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ABSTRACT 

The major challenges in designing and implementing an applicable virtual 

environment for industrial applications are to enhance the environment-based 

knowledge representation and its acquisition capacity and, paradoxically, the 

simplification of the environment construction, configuration and information 

management processes. This paradox has led to a search for an appropriate strategy 

for a practical environment construction method and related implementation platform. 

This thesis describes such a new virtual environment construction approach - domain

analysis that is based on a top-down environment construction - for manufacturing 

applications. This approach reduces the effort to rapidly construct a virtual 

manufacturing environment using two steps: (i) application domain analysis, which 

classifies the application to identify the environment specification, and top-down 

construction that is based on a ready-built template as the starting point; (ii) The 

development of an integrated application development platform with various modules 

to enable a virtual environment and its virtual objects to be organised and managed in 

a database that can be connected with other data sources. 

v 



TABLE OF CONTENTS 

CONTENTS 

ACKNOWLEDGEMENTS I 

AUTHOR'S BIOGRAPHY III 

RELATED PUBLICATIONS IV 

ABSTRACT V 

CONTENTS VI 

LIST OF FIGURES XIII 

LIST OF TABLES AND LISTS XVII 

CHAPTER 1 INTRODUCTION 1 

1.1 THE VIRTUAL REALITY TECHNOLOGY 2 

1.2 VIRTUAL REALITY SYSTEMS 4 

1.2.1 Immersive VR systems 4 

1.2.2 Augmented VR systems 5 

1.2.3 Desktop VR system 6 

1.3 VIRTUAL ENVIRONMENT DEVELOPMENT 6 

1.3.1 Application programme interface (API) methods 7 

1.3.2 Importing model methods 7 

1.3.3 Graphical environment authoriser methods 8 

1.3.4 Virtual reality modelling language method 8 

1.4 VIRTUAL MANUFACTURING ENVIRONMENTS 9 

104.1 Large-scale and complex environment 9 

1.4.2 Virtual manufacturing environment knowledge 10 

104.3 VE-based knowledge representation and acquisition 10 

1.5 APPLICA nON PROBLEMS 11 

1.6 RESEARCH OBJECTIVES 13 

1.7 THESIS STRUCTURE 14 

VI 



CHAPTER 2 LITERATURE REVIEW 

2.1 CONVENTIONAL MANUFACTURING SIMULATION 

2.2 VR MANUFACTURING APPLICATIONS 

2.2.1 VR based rapid proto typing 

2.2.2 Process simulation and design validation 

2.2.3 Assembly planning and test 

2.2.4 NC programming and machining simulation 

2.2.5 Factory layout design and cell control simulation 

2.3 RELATED SYSTEMS 

2.4 DISCUSSION 

CHAPTER 3 AN OVERVIEW OF THE VE CONSTRUCTION 

APPROACHES 

3.1 CONVENTIONAL APPROACHES TO CONSTRUCTING 

VIRTUAL ENVIRONMENTS 

3.1.1 Bottom-up generative approach 

3.1.2 Building-block approach 

3.1.3 Variant construction approach 

3.2 A DOMAIN-ANALYSIS BASED TOP-DOWN APPROACH 

3.2.1 Application domain-analysis 

3.2.2 Top-down VE construction 

3.2.3 Operation mechanism 

3.3 IMPLEMENTA TION 

3.3.1 Design application task coding scheme 

3.3.2 Constructing template environments 

3.3.3 Database Design 

3.3.4 Linking VE properties and database records 

3.3.5 Connect virtual and physical world 

TABLE OF CONTENTS 

15 

16 

17 

17 

18 

19 

19 

20 

21 

30 

31 

32 

32 

33 

34 

36 

36 

36 

37 

39 

39 

41 

43 

44 

45 

3.3.6 Integrate function modules under a unified system structure 45 

VII 



3.4 CONCLUSION 

CHAPTER 4 SYSTEM ARCHITECTURE 

4.1 KAMVR SYSTEM ARCHITECTURE 

4.2 INTERACTIVE APPLICATION INTERFACE 

4.2.1 Visualiser interaction 

4.2.2 VE Control module interaction 

4.3 KAMVR SYSTEM MANAGER 

4.3.1 Task description and coding module 

4.3.2 Knowledge representation and acquisition module 

4.3.3 Device communication and control 

4.3.4 Network and data communication module 

4.4 VIRTUAL ENVIRONMENT DATABASE 

4.4.1 Database files 

4.4.2 VE Database management system 

4.5 REAL APPLICATION ENVIRONMENT 

4.6 CONCLUSIONS 

CHAPTER 5 TEMPLATE ENVIRONMENT CONSTRUCTION 

AND ANALYSIS 

5.1 VIRTUAL ENVIRONMENT MODELLING 

5.1.1 Virtual object modelling 

5.1.2 Virtual template environment modelling 

5.1.3 State simulation modelling 

5.1.4 Interaction modelling 

5.1.5 Knowledge capture 

5.2 VIRTUAL OBJECT MODELLING 

5.2.1 Virtual lathe model 

5.2.2 Virtual milling machine model 

VIII 

TABLE OF CONTENTS 

45 

47 

48 

49 

50 

55 

58 

58 

63 

66 

67 

68 

68 

69 

69 

70 

71 

72 

72 

72 

73 

73 

74 

74 

75 

77 



5.2.3 Virtual robot model 

5.3 MODELLING TEMPLATE ENVIRONMENTS 

5.3.1 The modelling criteria 

5.3.2 The construction of template environments 

TABLE OF CONTENTS 

78 

80 

80 

81 

5.4 TEMPLATE ENVIRONMENT SIMULATION 85 

5.5 INTERACTION WITH A VIRTUAL TEMPLATE ENVIRONMENT 86 

5.5.1 Environment navigation 

5.5.2 Environment exploration 

5.5.3 Object control 

5.6 KNOWLEDGE SOURCES AND CAPTURE 

5.6.1 Data interpretation 

5.6.2 Knowledge representation 

5.7 CONCLUSION 

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL 

ENVIRONMENTS 

6.1 OVERVIEW OF THE ENVIRONMENT DATA 

6.2 THE HIERARCHY OF ENVIRONMENT DATA 

6.3 THE DEVELOPMENT OF AN ENVIRONMENT DATA 

STRUCTURE 

6.3.1 The database of the environment 

6.3.2 General template environment reference file 

6.3.3 Virtual object file 

6.3.4 Standard information 

6.3.5 Dynamic information 

6.3.6 Static information 

6.3.7 Shape information 

6.4 RECORDING TEMPLATE ENVIRONMENTS 

6.4.1 Recording the data of a single object 

6.4.2 Scan all objects in an environment 

IX 

86 

89 

89 

89 

90 

90 

91 

92 

93 

93 

100 

100 

102 

102 

103 

104 

105 

105 

106 

106 

108 



6.5 ENVIRONMENT CONSTRUCTION FACILITATED BY 

THE DATABASE 

6.5.1 Constructing the scene graph of an environment 

6.5.2 Retrieving a scene graph of template environments 

6.5.3 Modify scene graph 

6.5.4 Assigning object properties 

6.6 CONJUGA TING MANUFACTURING DATA AND VE 

6.6.1 Static manufacturing data 

6.6.2 Dynamic machining activities 

6.7 CONCLUSIONS 

CHAPTER 7 ENVIRONMENT CONFIGURATION AND 

COMMUNICATION 

7.1 CONFIGURABLE VIRTUAL ENVIRONMENTS 

7.2 ACCESSING ENVIRONMENT PROPERTIES 

7.2.1 Configuring environment data structure 

7.2.2 Configuring object shape properties 

7.2.3 Configuring object static properties 

7.2.4 Configuring dynamic properties 

7.2.5 Configuring general environment properties 

7.3 MIGRATING ENVIRONMENT PROPERTIES 

7.3.1 Extracting and migrating shape properties 

7.3.2 Extracting and migrating object static properties 

7.3.3 Extracting and migrating object dynamic properties 

7.3.4 Extracting and migrating global environment properties 

7.4 SETTING AND UTILISING PROPERTIES 

7.4.1 Setting the simulation triggers for an environment 

7.4.2 Setting environment counters 

7.4.3 Setting object properties 

7.4.4 Receiving environment events 

x 

TABLE OF CONTENTS 

110 

110 

111 

112 

114 

116 

117 

118 

118 

120 

121 

121 

121 

123 

125 

128 

130 

132 

132 

133 

134 

134 

135 

135 

136 

136 

137 



7.5 PLATFORM-BASED DATABASE ACCESS 

7.5.1 Registering the environment database 

7.5.2 Connecting the database 

7.5.3 Binding environment properties with database records 

7.6 INTERACTION BETWEEN VIRTUAL AND PHYSICAL 

ENVIRONMENTS 

7.6.1 Communication with the Puma robot 

7.6.2 Communication with the LANSING robot 

7.7 CONCLUSIONS 

CHAPTER 8 THE RUN-TIME IMPLEMENTATION 

8.1 INTRODUCTION 

8.2 KAMVR RUN-TIME PLATFORM 

8.2.1 User-environment interaction controls 

8.2.2 Control environment and database interactions 

8.2.3 Standalone machine controls 

8.2.4 Cell controller 

8.3 WORKING MECHANISM 

8.3.1 Monitoring and control an environment in active mode 

TABLE OF CONTENTS 

138 

139 

139 

140 

141 

141 

143 

146 

147 

148 

149 

149 

150 

152 

154 

155 

156 

8.3.2 Monitoring and controlling an environment in passive mode 156 

8.4 RUNNING THE SYSTEM 

8.4.1 Forming the task code 

8.4.2 Environment modification and initialisation 

8.4.3 Application configuration and simulation execution 

CHAPTER 9 CONCLUSIONS AND FUTURE WORK 

9.1 

9.2 

CONCLUSIONS 

FUTURE RESEARCH 

XI 

158 

158 

160 

163 

165 

166 

169 



REFERENCES 

GLOSSARY OF TERMS 

APPENDIX A 

APPENDIXn 

APPENDIXC 

APPENDIXD 

XII 

TABLE OF CONTENTS 

172 

180 

Al 

BI - BI5 

CI -CII 

01-D53 



LIST OF FIGURES 

Figure 3.1 Illustration of the bottom-up approach 32 

Figure 3.2 Building-block VE construction approach 33 

Figure 3.3 Variant environment construction approach 34 

Figure 304(a) 3D coding panel 40 

Figure 3 o4(b) Task-based environment retrieval 40 

Figure 4.1 KAMVR system architecture 48 

Figure 4.2 VR devices used in the KAMVR system 

(a) i-Glasses 50 

(b) Data Glove 50 

(c) Digitiser 50 

Figure 4.3 Environment visualisers 

(a) Superscape Visualiser 51 

(b) Superscape Viscape 51 

(c) Superscape 3D Control 51 

(d) COSMO VRML Player 51 

Figure 404 Constructing virtual workshop using the World Editor 52 

Figure 4.5 Modelled handwheel in the Shape Editor 53 

Figure 4.6 Superscape Resource Editor 53 

Figure 4.7 KAMVR system workbench 55 

Figure 4.8 Data and command flows in the KAMVR Module 1 56 

Figure 4.9 Synthetic VE control mode 58 

Figure 4.10 Domain-analysis coding scheme 60 

Figure 4.11 Module 2 internal structure 63 

Figure 4.12 Adjusting the position of virtual objects 64 

Figure 4.13 Superscape VRT API structure (Courtesy oJSuperscape Co.Ltd) 65 

Figure 4.14 Device communication 67 

XIII 



Figure 4.15 WWW On-line VME configuration 

Figure 4.16(a) Real robot cell (photo) 

Figure 4.16(b) Virtual robot cell 

Figure 5.1 VE state transition model 

Figure 5.2 Modelling structure of a virtual lathe 

Figure 5.3 Snapshot of the virtual lathe 

Figure 5.4 Modelling structure of a virtual milling machine 

Figure 5.5 Virtual milling machine 

Figure 5.6 Modelling structure of the virtual robot 

Figure 5.7 A snapshot of virtual robot 

Figure 5.8 Virtual template of robot cells 

Figure 5.9 Virtual template of lathe cell 

Figure 5.10 Virtual template of milling cell 

Figure 5.11 Virtual template of elMs rooms 

Figure 5.12 Virtual template of large scale virtual manufacturing 

environment 

Figure 5.13 The simulation loop imposed on the virtual lathe objects 

Figure 5.14 The simulation loop imposed on the virtual miller objects 

Figure 6.1 (a) Virtual environment scene graph 

Figure 6.1 (b) A snapshot of the environment 

Figure 6.2 KAMVR system database structure 

Figure 6.3 Template environment reference file 

Figure 6.4 Virtual object data file 

Figure 6.5 Virtual object standard information file 

Figure 6.6 Virtual object dynamic data file 

Figure 6.7 Object static data file 

Figure 6.8 Object shape data file 

Figure 6.9 Environment standard information table 

Figure 6.10 Template environment coding scheme 

Figure 6.11 Environment constructed from a template VE 

Figure 6.12 Manufacturing information composition 

XIV 

68 

70 

70 

73 

75 

77 

77 

78 

79 

80 

82 

83 

83 

84 

85 

87 

87 

94 

94 

101 

102 

103 

104 

104 

105 

106 

110 

111 

116 

116 



Figure 7.1 Virtual environment script header 122 

Figure 7.2 Example of accessing shape property data 

(a) Original object shape 125 

(b) Modified object shape 125 

Figure 7.3 Accessing object static properties 125 

Figure 7.4 Virtual object static data 128 

Figure 7.5 Interface for setting object shape properties 132 

Figure 7.6 Interface of object static property 133 

Figure 7.7 Interface of object dynamic property 134 

Figure 7.8 Environment property interface 135 

Figure 7.9 Firing event from a virtual environment 

(a) SCL firing event carrying two arguments 138 

(b) An application receiving the two arguments 138 

Figure 7.10 Registering the environment database 139 

Figure 7.11 Linking database and the VE application 

(a) Referring a database in the application programme 140 

(b) Selecting data files in the database 140 

Figure 7.12 Connecting PUMA robot 142 

Figure 7.13 Lansing robot control panel 143 

Figure 7.14 The keyboard control combinations 144 

Figure 7.15 Virtual control panel signal processing board 144 

Figure 7.16 Virtual keyboard ASCII value configuration 145 

Figure 8.1 KAMVR run-time platform 148 

Figure 8.2 Viewpoint control menu 150 

Figure 8.3 The VE navigation bar 150 

Figure 8.4 Updated general object information 151 

Figure 8.5 3D machine controller 152 

Figure 8.6 Virtual robot control dialog 153 

Figure 8.7 System platform device controller 154 

Figure 8.8 Cell controller operation sequence editor 153 

Figure 8.9 KAMVR run-time platform task coding environment 159 

xv 



Figure 8.10 Loaded environment 

Figure 8.11 Modified virtual manufacturing environment 

Figure 8.12(a) VE Initialiser 

Figure 8.12(b) Initialised application environment 

Figure 8.13 Application environment configuration 

Figure 8.14 Simulation action - mounting different parts 

Figure 8.15 Toggle the tool for part inspection 

XVI 

160 

161 

162 

162 

163 

164 

164 



TABLES AND LISTS 

Table 5.1 Features of the virtual template environments 81 

Table 6.1 Object static and dynamic properties 115 

Table 6.2 Machine tool knowledge 118 

Table 7.1 Application platform utilities 136 

List 6.1 (a) Environment definition in the scene graph script 95 

List6.1(b) Object definitions 99 

List 7.1 Virtual environment object data definition 122 

List 7.2 Virtual environment data type 123 

List 7.3 Object shape information 124 

List 7.4 Object standard data section 126 

List 7.5 Object dynamic data structure 129 

List 7.6 Object rotational data properties definition 129 

List 7.7 Collision data properties definition 129 

List 7.8 Configurable environment properties 131 

List 7.9 Data structure for accessing and configuring environment 

viewpoints 131 

XVII 



CHAPTER I INTRODUCTION 

CHAPTER] 

INTRODUCTION 

This introductory chapter provides a brief description of virtual reality and an 

overview of the thesis. It highlights the relevant areas about virtual reality including 

the technology itself, virtual reality systems, virtual environments and their 

applications. Following is an overview of the research problems dealt within the 

thesis and the research objectives. 
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CHAPTER I INTRODUCTION 

1.1 THE VIRTUAL REALITY TECHNOLOGY 

Virtual Reality (VR) is an emerging human-computer interface (IICI) technology. It 

provides computer generated 3D digital environments in which users can realistically 

interact with objects [Rheingold 1992 and Earnshaw et al. 1993]. The term "Virtual 

Reality" has various meanings. In some cases, VR is considered a specific collection 

of technologies, for example, a Head Mounted Display (HMD), Glove Input and 

Three Dimensional (3D) Audio. In other cases, the term is stretched to include 

conventional books, movies or pure fantasy and imagination. The United States 

National Science Foundation (NSF) taxonomy [NSF 1992] has covered these. 

However, the author for this research has adopted the definition of virtual reality 

given by Zhao [1997]: 

"Virtual Reality is a computer mediated system that deals with a three 

dimensional digital environment that interacts with users in vision, sound, 

touch, smell and taste. The users should be able to manipulate, control and 

reconfigure this virtual environment and its complex data" 

The three dimensional digital environment refers to computer generated visual, 

auditory or other sensual outputs to the users within the computer, it may be a CAD 

model, a scientific simulation, or a view into a database [Vince 1995]. 

Some people object to the term "Virtual Reality", saymg it is an oxymoron. 

Alternative terms that have been used are Synthetic Environments, Cyberspace, 

Artificial Reality, and Simulator Technology, to name a few. 

VR applications have a wide spectrum, from games to architectural and business 

planning, from medicine to design and manufacturing, from training to testing and 

military use [Stampe et a1. 1993]. One category of applications is mainly focussed on 

virtual environments that are similar to real ones, for example, 3D CAD or 

architecture modelling, factory layout and process simulation [Banerjee et al. 1992, 

Barnes 1996, Trika et al. 1997, and Gausemeier et al. 1998]. Another category of 

applications provides ways of viewing from an advantageous perspective not possible 

within the physical world, like scientific simulators, telepresence systems, air traffic 

2 



CHAPTER IINTRODUCTJON 

control systems, space programmes, hazardous environmental operations and Nano

engineering [Evans et al. 1994, Massie and Salisbury 1994, Wilson et al. 1996, Sun 

and Clapworthy 1996, Bennett 1997, and Zhao 1998]. Other applications are much 

different from anything that people have ever directly experienced before, for 

example, visualising the ebb and flow of the world's financial markets, navigating 

large corporate information, digitising behaviour of micro-organisms, and predicting 

engineering risk [Walczak 1996, Aouad et al. 1997, and Takalo et al. 1998]. 

Unlike technologies such as CAD, CAM and simulation, VR has manifested itself as 

being an enabling technology recognised by the academic community, industry, 

commerce and society as a whole, to have great potential in various, if not all, 

disciplines. Despite the high expectation, and sometimes the hyper-exaggeration 

(thanks to the media) about the state-of-the-art and the future of VR, the real 

implementation of VR technology in engineering, particular for design and 

manufacturing, is still in its incubation stage [Wilson 1996]. This is because VR 

suffers from problems that come from the end users. In broad terms, those problems 

can be viewed as three questions that require answers. (i) How can real-world data, 

information, knowledge and experience be captured and usefully represented and 

managed in VR form? (ii) How can virtual environments be constructed by the user 

and not programmers and system developers? (iii) How can engineering disciplines 

and situations be transposed from and to virtual environments? 

The research presented in this work is to investigate solutions to the above problems. 

Its aim is to provide an efficient virtual environment construction approach and VR 

based application framework to facilitate manufacturing knowledge acquisition, 

representation and management. The knowledge includes both simulation data and 

information and intuitive engineering experience that are difficult to deal with using 

conventional modelling and simulation techniques. The research has been conducted 

from the perspective of VR applications rather than VR theory and related computing 

techniques, but, to enable readers to follow the context of this work, some basics of 

virtual reality and VR systems have been provided in the following sections. 

3 



CHAPTER I INTRODUCTION 

1.2 VIRTUAL REALITY SYSTEMS 

Generally, VR systems can be classified as: (i) immersive VR systems, (ii) desktop 

VR systems, and (iii) augmented VR systems. 

1.2.1 Immersive VR systems 

Immersive VR is where the users are physically isolated from the real world 

[Mckenna and Zeltzer 1992, Boman 1995, Roussos et al. 1999]. Immersion is 

achieved by providing a spatial relationship between the users and the environment 

through location and orientation tracking devices [Sowizral et al. 1993, Adam et al. 

1995]. For example, a head tracking system allows the computer to generate correct 

images for the user. The images are then sent to special display devices, such as, i

glasses or CAVE systems [Neira et al. 1992] to real-time update and render the virtual 

scene according to the tracked head movement to provide user with the feeling of 

"being there". Immersive VR devices can be classified into four types: 

(1) Position and orientation trackers: These can be further divided into sourced or 

sourceless device [Meyer 1992]. Sourced trackers uses spatial relations between a pre

defined base and sensor to determine the sensor's position and orientation relative to a 

base. For example, an electromagnetic (EM) tracker uses a transmitter and receiver to 

monitor users' movement and an ultrasonic tracker uses speaker and microphone to 

record the spatial changes. Sourceless trackers do not need a pre-defined base but use 

a 'global' reference such as the gravity or magnetic field of the earth. Current 

commercial sourceless trackers are mainly used for measuring orientation, but not 

position due to inaccuracies [Bricken 1994]. 

(2) Input devices: VR input devices are used to import customised data to update 

a virtual environment [Jones 1999]. Typical VR input equipment includes data gloves, 

data suits and space mouse. When used as an input device in VR applications, a data 

glove controls a virtual hand within the synthetic environment. The user then interact 

with the environment as if they were using natural hand gestures and spatial 

movements, for instance, to select a virtual object by reaching out and grasping it. 

4 



CHAPTER I INTRODUCTION 

(3) Display devices: VR display systems, depend on their relationship to the user, 

can be classified as: 

• Wall projection display: These devices use either a large computer screen or rear 

projection display. Examples include ImmersaDesk and CAVE [Neira et al. 

