch(13,138); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 

if(xl>=13&&xl<=15&&buttons==1) 
( 
sio_putch(13,106); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=17&&xl<=20&&buttons==1) 

( 

sio_putch(13,154); 
sound(2500);delay(100);nosound(); 
sio_putch(13,O); 

} 
if(xl>=22&&xl<=25&&buttons==1) 

( 
sio_putch(13,90); 
sound(2500);delay(100);nosound(); 
sio_putch(13,0); 

) 
if(xl>=27&&xl<=30&&buttons==1) 

{ 

} 

sio_putch(13,170); 
sound(2500);delay(100);nosound(); 
sio_putch(13,0); 

if (xl>=32&&xl<=35&&buttons==1) 
( 

sio putch(13,74)i 
sound(2500)idelay(lOO)inosound()i 
sio_putch(13,O); 

} 
if(xl>=37&&xl<=40&&buttons==1) 

{ 

sio putch(13,186); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=43&&xl<=46&&buttons==1) 

{ 

sio_putch(13,51); 
sound(2500);delay(100);nosound(); 
sio_putch(13,O); 

} 
if(xl>=48&&xl<=51&&buttons==1) 

( 

} 

sio_putch(13,195); 
sound(2500);delay(100);nosound(); 
sio_putch(13,O) ; 

if (xl>=53&&xl<=56&&buttons==1) 
{ 

sio_putch(13,35); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13, 0); 

} 

if(xl>=59&&xl<=67&&buttons==1) 
{ 

D - 48 

APPENDIXD 



sio_putch(13,197}; 
sound(2500};delay(lOO};nosound(}; 
sio_putch(13,0}; 

} 

if(xl>=69&&xl<=77&&buttons==1} 
{ 

} 

sio_putch(13,21}; 
sound(2500};delay(100};nosound(}; 
sio_putch(13,O}; 

if(yl>=54&&yl<=57} 
{ 

if (xl>=2&&xl<=5&&buttons==1) 
{ 

sio_putch(13,121}; 
sound(2500};delay(lOO};nosound(}; 
sio_putch(13,O); 

} 

if(xl>=7&&xl<=10&&buttons==1} 
( 
sio_putch(13,137); 
sound(2500);delay(lOO);nosound(}; 
sio_putch (13, O); 

} 

if(xl>=13&&xl<=15&&buttons==1) 
{ 

sio putch(13,105}; 
sou;d(2500);delay(lOO};nosound(}; 
sio_putch(13,0}; 

} 
if(xl>=17&&xl<=20&&buttons==1} 

( 
sio putch(13,153); 
sou;d(2500);delay(100};nosound(}; 
sio_putch (13, 0); 

} 
if(xl>=22&&xl<=25&&buttons==1} 

{ 

sio putch(13,89}; 
sou;d(2500};delay(lOO);nosound(}; 
sio_putch(13,O}; 

} 
if(xl>=27&&xl<=30&&buttons==1} 

( 
sio_putch(13,169); 
sound(2500};delay(lOO};nosound(); 
sio_putch(13,0); 

} 
if(xl>=32&&xl<=40&&buttons==1) 

{ 

sio_putch(13,73}; 
sound(2500};delay(100};nosound(}; 
sio_putch(13,O); 

} 
if(xl>=48&&xl<=51&&buttons==1) 

( 
sio_putch(13,211); 
sound(2500};delay(100)inosound()i 
sio_putch(13,0}; 

D-49 

APPENDIXD 



} 

if(xl>=59&&xl<=67&&buttons==l) 
( 

sio_putch(13,37); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if{xl>=69&&xl<=77&&buttons==l) 

{ 

} 

sio_putch(13,229); 
sound(2500);delay(lOO);nosound()i 
sio_putch{13,O); 

if (buttons==2) 
( 

cleardevice(); 
} 

}while(buttons!=3); 
hide_mouse(); 
menuu()i 

void show_mouse{) 

} 

struct REGPACK reg; 
reg.r_ax=l; 
intr(Ox33,&reg); 

void init_mouse() 
( 

} 

struct REGPACK regi 
reg.r_ax=Oi 
intr(Ox33,&reg); 

void get_mouse () 
( 

} 

struct REGPACK reg; 
reg.r_ax=3; 
intr(Ox33,&reg); 
xl=reg.r cx/8; 
yl=reg.r=dx/8; 
buttons=reg.r_bx; 

void hide_mouse() 
( 

) 

struct REGPACK regi 
reg.r_ax=2; 
intr(Ox33,&reg); 

void mainll () 

int i,j,port,stat; 
int card_no,total_port,data_itemi 
char command[20Ji 

restorecrtmode()i 
clrscr(); 
printf("RESET THE MOXA CARDS ...... \n"); 
if ((card_no sio_reset()) == 0) 
{ 