1992]. In the latter system, stereo-glasses are used for depth perception. 

• Helmet mounted display (HMD): HMOs consist of a pair of Liquid Crystal 

Display (LCD) or Cathode Ray Tube (CRT) display devices mounted on a helmet 

worn by the user. 

• Mechanical arm mounted display: These are similar to helmet-mounted displays 

except that the display device is mounted on a mechanical arm that acts as both a 

tracker and a support. Accuracy can be very high but freedom of movement is 

restricted. 

• Desktop display: These devices allow mono-scopic or stereo-scopic viewing on 

computer screens. They can provide a "see-through-window" visualisation sense, 

but the feeling of immersion is minimal. 

(4) Haptic feedback devices: These provide a user with physical feeling such as 

touch, warmth, coldness, smoothness and resistance [McNeely 1995]. These devices 

can be classified as touch (tactile) feedback devices and force feedback devices. 

Touch feedback provides synthetic sensation at the moment of contact with a virtual 

object. Unlike the surface detail provided by touch feedback, force feedback gives a 

much larger impression of the physics of the virtual world. Force feedback devices are 

designed to imitate the forces that could be applied in the virtual world. The imitated 

forces can be anything from the elastic resistance (when squeezing a rubber ball) to 

large forces (that prevent the user's hand from penetrating a wall). 

1.2.2 Augmented VR systems 

Instead of immersing the user completely in a virtual environment, augmented reality 

systems combine computer-generated imagery with a view of the real world [Boman 

1995]. This is achieved with a spatially tracked, partially transparent head-mounted

device (HMD). An augmented VR system can be used to overlay information on real-

5 



CHAPTER I INTRODUCTION 

world objects, such as showing the location of a component on the inside of a 

machine. Boeing Computer Services is developing such a system for use in 

manufacturing, assembly, and repair work to replace the large form boards previously 

used for these tasks [Mizel and David 1994]. 

1.2.3 Desktop VR systems 

Immersion and augment VR are generally associated with various novel interface and 

display techniques, they are not necessarily a pre-requisite for virtual reality. A 

reasonably high level of involvement or feeling of immersion within a virtual 

environment can be achieved using standard interfaces and displays [Young 1996]. 

Systems that work in this style are called desktop VR systems. For example, 

Superscape VRT is a desktop VR system [VRT 5.0 Manual]. 

1.3 VIRTUAL ENVIRONMENT DEVELOPMENT 

To develop a virtual reality system, the modelling of a realistic virtual environment is 

one of the most difficult and demanding tasks [Codella et al. 1993]. Despite system 

functions claimed by various vendors, the utilities for constructing VR environments 

are still left for users because commercial VR systems need to remain as general as 

possible to accommodate different users. The construction of VR environments is still 

application specific and consequently involves time consuming processes. Different 

types of virtual environment development tools are available on the market. From the 

uscrs' point of view they can be classified as desktop or immersive, and either can be 

stand-alone or networked (distributed) or both. According to the modelling methods, 

those tools fall into three categories. One is the modelling toolkits that allow users to 

construct virtual environments and then to use them from within the VR systems or to 

export the file to other formats. Typical examples of this type are Superscape VRT 

and Division dVS [Vince 1995]. The second category is the editorial software that 

uses an independent description languages, such as Virtual Reality Modelling 

Language (VRML) (an ISO standard file format) that describes virtual worlds 

specially used on the Intcrnet [3D Web Consortium Incorporated 1997]. The third 

category uses a VR Application Programmer Interface (API) which typically provides 

a large number of facilities or programming functions to write 3D graphics 
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applications, for example, WorldToolkit [Sense8 Corporation 1992]. Some of these 

systems can import virtual objects from other graphical software packages such as 

AutoCAD, 3D Studio and ProEngineer. 

Despite the fact that a great variety of virtual environment modelling tools are 

commercially available, an efficient virtual environment constructing method is still 

to be seen. Currently, virtual environment, especially large scale and complex ones 

are created based on the following methods. 

1.3.1 Application programme interface (API) methods 

This essentially relies on a built-in VR system programming language library or 

interface functions that enables advanced users to write system code using, say, 

C/C++ or Java languages. The code developed by the users is normally compiled into 

an executable program that generates a dedicated virtual environment. Examples of 

VR systems that provide such a construction method are WorldToolKit, MR toolkit 

[Shaw et al. 1993] and Reality-Built-for-Two [Blanchard et al. 1990]. 

These methods provide flexibility for environment developers to create a large and 

complex virtual environment. However, they demand high-level programming skills 

and the generated environments provide no flexibility for users to change and 

reconfigure, when different applications requirements are involved. 

1.3.2 Importing model methods 

This method makes use of the modelling functions of other graphical packages to 

create individual virtual objects or sub-models and then imports them into the data 

buffer of a VR system. Some VR systems provide such methods to re-use existing 

virtual models created elsewhere. These can significantly reduce the effect of 

constructing a virtual environment from scratch. 

Examples of this method can be found in the world editing process of Superscape 

VRT, during which AutoCAD 3D models created in 'data exchange format' (DXF) 

can be migrated into a virtual environment under construction. An advantage of this 
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method is that it allows input of other data forms such as sound data, video clips, 

photo images and other media forms. For example, the Sense8 WUP system can 

import a sound wave file and video clips from 3D Studio. It can also import VRML 

based 3D models from Pro/Engineer [WorIdUp User Guide 1997]. 

However there are technical difficulties with this method, which seem to be 

formidable to overcome as follows. 

(i) Data converters are necessary and must be made available for the importing. 

Technically, each data format requires its own converter to import the expected 

models from other systems to a VR system. However, generally, in a VR system, 

not all converters are made available. 

(ii) Most imported data, unless in the VRML format, are not manageable once it 

transfer into a VR system. The data imported to the VR system is often not 

transparent and users can not control its 3D attributes. 

1.3.3 Graphical environment authoriser methods 

Currently, the most common way to build a virtual environment is using an 

environment authoriser, which is a graphical user interface that works in a drag-and

drop manner similar to an ordinary CAD system. 

This method relies on users to create a virtual environment with simple geometric 

primitives such as points, lines, facets and volumes. Obviously it is time-consuming 

and demands but for a great deal of CAD modelling skills. This method is reasonably 

effective for constructing simple and regular geometric shapes, but for complex 

virtual environment, it is a difficult method. 

1.3.4 Virtual reality modelling language method 

The Virtual Reality Modelling Language (VRML) is a script language to describe 

YEs and an ISO standard (International Standard ISO/IEC 14772) for specifying 3D 

virtual worlds networked via the Internet. The VRML environment on the World 

Wide Web (WWW) can link to or be linked from other sources on the Internet, but 
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the use of VRML for constructing virtual environments is very much similar to the 

API method (See Section 1.3.1). 

1.4 VIRTUAL MANUFACTURING ENVIRONMENTS 

VR manufacturing applications usually require one or more virtual manufacturing 

environments (referred in the following text as VME) with meaningful (in both 

graphical and simulation terms) constituent objects. The virtual objects can be 

constrained to behave in a similar way to that of physical objects. A successful 

implementation of VME is more informative and realistic than conventional 20 

simulation programs, particularly for acquiring cognitive information, representing 

scenario knowledge, understanding sophisticated problems and eliminating risks of 

complex processes [Charitos and Rutherfold 1996]. It is justified by what can be 

perceived and what can be done with it. The former is determined by its scale and 

complexity, and the latter by the environment knowledge [Macedonia et al. 1995]. 

1.4.1 Large-scale and complex environment 

According to the Advanced Interface Group (AI G) in the University of Manchester 

[Cook et al. 1998], a Large Scale and Complex Virtual Environment can be defined 

by the following: 

• Complexity of graphical display: the complexities of a virtual environment are 

defined by the detail and realistic level of virtual objects that it contains (it is 

understood even the illusion of complexity can be achieved with "wall-papering" 

techniques such as texture maps, this is not adequate if the VE is to be composed 

of real objects offering the possibility of interaction). 

• Number of objects in the environment: The real world is characterised by large 

numbers of objects with many possibilities for interaction among them. For 

instance, a complete manufacturing cell may include hundreds of objects, each 

composed by various number of polygons. 

• Complicated behaviour: The behaviour of objects in VEs are described in terms of 

geometric transformations, and are often defined on a per object basis [Cook et 
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al. 1998]. Another common mechanism is to provide simulation code (e.g. SCL 

from Superscape or Java) to individual objects. For a manufacturing application 

this often does not work well because too many objects, activities and 

interactions are involved. 

• Number of users and their locations: A large-scale environment can be distributed 

and shared through a computer network. The communication mode and data 

interpretation will also contribute to its complexity. 

1.4.2 Virtual manufacturing environment knowledge 

Virtual manufacturing environment knowledge includes the information concerning 

environment geometric information - for example, object size and position; 

environment dynamic information - such as machine tool simulation and virtual 

assembly data; manufacturing information - including manufacturing rules and 

regulations, and the relationships among them. The early presentation type of 

application projects is being replaced by more 'real' applications, which are used on a 

day-to-day base and aim to solve real problems. For example, a German company has 

developed a manufacturing knowledge-oriented virtual environment for BMW to 

evaluate large press tools, which decreases the average evaluation time substantially 

[Bullinger and Roessler 1998]. 

1.4.3 VE-based knowledge representation and acquisition 

Many current implementations suffer problems mainly because manufacturing data 

and information are defined from different knowledge sources, such as databases, 

spreadsheets and drawings, that has to be collected and formally represented in the 

application. Furthermore, a large proportion of manufacturing data and information is 

based on experience, which is empirical and non-generic. The interpretation of the 

majority of manufacturing knowledge entirely depends on the cognitive 

understanding of humans. Systems such as modelling, planning, simulation and 

artificial intelligence (AI) expert systems have employed rather formal and simplified 

models to represent such knowledge in the form of formula, text, logic and rules. In 

most cases, they have failed to solve the difficult problem of using empirical 

knowledge and still have to rely on human intervention. 
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In contrast, the theme of VR and VE is not only to bring about automatic 

computerised system functions to engineering applications, but also importantly to 

incorporate human abilities into those computerised systems in a way that human 

cognisance and senses to the real world can be utilised in a virtual environment, 

where non-generic knowledge can be dealt with using formal computer programs. 

1.5 APPLICA nON PROBLEMS 

In spite of the great expectation of applying VR to factory layout, manufacturing 

process planning, operation training, system testing and control validation. There are 

few cases of practical industrial use of VR in manufacturing that have been reported 

in the literature - apart from those described as prototypes and on-going projects. 

Until recently, it is becoming more obvious that this is not because of the lack of 

understanding of VR technology by manufacturing industry, rather it is due to the 

difficulties in construction of virtual manufacturing environments and the lack of 

effective methods and techniques to do so. Those difficulties can be described as 

follows. 

(1) A virtual manufacturing environment and its contents (virtual machines, tools, 

and systems) must be abstracted from their physical forms and existence to low-level 

hyper (or digital) details such as VR codes, 3D polygon rendering geometry, 

animation elements and other virtual environment sensory factors. Those abstracted 

low-level VR elements must have manufacturing semantic meanings so that a virtual 

manufacturing environment can be constructed with not only visual resemblance, but 

also functional similarity, to its physical counterpart. For example, a virtual model 

must be constructed to have virtual dynamic control mechanisms that are able to 

follow programmed instructions and perform manufacturing tasks in a virtual 

environment. Abstraction of manufacturing reality into a VR model is not a generic 

problem due to the diversity of manufacturing systems and application requirements. 

So far little research method towards this problem has been reported in the literature. 

(2) Most virtual manufacturing environments require large-scale and complex VR 

models. Applying currently available construction methods to create even a 

reasonably small-scale VR model, for instance, a machine cell, is a tedious and time-
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consuming and expensive process [Zhao 1997]. Considerable research has been done 

in this area. Recently a few well-known industrial VR system software houses have 

shifted their efforts from developing shell VR systems to application-specific virtual 

environments, but a satisfactory environment building method is still not available. 

(3) A unique difficulty with virtual manufacturing environments is that they need 

to be modelled in a higher degree of engineering accuracy than that of, say, virtual 

environments for civil engineering and entertainment applications. 

Precision in VR modelling is mainly constrained by the internal manufacturing data 

rather than by the VR rendering or graphical visualisation effect. For example, an 

artistically and realistically rendered virtual CNC machining cell may not be useful if 

it is unable to detect collisions to avoid tool-breaking or wrongly access a machined 

part feature. 

(4) Another difficulty with virtual manufacturing environments is the 

formalisation or representation of manufacturing knowledge in VR terms. A large 

proportion of manufacturing data and information in a VR model is empirical and 

non-generic. Although one of the strengths of a VR model is that it can deal with such 

knowledge without a knowledge base, the data need to be strictly monitored and 

managed within the model. 

Incorporating a graphically correct (or even crude) VR model with complex, diversity 

but well managed manufacturing database is a challenging problem [Zhao 1997]. 

(5) As a universal requirement for all virtual environments, user-based 

reconfigurability is also a necessity of most virtual manufacturing environments. At 

present, VR models are mostly created by VR specialists or programmers. The kind of 

model structure and non-transparent modelling data left users little flexibility to make 

any change on the model. 

The research described in this thesis attempts to reduce these difficulties, with a 

specific emphasis on, (i) establishing effective methods for rapid creation of large and 

complex virtual manufacturing environments; (ii) providing techniques for acquiring 
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manufacturing knowledge and managing manufacturing data within a virtual 

manufacturing environment. In the first part, it is hoped that the methods could lead to 

reconfigurable models. The research motivation of the second part is to make non

generic and empirical manufacturing knowledge accessible by future VR based 

manufacturing systems such as VR process planning, system modelling, factory 

layout, operation testing and control. A more detailed specification of the research 

objectives is provided in Section 1.6. 

1.6 RESEARCH OBJECTIVES 

The research objectives can be summarised as follows: 

(1) To establish a concept by which a virtual environment can be constructed 

rapidly by users as well as VR specialists. This is to reduce the demand for users to 

learn specialised virtual environments authorising toolkits and VR systems. 

(2) To investigate virtual environment data structure and its modelling 

relationships with manufacturing knowledge by constructing and analysing a series of 

template manufacturing environments. 

(3) To investigate a method of defining and formal ising manufacturing knowledge 

in VR terms. This is to be used to identify the data link between environment contents 

(and contexts) and manufacturing data, for example, machining parameters in a 

milling operation, thus enabling environment design and manufacturing information 

management to be unified into a single constructing process. 

(4) To develop a database system that monitors and manages environment data as 

well as manufacturing information both during and after the environment is being 

built. The template environments created in (2) are used to help in populating this 

database with specific manufacturing data. 

(5) To establish an environment reconfiguration mechanism. This is to expose 

environment and object properties to users for migrating VR models with run-time 

control. 
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(6) To develop a prototype system which accommodates the essential 

programming modules resulted from the above objectives. It is used as a run-time 

platform to test the entire process of virtual manufacturing environment construction, 

reconfiguration and use. 

(7) To explore the virtual and real world communication by linking a virtual 

model with its physical counterpart. 

1.7 THESIS STRUCTURE 

The work reported in this thesis starts from a general description of virtual reality 

technology, systems and manufacturing applications in Chapter 1. The difficulties on 

virtual environment construction in terms of geometric and simulation modelling, 

manufacturing knowledge acquisition and representation are also briefly discussed in 

this chapter. The research objectives of this project are then discussed. Chapter 2 

presents a literature review of virtual reality applications in a manufacturing life-cycle 

and VME construction systems. A novel approach for constructing VME based on the 

classification and analysis of current conventional approaches is introduced in 

Chapter 3. A modular system which uses the new approach and support environment 

and application data management is described in Chapter 4. The construction of a 

series of so-called template manufacturing environments for populating the system is 

detailed in Chapter 5. Based on the template environment construction processes, 

Chapter 6 introduces the data structure of virtual environments, and a database that 

stores and manages the information. The database enables the migration of 

environment and objects data with simulation control instructions, which allows a 

VME to be modified and reconfigured for different applications. Chapter 7 describes 

the programming techniques used for the purpose. The integrated computing platform 

of the addressed system and an example to illustrate its working procedures are 

presented in Chapter 8. The work is concluded in Chapter 9 with the recommendation 

for future research. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter provides an overview of the key virtual reality and virtual environment 

manufacturing applications, and existing approaches to constructing virtual 

manufacturing environments that influenced the research. 

15 



CHAPTER 2 LITERATURE REVIEW 

2.1 CONVENTIONAL MANUFACTURING SIMULATION 

Modem manufacturing systems are capital-intensive due to their hardware and 

software requirements [Viswanadham and Narahari 1992]. Simulating those systems 

to gain a profound understanding of their complexities and to predict their 

performance is critical in both system design and implementation, and is often 

valuable for system management during their use [Narayanan 1997]. 

Conventional manufacturing simulation aims to facilitate this process by simulating 

real-time systems that have a large number of interrelated processes and events on a 

computer-based platform. These simulated activities occur sequentially and/or 

concurrently under stringent time constraints, and require modelling the system 

behaviour accurately to assure that they satisfy the application requirements. 

Although conventional manufacturing simulation has been widely considered one of 

the most useful tools for analysing and designing complex manufacturing systems 

[Ozdemirel et al. 1993], it has two fundamental problems. 

First, simulation modellers often encounter difficulties in transforming the real world 

multi-dimensional, visual and dynamic characteristics into the one-dimensional, 

textual and static representation required by traditional simulation languages (which 

are usually represented by tables, graphics and statistics on a computer screen) [Ulgen 

and Thomasma 1990, Adiga and Glassey 1991]. The result of such presentation 

produced from the conventional simulation process is often hard to understand, 

manipulate and utilise [Jones, 1993]. 

The second problem is due to the integration of design and manufacturing data 

[Barnes 1996, Bejczy 1997, Gray 1997] for visualising large system models [Hirota 

and Hirose 1995 and Kerttula et af. 1997]. For conventional simulation systems to 

define manufacturing-related problems, visualise manufacturing facilities and layout, 

evaluate environmental and ergonomic issues, for instance, are still difficult tasks 

[Angster et af. 1994 and Vance 1996]. 
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One challenge in constructing a virtual environment for manufacturing simulation is 

the representation of environment-based manufacturing knowledge and, 

paradoxically, the simplification of data modelling, VE configuration and information 

management processes. 

Due to the diversity and complexity of virtual manufacturing environments, especially 

for manufacturing simulation problems, the construction of those YEs needs to be 

straightforward and involve as little computer programming as possible. Considering 

the state-of-the-art of current VR systems and the modelling demands of most 

manufacturing simulation tasks, an enabling system is a necessity to facilitate 

manufacturing users, not computing programmers, to construct easily and reconfigure 

rapidly large and complex YEs for a specific simulation task. This observation has 

been made based on the extensive literature study on VR and its application in 

engineering in general and manufacturing in particular. The following section in this 

chapter documents these studies. 

2.2 VR MANUFACTURING APPLICATIONS 

To appreciate why and how VR and VE can be applied in various manufacturing 

areas, this section describes a few typical cases that show the use of virtual reality in 

manufacturing. 

2.2.1 VR based rapid prototyping 

To achieve accurate manufacturing processes and high product quality, industry is 

applying various technologies and concepts for dealing with manufacturing problems 

in the beginning of the product design stage. Concurrent engineering design for 

manufacturing and integrated manufacturing are the most commonly applied practices 

[Maxfield et al. 1995, Angster 1996, Barrus 1994]. A more recently developed 

technology compliant with these technologies is rapid prototyping. 

The Rapid Prototyping technique produces parts from a CAD modelling database 

using some form of polymer or plastic material, these physical prototypes are often 

expensive, especially for large components [Rosen et al. 1995 and Xiao et al. 1997]. 
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The ultimate development of rapid prototyping in terms of both speed, cost and 

flexibility is virtual prototyping - the use of a 3D VR model of the product to explore 

the proper manufacturing processes and to evaluate ergonomic performance of the 

product prior to its physical construction [Chapman and Coddington 1994, Bennett 

1997]. 

Kerttula [1997] and other researchers in the University of Oulu at Finland developed a 

virtual prototyping environment for developing electronics and telecommunication 

products. Immersive VR devices including PHANToM Haptic Device [Massie and 

Salisbury 1994], Logitech 3D Head Tracker, body tracking device, stereoscopic 

system and data glove were used in the project. The creation and building of a virtual 

prototype using their system starts from defining the geometry of the virtual prototype 

by converting data from a computer-aided-design (CAD) model, or by using 

modelling tools to construct from scratch. The geometric model is represented using 

OpenInventor graphic format. The virtual environment produces a visualisation model 

by adding surface properties (colours, materials and textures). Then it generates the 

haptic rendering model (force-feedback model) from the geometric model by 

assigning the tactile and force feedback simulation parameters to each virtual plane in 

the geometric model. The constructed geometric model and haptic model are used to 

create the final simulation model, which by integrating with the VR hardware and 

software form a comprehensive VE-based virtual prototyping system. 

2.2.2 Process simulation and design validation 

Very often, a constructed virtual prototype needs to be evaluated against real 

manufacturing methods and processes to ensure its validity [Hollands and Mort 1994, 

Jones and Iuliano 1997, Lee and Noh 1997]. Depending on the data format of the 

virtual prototype, it is possible for a manufacturing operation to be driven directly by 

the data from the virtual prototype. When the design is updated, the changes can be 

implemented automatically in the manufacturing processes (such as machining and 

inspection), that can avoid expensive redesign and physical testing. 

Researchers in Washington State University developed a system that allows a product 

design to be tested on a series of virtual machines. These machines are modelled 
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according to their physical counterparts and are fully functional as real machines. A 

product model was created using ProlEngineer and was imported through an internal 

data translator of the system [Angster et al. 1994]. Similar projects were reported by 

the University of Illinois and the Purdue University in the USA, the focus of those VR 

based projects is to simplify the design of complex mechanical parts and to achieve a 

one-off manufacturing [Trika et al. 1997]. 

2.2.3 Assembly planning and test 

Assembly planning is another application of VR in manufacturing. Grasping and 

moving virtual parts in a VE and placing them in the right position provides 

significant insight into the assembly process [Ritchie et al. 1999]. YEs for virtual 

assembly rely on a full kinematics simulation of a proposed assembly sequence to 

evaluate potential insertion paths and to avoid clashes within an assembly path 

[Connacher et al. 1995]. 

Banerjee [1999] at the University of Illnois used VR techniques in conjunction with 

assembly constrains generated by heuristic rules to test parts features in the assembly. 

The reasons for using VR in his project were: (1) the assembly processes are highly 

visual, (2) a majority of assembly operations in factories are performed manually due 

to difficulties in automation, therefore, demanding much involvement, and (3) there 

are a number of assembly operations which require dextrous operation training. 

Hence, VE becomes an ideal candidate for this highly visual and interactive task, 

especially when operator training is becoming important [Banerjee et at. 1999]. 

2.2.4 NC programming and machining simulation 

Another application of VR in manufacturing is to simulate the Computer-Numerical

Control (CNC) machine operations to verify machining or fixtures prior to the actual 

machining. Current CAD/CAM systems provide tools for automatic Numerical

Control (NC) code generation. Those systems allow viewing of the tool path for 

verification of NC code. Often, it is not the cutting tool itself but the chuck, head 

stock, and other parts of the machine tool that could cause problems, for instance, a 

tool-holder ramming the workpiece could cause several thousands of dollars of 
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damage [Matsuda and Kimura 1997]. In VR-based machining simulation, this type of 

problem can be alleviated. 

Iuliano and Jones [1996] in the National Institute of Standards and Technology 

(NIST) and Watanabe [1997] at Mitsubishi Electric Corporation proposed their 

individual VR based NC programming and simulation systems. The former focused 

on integrating different manufacturing systems into a VR computing framework to 

simulate the complete loop of virtual manufacturing, where a part can be designed, 

validated, machined, and assembled in a single environment. The latter was dedicated 

to verify the virtual machining NC code that can be exported to the physical 

equipment. 

2.2.5 Factory layout design and cell control simulation 

VR has been applied to factory and cell layout and automated cell control simulation. 

Validation of the layout of a manufacturing facility through a VE allows the engineer 

to visualise the facility dynamically, and modifying the design by real-time interacting 

with the virtual objects for economic, ergonomic and safety reasons [Zetu et. al 1997]. 

Smith and lIeim [1999] have specifically pointed out that for manufacturing 

environments where the third dimension is critical to system performance, interactive 

three-dimensional display systems are much better to convey the information by 

facility designers. 

Gausemeier (et al.) [1998] from Heinz NixdorfInstitute in Germany has developed a 

VE-based manufacturing cell layout system using the so-called "Construction Set". It 

was applied to the development of a modular monorail transport system. The essential 

components of the Construction Set include 3D models of the fundamental 

construction elements such as building blocks, which are created using a conventional 

3D CAD system. For modelling the behaviours of the system, a commercial VE 

authoriser, SmartScene, was used [Multigen Inc., USA.]. A manufacturing cell layout 

planning system has been developed by Korves and Loftus [1999] in the University of 

Birmingham. They applied a similar building block-based approach using a pre-built 

shop-floor model library. At system run-time, users select an equipment model by 

using an immersive menu and then drag-and-drop into the virtual environment. 
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In the aspect of cell control simulation, Orady and Osman [1997] in the University of 

Michigan developed software for manufacturing cell control simulation by integrating 

discrete event simulation techniques with virtual reality software, where the simulator 

acts as the cell-activity administrator and the environment as the interaction front-end. 

2.3 RELATED SYSTEMS 

The VR and VME developing systems reviewed in this section cover the research

based VR hardware and software, and systems useful for developing manufacturing 

application environments. 

Researchers at the National University of Singapore followed an interactive and visual 

approach to virtual world construction, which allows virtual world designers to work 

with high-level environment design concepts [Singh et al. 1993, 1994 and 1995]. The 

system was developed in two stages: Bricks and BrickNet. 

• Bricks emphasises on modelling application knowledge to avoid only providing a 

wide range of low-level primitive geometry. It used a self-developed frame-based 

representation language [Loo 1991], and C for the modelling processes, the 

application knowledge were possessed by the virtual environments in the form of 

representative virtual objects and stored object activities. 

• The BrickNet toolkit extends the sharing of objects on the computer network to 

include dynamic object behaviour. This is achieved by combining a structured 

organisational paradigm for virtual worlds with an interpreting language. Sharing 

in virtual worlds is handled by transferring the program code that builds the 

structure and executes the behaviour. The range of behaviours shared in BrickNet 

include simple behaviour, virtual world dependent behaviour, reactive behaviour 

and capability-based behaviour. Those object activities can be used to trigger each 

other to form an action network. 

The above research provided a method of constructing a virtual environment 

following a logical concept. For example, to create a virtual kitchen, the process starts 
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from sorting the relationships among kitchen objects and the possible ways a human 

would interact with those objects. The related operational knowledge was created as 

task procedures and stored with the referring objects. This approach overcomes the 

shortcomings of "programming" an environment (which is normally a job for expert 

programmers rather than application developers). The problem with this method, 

however, is that the environment construction still requires the user to have 

considerable object modelling knowledge, and the expected environment activities 

still have to rely on system developers to code in which having limited run-time 

reconfiguring capacity. 

Environment Manager (EM) for VE construction and application data management 

was developed by Wang and Green [1995] in the University of Alberta as a toolkit for 

constructing single or multi-user VEs. A script file was developed for handling the 

activities of VEs and objects, for example, to initialise or run the VE simulations. 

Individual applications share information and cooperate with each other across the 

Internet. EM reduces the effort required to produce a networked virtual world by 

providing high-level support for application replication, network configuration, 

communication management and concurrency control. It's composite modules 

included: 

• MR Toolkit: for virtual environments and objects geometric modelling. MR 

applications are written in C and Fortran. The graphics programming adopted a 

computer graphics library including GL, Phigs and Starbase. 

• JACAD: a solid modelling and animation computer aided design system. It has a 

key frame animation facility that is used to animate various motions of an object 

without writing an OML object. 

• OML: Object Modelling Language is a procedural programming language. It is 

used to generate 3D objects, control object appearance, and behaviour. OML 

behaviour is a procedure (method) that reacts to an incoming event or 

combination of events, and typically generates some sort of change in the state 

and appearance of the 3D object. Behaviour triggers other behaviour by sending 

an event to the behaviour to be triggered. 
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When using such a system, an application environment is created using OML. A MR 

Toolkit program loads the compiled OML code for displaying each of the objects on 

the computer display. The VR input and output (10) devices are then setup, the OML 

dispatches the device-related events to an event interpreter and calls the interpreter 

every frame to update the graphical and other 10 display. 

Similar with the aforementioned "Brick and Bricknet" system, this system also 

provided the utilities for managing virtual environment objects through a computer 

network, and the environment animation and simulation are pre-programmed as task 

scripts. The system uses graphical libraries and procedural programming languages to 

model objects and environments and therefore requires users to have a strong 

programming background. 

Researchers in the University of Maryland [Turner et al. 1999] have developed VE 

construction software - Metis, a toolkit for building immersive virtual environment 

with environment-independent application computing components. The Metis toolkit 

defines an application programming interface (API) on the simulator side, which 

communicates via a network with a standalone viewer program that handles all 

immersive display and interactivity. The aims of Metis are to create a simple software 

structure that enables the rapid construction and efficient running of immersive virtual 

reality applications. It provides several key functional components for rendering 

virtual objects and environments on an immersive display using an application 

programming interface (API) and a standalone viewer. An application built by the 

API works in a client-server mode, where the environment simulation resides on the 

server side and the user input and output on the client side. This design decouples the 

application simulation and the visualisation, so they can be performed at different 

rates and profits from parallel processing. The virtual environment developed using 

Metis API specifies scenes in 3D space by creating a scene data structure containing 

geometry, appearance and hierarchical information similar to that constructed in 

VRML. Rather than using procedural programs (like most of the current commercial 

VE editors) to control object activities, Metis uses a declarative approach that 

constructs a network of predefined constraints. Thus, enabling complex relationships 

and interactivity among virtual objects and users to be logically expressed. 
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The Metis system enhanced virtual environment knowledge acquisition and 

representation capabilities by allowing external data and knowledge sources to be 

connected with the virtual environment through a separate knowledge processing 

mechanism. This design embraced the power from professional simulation and 

modelling software and reduced the overhead a virtual environment-rendering 

package has to carry. However the system still needs its own environment modelling 

language (a scripting language) to model an environment. 

West and other researchers [1993] in the University of Manchester developed a VR 

application developing system called AVIARY. It has followed an object-oriented 

(00) hierarchy where a defined virtual environment with a set of attributes can be 

inherited by all virtual objects in an instance of that environment. It also specifies a 

set of constraints which govern the behaviour of those objects. This approach forms a 

multiple inheritance hierarchy allowing new worlds to be defined in terms of existing 

worlds rather than from scratch. A VIAR Y allows multiple worlds with different laws 

to be concurrently activated. The implementation is composed of loosely connected 

autonomous objects which execute simultaneously. Some objects will represent 

objects in the virtual world, other objects act as device drivers for input and output or 

provide services. An example of one type of object which performs a service is the 

'object server' which provides an execution environment for other objects. In the 

AVIARY system, a user of the environment was treated the same as any other object, 

the object representing the user will normally communicate with at least one input 

object and at least one output object with no restriction of the number of system users. 

Based on the AVIARY system, researchers at the Advanced Interface Group (AIG) in 

the University of Manchester has taken the research forward and developed a system 

which tackles problems on constructing large-scale applications [Cook et al. 1998]. 

This system aimed to deliver the performance and flexibility required by the large

scale complex application environments, which addresses the graphics, interaction, 

distribution and systems architecture problems. Similar to the Metis system described 

above, this proposed system also separates the simulation task and environment 

rendering process into two core components, Maverik and Deva: Maverik manages 

the world as a participant perceives it, and Deva manages the "reality" behind this 

perception. The Maverik has functions for optimised display management including 
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culling, spatial management, interaction and navigation, and control of VR input and 

output devices. It allows data exchange between its core functions and external 

application data so that optimal representation and algorithms can be employed. Deva 

extends Maverik to support the distributed applications and controls the environment 

simulation. 

This approach has merits over other aforementioned systems in two aspects, it 

provided a structure which allows a large number of virtual objects with reasonable 

geometric detail having dynamic and interactive features. The system relies on its own 

geometric, simulation and interaction modelling functions (micro-kernal services) for 

developing applications which might restrict its compatibility with other environment 

authoring toolkits. 

In contrast with the above systems, manufacturing applications using VR techniques 

require more specific environment construction and knowledge management 

approach. VR-SIM developed by Gimenez and Kirner (1997) integrated a 

manufacturing simulation knowledge base with virtual reality software to validate real 

time simulation system. It consists of a set of reusable software components to 

facilitate the preparation of VR simulation sessions. It aimed to analyse the behaviour 

of both the software system and the environment around it. VR-SIM provides its users 

with pre-built environment objects and routines to connect these objects with the 

user's software system. The system was composed by a real-time scheduler, an 

environment manager, a communication manager and virtual reality components. The 

prototype system was implemented with WorldToolKit (WTK). 

An early model of a virtual environment based mechanical design environment was 

developed by Barrus (1994) in Massachusetts Institute of Technology (MIT). The 

goal of the project was to develop a simulated workshop for designers to do 

conceptual design work while taking into account manufacturing processes 

information. The virtual workshop contains a set of manually operated machines, for 

instance, band saw, drill press, milling machine, radial arm saw, and table saw. Using 

the handles and locks on each of the machines the user is able to create components 

from a selection of materials in various sizes. The system does not present the 

workshop as a whole environment but with only one machine visible at a time. The 
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required machine being selected from a menu and the display is updated to show that 

machine. 

Washington State University developed a virtual reality based manufacturing design 

system called VEDAM (virtual environment for design and manufacturing) [Angster 

1996]. It intended to extend the capabilities of current parametric CAD/CAM systems, 

and has been partially implemented to support virtual design, virtual manufacturing 

and virtual assembly. The objectives were described as creating a system that allows 

designers to incorporate virtual reality techniques into the design and process planning 

stages of the product, while providing a flexible, expandable and customisable 

environment directly linked to a parametric CAD/CAM system to analyse the entire 

system and design and create a prototype of the integrated virtual product 

development system. 

As stated in their publications, a test implementation was tested with the following 

features: 

• Functioning virtual manufacturing equipment including a lathe, a mill, and a water 

jet. 

• Data converter which enables importing objects from parametric computer-aided

design (CAD) system, such as AutoCAD from AutoDesk Ltd., into virtual 

environments. 

• Allowing loading and verifying numerical control code created from a computer

aided-manufacturing (CAM) system. 

• Real-time graphical presentation of machining processes. 

• Automatic design modification based on the virtual manufacturing result. 

VEDAM system explored several areas in which virtual reality can assist in the design 

and manufacture of a product. These include parametric design changes within a 

virtual design environment, virtual assembly, virtual manufacturing, and human

integrated design. The system has been linked to parametric design software -

Pro/Engineer. The proposed system has five main components, the Machine 

Modelling Environment (MME), the Virtual Design Environment (VDE), the Virtual 
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Assembly Environment (V AE), and the Virtual Manufacturing Environment (VME). 

During a design session, the user would enter into the virtual environments via the 

main interface to test designs or manufacturing ideas. VEDAM, combined with a 

parametric CAD/CAM system, would provide a complete system for engineers to 

evaluate potential designs and process plans. There are several areas in which further 

research and development can be conducted, including the user-part interaction, the 

user-machine interaction, and the control system for the virtual manufacturing 

environment. The system was created on a Silicon Graphics Crimson workstation 

with Reality Engine graphics. All classes were developed using C++ and the graphics 

were created using Performer 2.0. The virtual reality hardware used in this 

implementation include a Virtual Research VR4 helmet, a Virtual Technologies 22-

sensor Cyberglove, and an Ascension Flock of Birds tracking system with an ERT 

and six birds. 

The University of Bath developed an interactive virtual manufacturing environment 

for part design based on a real workshop [Taylor et al. 1995]. It contains a 3-axis 

MatchMaker milling machine, a Cyclone lathe, a robot, and a Roland modelling 

machine. The system users can model a virtual environment by customising these 

manufacturing resources and processes available in the real world. The user is then 

able to manufacture new components adhering to their design specification using only 

the available processes. The output of the processes is a geometric model of the new 

component. It also claimed that the designer's actions could be translated into machine 

codes for each of the processes that have been carried out. This method of design has 

been termed Design By Virtual Manufacture, as the designer works within a computer 

-generated factory and is constrained to produce components using only the machines 

available within the factory, which contrasts with the tradition of design then check 

for manufacturability. The system has been developed on a Silicon Graphics Onyx 

RealityEngine2, using the Silicon Graphics Openlnventor 3D graphics toolkit and a 

kernel geometric modeller. 

Researchers in the University of Texas [Chuter et at. 1995] developed the 

methodology of using an agent-based framework to specify a virtual environment. It 

claimed it was flexible enough to support scheduling, planning, and behaviour 

modelling. The implementation consisted of a heterogeneous, distributed interactive 
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virtual environment using the virtual environment tool - DIVE. In their research, 

agents referred to grouping a set of resources in the common operations, akin to a 

class definition in object -oriented programming languages, and objects refer to class 

instantiations. The VE development was used in the design or redesign of a 

instantiation. The VE development was used in the design and redesign of a 

manufacturing shop-floor. Information required for the construction of the VE 

included: (i) domain specific information, such as the purpose of the VE, important 

activities to be performed, resources involved in performing these activities, and the 

constraints involved, (ii) tools and resources required to construct the VE, and (iii) 

tools and resources required for interaction with and manipulation within the VE. 

Objects that comprise an agent description collaborate with each other and each was 

associated with an agent specification. In each mode the agent has three macro-states 

of operation: Idle, Active and Down. The design of agents along with their 

communication and behavioural models defines the final VM prototype. A complete 

VM prototype defines a test-bed for the analysis of the system. For example, a surface 

model is created using the system. A robot is constructed with the base of the robot 

being defined as the top object and the joints being defined as sub-objects. Forward 

and inverse kinematics algorithms were applied on the virtual robot. It has simulation 

and communication functions supported by various agents. Communication within the 

virtual manufacturing system is between agents. Every agent can generate input 

events for other agents and each agent can become active upon receiving an input 

event. The definition of the robot in an environment is using an ASCII definition file 

similar to VRML. 

Tian (el al.) [1997] in the Northwestern Polytechnic University developed a 

simulation program, with a message-driven object-oriented programming system, 

which promised a solution to two problems in VR programming - the complexity of 

the world construction and the organisation of the structure of the program. In the 

proposed system, all the descriptions of objects data were stored in a database which 

had a direct link between a description and its corresponding geometrical model, 

making it ready to be browsed. The system used object-oriented programming for 

object definition, and adopted a message-driven mechanism to define and manage 

object interactions. It relied on a message-driven object interaction management 
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(MDOIM) system to deal with triggering messages and object responding functions. 

MDOIM helps programmers to concentrate on the following aspects during the 

software development, (a) find and define the necessary flow in the real world, (b) 

construct related message response functions. When the definition task of a message 

is completed, the system will run automatically with Message-Manager continuously 

dispatching messages and objects to react with the message they receive. All 

messages, including hardware messages and user-defined messages, are processed in 

the same way so that all VR worlds built up with MDOIM share a uniform interface 

of information exchange and processes. 

MDOIM was different from WTK. The former was not a mere set of functions but a 

program environment which was completely compatible with OOP and had a uniform 

template for VR software development. Working with MDOIM, programmers can 

concentrate on a child object's particular message response functions without 

repeating coding inherited from its parents. The second benefit of MDOIM is its 

ability to be expanded. As all the reaction in the system was triggered by messages, 

the programs are organised by message response functions and the real driving force 

in the system is the flow of messages. For communication between different virtual 

worlds, a message translator was created. All virtual worlds register to a central 

message translator that their messages related to interactions that may take place, and 

during operation the trans-world interaction is realised by the delivering or 

interpreting of messages by the message translator. This means the possibility of 

merging different worlds without the need to rewrite programs completely will be an 

aid for distributive software development. 

Polis and other researchers [1995] in the Carnegie Mellon University in the USA used 

a database for constructing large-scale virtual worlds by integrating information from 

various sources. Such virtual world databases have significant applications in training, 

planning, and autonomous-agent simulation. Virtual environment construction is 

based on transforming heterogeneous sources data at multiple spatial resolutions into 

a consistent geometric representation with a single scale and base line spatial 

resolution. 
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Sequeira [1999] has developed an integrated approach to the construction of textured 

3D scene models of building interiors from laser range data and visual images. This 

approach was a collection of algorithms and sensors within a prototype device for 3D 

reconstruction, called Environmental Sensor for Telepresence (EST), which takes the 

form of an autonomous mobile platform. The Autonomous EST (AEST) provides an 

integrated solution for automating the creation of complete models. Embedded 

software modules perform functions to triangulate the range data, register video 

texture, and integrate data acquired from different capture points. The reconstructed 

model is encoded in VRML format to access and view via the World-Wide-Web 

(WWW). 

2.4 DISCUSSION 

The survey of VE applications show VE has promised many advantages over other 

solutions, but (i) current VR software that builds the synthetic environment is a 

tedious and painstaking process similar to that of the CAD drawing process. The 

development work of virtual environments is mostly dependent on experienced 

computer programmers, and (ii) the created virtual environments generally have 

limited real application domain knowledge and are mainly for presentation with pre

defined animation and simulation routines, which generally have little flexibility for 

re-configuration. The first problem is crucial for rapid application environment 

construction and the second is critical to environment usage. 
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CHAPTER 3 

AN OVERVIEW OF THE VE CONSTRUCTION 

APPROACHES 

This Chapter is dedicated to the problems of rapid modelling and constructing virtual 

manufacturing environments highlighted in Section 1.5 and to achieving the research 

objectives specified in Section 1.6. It starts with an evaluation of existing approaches 

and presents a novel approach called 'domain-analysis based top-down construction', 

which overcomes some of the difficulties in the conventional VE construction 

approaches. Techniques for representing manufacturing knowledge within virtual 

environments are then reported based on this approach including the methods for 

acquiring knowledge from the environments. The chapter concludes with a 

description of the implementation of the approach. 
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3.1 CONVENTIONAL APPROACHES TO CONSTRUCTING VIRTUAL 

ENVIRONMENTS 

The literature review showed that approaches to constructing virtual environments fall 

into only three categories: (i) bottom-up generative approach, (ii) building-block 

approach, and (iii) variant constructing approach. 

3. J. J Bottom-up generative approach 

As shown in Figure 3.1, the bottom-up approach constructs a virtual environment by 

starting with a basic shape design using geometric primitives like points, arcs, lines 

and facets. The shapes are often in 3D and used directly to construct more complex 

3D virtual objects. 

Application Interface 

Virtual Environment 

Figure 3.1 Illustration of the bottom-up approach 

The virtual objects are 'accumulated' to form a virtual group that represents an 

independent and meaningful virtual sub-world, for example, a virtual lathe. The 

resulting virtual environment normally contains a single or a few virtual groups with 

detailed geometric data and has a clear hierarchical structure. However, this approach 

is time consuming when it is used for constructing large-scale complex virtual 

environments, mainly due to its intensive graphical interactions that are fOlmd in most 
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CAD systems. The constructed virtual environment often lacks of re-usability because 

of its fixed hierarchy and is therefore difficult to reconfigure. Most commercial 

application-pro gram-interface (API) based virtual environment toolkits adopt this 

approach, for example, WorldToolKit (WTK) from Sense'8 . 

3.1.2 Building-block approach 

To overcome problems with bottom-up construction, a so-called 'building-block 

approach' was proposed by Singh et al. [1995], Chuter et al. [1995], Wang et at. 