D -50 

APPENDIXD 



} 

printf("NO CARD FOUND !\n"); 
exit (0); 

printf ("TOTAL CARD : %d\n", card_no) ; 

printf("READ THE 10 ...... \n"); 
for (i=l; i<=card_no; i++) 
{ 

} 

printf("(%d)\tSerial no: %d",i,sio id(i)); 
printf("\tMapping : %X\n",sio_bank(i)); 

printf("Setting port 13 to 9600, n, 8, 1 ...... \n"); 
port = 13; 
if ( sio_ioctl (port,B9600, 8IT_8 I P_NONE I STOP_I) != 0) 
{ 

} 

printf("Port lid IOCTL error !\n",port); 
exit (0); 

printf("Open port 13 ...... \n"); 
port = 13; 
stat = sio_open(port); 
if(stat != 0) 

{ 

} 

printf("Port 13 can't be opened !\n"); 
exit (0); 

printf("\n\n\nPRESS ANY KEY TO CONTINUE !\n"); 
getch(); 

clrscr(); 

APPENDIXD 

main22(); 
} 

void main22 () 
{ 

char command[20]; 
char Chi 
int i,c; 

printf("NOW LET'S START !\n"); 
printf("I, SWITCH THE CONTROL UNIT POWER ON,WAITING 15 SECONDS\n"); 
printf("2, TURN THE POSITION OF SELECTION SWITCH TO LOW SPEED\n"); 
printf("3, INTUT 'SERVO ON' TO START ROBOT\n"); 
sio_putch(13,O); 
do 
{ 

gets(command); 
i=stricmp(command,"SERVO ON"); 
if(i!= 0) 
printf("Input fault,try it again ..... \n"); 

}while (i! =0) ; 
sio_putch(13,21); 
sound(2500);delay(100);nosound(); 
sio_putch(13,O); 
printf("Press 'ZERO ADJ' on Teaching Box to get zero adjustment\n"); 
printf("Waiting for ready\n"); 
printf("\n\n\nIf Emergency Stop occurs, press and hold ABNOR REL on 

T.B\n"); 
printf("Input 'R' or 'r'to recover, then adjust axises position by 

T.B,\n"); 

D - 51 



printf("or input 'Y' or 'y' to be continue at normal 
circumstances.\n"); 

do 
( 

ch=getch(); 
switch (ch) 
( 

case'r': 
case 'R': 

sio putch(13,213); 
sound(2S00);delay(100);nosound(); 
sio_putch (13,0); 
for(n=1;n<=20000;n++) {} 
sio_putch(13,2l); 
sound(2S00);delay(100);nosound(); 
sio_putch(13,O); 
printf("Try zero adjustment again\n"); 
break; 

case 'y': 
case 'y': 

break; 
default: break; 

} 
}while(ch!='y' && ch!='Y'); 

printf("Input SERVO OFF to stop preparation\n"); 
do 

( 

gets(command); 
i = stricmp(command,"servo off"); 
if(i!=O) 
printf("Input fault, try it again\n"); 

}while (i! =0); 
sio putch(13,229); 
sound(2S00);delay(lOO);nosound(); 
sio putch(13,O); 
printf("Turn the key position to MOTOR POWER OFF\n"); 
printf("Press any button to continue\n"); 
getch(); 
clrscr () ; 
printf("Selection of Working Mode\n"); 
printf("\n\n\nl. EDIT\n"); 
printf("\n2. JOB TEACH\n"); 
printf("\n3. PROGRAM TEACH\n"); 
printf("\n4. PLAYBACK\n"); 
printf("\nS. EXIT\n"); 
printf("\n\n\n[ Enter Your Choice ]\n"); 
do 

( 

c=getch(); 
switch(c) 

{ 

case' 1 ': edit ( ) ; 
break; 

case'2': jobteach(); 
break; 

case'3': progteach(); 
break; 

case'4': playback(); 
break; 

case'S': clrscr(); 
exit(O); 

D- 52 

APPENDIXD 



break; 
default: 

break; 

}while(c!='l' && c!='2' && c!='3' && c!='4'&&c!='5'); 

void edit () 
{ 

main () ; 
} 
void j obteach () 
{ 

char ch,str[20]; 
int n,i,xl; 

clrscr(); 
printf("Press and hold button 'A' on T.B,\n"); 
printf("then input 'J' or 'j' to enter Teach Mode .... \n"); 
do 

{ 
ch=getch () ; 
switch (ch) 

{ 

case'J': 
case'j': 

sio putch(13,29); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 
break; 

default: 
printf("Input fault, try it again\n"); 
break; 

}while(ch!='J' && ch!='j'); 
printf("\n"); 
for(;;) 
{ 

printf(IIInput command number ..... \n"); 

gets (str) ; 
if(strcmp(str,"esc")==Ollstrcmp(str,"ESC")==O) 
{ 

main () ; 
} 

i=atoi(str); 

sio_putch(13,i); 
sound(2500);delay(lOO);nosound(); 
sio putch(13,O); 
printf(IIInput string is %d\n",i); 

} 

void progteach() 
{ 

main () ; 
} 
void playback () 
{ 

main(); 
} 

D - 53 

APPENDIXD 