[1995] for virtual environments with a large number of objects. It works in an event 

mechanism in programming terms. TIllS approach relies on a library of pre-built 

virtual objects that can be 'dragged' into the virtual environment and assigned 

properties to about wruch events can be received, under what conditions and how to 

react. When running the virtual environment, the virtual objects are activated by 

event-chains which are simply a series of executable messages [Singh 1994]. The 

structure of this approach is showed in Figure 3.2. 

Figure 3.2 Building-block VE construction approach 

This approach reduces the time to build virtual environments by using the virtual 

object library, and the virtual environment can be easi ly expanded by adding or 

changing event links [Karacali 1995]. However, the number of events, their types and 

directions have to be pre-set at construction time and cannot be changed later. This 

significantly restricts the capacity of environment re-configuration. 
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3.1.3 Variant construction approach 

According to Zhao [1998], the variant approach to constructing virtual manufacturing 

environments uses a set of similar manufacturing tasks (for example, machining a part 

with certain features) that can be represented by a single representative task. If a 

specific virtual environment (for example, a lathe and a robot) exists in the database 

that can accomplish this representative task, then it should be able to accomplish all 

marginally similar tasks. A VR environment can be developed from this 

representative environment. Figure 3.3 shows a simplified diagram of an 

implementation based on this approach. The representative environment is called a 

'master environment' and the representative task is called 'master task'. The master 

task and the master environment are related to each other and stored together in the 

virtual environment database. When a specific manufacturing task is required, it is 

described in a similar format to that of the master task. 

User 
(nterface 

Application 
Requirements 

Real 
Environment 

Virtual 
Environment 

databases 

Manufacturing 
Knowledgebase 

Figure 3.3 Variant environment construction approach 

To construct a given VR environment for a given manufacturing task, the index of the 

formatted manufacturing task is first used to search the virtual environment database, 

the system then performs the following operations: 

(1) If a master task exists in the virtual environment database that is exactly the 

same as the given task, then the master environments attached to that task will be 

retrieved as a required environment. 
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(2) If, in the virtual environment database, a master task that is the most similar to 

the given manufacturing task, then the master environment attached to that master 

task will be retrieved and modified to perform the required task. The amount of 

modification depends on the similarity between the two tasks - the more similar, the 

less modification required. 

(3) If there is not a similar master task in the virtual environment database to the 

given manufacturing task, then a new virtual environment has to be created from 

scratch for the given manufacturing task. The given manufacturing task and the newly 

created virtual environment will then be stored in the virtual environment database as 

a new master task and master environment pair. 

This variant construction approach is superior to the previous two approaches in that it 

eliminates the needs for low level programming and graphical work and provides 

users a rapid method for constructing large scale and complex virtual manufacturing 

environments. It also allows an implementation independent from individual VR 

systems and provides users with the maximum flexibility to design and use the 

constructed environments [Zhao 1997]. However, this approach is highly application

oriented and company-specific and requires a considerable number of master tasks 

and master environments to be initially established. It is therefore mainly useful for 

large and relatively well established manufacturing applications, but less applicable to 

frequently changing manufacturing systems. 

In summary, the three approaches aforementioned aim to construct "exhibition-style" 

environments, i.e., 3D models for display and manipulation. The literature survey 

found the VE construction systems that can facilitate knowledge acquisition and data 

management, especially for manufacturing applications, are often large and complex 

both in their visual form and their internal data repository. Thus a more efficient 

approach is needed. 
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3.2 A DOMAIN-ANALYSIS BASED TOP-DOWN APPROACH 

A domain analysis-based top-down approach is proposed in this research that can 

satisfy three needs: (i) to provide a user-friendly and rapid method for the construction 

of virtual manufacturing environments, (ii) to provide a reusable and re-configurable 

mechanism of virtual environments for different manufacturing applications and (iii) 

to allow the capture and presentation of manufacturing knowledge and manage 

manufacturing data. The proposed approach was implemented with the aid of two 

concepts: application domain analysis and top-down VE construction. 

3.2.1 Application domain-analysis 

Application domain-analysis attempts to understand, classify and abstract the real 

world knowledge into a virtual environment and provide realistic guidance for the 

constructing of the applied environment. For example, a virtual lathe would carry the 

knowledge of its spindle speeds and the chuck would carry the knowledge of the 

diameter range it could hold. The approach negates the need to encapsulate all the 

knowledge in to a single environment. 

Consider an environment designed for a process planner, the knowledge needed on a 

machine tool would relate to spindle power available, job-type and machine capacity. 

On the other hand, a plant layout designer will merely require data concerning the 

machine footprint, and possibly, some safety factors. In this way the application 

domain-analysis actually performs the task of identifying which part of the 

manufacturing knowledge is going to be applied in a specific environment. In this 

research, the domain analysis was based on a GT-like coding scheme (see Section 

3.3.1 and Section 4.3.1). 

3.2.2 Top-down VE construction 

The top-down approach intends to avoid the time-consuming processes of 

constructing an environment from scratch, or struggling with mastering an 

environment authoriser. A set of representative manufacturing environments for 

different application domains are constructed that can be used as templates as a 
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starting point to develop an environment. A template environment has defined 

properties such as suitable tasks, environment size, simulation level and interactive 

mode which can be used to compare with the required application task and modified 

to suit. 

3.2.3 Operation mechanism 

The operation of the approach can be described in four steps: 

(1) Determining the application domain 

Throughout this research, it is assumed that any virtual environment is constructed 

with one or more specific application purposes in mind. Therefore, before a virtual 

environment can be constructed, the domain of its applications needs to be known. 

The importance of this step can be explained in the following example. 

The lighting background of a virtual manufacturing workshop is irrelevant if the 

virtual workshop is to be used for simulating a sequence of machining operations to 

find out how a robot controlled loading and unloading system works. However, if a 

virtual environment is for simulating a robot-based vision system for part recognition 

in a machining cell, the accuracy of the background modelling will be extremely 

important - the parameters that can be attributed to an accurate virtual background, 

such as lighting, colouring and texture mapping, will decide the viability and usability 

of the constructed virtual workshop. 

In this research, determining the application domain of a virtual environment means 

(i) specifying the application requirements, (ii) defining the environment attributes, 

and (iii) determining a description scheme. Application requirements are specified 

from the real world. Each participating aspect of this world is assigned an attribute 

and those attributes are described by a description scheme (a detailed explanation of 

such a scheme is in given Section 4.3). In this work, all applications are defined by a 

range of application attributes that are in tum encoded in VR modelling data. 
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(2) Selecting a candidate environment 

This step requires a series of so-called template environments being constructed as 

'foundations' for constructing new environments. These template environments (each 

representing a typical manufacturing application) hold the essential manufacturing 

resources with realistic geometric detail and simulation verified by real world 

experiences and knowledge. Template environments are ideally stored in a highly 

structured and logical computing format so that their data can be efficiently managed 

(a database system was used in this research to complete this task). 

Selecting a candidate (template) environment is actually the processes of abstracting 

the application into a "construction task", which is encoded into a so-called 'task 

code'. Since the code is based on Group Technology (GT) code, it can be used to 

compare with a master task in the database, and to determine a task family within 

which the application falls. The master task is used to retrieve the associated template 

environment through an environment meta-code (see Section 4.3). 

(3) Environment modification and configuration 

The role of the template environments is to facilitate the environment construction 

rather than to replace it. Once an environment is retrieved from the database, it 

normally needs to be modified to suit a given application, for example, adding, 

deleting, and changing objects. In some other cases, the environment and its 

simulation will need to be configured either by setting the virtual environment 

through directly manipulating the virtual objects and their properties at system run

time or through configuring the object simulation functions at environment design 

time. Both ways have been implemented in this research (described in Chapter 7). 

(4) Utilising the constructed environment 

Conventional virtual environments built for specific manufacturing applications 

usually design and store simulation functions as task procedures. The realism and 

richness of the VE activities is a task for the application developer and has little to do 

with the end-users. Since the target system attempts to shift the environment 
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construction process from a development-centred approach to a more user-centred 

approach, a real-time data exchanging mechanism is used to connect the database with 

the environment properties to allow environments to be altered by updating database 

records. Such a design opens the potential to control environment appearances and 

activities by external data and knowledge sources, such as, modelling and simulation 

packages, and expert systems, through the database. 

3.3 IMPLEMENTATION 

The implementation of the domain-analysis based top-down VE construction can be 

divided into six phases, task coding design, template environment development, 

database design, environment and database communication, virtual and physical 

environment links and the development of a unified computing infrastructure. 

3.3.1 Design application task coding scheme 

The implementation of the new VE construction approach starts from designing a task 

coding description system. A task in this research is taken to mean producing a part. 

The task code is based on Group Technology (GT) for classifying task models to take 

advantage of the parallelism between the GT code for virtual environment simulation 

models and the GT code for manufactured parts. Given the part GT code, the 

simulation environment should be able to suggest alternative manufacturing methods 

and simulation scenarios based on the user requirements. 

The format of a computerised task is a string of digits where each digit stands for a 

specific task property. These properties are organised in three groups: (i) General 

application information, including the type of environment application, the level of 

detail, and the interaction mode. (ii) Part geometry information, including part type, 

external shape and external shape elements, internal shape and internal shape 

elements, plain surface machining, auxiliary holes and gear teeth. Rotational parts are 

classified by their length/diameter ratio and non-rotational parts by their length and 

lengthiheight ratios. (iii) Environment scale information decides the scale of the 

environment. The task coding scheme provides the foundation for identifying VE 
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applications in a rapid and accurate way, and will be used to weight the significance 

of each of the environment properties. 

The task coding process has been implemented as a classification programme that 

enables the user to identify task attributes and describe them in a coded format. This 

programme uses a 3D virtual encoding panel, as shown in Figure 3.4(a) that is similar 

to a remote controller with a virtual liquid-crystal-display (LCD). Users have to 

interpret application task attributes by pressing buttons on the panel to record it. At 

any stage, a user can delete or insert new data. A built-in task encoding processor is 

activated to record, interpret, and order the user task. The output from this process is a 

string of task codes that can be used as a searching index to find a suitable 

environment from the database. 

Figure 3.4(b) shows an encoding interface to the coded environment. By dragging and 

moving the slide bar users can browse the available tasks in the database. By 

highlighting a task number, a graphical view will be displayed in the preview window. 

The matched environment can be loaded by click the "Load Master Environment" 

button. 
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Master Task List 

Master Task 135 
Master Task 8S 
Master Task 137 
Master Task 138 
Master Task 89 
Master Task 113 
Master Task 11 
Master Task 12 
Master Task 13 
Master Task 14 
Master Task 15 
Master Tas k 16 
Master Task 17 
Master Task 18 
Master Task 19 
as.ter Task 213 

Part Information 

Prismat ic I I Rotat ional 
1.-.. ___________ --' I £ancel II Q.K 

Figure 3.4 (a) 3D encoding panel. (b) Task-based environment retrieval 
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3.3.2 Constructing template environments 

Like the variant approach described in Section 3.1.3, the top-down approach also 

relies on a set of pre-defined virtual environments called templates. A template 

encapsulates all the basic functions of similar environments. Various possibilities for 

using an environment have been considered and designed into the templates. All a 

user needs to do is to determine the best-fit template for a given application and to use 

the application requirements to populate the template, which results the expected 

environment. 

From the system developing point of view, these possibilities relate to environment 

comprehensiveness, object detail-level, simulation execution speed, information 

exchange between software packages, and the communication between a virtual and 

the real world. 

The benefits of this approach come from the environment capabilities themselves and 

their ability to be modified. The challenge of this work resides in the creation of an 

environment coding system which can represent both parts of the information in an 

integrated format. Because the application task is also represented by a string of codes 

based on information input by the user, so the relation between the task code and the 

environment code holds the key to the environment search and retrieval at system run

time. The program module dedicated to this problem is explained in Chapter 6. 

To test the proposed new environment construction approach, and to accomplish the 

formation of representative tasks, 5 template environments were created and analysed 

(Chapter 5). Each contains a particular manufacturing device to fulfil the task 

requirements. Every virtual environment and its objects are organised in a tree 

structure called 'scene graph'. An information acquisition agent is used to manage the 

environment data divided into 4 levels corresponding with the environment structure. 

An agent is a dynamically linked program module (DLL) which encapsulates certain 

knowledge acquisition skills and is able to communicate with other agents and 

programs. The knowledge infrastructure of the virtual environment is classified and 

explained in the following sections. 
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(1) Environment level knowledge 

Environment level knowledge is initially assigned when a manufacturing environment 

is generated through the top-down approach. This concerns information such as name, 

size and master object. It also deals with workshop spatial layout information, 

including object size, position, and object relationships. Information such as dynamic 

viewpoint route and VR peripheral configurations also belongs to this knowledge 

level. This level information is vital when the environment is used to simulate 

manufacturing cell level activities such as designing a factory or cell layout, 

controlling inter-cell manufacturing resource flow, or scheduling production. 

(2) Object level knowledge 

Objects are not primitive shapes used as building blocks. They are complete working 

systems where their physical counterparts are easily identifiable in the real world. For 

instance, for a lathe or a robot, object level knowledge would include machine size, 

weight, power input, machining capacity, tooling and fixture type information. 

Machine operation procedures, for instance, detailed system behaviours are also 

included. 

(3) Element level knowledge 

Element level knowledge encompasses physical information about virtual devices 

such as element scaling, rotation, translation, and physical constraints, for instance, 

the maximum distance a part moves. The physical characteristics such as restitution, 

gravity, friction, velocity, acceleration, and collision are also attached at this 

knowledge level. 

(4) Object property knowledge 

The object property knowledge is the lowest level in the knowledge management 

hierarchy. It deals with the static properties of an object such as shape, size, position, 

center of rotation, colour, lighting, and texture. 
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The main application program, responsible for planning, scheduling, and simulation 

software can interact with the virtual environment at different levels, so to provide 

virtual environment flexibility and re-usability. 

3.3.3 Database design 

Most commercial VR software packages separate the environment editor from the 

environment executor (or visualiser), so that once the design is finalised and 

distributed, the user cannot change it except to perform the pre-defined tasks. Also, 

environment authorisers store the environment as a readable script file or unreadable 

binary code. For handling a few virtual environments, this method may be fine. 

However, when the disk file list gets very long, the name of each makes less sense to 

the user who wants to find and explore an environment. Due to this, it is unwise to 

save each of the environments as a separate copy rather than just an index for all of 

the distinctive objects and their static and dynamic features. Users can easily browse 

through all the required information and construct the environment at run-time. This 

research has an embedded database connection that enables users to retrieve an 

environment or save changes into the database. This allows environment 

modification at system run-time. Chapter 6 described such a structure in detail. 

In computing terms, a virtual environment is a set of descriptive programming code 

managed in a specific format and stored in a data file. The information involved in the 

environment construction and knowledge acquisition is in many formats and therefore 

difficult to manage. An introduction to the research on using database technology to 

manage this information follows, a full explanation is given in Chapter 6. 

(1) Analysis of stored data 

The database is divided into virtual environment data for the rapid virtual 

environment construction, and manufacturing data for the environment 

implementation. The virtual environment data includes the world layout data, main 

manufacturing equipment group information, object geometrical data, and dynamic 

information. The manufacturing data includes master task description data, virtual 

machine command and machine specification data. 
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(2) Evaluation of database capabilities 

A relational database model has been adopted whereby every template environment in 

the developed database is described by a data file that has a cluster of data fields. The 

manufacturing information such as tooling and machines is stored in separate files. 

Every data file is related to other files in one-to-one, one-to-many, and many-to-many 

relationships as required. 

(3) Database interface and integration 

A virtual environment manager has been developed to obtain data from the database 

in response to a request from the user. To maintain consistency, all requests are 

channelled through the Manager, although once the data access channel been set up 

the application is free to access it as it wishes, without the necessity to incur the 

overhead of the Manager. The Database Manager has three logical parts. The first is 

concerned with physical data retrieval - the Database Interface. The central section, 

Query Base, contains the rules and regulations for filtering, sorting, managing and 

storing retrieved virtual environment data. Finally, the Application Interface is 

concerned with representing data to the application and responding to requests 

through dynamic link library modules. 

(4) Database actions 

The database and environment manager contain rules to automatically trigger 

database actions when specific conditions are detected, to alert users when unusual or 

interesting data conditions arise, or to automatically maintain pre-specified constraints 

against the data. 

3.3.4 Linking VE properties and database records 

Every virtual environment is composed of a number of virtual object that form the 

spatial layout of the environment. These virtual objects can have different tasks, some 

provide landmarks to give users a visual impact when the environment is applied. 

Others have dynamic characteristics such as animation or simulation. Every virtual 
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object is composed of many low-level elements such as primitive shapes that have 

static properties such as colour, lighting, texture, and even shape geometry that 

determine their appearances in the environment. The layered structure used in this 

allow the connection of the virtual environment information to the manufacturing 

environment and facility knowledge so that the object in an environment is no longer 

just a graphical representation of the real object but also has a meaningful counterpart. 

Depending on the application, the system at run-time allows user to interact with the 

environment in one of three modes: object-level interaction, machine-level interaction 

or cell-level interaction. 

3.3.5 Connecting the virtual and physical world 

This research explored connecting the virtual and physical worlds through testing an 

interface between the virtual and real robots (Puma 560 and LANSING lOll). An 

interface card was designed to translate communication signals between the computer 

and the robot control units. A communication scheme programmed using C language 

initially connected the virtual environment with a physical manufacturing cell, which 

contained an Audit lathe, a Bridgeport milling machine, a Puma560 robot and a 

Lansing Robot. The virtual workshop receives and sends information from or to the 

real equipment through RS-232 serial ports on a multi-port PC card (detailed In 

Section 7.6). 

3. 3. 6 Integrate function modules under a unified system structure 

The proposed approach encompasses virtual environment construction, knowledge 

representation and acquisition, manufacturing simulation and machine cell control 

into a single platform. The name of the proposed system is 'Knowledge Acquisition 

and Management in Virtual Reality', abbreviated to KAMVR. Its structure and 

development is described in Chapter 4. 

3.4 CONCLUSION 

KAMVR avoids the tedious environment construction work of traditional virtual 

environment systems and allows environment information handling using a structured 
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computing tool. Conventional VR systems need to import data into their own format, 

but KAMVR avoids this by interpreting application internal data structures in the 

environment database system, which can take advantage of application specific . 
knowledge tied to environment presentations. 
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CHAPTER 4 

SYSTEM ARCHITECTURE 

This chapter describes a VR system for knowledge acquisition and management 

(KAMVR) that demonstrates the viability of the domain-analysis based top-down VE 

construction approach devised in Chapter 3. It provides an introduction to the structure of 

the system and then describes each of its components. 
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4.1 KAMVR SYSTEM ARCHITECTURE 

KAMVR is an acronym for knowledge acquisition and management in VR. The 

architecture of the system is shown in Figure 4.1. It has four layers. Each with its related 

functional modules. Layer 1 is an interactive virtual environment interface used to create, 

visualise and interact with the virtual environments. It also hosts the input/output (I/O) of 

virtual reality peripheral devices such as HMD, electronic gloves, sound devices and 

imaging systems. 

USERS 

Interactive 1 
Application ...------"'"'-----, ...--______ ----"'''''''--_______ -, 
Interface VE control ~ & ~ 

Layer I 

System 
Manager 

Layer 2 I 
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Ta k Knowledge Device 

description representation communication 
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~~ ~ 

VE B-DB '/I ...... ~ 
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communication 
(Module 4) 

~ 
/ 

VE Manufacturing l Data Real Application 
Database System Files Environment 

Layer 3 I Layer4 I 
Figure 4.1 KAMVR system architecture 
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Layer 2 - the 'System Manager' - is the main knowledge handling and data management 

layer with four constituent modules. The task description and coding module (Module 1) 

is a programming utility for application domain-analysis and task coding based on the 

template environments and manufacturing information stored in a VE database. The 

knowledge representation and acquisition module (Module 2) supports the real-time data 

exchange between the virtual environment content and the database for environment 

retrieval, modification, and configuration. The device communication and control module 

(Module 3) is a program for processing signals received from real world manufacturing 

equipment. In the KAMVR system, an Audit lathe, a Bridgeport milling machine, a 

PUMA 560 robot and a Lansing PWIOII robot were connected to demonstrate this 

module. The networking and data communication module (Module 4) was developed for 

manufacturing cell communication and Internet connection for VE-based on-line training. 

The KAMVR System Manager forms the heart of the system structure and is pivotal for 

connecting the virtual environment application interface with the database system and the 

protocols of real manufacturing equipment. 

Layer 3 is a dedicated VE-manufacturing database, which includes a database 

management system (DBMS) and a VE database with domain-specific data files. It 

manages the template virtual manufacturing environments and related manufacturing 

tasks (see Section 3.2.2). Commercial database systems that have data access objects can 

be directly integrated (in a plug-and-play mode) with the system. 

Layer 4 contains the real manufacturing environment for virtual manufacturing based 

process planning and workshop control. 

4.2 INTERACTIVE APPLICATION INTERFACE 

The interactive application interface is the top layer of the KAMVR system. Users 

visualise and interact with a virtual environment in one of two ways through this layer: (i) 

directly interact with the virtual environment using the default visualiser navigating and 

editing tools, or (ii) through the VE control module in Layer 1. 
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4.2.1 Visualiser interaction 

This method is used to navigate and explore the manufacturing environment. To do this, 

it supports VR peripherals, such as i-glasses, data gloves, and a 3D-digitiser as shown in 

Figure 4.2. 

(a) i-Glasses (b) Data glove (c) Digitiser 

Figure 4.2 VR devices used in the KAMVR system 

Additionally, the basic software components of Visualiser, virtual world editors, 

graphical libraries, I/O configuration utilities form a complete VR system. Superscape 

VRT software [VRT Manual 1997] was adopted for the visualiser interaction which 

provided the following functions. 

(1) Visualiser 

The VE Visualiser provided by Superscape VRT is a program interface for users to view, 

navigate, and manipUlate a virtual environment on computers or immersive VR devices. 

Other commonly used visualisers include Visualiser, Viscape, 3D Control and Cosmo 

Player as shown in Figure 4.3. The Visualiser employed in the KAMVR system provided 

a tool set for connecting various VR peripherals, such as i-glasses, shuttle glasses, data 

gloves, and sound devices. A Navigation Bar and Viewpoint Setting dialog box supports 

static and dynamic viewpoint changing in a virtual environment. Special device drivers 

were developed for connecting Visualiser with MicroScribe-3D digitiser, 5th GLOVE 

data-glove, and VIRTUAL i-glasses. 
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(a) Superscape Visualiser (b) Superscape Viscape 

(c) Superscape 3D Control (d) COSMO VRML Player 

Figure 4.3 Environment Visualisers 

(2) World Editor 

Superscape VRT provides a World Editor to create, sort, group, organise, and assign 

virtual objects and functions in a graphical environment. It also enables real-time 

interactions between the virtual world and users, and amongst virtual objects themselves. 

The KAMVR system used it for developing the template virtual manufacturing 

environments (see Chapter 5). Figure 4.4 shows an example of using the World Editor. 
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Figure 4.4 Constructing a virtual workshop using the World Editor 

Superscape VRT has a C-type simulation control language called Superscape Control 

Language (SCL) for programming virtual object behaviours. This was used to perform 

actions that are not undertaken by automatic system routines. SCL programs are 

constructed from constants and variables, with support for arrays, pointers, functions, 

arithmetic expressions, input/output, control and conditional structures. However, to 

implement a complex manufacturing system, virtual events could occur during the 

environment interactions, which are difficult to predict and simulate. For this reason, an 

object-oriented environment construction and interaction using System Manager was 

researched and developed which is explained in Section 4.2.2. 

(3) Shape Editor 

Every object in an environment uses a specified shape to define its geometry. The 

template environments developed in KAMVR include a large number of shapes designed 

to form complex virtual objects such as lathes, robots and other machines. The 

Superscape Shape Editor uses vertices and facets to create 3D objects as shown in Figure 

4.5. A bounding cube is always associated with an object and is used by VRT to sort an 

object's spatial relationships and detect collisions in the VE. In KAMVR, SCL can be 

used to construct 3D objects using procedure codes. World Editor uses object 

descriptions from the Shape Editor to build virtual environments organised as a tree of 
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objects in the environment. After the objects have been created and given all of their 

necessary attributes and functions, the visualiser is activated to display the environment, 

move and interact with it. 

Figure 4.5 Modelled handwheel in the Shape Editor 

(4) Resource Editor 

The Resource Editor has been designed as an independent VR editor utility to develop 

dialog boxes, menu bars and other controls for virtual object controls. 

Figure 4.6 Superscape Resource Editor 
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Combined with a corresponding SCL program, the Resource Editor enables users to 

allocate buffer size and data addresses for control program parameters. This allows 

customised interaction with a virtual environment through windows resources. Figure 4.6 

shows a dialog window applied in the virtual environment for retrieving virtual objects 

and standard information such as object size and position. 

(5) Other editors 

Other editors, including Image Editor, Layout Editor, Sound Editor and Keyboard Editor 

provided by Superscape VR T system are affiliating editors for serving various virtual 

environment design purposes. The KAMVR system was designed to allow these tools to 

be facilitated through the VE control modules (See Section 4.2.2). 

(6) System hardware 

KAMVR was developed on a PC running under the Windows NT 4 operating system. 

The configuration was a Pentium 100M CPU, 48M RAM, 1M graphics memory and 2G 

hard disk. The hardware VR devices used were as follows: 

• VIRTUAL i-glasses (as shown in Figure 4.2(a»: It has two full-colour 0.7 inch 

Liquid Crystal Display (LCD) with a resolution of 180,000 pixels and 30 degree field 

of view. The focus distance was fixed at 28cm with a 100% stereo overlap. The 

interface was a stereo audio device. The Motion Tracker can record 3 motion types, 

Yaw, Pitch and Roll, and respond to real-time LCD display update correspondingly. 

The device is connected to the computer through the RS 232 serial port with a 

sampling rate of 250Hz. 

• 5DT Data Glove (as shown in Figure 4.2(b»: The device resembles to a normal glove 

with five fingers and wrist attached with wires and sensors. It has 8 bits to define 

resolution for each fingers (maximum 256 positions). The axes of the tilt sensor on 

the hand waist can identify hand gesture for Roll and Pitch. It uses flexor sensor 

54 



CHAPTER 4 SYSTEM ARCHITECTURE 

technology and measures the average flexure of each finger. The Data Glove uses the 

serial port to communicate with the computer. The sampling rate is 200Hz. 

• MicroScribe-3D Digitiser (as shown in Figure 4.2(c)): It has a position resolution of 

O.13mm and position accuracy at 0.38mm. The maximum arm stretch distance is 50 

centimetre. It also uses serial protocols to communicate, the data measured can be 

recorded into an Excel datasheet for processing. Figure 4.7 shows the system 

hardware connections. 

Figure 4.7 KAMVR system workbench 

4.2.2 VE Control module interaction 

In contrast to the visualiser interaction, the VE control module interaction was designed 

to be based on "message flow" controlled by a centralised controller. This type of 

interface still needs a visualiser to display a VE on a displaying device. Superscape VRT 

is used for this purpose, but it is implemented as an embedded computing object, not a 

system as in visualiser interaction, in the centralised controller. The centralised controller 

is a programme that has following functions: 
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(1) Data flows and communication: 

This function has been provided due to two underlying reasons: (i) Most commercial VR 

systems have their own application program interface (API), programming functions and 

libraries. This design brings VR programs the strength of integrity. However, it is 

difficult to gain distributed control for the virtual environment. (ii) The virtual 

environment related knowledge and data management process takes considerable 

computer processing time and memory, which should be preserved for rendering the 

virtual environment. In fact, this kind of data management can be fully carried out by 

other standalone programs such as spreadsheet, database, and specialised mathematics 

programs. 

Embedded 
VE Control 

Object 

Application 
Programmer 

Interface 

• New CL editor 
Data 

Channel 
• Direct Acces ing 1~C;::E:;m:::;::::z~ 

VRTdata Pl 

System 
Manager 
Module 1 

Figure 4.8 Data and command flows in the KAMVR Module 1 

Figure 4.8 shows how the centralised controller handling data messaging and 

communication using four program code blocks and four communication channels in 

between of each pair. Every program block can transmit/receive command (events) from 

others, this allows, for example, a user to load an environment on to the visualiser, and 
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then explores it using the centralised controller functions. The user control activities can 

be monitored and used for modifying virtual object information into a database using the 

internal functions of the KAMVR System Manager. Vice versa, the updated environment 

data retrieved from a database can also be used to modify an environment through the 

virtual object property and database record links. 

(2) Environment interactions 

There are three environment interaction methods that have been provided by this 

research: 

(i) Control through the Windows based control resources: The virtual environment 

control interface has application-oriented Windows controls such as dialog boxes, 

file filters, combo boxes, radio buttons, and sliders. These controls have been 

programmed to connect the virtual environment properties. The right side of Figure 

4.9 shows an example of those controls that can receive messages sent by a virtual 

object as the start trigger for mathematical calculation and logical conjecture. 

(ii) Control through virtual objects and navigation tools: Similar with the standalone 

visualiser interaction described in Section 4.2.1, this type of interaction interacts with 

a specific environment through directly manipulating the virtual object in a 'click', 

'push', 'drag and drop', and 'hold and tum' style. A difference from the visualiser 

interaction is that all the activities can be used to trigger the communication and 

control processes to other programs, such as the database and system manager (see 

Figure 4.1). 

(iii) Synthetic control: This method combines the advantages of the aforementioned two 

controls, and gives more flexibility. It was used to create a fully functional virtual 

lathe as shown in Figure 4.9. 
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Figure 4.9 Synthetic VE control mode 

4.3 KAMVR SYSTEM MANAGER 

The KAMVR Virtual Environment Manager connects the virtual environment application 

interface with the environment database system and the protocols for real manufacturing 

equipment. It has four separate functional modules. 

4.3. J Task description and coding module 

This module is designed as a programming utility for users to define an application into 

the database and to retrieve template environment for modification. It was designed in 

three steps. The first step is to design the data format for the task description. The second 

step is to implement the description with a computer program. The third step determines 

the procedures of retrieving an environment. 
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(l) Task coding 

The code format and structure are specified by a coding standard similar to Optiz 

[Rajamani 1993]. Such a coding format was adopted because they are easy to 

computerise and suitable for database management. This research devised a dedicated 

coding scheme for two purposes. One is for data retrieval and the other is for task 

classification as described in the following: 

(i) Key object geometry section: The first section of the code defines the geometry of 

the key virtual objects that are parts to be produced in the environment which 

determines the landmark virtual objects such as lathes, mills and drilling machines 

and their modelling detail. For instance, a rotational and a prismatic part require 

different manufacturing equipment. For the rotational part, the LengthlDiameter ratio 

will also affect the suitable machine tools. The key object geometry section has five 

digits 0 I to 05 (see Figure 4.10 and Appendix A). 

(ii) Virtual object population section: The number of virtual objects is related to the size, 

scale, complexity and diversity of the virtual manufacturing system and, for this 

reason, a secondary coding section defines the population of the virtual objects as 

shown in Figure 4.10, this section has two digits S 1 and S2 (see Figure 4.10 and 

Appendix A). 

(iii) Application domain type: Application domain type is related to the purpose of a 

virtual environment and the ways users interact. For instance, if a user attempts to 

change the geometry and dimensions of a virtual component, as a machine process 

would, then it must be controlled in a so-called "VR presentation" mechanism. If the 

user wants to change the geometry or dimensions of the virtual component to only 

view the changes of prior to post machining, then the virtual component can be more 

quickly created through an insertion and deletion operation on the memory buffer. 

KAMVR defines a three-digit code (RI, R2, and R3) to distinguish the type of 

application (see Figure 4.10 and Appendix A). 
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Section Digit Description of Digit Values 

0 Rotational part 
Gl 

I Prismatic part (Part Type) 
2 Complex shape 

0 G I = 0, LID < I; G I = I, Shape = cube 

G2 I GI = 0, I < LID < 15; GI = I, Shape = cuboid 
(Shape) 

2 G I = 0, 15 < LID <50; G I = I, Shape =composite 

3 G I = 0, LID > 50; G I = I, Shape = triangular 

0 Length of the part < 40mm 

" 
I Length of the part < 80mm - 2 Length of the part < 140mm ~ 

8 3 Length of the part < 180mm 0 
~ 

C,!) 4 Length of the part < 200mm 
t: G3 

5 Length of the part < 250mm eIS 
(Length) ~ 

~ 6 Length of the part < 500mm 
CI .- 7 Length of the part < 800mm CI .-..CI 

8 Length of the part < 1000mm CJ 
eIS 

~ 9 Length of the part < 1300mm 

10(A) Length of the part < 2300mm 

11(8) Length of the part < 2900mm 

0 G I = 0, null; G I = I or 2, step 

G4 I GI = 0, step shaft; GI = I, slot 

(Feature) 2 G 1 = 0, pocket; G 1 = I, through hole 

3 GI = 0, hole; G I = I, blind hole 

G5 0 Metal 
(Material) 1 Non-metal 

SI 0 Small scale 
~ 

(VE Scale) .~ I Large scale 
rfl 

s: S2 0 S 1 = 0, single; S 1 = I, less than 10000 
(Quantity) 

1 S 1 = 0, less than 10; S 1 = 1, greater than 10000 

CI Rt 0 Geometric level low .- (Geo-Ievel) eIS 
1 Geometric level high 8 

0 
0 Simulation level low Q 

CI R2 I Simulation level medium .:: (Sim-Ievel) -eIS 2 Simulation level high CJ .-- Interaction mode: immersive c.. R3 0 c.. 
(Inter-mode) < 1 Interaction mode: desktop 

Figure 4.10 Domain-analysis coding scheme 
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The resulting computer task code is a combination of the three code sections in Figure 

4.10. For example, if a key virtual object has the geometry code 13024, virtual object 

population code 20, and the application domain code 1 ° 1. The complete task code can 

then be formed as 1302420101. 

(2) Task description program 

The task description interface is a 3D-coding panel as shown in Figure 3.4. It has been 

implemented as an interface that is floating on top of a current VE and serves as an 

environment built-in control. The pseudo logic code for this interface is shown below. 

if (Key Object Geometry equals to rotational) 

environment primary object digit E2 generated 

if (Virtual Environment Size equal to batch) 

primary object quantity digit EO generated 

secondary object type and object quantities digit E3 generated 

if (Application Domain Type for simulation) 

Environment primary function type digit El generated 

Environment simulation detail level digit E4 generated 

else (Application Domain Type for others) 

Same as above 

else (Virtual Environment Size equal to others) 

Same as above 

else if (Key Object Geometry equal to others) 
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classification (meta-code) 

load template environment list 

get the closest code 

start the best suitable environment 

CHAPTER 4 SYSTEM ARCHITECTURE 

The above pseudo logic makes use of an automatic sorting function provided by the 

database system that allows any number of codes to be classified into families. The task 

description and coding (Module I) allows the KAMVR system to (i) classify task codes 

and form families when the database is set up or updated, and (ii) to receive a given task 

code and use it as a search index to locate the task family into which this given code 

calls. This leads to the next step, environment retrieval, described below. 

(3) Environment retrieval 

Before a virtual environment can be visualised or used, it needs to be retrieved from the 

database and normally modified based on the given task. This is achieved in the 

following steps: 

• All template virtual environments are pointed to by their representative task codes. So 

a given task code can be used to search the database for a matching template 

environment. 

• The matching environment file records are used to form an environment schema (see 

Section 4.4) which contains information on the environment to be retrieved. 

• The matched VE and its schema are loaded onto a buffer. 

• The loaded VE is modified and changed to suit the given task. 
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In system operation, those steps are mouse clicks on the Window controls, the 

environment is automatically loaded on the embedded visualising window. 

4.3.2 Knowledge representation and acquisition module 

This module (Module 2) in the KAMVR system has three functions: run-time VE and 

database communication, data acquisition and knowledge representation. 

(1) Run-time VE and database communication 

Each template environment in the database and its objects communicate with the database 

when: (i) An event occurred and a message is dispatched from the virtual environment to 

update a database record. For instance, when a certain condition in the environment is 

fulfilled or a specific command is issued. (ii) Using the data record retrieved from the 

database, the virtual environment and its object properties can be changed. For example, 

the change can be made on-line by binding the virtual objects' properties with the 

database fields, or made with a delay by using time-sequenced control for application 

requirements. (iii) Saving the modified virtual environment into the database, or adding 

or deleting specified objects. Figure 4.11 illustrates the data communication interface. 

VE Editor VE Databases 

Module 2 

Figure 4.11 Module 2 internal structure 
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The virtual environment visualising window is implemented in the KAMVR system as an 

embedded object (see Section 4.2.2) acting as a VE control module interface. This design 

enables the database record being bound with a virtual environment or virtual objects so 

that it can be accessed by external application programs. A property of a virtual object is 

bound with a specific field in a database so that when the users modify this property, the 

control notifies the database that the property value has been changed and it requests the 

record field to be updated. The database will then notify the control whether it is a 

success or failure in response to the request. 

This technique is typically used in database visualisation process and provides a visual 

interface to the state of current database records. It is used by the KAMVR system for 

VR simulation. For instance, as shown in Figure 4.12, when the user is moving a tool 

towards a part, the distance between the cutter and the part is constantly checked. When 

the distance is just about over the collision limit using visual checking, the data are 

recorded to prevent a collision. 

Figure 4.12 Adjusting the position of virtual objects 

(2) Data acquisition 

The data acquisition functions are developed as individual dynamic-linked-library 

(DLLs). Users can decide (at system run-time) which set of modules need to be loaded. 
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These DLLs help reduce unnecessary virtual environment overload and memory 

requirement. 

Figure 4.13 illustrates the implementation of DLLs. Two methods were used in the 

development: 

(i) Register a new SCL function: The SCL program uses the value returned by the 

registered function to alter a VE by captured data 

(ii) Direct manipulating the virtual environment data: Used for items that can not be 

directly accessed by SCL, or for time-related functions. The API vector table 

contains a set of pointers to all acquired data in VRT (such as world, shapes, and 

palette data), so they can be located as specific items and be altered directly. This is 

more closely linked to a particular world than the use of a SCL. 

When saving a new template virtual environment into the database as a template 

environment, a set of DLL modules (SaveStan, SaveStat, SaveDyn and SaveShp) are 

used to extract the environment information (detailed in chapter 6) and save it in a series 

of data files. Later these files are parsed into database tables. The DLLs library is 

presented in Appendix B. 

I VRT I I Application I 

~ ~ 
Initialisation: 
Register SCL r-API 

Registration 
r-

i I Exit: 
Un register SCL 

r---- Instruction r--.. 
table ... 

r--
..... 1 I""'- NewSCL I-- SCL l Instruction r-I""'- VI 

Figure 4.13 Superscape VRT API structure (Courtesy ojSuperscape Co. Ltd.) 
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(3) Knowledge representation 

The knowledge dealt with by the KAMVR system has been arranged and handled in two 

levels, the 'self-oriented simulation' and the 'Social' behaviours. The former is 

programmed within the virtual environment, and coupled with individual objects, groups 

and controls. For instance, activate the "Start" button on the robot controller to start the 

robot arm movement. The latter is programmed for advanced simulation activities. In this 

research the work achieved so far is a virtual environment logic controller that can be 

manipulated automatically by an application program or manually by users. 

4.3.3 Device communication and control module 

Module 3 links the virtual environment and objects with their physical counterparts. The 

data exchange uses the serial port (RS 232). For handling multi-devices, in this research, 

a multi-port serial card "PCL 844" was used, which provided eight serial ports. The 

communication does not use handshaking signals, instead it uses a "Question - Answer" 

mode with time intervals set by the computer CPU clock. 

Figure 4.14 shows the connection between the system and the physical devices. The 

detail specification and the working theory is provided in Chapter 7. A communication 

control program (C language) connects VE with those devices, including an Audit lathe, 

a Bridgeport milling machine, a Puma560 robot and a Lansing PWIOII Robot. Most have 

a standard serial port, so that a two-way communication with the VE can be developed, 

except for the Lansing robot which required a separate signal processing and controlling 

device to enable the robot being controlled by the same communication format. It 

included a signal interpreter board, a serial to parallel converter, and a control 

switchboard (detailed in chapter 7). Currently, the system can check the start and stop 

states of machines, and upload and download (from VE point of view) robot control 

commands and operation files. 
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Figure 4.14 Device communication 

4.3.4 Network and data communication module 

Module 4 allows VME networking in two levels, local area networking (LAN) and wide 

area networking (WAN). The LAN tackles the communication to a real world computer

integrated-manufacturing system through, for instance, the Ethernet. The WAN deals 

with the distribution of a virtual environment on the global network, such as the Internet, 

to allow VE to be accessed, configured and shared by users in geographically dispersed 

locations. The experimental Website developed for this purpose in the research allows a 

user to navigate a VE, customise the environment and the object specification, and 

interactively control a virtual machine. Figure 4.15 shows a snapshot of the Internet

based virtual manufacturing environment. 
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Figure 4.15 WWW On-line VME configuration 

4.4 VIRTUAL ENVIRONMENT DATABASE 

To deal with the environment information and manufacturing knowledge arranged in a 

layered structure, a relational database model was designed and a commercial relational 

modal based database management system (DBMS) Microsoft Access is adopted. 

4.4.1 Data files 

In the database design, every virtual environment is represented by its scene graph and 

virtual object property data and stored in various database files. The database schema file 

contains a range of code sections, each formed by various environment data that describe 

the static and dynamic characteristics of the landmark virtual objects, its detail level and 

simulation functions. Each of the schema variables forms a database field, and every 
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virtual object represents a data record. The database can be integrated with a machine, 

tool and fixture data to integrate the virtual environment with real world manufacturing 

knowledge and rules. 

4.4.2 VE Database management system 

The VE DBMS in the KAMVR system is responsible for the following tasks: 

(i) Accepting requests and quenes from the users in a standard structured query 

language (SQL) format, for example, "SELECT-FROM-WHERE". 

(ii) Respond to requests from the environment, for instance, retrieving the tool 

information for a particular machine in the environment. 

(iii) Connecting to a remote data source. Working with the "System Manager", this 

function can establish the appropriate network connections to remote data sources. 

(iv) Supporting the active database utilities for the real-time environment and database 

communication. This research has explored using an active database design to 

support the virtual environment event based database updating. An important part of 

an active database system is a language for the expression of event - condition -

action rules (ECA rules) that defines the active behaviour of an application (Dayal 

1988). The event in an ECA rule specifies an operation or situation to be monitored, 

such as modifying a data value. In time-critical applications, events can also be 

specified as timing constraints. When an event occurs, the condition is then 

evaluated. If the condition is true, the action is triggered automatically by the 

database system. 

(v) Performing the routine database management functions such as creating tables and 

deleting columns. 

4.5 REAL APPLICATION ENVIRONMENT 

As a test manufacturing environment, a Puma 560 robot, a Lansing robot, an Audit lathe, 

and a Bridgeport milling machine have been created in a virtual environment and their 

69 



CHAPTER 4 SYSTEM ARCHITECTURE 

functions simulated. The communication and control implementation will be described in 

detail in chapter 8. Figure 4.16 (a) and (b) show the real and virtual robot cell layout. 

Figure 4.16 (a) Real robot cell (Photo) (b) Virtual robot cell 

4.6 CONCLUSIONS 

The KAMVR system architecture allows an environment for a specified task to be 

rapidly constmcted through the application-domain analysis (task coding) and template 

based environment construction. The constructed virtual environment in this system can 

be modified and configured using the data from a database, and users can interact with 

the system through direct manipulation of the virtual environment and its inside objects 

with or without VR peripheral devices. Users can also interact with Windows based 

dialog boxes with editable interfacing objects such as a radio button, combo box, and list 

box. The system communicates with the real world through a standard serial 

communication port and can be connect with both local and global networks. The 

KAMVR system has brought the potential of virtual environment reusability and eased 

the effort in constructing large-scale complex virtual environment and simulation 

developments. Chapter 5 to chapter 7 explains how the system was researched and 

developed in more detail, while chapter 8 reports on the validation of the system. 
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CHAPTERS 

TEMPLATE ENVIRONMENT CONSTRUCTION 

AND ANALYSIS 

The work described in this chapter focuses on the construction of template virtual 

environments. The content and contexts of an environment are classified as objects, 

simulation, interaction, knowledge and environment used by most commercial VR 

systems. The classification is based on common environment modelling procedures. 

The processes of modelling representative manufacturing machinery such as lathes, 

milling machines, and robots are explained to explicitly illustrate the object geometric 

construction and simulation design. Environments generated using templates are also 

presented. The environment-based knowledge and acquisition representations are 

investigated with an emphasis on the knowledge type, knowledge source, and 

accessing knowledge. 
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5.1 VIRTUAL ENVIRONMENT MODELLING 

In the KAMVR System, the template environments were constructed in a one-off' 

process, and stored in the database. To build a specific environment, the user needs 

only to retrieve and modify a suitable template environment, thus avoiding the need to 

create an environment from scratch. The creation of a template environment is the 

work of the system developers rather than the end user. To create those template 

environments five modelling processes are involved as follows. 

5.1.1 Virtual object modelling 

A virtual object is a set of geometric data, and in most cases, a group of basic shape 

elements that represents a real world object, i.e., a lathe or a robot. Virtual objects are 

the building blocks for constructing a large-scale and complex virtual environment. 

Virtual objects modelling can be done using a CAD system or VR authorising system. 

If a CAD system is used, an exchange of data is required to the KAMVR database 

based on one of the exchange standard interfaces like DXF, IGES, STEPS or VRML. 

At present, KAMVR only support the VRML format. The exchange tools were 

provided by Superscape VRT. 

5.1.2 Virtual template environment modelling 

The KAMVR database treats a virtual template environment as a collection of 

associated virtual objects. Those objects are associated in such a way that each 

possesses specific spatial and animation links with other virtual objects, user controls, 

communication ports, and physical objects. The template environments were created 

using the World Editor of Superscape VRT, by associating the virtual objects obtained 

partially from VRML exchange models and partially created using the shape editor 

within the Superscape VRT system. The texture, light, sound and other image 

resources encapsulated within a virtual template environment were imported from 

various media creating sources such as image editors, sound samplers and video clips. 
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5.1.3 State simulation modelling 

State simulation was used to simulate agents, simulate virtual events and virtual 

activities within a virtual environment. It also generates behaviour and actions of 

virtual objects and responds to user interaction and control from physical devices. A 

simple example is a virtual lathe that is activated by pressing it's "start" button or 

stopped by switching off its virtual power supply. State Simulation functions provided 

by the KAMVR System come from the simulation kernel of the Superscape VRT 

system. The mode of a specific simulation state in a template virtual environment 

within the KAMVR database is a scene graph with user controls. This graph is 

retained in the database as part of a template environment. Figure 5.1 shows an 

example of an environment simulation state transition model, it could be two 

machines in an environment, for example, a lathe sends an event requesting a part to 

be mounted, a robot receives the event and responds with demand activities. The 

diagram could also represent active parts of a machine (Le. an action of one can cause 

actions of others). 

i 'D~;i~; (;';tiv~ p~-;i)-'''' r-D-;~ic~(~;-~~ti;~ p~rt) _ . .., 
I 

Figure 5.1 VE state transition model 

5.1.4 Interaction modelling 

The KAMVR system provides all template virtual environments with two interaction 

models: (i) application-environment interaction, and (ii) user environment interaction. 

The first model is generated and maintained by modules 3 and 4 (see Figure 4.1), 

hosting the interface and controls to and from physical devices and systems. The 
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second model is generated and managed by modules 1 and 2 (see Figure 4.1), 

providing interface and controls to and from the users. These two interaction models 

formed part of the interface of a template environment. 

5.1.5 Knowledge capture 

Knowledge can be captured and stored using knowledge bases and databases. An 

alternative is to train a neural network. Zhao [1998] proposed that a large-scale and 

complex virtual environment could be built as a VR based knowledge repository. The 

benefits of using such a digital environment as a knowledge base can be highlighted 

as follows: 

(i) Knowledge representation is intuitive and natural and does not rely on knowledge 

formalisation such as logic, rules and formulae. 

(ii) The users' involvement (immersive) in the environment eliminates the difficulties 

in dealing with experience based knowledge. 

(iii) Full users' interaction with 3D realism. Users can change and update the 

knowledge by reconfiguring the virtual environment. 

For each of the aforementioned five modelling elements used in the template virtual 

environment construction, the following sections explain, with examples, use within 

the research. 

5.2 VIRTUAL OBJECT MODELLING 

A virtual object is the basic construction block of a complex virtual environment, for 

example, a virtual lathe or virtual robot. Virtual objects were modelled in a tree 

structure to construct a virtual environment. In this way, the data structure of each 

virtual object is similar, especially the geometric data. Other information such as 

colour, lighting and animation is often rendered around the geometric data. A vector 

table, which is a reference index to the internal data structure of the Superscape VRT 

system (see section 7.2) was used to provide pointers to the different object data 

sections so that an application can access the data of a virtual object directly. 
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5.2.1 Virtual lathe model 

A virtual lathe was developed as a virtual object to simulate a real lathe. It included a 

bed, head-stock assembly, tail-stock assembly, carriage assembly, quick-change 

gearbox, lead-screw, feed rod, spindle speed selector, feed selector, clutch, cross slide, 

compound rest, tool post, spindle and chuck. Figure 5.2 shows the virtual lathe model 

structure. 

Lathe Group 

r··_··_··_·t-··_··_ .. _··_··_··J··_··_··_··_··_ .. _·t- .. _ .. _ .. _ .. _ .. _ ...... _ .. _ .. ; 
i Head-Stock Carriage Tail-Stock Base Stock I 
I Holder Holder Holder . . . 
, I 

t:::::::::::::::. t::::.:::::::::::::::::::::;' -':::::::::::::.-::: i:::::::::::::~..:::::::::::::· _ .. _.' 
Head-Stock 
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Spindle & 
Chuck 

Dead Centre & 
Quill 

Control Tail-Stock 
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Figure 5.2 Modelling structure of a virtual lathe 
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The dynamic controls built in this virtual lathe are as follows: 

• Spindle speed selector: This control is situated at the front of the Head-Stock. A 

left mouse click on the disc will rotate the disc anti-clockwise through 36 degrees 

(one position), whilst a right mouse click will rotate the disc one position in the 

opposite direction. The speed setting is displayed on the control panel screen and 

its value is passed to the spindle object when the virtual lathe starts operating. 

• Switches and buttons: The control panel and the machine head stock have 

switches and buttons to facilitate setting up the virtual lathe. Each has two or more 

animation positions. For a two-state switch, a left mouse click toggles between the 

two positions. If three or more positions are modelled, the left mouse click will 

select a lower position, whilst a right click will select a higher position. 

• Apron levers/Tail-Stock levers: The lever controls on the Apron and Tail-Stock 

have two positions to lock/unlock certain parts. A mouse click toggles between 

states. 

• Tool post and saddle assembly control: Saddle assembly, top-slide and cross-slide 

are moved by hand-wheels. To rotate clockwise, position the mouse pointer over 

the specific hand-wheel, then press and hold down the right mouse button to start 

activities. Movement can be stopped by releasing the mouse button. The left 

mouse button was used to control the anti-clockwise rotation. 

• Tail-Stock movement: The Tail-Stock can be moved backwards and forwards 

along the lathe bed by positioning the mouse pointer, over the main body of the 

Tail-Stock, and pressing and holding down the appropriate mouse button until the 

Tail-Stock has moved a required distance. The clamp lever must be set to its 'OFF' 

position to enable the Tail-Stock to be moved. 

• Tail-Stock barrel: This is extended and retracted using the rotating hand-wheel 

located at the back of the Tail-Stock (through mouse operations). The barrel clamp 

lever must be set into the "OFF" position before the Tail-Stock barrel can be 

extended, a message reminder is designed to remind the user of the state of the 

barrel. 

• Power lever: The power lever can be operated by the mouse pointer. Sound effects 

are explored to indicate the machine 'running' and 'idle' states. Figure 5.3 shows 

the constructed virtual lathe. 
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Figure 5.3 Snapshot of the virtual lathe 

5.2.2 Virtual milling machine model 
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Figure 5.4 Modelling structure of a virtual milling machine 
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Similar to the processes involved in constructing the virtual lathe, a virtual milling 

machine was also developed as a virtual object. The development starts with the 

design of the structure of the milling machine, and then assigns dynamic features to 

relevant components. Figure 5.4 shows the modelling structure of a conventional 

column-and-knee-milling machine. 

This virtual object provides controlled motion to the virtual worktable in three 

mutually perpendicular directions. (i) Through the knee moving vertically along the 

way at the front of the column, (ii) through the saddle moving transversely along the 

way on the knee, (iii) through the table moving longitudinally on the way on the 

saddle. Figure 5.5 shows the snapshot of the constructed virtual milling machine. 

Figure 5.5 Virtual milling machine 

5.2.3 Virtual robot model 

The virtual robot object is constructed for simulating robot tasks, and for testing the 

communication between a virtual robot and its physical counterpart (see Section 7.6). 

The virtual robot is constructed based on a PUMA 560 industrial robot that has six 

links and a base. Six groups of virtual objects were used to construct the robot. Each 

group contains information about how a particular link can be translated or rotated, 

around which axis, and towards which direction. In addition, two small cubical 

objects are used to simulate the robot gripper, which is located at the top of the robot 
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upper arm. The gripper has two states - open and closed. Figure 5.6 shows the 

modelling structure of the virtual robot. 
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Figure 5.6 Modelling structure of the virtual robot 

The robot can be controlled using a VRT dialog-based command interface. This 

interface allows the user to enter specific commands. The robot can also be controlled 

through an application program interface, which allows easy control of any of the six 

joints by selecting the joint and specifying an angle of rotation. The constructed robot 

model is showed in Figure 5.7. 
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Figure 5.7 A snapshot of the virtual robot 

5.3 MODELLING TEMPLATE ENVIRONMENTS 

5.3.1 The modelling criteria 

Template environments built in this research have adopted certain guidelines, (i) the 

virtual objects must be representative and informative, (ii) the virtual environments 

should be re-configurable by users, (iii) application information must be able to be 

visualised, (iv) external data sources can be connected to the environments and 

information exchange functions should be provided. For meeting these guidelines, the 

template environments were modelled with the following specified criteria. 

(1) A balance must be kept between the environment detail level and the overall 

environment size, this was found to be crucial. Individually, every virtual object 

inside a virtual environment will influence the realism of the virtual world. However, 

too much detail on to unimportant objects increases rendering time and reduces the 

rendering speed. Only essential foreground should be modelled in detail, other 

background objects should be defined as rough polygons only. 
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(2) Virtual object(s) must be prioritised according to their significance of 

environment representation in a virtual environment. The most significant objects 

should be used as landmarks to distinguish the virtual environments, and to be used as 

searching keys for the database. 

(3) The simulation controls and interactions (described in Section 5.4 and 5.5) 

between users and virtual objects must be defined specifically before the modelling 

process is started. 

(4) The run-time data communication interface must be provided so that users at 

run-time can modify an environment, and the controls for the environment are not 

restrained by a pre-determined simulation task. This enables a template environment 

to be used for a series of similar applications. Chapter 7 describes the run-time 

platform for environment implementation. 

5.3.2 The construction of template environments 

Five fully functional template environments were built in the research and saved in 

the database (see Chapter 6). Each of the templates can perform a series of similar 

manufacturing tasks. Table 5.1 shows the typical features of these template 

environments, described by their primary resources, secondly resources, and the tasks 

they are capable of performing. 

VME Name Primary Secondly Job Type Simulation Main Task 
Resources Resources Control 

Robot Cell Puma robot Lansing robot Robot control Rotation and Control 
object handling object picking simulation 

Lathe Cell Lathe Lathe Turning Rotation and Rotational parts 
processes interaction 

Milling Miller Rotator table Facing Cutter rotation Non-rot parts 
Cell and movement Facing 

Job Cell Lathe and Robot and Machining and Aggregate of Layout 
miller conveyor transportation individuals management 

Large-scale Transportation Other Layout design Environment Layout and 
Workshop belt machines visual isation navigation walk-through 

Table 5.1 Features of the virtual template environments 
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Each template has distinctive features as follows: 

(1) Robot Cell: This virtual template environment includes two robots and three 

control computers. By clicking on the virtual robot start button, each robot can adjust 

its arm position and return to the "Home" position. Each of the robot components can 

be controlled to perform certain actions and the "Stop" button on the control unit 

terminates all robot movement. Figure 5.8 shows the robot cell. 

Figure 5.8 Virtual template of robot cells 

(2) Lathe Cell: This template environment includes two virtual lathe objects. 

Depending on the application, they can be set with similar or different machining 

capability. As explained in Section 5.2.2, the virtual lathe object has functions similar 

to its physical counterpart and can be controlled using its virtual parts such as levers 

and hand-wheels or by using a virtual control panel. Figure 5.9 shows the lathe cell. 
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Figure 5.9 Virtual template of lathe cell 

(3) Milling Cell: The milling cell template has a milling machine, a lathe, and a 

rotating table. The milling machine can perfonn true milling operations. The rotating 

table is used for transporting parts and is controlled by a mouse or keyboard. By 

clicking "Up" "Down" 'Left", and "Right" arrows keys, the table can adjust its 

height tum to specific directions and transport a part to a pointed machine. Figure 

5.10 shows the template milling cell. 

Figure 5.10 Virtual template of the milling cell 

83 



CHAPTER 5 TEMPLATE ENVIRONMENTCONSTRUCTJON AND ANALYSIS 

(4) Job Cell: This template environment is a virtual job cell, including machining, 

transportation and stock sites. These sites have their own individual simulation 

functionality that can be activated by different users and other environment events. 

They can also be controlled in a co-ordinated sequence. Figure 5.11 shows a snapshot 

of the template environment. 

Figure 5.11 Virtual template of ClMs rooms 

(5) Large-scale Workshop Environment: The virtual template environment of 

large-scale manufacturing systems is designed for user to locate objects in a large

scale virtual environment through navigation and exploration tools. Figure 5.12 shows 

the overview of the virtual environment. 
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Figure 5.12 Virtual template of large scale virtual manufacturing environment 

Five virtual template environments have so far been created in the research. It is 

apparent that the more template environments that exist in the system database, the 

less construction work is demanded from the users to construct a particular virtual 

environment for a given task. 

5.4 TEMPLATE ENVIRONMENT SIMULATION 

Simulation provided for the above template environments was classified as: (i) self

imposed simulation, such as gravity, restitution, and animation, (ii) functional actions, 

including movement, rotation, and collision, (iii) interaction actions, for instance, a 

machine is activated by pressing the "Start" button. An interaction always involves 

more than one virtual object. A simulation control language was (SCL) used in 

designing the simulation actions. In SCL, a simulation contains a user-defined 

function, a pointer to a virtual object with which the simulation task is associated, and 

a priority value that specifies the order in which the task is executed relative to other 

tasks as the simulation runs. The simulation coding is mainly enforced on the virtual 

objects rather than virtual environments. Figures 5.13 and 5.14 show the simulation 

actions for the lathe and milling machine objects. The simulation loops in both cases 
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(Figure 5.13 and Figure 5.14) follow a pre-defined sequence, starting from mounting a 

part on the worktable, and then setting machining parameters using the 3D control 

panel. The machines can be started by pressing the start button or by lifting the power 

lever, and then the machining simulation mimics the real machining activities. 

Operations can be recorded in a data file and stored in the database. When the 

operations are finished the part can be unloaded and the machines may be switched 

off or wait for reloading. 

5.5 INTERACTING WITH A VIRTUAL TEMPLATE ENVIRONMENT 

User-environment interactions were investigated for virtual environment navigation, 

exploration, and object control. 

5.5.1 Environment navigation 

Environment navigation is to dynamically view a virtual environment and its inside 

objects through multi-viewpoints or defined navigation routes. It enables users to 

view a virtual model from physically an "impractical" distance and angle. In this 

work, environment navigation is achieved through bringing user to the virtual objects, 

attaching a viewpoint on moving objects to check, say part alignment with tools and 

fixtures, and to eliminate potential collisions. The dynamic navigation routes are also 

used to give users an overview of the virtual environment and help them become 

familiar with the environment layouts. A virtual environment navigation path stores a 

series of positions and orientations in world co-ordinates. These routes can be used to 

guide the viewpoint or move to other entries in the environment. Routes can be 

recorded, edited, saved, loaded, and played back. For instance, when attaching a 

viewpoint on to a cutting tool, the recorded route of a simulation loop will represent 

the tool path. Navigation routes are made up of a set of discrete data elements, each 

element storing an absolute position and orientation. A file is created when a route is 

saved and this file can be edited as a simple ASCII file if users want to make a change 

within a text editor. 
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Figure 5.13 The simulation loop imposed on the virtual lathe objects 
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FigureS.l4 The simulation loop imposed on the virtual miller objects 
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5.5.2 Environment exploration 

Environment exploration helps users understand a virtual environment design, 

functions and use. Using the virtual workshop shown in Figure 5.12 as an example, 

the virtual machines in the workshop have their own identity plates as a texture image, 

which users can move closer to and see the plates. For equipment without such an 

identity plate, users can move the mouse cursor over it, if the cursor changes its shape 

that means the object has a message to show. When the users click on this object, an 

alert box or a speech bubble with the name of the object and other related information 

will pop up. 

5.5.3 Object control 

A user in the environment control mode may also want to control a virtual object 

using experience or 'trial and error'. For instance, a user may react to system training 

instructions to locate special training equipment, through resources such as dialogue 

and a command box. The alert box used to show the machine information has been 

linked to another detailed control dialog to support these operations. The user control 

information is important for knowledge acquisition, so the operation parameters are 

saved in a buffer and can be exchanged with the corresponding database fields. This 

type of control and data communication is described in Chapter 7. 

5.6 KNOWLEDGE SOURCES AND CAPTURE 

Most virtual environments reported in the literature are developed as built-in 

subroutines and stored as a geometry data file. At the run-time, the data file will be 

loaded into the memory and display on a computer output device. It is apparent that 

the more environment simulation actions are considered and programmed, the more 

complex the environment will be and the more knowledge will be "embedded" into 

this environment. 

To use a simple virtual environment in representing a wider range of simulation 

situation or knowledge without using excessive hard-coded program routines and 
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complex data files, a virtual environment should be provided with two basic 

functions. 

(i) A data communication with the physical environment so that it can be logged on 

to knowledge sources (such as a normal manufacturing database, a spreadsheet 

and a text document) and extracts the knowledge from those sources and use it to 

reconfigure its own contents (see section 7). 

(ii) Defining the captured data into its internal format (SeL) and interpret the data 

into environment object attributes. This function is to represent the physical data 

and knowledge into a visualised format as follows. 

5.6.1 Data interpretation 

Data interpretation deals with the translation of data, from external sources, into a data 

format that the environment can understand, and then apply those data in updating the 

environment and object attributes. The environment data can also be converted back 

into external data compatible to the external data source. 

This work has considered two types of external knowledge sources. One is the 

database that is designed in Microsoft Access format. The database stores the basic 

information about machine tools and robots. This information has also been used in 

creating the template manufacturing environment. The other external knowledge 

source is the physical robots from which operations and control data are transmitted 

directly into a virtual environment. The data from both types of knowledge sources is 

interpreted into primitive data blocks to define the elementary simulation action such 

as translation, rotation, scaling and shearing of a virtual object. The format of the 

interpreted data complies with the environment modelling data format (See Section 

6.2 and 6.6). 

5.6.2 Knowledge representation 

After the data from an external data source has been interpreted into basic simulation 

elements, it needs to be synthesised into higher level actions (more meaningful 

information) such as starting or stopping a lathe, loading or unloading a component 
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and detecting a robot arm collision. This work regards this data synthesis as 

knowledge representation. Currently this work can only synthesise the data from the 

database sources. Due to the real-time limitation of data communication between a 

virtual environment and a physical one, the data from a physical source has not been 

able to be synthesised into useful knowledge. This remains a challenge for future 

investigation. At present, the work can interpret data from a physical robot and send it 

to the database. 

There are two simple techniques that were devised for knowledge syntheses, (i) a SCL 

based data link designed using Dynamic Data Exchange (DDE) and Microsoft's 

Active X functions, (ii) a " data binding" program that assigns the external source 

data to the template environments as environment properties. The implementation of 

these two techniques aims to achieve two aspects of knowledge representation. One is 

for data completeness and the other is data synchronisation. Data completeness 

requires a full dual-communication between the virtual environment and the database. 

Data synchronisation requires that every change made in either the virtual 

environment or the database will be reflected and changed accordingly at the other 

end. These processes are described in more detail in Chapter 7. 

5.7 CONCLUSIONS 

The construction of template environments is a development process carried out by 

system developers, not by the users. Once a considerable number of templates are in 

place, they can be used by the users to rapidly build their own complex environments. 
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CHAPTER 6 

DATA MANAGEMENT WITHIN VIRTUAL 

ENVIRONMENTS 

This chapter presents a data structure for the virtual environment database in the 

KAMVR system. Rather than saving each of the environments as an individual 

database file, a novel data structure was developed to enable the database to store only 

an index number of each environment using a 'General Reference' table. The retrieval 

of a virtual environment relies on the index to load related information from the 

General Reference and other environment property tables. The chapter starts with the 

description of the environment structure, and shows how it is used in constructing 

template environments. The database design is explained and its merits discussed. 

Finally, relationships between the database files and manufacturing information based 

on the structure are explored. 
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6.1 OVERVIEW OF THE ENVIRONMENT DATA 

In KAMVR, data stored and managed by the database falls into two main categories -

environment data that are used in constructing VEs, and physical manufacturing data 

that used for controlling and operating environments. For environment data, the 

database stores only the essential information of the template environments sufficient 

to enable users to construct their own environments. For physical manufacturing data, 

the database stores the information for helping users to establish controls about 

machines, tools, and simulation actions in their applications. 

6.2 THE HIERARCHY OF ENVIRONMENT DATA 

A template virtual environment in the KAMVR system is compressed into a basic tree 

structure - called a scene graph - before being saved in the database. All rendering 

information such as colour, texture, lighting, animation and simulation data are 

formatted and stored as data records in different data files. The amount of support for 

retrieving environment scene graphs, and assembling the rendering data around the 

graph depends on the robustness of the database. 

In computing terms, the virtual environment is held in the database is done so by 

assembling virtual objects into a hierarchical scene graph and then controlling them 

according to the transformation nodes. The scene graph dictates how the environment 

is rendered on the screen. For instance, users can create a light source, and specify its 

location in the scene graph such that it only affects the objects under its branch of the 

scene graph. The operations being imposed on the scene graph can determine: 

• Whether or not a polygon surface should be rendered in culling mode. 

• Whether or not a Z-buffer should be used. 

• How a virtual object is transformed in 3D co-ordinates. 

• The level of detail that the data should be presented. 

• How an object is grouped. 

• And, how the environment is controlled. 
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For a better understanding of the concept of the scene graph and providing a 

foundation for work reported on data acquisition and management (introduced in later 

sections), imagine a virtual environment as a 3-D space filled with empty transparent 

cubes, each cube can be filled by geometric and property data. These cubes have 

unique ID numbers and any two of them are inter-related through a link chain forming 

the relationships such as parent, child and sibling. 

Figure 6.l(a) shows one simple scene graph with seven objects, where Object 1 is the 

parent object of Object 2, 3 and 4, Object 5 and Object 6 are siblings and have the 

same parent - Object 3. In terms of meaningful virtual objects, this environment is 

composed by a single object group 'Tail Group' (extracted from the Lathe machine 

model described in Section 5.2.1). There are five objects in the 'TaiIGroup', two 

levers, the tail stock, the dead center, and the handwheel. In addition the environment 

has a default 'RootObject' (Object 0), which defines the virtual universe, and is the 

parent for all other objects in the environment. Figure 6.1(b) shows a snapshot of the 

virtual environment. 

Figure 6.1 (a) Virtual environment scene graph (b) A snapshot of the environment 

The scene graph of the virtual environment is then populated with other rendering 

data describing object appearances and dynamics. The complete virtual environment 

scene graph (shown in Figure 6. 1 (a)) with its related data to be loaded and displayed 

are listed in List 6.1(a) and List 6.1 (b): 

/* Object 0, Define the virtual universe */ 
Chunk: Standard 
/* Mandatory data section for all objects */ 

Name : " RootObject " /* Name of t he object */ 
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Number: 
Size: 

o /*Automaticalluy assigned object number */ 
2147483647 2147483647 2147483647 

position: 0 0 0 
Type: 65535 
Layer: 0 
DFlags: E 

End Chunk /* End of a data section */ 
Chunk: ViewPoint 
/* Define the observation viewpoints */ 

Number: 100 /* Maximum 100 viewpoints */ 
Subchunk /* Define each of the viewpoint */ 

Number: 1 
Type: 35 /* define viewpoint type such as fly or walk */ 
View: 0 
Point: 0 
Frames: 1 
Position: 0 Frame: 0 Type: StraightMove Pos: 2024377 26064 

1995529 
Rotation: 0 Frame: 0 Type: Relative Offset: 4000 6304 0 

Zoom:Ox2000 
Subchunk /* more viewpoints definitions */ 

Number: 2 
Type: 35 
View: 0 
Point: 0 
Frames: 1 
Position: 0 Frame: 0 Type: StraightMove Pos: 2028478 23760 

1991656 
Rotation: 0 Frame: 0 Type: Relative Offset: 2944 5808 0 Zoom: 

Ox2000 
End Chunk 
Chunk: Colours 
/* define the environment background colour */ 

Number: 6 /* 6 hexadecimal RGB values, three for one colour */ 
OxD5 Ox07 OxFF OxE8 Ox03 OxFF /* ground and sky colour */ 

End Chunk 
Chunk: LightSource 
/* Define environment lights */ 
Brightness: 2048 
Offset: -724 1448 -1254 
Rotation: 
BeamWidth: 

OxOOOO OxOOOO OxOOOO 
o 

Dispersion: 200 
Colour: OxFF OxFF OxFF 
BeamEdge: 0 
Flags: pOo 

End Chunk 

List 6.1 (a) Environment definition in the scene graph script 

List 6.1 (a) shows the 'RootObject' definition uses the format of a data chunk (marked 

by the token 'Chunk'), which is a data section that defines a specific type of property. 

Each object can have a single (mandatory Standard chunk) or multiple chunks. Inside 
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each of the chunks, there are number of detailed data fields for further defining the 

property of a virtual object. For example, in the 'Standard' data section, virtual object 

name (text data type), object number (integer data type), size and position (integer 

data type) are declared, and in the 'Colours' data section, the environment background 

colours are defined. For each individual colour used in the environment, three 

hexadecimal numbers (range from 0 to 255, or OxOO to OxFF) are used to represent the 

original colour - red, blue, and green (RGB). 

The difference between the 'RootObject' and other virtual objects in an environment 

is that the 'RootObject' is actually the virtual environment, which defines the size of 

the VE boundary and sets other environmental parameters such as viewpoint number 

and positions. The VE background colour and lighting are also defined in the 

'RootObject' . 

A similar format has been used in defining other objects in the environment 

positioned under the 'RootObject' in the scene graph tree by using the token 'Children'. 

The 'Children' token is also used to define further parent-child relationships among 

these objects. List 6.l(b) shows other objects of the environment in the scene graph 

script. 

Children: 
/* Object 1, the TailGroup */ 
Chunk: Standard 

Name: 
Number: 

"TailGroup" 
1 

Size: 9989 5739 3427 
Position: 2013787 18794 2002813 
Type: 65535 
Layer: 0 
DFlags: rE 

End Chunk 
Chunk: Rotations 
Initial: OxOOOO OxOOOO OxOOOO 
Centre: 4787 2870 1691 

End Chunk 
Chunk: InitPos 
position: 2012816 18794 2002813 

End Chunk 

Children: 
/* Object 2, the deadcenter */ 

Chunk: Standard 
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//Defintion for the deadcenter object 
End Chunk 
Chunk: InitPos 
//Initial position of the object 
End Chunk 

/* Object 4, the handwheel */ 
Chunk: Standard 
//definition for the handwheel object 
End Chunk 
Chunk: Rotations 
//Rotational data 
End Chunk 
Chunk: SCL 
short 
fixed 

mx, my; 
rx, ry; 

resume (1, 0); 
if (activate (me, 0» 
{ 

mx=mousex; 
my=mousey; 

ry=yrot (parent (me»; 
while (mouseb && xpos (#4»0 

&& xpos (#4)<1100 && yrot (#2)==135) 
{ 

xrot (me)=ry+mousex-mx; 
waitf; 

xpos (#4)+=ry+mousex-mx; 
waitf; 

if (xpos (#4)<=0 I I xpos (#4»=1100) 
xpos (#4)=ixpos (#4); 

} 
clrtrig (me, 0); 

} 
end 
End Chunk 

/* Object 3, the tailstock */ 
Chunk: Standard 
//Definition of the tail stock object 
End Chunk 
Chunk: SCL 
short mx, my; 
fixed rx, ry; 

resume (1, 0); 
if (activate (me, 0) && zrot (#3)==90) 

{ 
mx=mousex; 
my=mousey; 

ry=yrot (parent (me»; 
while (mouseb) 
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{ 
xrot (me)=ry+mousex-mx; 
waitf; 

xpos (#l)+=ry+mousex-mx; 
waitf; 

} 
clrtrig (me, 0); 

end 
End Chunk 
Chunk: Colours 

Number: 37 
Ox2F Ox1D Ox1A Ox1D Ox1D Ox2F Ox2F Ox2F Ox2F Ox2F Ox1D Ox2F 

Ox26 Ox1B Ox25 OxIC 
Ox29 Ox1D Ox28 Ox1F Ox19 Ox1A Ox21 Ox24 Ox29 Ox2C Ox2F Ox2F 

Ox29 Ox19 Ox1E Ox21 
Ox26 Ox29 Ox2F Ox2F Ox26 

End Chunk 

Children: 
/* Object 5, Lever 1 */ 
Chunk: Standard 
//Definition of the lever 1 
End Chunk 
Chunk: J:nitPos 
//Initial position data 
End Chunk 
Chunk: SCL 
resume (0, 1); 
if (activate (me, 13» 

yrot (#2)=135; 
waitf; 

if (activate (me, 0» 
yrot (#2)=180; 

waitf; 
end 
End Chunk 
Chunk: Rotations 
//Rotational data 
End Chunk 

/* Object 6, Lever 2 */ 
Chunk: Standard 
//Definition of Lever 2 
End Chunk 
Chunk: Bubble 
//Speech Bubble definition to display control message 
End Chunk 
Chunk: SCL 
resume (0, 1); 
if (activate (me, 0) && zrot (#3)<85) 
{ 

while (mouseb) 

zrot (#3)+=45; 
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waitf; 

sptext {me)="Tailstock moveable"; 
waitfj 

} 

if {activate (me, 13) && zrot (#3»SO) 
{ 

while (mouseb) 
{ 

zrot {#3)-=4Sj 
waitfj 

sptext (me)="Tailstock locked"; 
waitf; 

} 
end 
End Chunk 
Chunk: Colours 
//define applied colour numbers and values 
End Chunk 
Chunk: LitCols 
//define initial colours 
End Chunk 
Chunk: Rotations 
//Rotational data 
End Chunk 
End Children 
End Children 
End Children 
End File 

List 6.1 (b) Object definitions 

List 6.1 (b) shows that some objects are wrapped by a group object. Because a group 

object has its own distinctive co-ordinating system that differs to the virtual 

environment, so every component in this group will have two different data sets to 

identify its spatial state - one relative to the environment, another relative to the 

group. The purpose of a transformation is to place and rotate an object in the scene 

relative to various other co-ordinating systems. Transformations accumulate as you 

traverse down the scene graph tree. Any data section started with a 'Children' token 

uses the co-ordinating system of its parent to define the positional and orientation 

properties of itself. For example, the 'Lever l' object (which is the immediate child of 

the 'TaiIGroup' object) uses the co-ordinating system of 'Tail Group' for its relative 

position and orientation. So the absolute spatial data of the 'Lever l' object is its 

99 



CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS 

relative value plus the offset of its parent co-ordinating system from the one in the 

virtual universe. 

Another important data section in this structure is the 'SCL' chunk, which stores the 

coded simulation procedures in the environment. These simulation procedures need to 

be programmed by the VE developer at the environment design time, and attached to 

specific virtual objects with little or no flexibility of reconfiguration. Also, due to the 

fact at the simulation results acquired from running these coded procedures are only 

presented in the environment, so the information exchange between the environment

dedicated simulations and application data sources is difficult. A solution to these 

problems requires a virtual environment and its object data to be organised in a 

highly-formatted computing structure for easy management. The following sections 

will concentrate on reporting the creation of such a data management system. More 

detail on environment reconfiguration and information exchange will be described in 

Chapter 7. 

6.3 THE DEVELOPMENT OF AN ENVIRONMENT DATA STRUCTURE 

As shown in the script file, a virtual environment with only a few simple objects can 

be organised in a long list of code. A practical application for a large-scale and 

complex virtual manufacturing environment that will have considerably more objects 

and much more complex properties, which would culminate with thousands of lines 

of program code that would be difficult to read, query, modify and manage. 

6.3.1 The database of the environment 

A database for storing and managing a virtual manufacturing environment has been 

designed to overcome this problem. It would need the following attributes: 

• All of the template virtual environment can be stored in the database accurately 

and completely 

• Given a virtual environment index number, all objects belonging to that 

environment and their properties can be retrieved 
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• Given a virtual object number, the environment or environments to which it 

belongs to can be identified. 

• A virtual environment can be modified by altering database records, adding or 

deleting objects. 

>I< 

MVEID 
MVEName 
Envcode 
TaskDescription 
EnvSize 
Primary Res 
SecondaryRes 
Simulation Type 
MVEDir 
LastUpdate 

vrobjID 
MVEID 
TotLen 
ShpNum 
Layer 
Parent 
Child 
Sibling 

>I< 

VirObjID 
MVEID 
XSize 
VSize 
ZSize 
XPos 

! VPos 
. ZPos 

IXSize 
IVSize 
T7C:i..,,c, 

>I< 

VirObjID 
MVEID 
XDrive 
VDrive 
ZDrive 
XExtern 
VExtern 

, ZExtern 
. XVel 
VVel 

· 711,,1 

>I< 

VirObjID 
MVEID 
Vis Dis 
InvDis 
Replace 
SorXPos 
SorVPos 
SorZPos 
SorXSize 

.=J SorVSize 

• >I< 

VirObjID 
MVEID 
ShpNum 
SXSize 
SVSize 
SZSize 
NumFacets 
NumLines 
NumPoints 

Figure 6.2 KAMVR system database structure 

Figure 6.2 shows the structure of such a database. It has six data files - General 

Reference, Object List, Standard Information, Dynamic Information, Static 

Information, and Shape Information - and is organised in a relational database format. 

Data fields MVEID (which refers to template virtual environment identification 

number) and VirObjID (which refers to virtual object identification number) are used 

as key data fields for setting the data relationships in the database. Each data file is 

explained in the following. 
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6.3.2 General template environment reference file 

This file stores descriptive information of all the constructed template environments, 

such as environment ID number, environment name, environment code (which refers 

to the environment application domain introduced in Section 3.4.1 and 4.3 .1 ), primary 

object and secondary object, and editing and updating information. The key data field 

in this table is a unique environment identification number - MVEID. This file has a 

one-to-many relationship with the virtual object file in the database. For example, a 

template environment can have only one record in the reference file ('GeneraIRef), 

however, in the virtual object file ('ObjectList'), many object records can have the 

same value of the MVEID field. Figure 6.3 shows the general reference table. At 

system run-time, this table acts as an index for users to search and retrieve a template 

environment. 

1 askDescription 
Em/Size 
PrimaryRes 
SecondaryRes 
Simulation Type 
MVEDlr 
LastUpdate 

Text 
Number 

I Text 
IText 

-- - Number 

t· 

Number 
Text 
Text 
Date/Time 

Master environment ID number. 
Master (Template) virtual environment name. 
Master (Template) environment description code. 
Suitable tasks description. . 
Master environment complexity and size information. 
Environment primary resource code. -
Environment secondary resource code. 
Simulation functions. 
Master virtual environment file..!ocation. 
Last updating date. 

Figure 6.3 Template environment reference file 

6.3.3 Virtual object file 

Many virtual objects are repeatedly used in environment construction. Therefore, it is 

uneconomic to duplicate an individual copy in the database. The only information 

vital for keeping a clear track of those objects is (i) in which environment an object 

properties are recorded, and (ii) the distinctive object ID number in that environment. 

For the first information, MVEID provides the solution, and for the second, the 

VirObjID data field does. The combination of these two data fields is sufficient to 

uniquely identify an object. Figure 6.4 shows the data file schema, where the code 

length of an object, its basis shape number, the object layer, its relative object 
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information in the environment scene graph tree are stored In corresponding data 

fields. 

1m ObjectList : Table 1!!Il!l13 

CiJ Vir:9bjID 
CiJ MVEID 

Tot Len 
ShpNum 
Layer 
Parent 
child 
Sibling 

Field Name 

~Nu~er _ 
Number 
Text 
Number 

INumb~r 
Number 

Oescri tion 
Virtual object ID. _assigned by world editor. 
Belonging environment ID. 

_ Totall~g~h of the o~Lect descri~tio~ction (in bytes). 
Shape number for which the object created upon. 
Object layer information. 
Parent object ID number. 
Child ID (if any). 
Next siblin abje'ct ID (if any). -- - - ------

Figure 6.4 Virtual object data file 

6.3.4 Standard information 

A user can identify a specific object from querying the environment reference table 

and the object data table. They can also find out how many objects exist in an 

environment. However, except for the general reference and description information, 

those tables do not provide "visual" data that is essential for constructing 

environments and objects. Those data cover a wide spectrum from object geometry to 

object appearance and dynamic. In the database, these data have been put into 4 data 

files - Standard Information, Static Information, Dynamic Information, and Shape 

Information - each focuses on a specific aspect. All the data fields have an integer 

data type in the four data files for the convenience of scanning and storing data from 

an environment into the database (see detail in Section 6.4). 

Standard information refers to data that is essential for the computer to provide and 

di splay (render) an environment (scene graph). The standard data are used in defining 

the scene graph using place-holders (see Section 6.2.1). The standard information 

table stores the place-holders' spatial information, for instance, initial and current 

sizes and position, as well as their transformation nodes data (Section 6.2.2), such as 

rotation and rotation centres. Figure 6.5 shows the design of the standard information 

file. 
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1m Standardlnfo: Table I!lliJl3 

~ VirQbjID 
MVEID 
XSize 

Field Name Oescri tion 
Virtual object 10 number. __ 

Number Master environ~~nt ID number:-
. Number ---ri Virtual obj~t bounding ~ox X ~ize.::.;.,--__ _ 

YSiz~ i Numbe-r - Virtu<!9bject bounding bo~ Dize. 
ZSize i Number- Vir~ual objecU~ounding box Z size. 
XPos Number Virtual object bounding box X position. 
YPos Number ,Virtual object bounding box Y position. 
ZPos ' Number Virtual object bounding box Z position. 
IXSize ' Number Virtual object bounding box initial X size. 
IYSize Number Virtual object..bounding box initial Y size. 
IZSize Number VirtgaLobjectbounding box initial Z size. 
!XPo~ _______ Number Virtual object bounding box initial X osition. 
IYPos Number Virtual gbject bounc!Qg box initial V PQ~J1l·o"'n""'.-_---< 
IZPos Number Vir~al.9bject bo_ullding box initial Z position. 
XCenter Number Object X center point, vital for object rotation. 
VCenter i Number Object Y center point, vital for object rotation. 
ZCenter ,Number Object Z center pOint, vital for object rotation. 
VptNum Number Number of viewpoints. 
VptAttached ____ Number Obi~ctJp be.Jlttached by th~ viewpoint._ 
VptConObj _ Nl,!.mber __ .'yie~e£in! cQ.ntrolling object_. __ 

Figure 6.5 Virtual object standard information file 

6.3.5 Dynamic information 

Once virtual object spatial information is defined, its dynamic data will decide its 

capacity for performing simulation tasks. An object's activities in an environment can 

be seen as one of three types, scaling, rotation, and translation. They will be affected 

by factors such as external driving force, gravity, friction, and restitution. The 

database file that tackles this part of the data is the dynamic data file (see Figure 6.6.) 

MYEID __ 
XDrive 
VDriv.!l • 
ZOrive 

X~t.!lrJL.. 
VEx tern 
ZExtern 
~Vel 
Wei 
ZVel 
~Frlctio·n 
VFrictlon 
ZFrlction 
XAngv 
VAngy 
ZAngv 
XRot 

I 

I Number 
'Number 

Number 
' Number 

____ . ~rnb~ __ 
. Number 
'Number 
Number 
Number 
Number 

'Number 
Number 
Number 
Numb~r ,_ 

'Number 
Number 

. Number 

Virtual objetc 10 . 
I Master environment ID numbe r. -
Object driving force along X (abstracted fromthe vector) . 
Object driving for~along} (abs.\@cted from the_yector). 
Obj~ct driving ~orce all,'ng Z (abstracted from tbe vector). _ 

..;_O~i~lexternaiJorce.lllongX.( a_~~tr ac,t}l91rom ~e vect.Qr). _ 
Object external force alof.lg V (abs.tra.cted frClm ~h~.vector) • 
Object external fo~c~. along Z (abstracte.d fr9m the vegor). 
O,bject velocity. aio,ng ~ (abstracted from the vec!or) . 
Object,Yeloc!,l;y alongY (abs~acted from the ve£~r). 
O~iect .v~ 19city,alor1,g ~ (abstr~~t~df!o_m th~ y~.ctgr) . 
Obi~ct friction along _XJabs~racted from the ve£tor). 
Object friction along V (abstracted/rom the y~ctor). 
.object friction along ZJabstracted from the vector) , 
Object angular v_~~Y.2[Q.l}g!C. _ 

I Obje.ct. angular velocity al.ong ,V. __ 
ObOect angulor velocity along Z. 

Object rotation along x. - -

Figure 6.6 Virtual object dynamic data file 
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6.3.6 Static information 

Static data deal with environment properties such as colour, lighting, texture, and 

distance, which defines the appearance of an object. The design of the static 

information table includes fields defining object colour and texture, as well as data 

fields defining how an object is displayed, such as the sorting box for surface hiding 

and the distancing replacement. The data file design is shown in Figure 6.7. 

1m Staticlnfo : Table !Iii) t3 
Field Name Descri tion 

~ VirObjID Number 1 Virtual object ID number. 
MVEID Number Master environment ID number. 
VisDis Number Object visible distance. 
InvDis Number Object invisable distance. 
Replace Number _ -i Replacing object ID number ~ 
SorXPos Number _ _ Sorting box X position. 
SorVPos Number Sorting box V position. 
SorZPos Number ' Sorting box Z position. 
SorXSize Number Sorting box X size. 
SorVSize Number Sorting box V size. -
SorZSize Number - l 'tl'" ],,, Z ,I", 
ColXSize Number - Collision cuboid X size 
colVSize Number - Collision cuboid- V size. -
ColZSize I Number Collision cuboid Z size. 
ColXOff Number The X-offset value of the origin or the collision cuboid. 
Colvoff Number J The"y oFts~t value ofJhe-origiQ of the collision cuboid. 
Colzoff Number ,The Z offset value of the origin of the collision cuboid. 
IColXSize Number Initial collision cuboid X size 
IColVSize Number Initial collision cuboid V size 
IColZSize Number initial collision cuboid Z size 
IColXOff 

~ 

Number j The 1,10.1 value of the X off"t, . 
IColVOff Number The initial value of the V offset~-
IColZOff Number The initial value of the Z offset~-- - - --
AttFacet I Number __ .. Facet_number which another oqj~ct~ttached. 
AttObject 'Number The object nLJmber attached on the facet. : 

_I ' 

Figure 6.7 Virtual object static data file 

6.3.7 Shape data 

So far all the data fields defined from the aforementioned data files act on the place

holding cubical volumes, it is the shape or so-called 3D model data that will 

eventually fill in those volumes. This research did not undertake a detailed 

exploration of object geometric data. However, the shape reference data are registered 

in the KAMVR for object retrieval purposes. It includes base shape number, 

construction points list, number of lines and facets. Figure 6.8 shows the shape data 

file. 
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1m Shapelnfo : Table I!lIiIEf 
Field Name 

~ VirObjID 
MVEID 
ShpNum 
SXSize 
SVSize 
SZSize 
NumFacets 
NumLines 
NumPoints 

Number 
Number 
Number 

Deseri tion 
Virl ual object ID number. _ 
Master environment ID number. 
Shape reference number. 

j Shape X size. 
Shape V size. 
Shape Z size. 
Number of facets constructing the shape. 
Number of lines of the shape. 
Number of the points of the shape. 

Figure 6.8 Object shape data file 

6.4 RECORDING TEMPLATE ENIRONMENTS 

To use the database, it first needs to be populated with template environment data. 

This can be done in two ways as follows. 

6.4.1 Recording the data Jor a single object 

Four automatic data acquisition programs have been designed and programmed to 

record the data for a single object. Each deals with a specified data file. These four 

programs have a similar structure and work in a similar way. All have been registered 

as new Superscape VRT functions, namely, SaveStan, SaveDyna, SaveStat, and 

SaveShp. The function SaveStan records object standard infom1ation, which is 

mandatory for constructing and displaying an object. The others records object 

dynamic, static, and geometric information. 

The method of implementing those four programs within Superscape VRT can be 

described in the following steps: 

(1) Declaring the function in a compiler to register the SaveStan function in the 

structure. The function record is defined as, 

static T COMPI LEREC NewSCL= 

" SaveStan", //New command name 

0, //Fun ction code 
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Ox20, //2 input, 0 output 

0, //Compiler code 

E_PROCEDURE,//Procedure type 

//None return value 

E_SSOBJNUM, //Input object number 

E_SSINTEGER,//Input environment ID 

} : 

(2) Taking an object ID number from the environment data stack and using it as a 

function parameter. The user input function parameters are retrieved from a program 

stack and assigned to data variables. For instance, 

MVEID=PopN(E_SSINTEGER); 

ObjNum=PopN(E_SSOBJNUM); 

//Get template environment ID 

//Get object number 

(3) Locating the relevant object property data section and retrieving the memory 

address. This is to locate the position of each property data section in memory. The 

following code gives examples of how this is achieved. 

Object=ChunkAdd(ObjNum,E_CTSTANDARD): //Standard data section 

InitSize=ChunkAdd(ObjNum,E_CTINITSIZE): //Initial object size 

InitPos=ChunkAdd(ObjNum,E_CTINITPOS): //Initial rotation data 

Rotation=ChunkAdd(ObjNum,E_CTROTATIONS): //Rotation data section 

Viewpoint=ChunkAdd(ObjNum,E_CTVIEWPOINT)i //Viewpoint data 

(4) Accessing the data sections and recording the data into the database. After the 

individual object property data sections are located and the data addresses are 

returned, the next step is to access the data stored in the memory sections and record 

them into a text file. The following is an example. 

fprintf(f,"%ld\t", Object->Std.XSize)i 

fprintf(f,"%ld\t", Object->Std.YSize): 

fprintf(f,"%ld\t", Object->Std.ZSize): 

fprintf(f,"%ld\t", Object->Std.XPos): 

fprintf(f,"%ld\t", Object->Std.YPos): 

fprintf(f,"%ld\t", Object->Std.ZPos); 

fprintf(f,"%ld\t", InitSize->Isz.IXSize); 

fprintf(f,"%ld\t", InitSize->Isz.IYSize); 
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fprintf(f,"%ld\t", InitSize->Isz.IZSize); 

fprintf(f,"%ld\t", InitPos->Ips.IXPos); 

fprintf(f,"%ld\t", InitPos->Ips.IYPos); 

fprintf(f,"%ld\t", InitPos->Ips.IZPos); 

fprintf(f,"%ld\t", Rotation->Rot.XCentre); 

fprintf(f,"%ld\t", Rotation->Rot.YCentre); 

fprintf(f,"%ld\t", Rotation->Rot.ZCentre); 

fprintf(f,"%ld\t", Viewpoint->Vpt.NumVPs); 

fprintf (f, "%ld\ t", (Viewpoint->Vpt. View) ->ObjView) ; 

fprintf (f, "%ld\t \n", (Viewpoint->Vpt. View) ->ObjCon) ; 

The four programs have been developed using C++ and Superscape's API 

(application program interface) Developing Kit (SDK). In Chapter 7, the environment 

data acquisition is also implemented using a similar method, but the final recorded 

data are not to a text file. The data are saved to the database directly through the 

ODBC (Open Database Connectivity) mechanism (Section 7.5). The detailed 

implementation of these four data recording programs is included in Appendix B. 

6.4.2 Scanning all objects in an environment 

As opposed to recording individual objects, the task of scanning all the objects in a 

complex environment can be tedious. However, the problem is alleviated by using 

Superscape's simulation control language (SCL) and the scene graph tree data 

structure. The following code illustrates the method used in this research to save all 

the environment information in a single file. 

obnum current, top; //Object type variables 

if(activate(me,O)) 

top = 'RootObject'; //Sets the scanning entrance 

while (child(current) !=top) //Exhausts all objects on tree 

{ 

current child (current); 

while(current != top) 

if(sibling (current) !=top) 
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{ 

current = sibling (current) i 

while (child (current) !='RootObject') 

{ //Records object data 

current = child (current) i 

SaveGen('current')i 

SaveDyn('current') i 

SaveSta('current') i 

SaveSha('current') i 

} 

} 

else 

current parent (current) i 

} 

} 

In this example, the "top" variable was assigned a "RootObject" which is the top of 

the scene graph tree. When acquiring an object information, this variable is assigned 

the number of the referred object. The first "while" loop keeps assigning the variable 

"current" to its child object's until the loop reaches the bottom of the tree. It then lets 

data acquisition functions save an object information. The second "while" loop 

traverses the tree backwards until it reaches the starting point. Inside of the second 

"while" loop, the program continually checks to see whether the current object has a 

sibling whilst performing the task. When it reaches the end of the sibling list, the 

program moves one level up. When finally the current variable is equal to the top 

object in the tree, the process is finished. 

The information recorded in the intermediate file can be converted into a database file 

using a text file parser. This project used Microsoft Access text parser. Figure 6.9 

shows the generated environment standard information table. 
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438 
313 
578 
575 
580 
569 
552 
540 
535 
530 
517 
224 
135 
46 
43 
40 
37 
36 
33 
30 
27 
24 
23 
20 
17 
14 

.eord: '.l~ . .!.i .'. '. 

1 

... 

CHAPTER 6 DATA MANAGEMENT WITHIN VIRTUAL ENVIRONMENTS 

MVEID 1 XSize 1 YSlze 1 ZSize 
5 24.8253 160?83 92711 - -5 248253 160583 9271 1 
5 39999 39999 39999 
5 39999 39999 39999 
5 79999 126479 87647 
5 133894 135070 120742 
5 137494 154102 176242 
5 167863 135463 96431 
5 ..95999 154399 103999 
5 95999 154399 103999 
5 134791 14?I59 79191 
5 159997 79997 63997 
5 159997 79997 63997 
5 159997 79997 63997 
5 39999 39999 39999 
5, 71415 1000 295620 
5 89757 1000 473072 
5 84425 1000 277306 
5 69918 1000 171 202 
5 69918 1000 171202 
5 69918 1000 171202 

.5 ~99..18 1000 171202 
5 69918 1000 171202 
5 84425 1000 277306 
5 84425 1000 277306 
5 69918 1000 171202 

94 ~.I.I f •• }Of 94 ~M ' ~ ·1 

1 XPos 
0 
0 

41 8286 
421294 
537876 
566586 
557372 
602417 
710388 
714011 
43472 
25652 
29044 
20534 

2271560 
893061 
683072 
637777 
542049 
542049 
267338 
267338 
227441 
207034 
207034 
267338' 

1 YPos 

•• w" 

-

1 ZPos 1 • 

0 706456 
0 1049115 
0 827264 
0 453376 
0 257298 
0 1275401 -
0 633910 
0 356676 
0 1074274 
0 878253 
0 58465 
0 239522 
0 358754 
o 483492 

300 2213655 
o 225276 
o 329240 
o 574773 
o 827230 
o 1017087 
o 1249884 
o 111 0546 
o 1167669 
o 834078 
o 638126 

o ~~~~~~ 
--""'-"';'---"">--

Figure 6.9 Environment standard information table 

6.5 ENVIRONMENT CONSTRUCTION FACILITATED BY THE DATABASE 

To construct an environment using the data recorded in the database, only four steps 

are necessary. (i) Retrieval of a template environment and its scene graph, (ii) retrieve 

and render the base-shape geometry, (iii) search for static information and assign it to 

the virtual objects, and (iv) retrieve dynamic data to form simulation tasks and to set 

up objects' interactions. 

6.5.1 Constructing the scene graph of an environment 

A scene graph can be built from scratch, or by loading an existing one directly from a 

virtual environment description file, and modified. The first method is applied in the 

bottom-up approach presented in Chapter 3, and adopted in the template environment 

construction. Basically it is a CAD modelling process and demands the skill of using 

environment-authoring tools. The second method requires file format conversion and 

graph reconstruction. In this work, the second method is used. When constructing an 

environment, users do not need to build an environment from scratch, but to 
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customise the closest scene graph of a template environment by insertion, deletion 

and data modification. 

Bit EO Bit El Bit E2 ; Bit E3 Bit E4 
Env-Type Func-Tvve Primary-Obj ilst&2nd Obj-Nurrl Detail-Level 

•••••••• •••••••••••••••••••••••• ..... N. 

Millin!! linit (0) 

Robot Cell (I) 
Vertical Lathe (0) 

Weldin!! Unit (2) Horizontal Lathe (I) 
•••••• ••••• HH •• ___ •• _ •• _ •••••• 

~ e Production Cell (0) Turning Unit (3) 
Single & Single (0) 

Geometric Shapes (0) 
~ CNC Lathe (2) 

-= Inspection Unit (4) Single & Multi (I) ;1 
(j 

Electrical Goods (0) Lathe and Robot (3) it Functional Object (1) ~ Assembly 
bJ Mechanical Parts (I) 

Multi & Single (2) 

= Line III .• Automobile (2) Multi & Multi (3) "C 
C Miscellaneous (3) 
U 

••••••• .. • .... ••• .. """ ..... H •••••• -= Stock Room (2) ~ 

e .. -_._." .. -.-..... " .... 

= C Monitor Wall (0) 

"" .... Shapes (0) ~ 

= Others (3) Control Panel (I) Keyboard Based (I) I I 
~ Control Room (2) I l Full Simulation (3) 

Others (2) 1 
.................................... ~ 

I ............... _. __ ._ .. _. 
0 

I ••••••••••• •••• • ••••••••••••••••••••••••• H • .................................. _ ...... .••....•...•.. __ ._ ... _ .... 0 

I 
0 

Figure 6.10 Template environment-coding scheme 

6.5.2 Retrieving a scene graph oj template environments 

The retrieval of a template environment is achieved by using an environment code 

which indexes to the suitable environment for a specific simulation task. Every 

constructed template environment in the database has a unique index code based on a 

coding scheme shown in Figure 6.10. 

The template environment code has five digits, each represents a specific 

characteristic of the environment and has a value range to define its strength level. 

The characteristics relate to the environment type, primary object, and simulation 

ability. For example, for a manufacturing cell, the environment type code will be O. 

Otherwise, the digit value is chosen from 1 and 3. The primary and secondary object 

digit (lst&2nd Obj-Num) decides the process capacity of an environment. The 

simulation level digit decides the available simulation functions in an environment, 

the lower the digit value the less simulation activities are available. It is important to 

point out that the presented hybrid environment-coding scheme is an experimental 
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prototype. It can be expanded and refined to fit with other more comprehensive 

environment categorising schemes. 

6.5.3 Modify scene graph 

Since the database stores only a limited number of templates, usually modification on 

a retrieved template environment is needed when a specific environment is to be 

constructed. The fewer the templates in the database, the more modifications will be 

needed. However, after the system has been used for a period of time, more template 

environments can be created and added into the database and the amount of 

modification will be reduced. 

Scene graph modifications can be simplified into adding, deleting and moving objects 

around the graph tree. For example, the object insertion is a process of filling the data 

structure and locating the position in the graph tree where the object will be placed. 

This includes three steps. 

Step 1: Retrieving data 

This is to retrieve the data from the database to construct a place-holder (described in 

Chapter 7). The retrieval process is in fact a data query process. The query code is as 

follows: 

SELECT Object_properties //Essential place-holder's data 

FROM table reference //Involved table reference 

WHERE search condition //Retrieval conditions 

For example, if a user wants to create a cubic object in the environment scene graph, 

the query for searching for a stored cube object, its size and position would be 

programmed as below: 

SELECT GeneraIRef.MVEID, GeneraIRef.MVEName, 

ObjectLists.VirObjID, StandardInfo.XSize, StandardInfo.YSize, 

Standardlnfo.ZSize, 

Standardlnfo.XPos, StandardInfo.YPos, Standardlnfo.ZPos, 
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FROM ((GeneralRef INNER JOIN ObjectLists ON GeneralRef.MVEID 

ObjectLists.MVEID) INNER JOIN StandardInfo ON 

ObjectLists.VirObjID = StandardInfo.VirObjID) 

WHERE (("MVEID"=l) AND ("XSize" == "YSize" == "ZSize"))i 

The returned values of the query result are: 

VirObjID = Ii MVEID Ii 

Xsize = 1000; Ysize 1000; Zsize =1000; 

Xpos = 2000500; Ypos = 1000; Zpos = 2000500; 

Step 2: Construction of the main objects 

The following step is to apply the returned data to an environment rendering process. 

This process requires a direct access to the internal data structure of the rendering 

buffer. It is programmed as dynamic-link-library functions similar to those developed 

for recording environment information (see Section 6.4). The format of the buffer 

can be represented as a structural code as follow: 

static struct liThe buffer structure 

T STANDARD Std; IIDeclare basic object data 

IIEnd mark for the data short Term; 

Buffer= 

} , 

E_CTSTANDARD, sizeof(T_STANDARD), 

sizeof(T_STANDARD)+sizeof(short), IITotal size 

0, 

0,0, 

NULL, NULL, 

0, IICompiler requirements 

XSize,YSize,ZSize, IIPlace-holder size 

XPos,YPos,ZPos, IIPlace-holder position 

4000, 

0,0, 

0,0, 

o IIFills to complete the structure 
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-1 //Data section end mark 

} i 

These functions are embeded as default procedures to enable users modifing an 

environment by entering function parameters at run-time. 

Step 3: Traversing the scene graph tree 

One reason to have a hierarchical structure to hold the template scene data is to help 

define the position and orientation relationships between objects in the environments. 

For instance, to build a composite object in the scene, the object is treated as a single 

object in relation to the rest of the scene. Its individual parts are considered to be a 

collection of distinct objects in relation to this composite object. In KAMVR, the 

object can be moved around the scene graph tree by directly calling the VRT 

functions. The VRT functions check the relative information of the object, such as 

child, parent and sibling. Then the object is moved around in the tree through calling 

other functions, for instance, adopting and re-linking to put the object in a different 

position. 

6.5.4 Assigning object properties 

After the object cubical bounding volume (or place-holder) is formatted and inserted 

in the scene graph tree, the next step is to assign static and dynamic properties' data to 

the object. Although strictly speaking, object shape properties also belong to static 

information and can be imported from the database. However, it would require much 

more memory and computing time to accomplish such a complex process. 

To avoid this difficulty, the function for assigning object properties takes two 

parameters, shape number and an integer-type array that holds the property ID index. 

Since the placeholder is already being created and attached to the scene graph, this 

function only inserts the allocated spatial space with the shape geometry and the 

properties. Table 6.1 shows the object properties that can be added to the object 

placeholders. 
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Property ID Attribute Property ID Attribute 

0 Standard 16 Bending 

1 Colours 17 Null 

2 Initial Colours 18 Speech bubble 

3 Rotations 19 Null 

4 Distancing 20 Collisions 

5 Angular velocities 21 Initial position 

6 Null 22 Dynamics 

7 Animations 23 Lit colors 

8 Null 24 Initial lit colours 

9 Null 25 Null 

10 Animated colours 26 Textures 

11 Null 27 Sorting cuboid 

12 Null 28 Textures used 

13 Null 29 Sounds used 

14 Light source 30 Null 

15 Initial size -1 End of list 

Table 6.1 Object static and dynamic properties 

Figure 6.11 shows a constructed environment based on a template environment that 

has been modified using property data retrieved from database. Ten transportation belt 

sections have been inserted, and the machines were duplicated with different locations 

to fit in the layout. 
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Figure 6.11 Environment constructed from a template VE 

6.6 CONJUGATING MANUFACTURING DATA AND VE 

Manufacturing knowledge and data are not essential for environment construction and 

is certainly too big an operation to be managed in a single database. Manufacturing 

knowledge can come from many different formats such as drawings, spreadsheets, 

rules, experiences and even expert systems. In this research, methods have been 

attempted to provide a mechanism to conjugate VE with manufacturing knowledge. 

Generally speaking, manufacturing information can be classified as facility 

information, machining activity information and process knowledge as shown in 

Figure 6.12. 

Figure 6.12 Manufacturing information composition 
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As introduced in section 6.3, a virtual environment is composed of virtual objects, 

virtual objects in tum are composed of further sub-components. Every individual 

virtual object has its static and dynamic properties, which are stored in the database. 

KAMVR links virtual objects with classified manufacturing data through the database 

as a bridge. For this purpose, manufacturing data are classified as static or dynamic 

data. 

6.6.1 Static manufacturing data 

Static data includes the facility information concerning machines and cutting tools. 

Table 6.2 shows the physical and functional facts, and data about machines and 

cutting tools, which influence the machining conditions, optimising processes and the 

selection of machines and cutting tools. 

General attributes of machines and cutting tools include their names, the category 

number of machines and cutting tools, the maximum power of the machines and the 

cutting tool materials. 

The machine names and numbers are used only as index information to identify 

individual machines and cutting tools. When the final process plan is produced, for 

instance, the name and the number of machines and cutting tools should be referenced 

to indicate what type of machines and cutting tools are used for a machining process. 

The power of a machine process serves as boundaries for the maximum and minimum 

machining parameters used to control the metal removing rate in the machining 

processes. Also the cutting tool materials must be defined for determining the correct 

cutting speeds, depths of cut, cutting feeds and tool life within the limitations of 

machining parameters provided by individual machines. 
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Category Information 

General Attributes Machine names and numbers 

Machine powers 

Cutting tool name and number 

Cutting tool material 

Machine Movements Machining movements 

Auxiliary movements 

Motion primitives 

Coordinate frames and datum 

Cutting Tool Geometry Cutting tool types 

Cutting tool forms 

Cutting primitives 

Capacities of machines and tools Dimension capabilities 

(Machining activities and process Attainable accuracy 

knowledge) Machining parameters 

Capacity primitives 

Table 6.2 Machine tool knowledge 

6.6.2 Dynamic machining activities 

The machine tool dynamic activities are simplified as translation, rotation, scaling, 

and changing appearance. In this way, all the activities that occur in a machining 

process can be seen as a composite activity assembled from primitive motions. 

Machine movements can be described by so-called fundamental movements, each 

having its own moving and rotating direction along a coordinate axis with a defined 

step unit. Any other machine movements can be assembled from the algebraic 

calculation and matrix transformation of multiple primitive motion units. 

6.7 CONCLUSIONS 

The KAMVR database system developed in this work stores and manages various 

environment information in an explicit manner that enables the user to query object 
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information and modify the environment scene graph. Manufacturing data captured 

within an environment is categorized according to its VR features (static and 

dynamic). The database currently only has a limited manufacturing information data 

file and the link to the environment table is through a one-to-one mode. 
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CHAPTER 7 

ENVIRONMENT CONFIGURATION 

AND COMMUNICATION 

This chapter starts with the concept of configurable virtual environments and then 

describes the methods and techniques for its implementation using the layered 

environment structure presented in Section 3.3.2 to define multi-level object 

properties. Object properties are essential for application programs or user defined 

systems to access and configure the environment at system run-time. To verify those 

methods and techniques, and to achieve a demonstrable environment, this chapter also 

presents a real-time database access mechanism where records can be bound with 

environment properties to allow the automatic update of the environment database. A 

case study of connecting physical robots with a virtual environment is used to explain 

the communication processes. 
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7.1 CONFIGURABLE VIRTUAL ENVIRONMENTS 

A virtual environment designed for a specific application is difficult to reuse due to its 

fixed object properties, pre-programmed simulation controls and human-environment 

interactions [Mironov 1998]. A configurable virtual environment has the potential to 

overcome this problem through a run-time and application-based configuration 

interface to rearrange and reset its contents and controls to meet different application 

requirements. 

In Section 3.3.1, it was stated that a virtual environment can be constructed in a 

hierarchical layered structure, where each layer has its explicit functions that are 

exposed to application programmes. In this way, communications and controls can be 

established between the virtual environment and the application programmes. The 

following sections describe in detail how this was achieved. 

7.2 ACCESSING ENVIRONMENT PROPERTIES 

From a user point of view, an ordinary VR environment is in fact a "canned data 

block" that can only allow users to view it from various pre-defined perspectives. An 

essential feature of a configurable environment is that it should allow users to directly 

access its data, or at least its properties, to achieve the following outcomes: 

7.2.1 Configuring environment data structure 

In fact, an environment is a data file that is loaded into memory at run-time. For 

example, in Superscape VRT, it is a data buffer referenced by pointers. 

The first part (256 bytes) of the file contains a standard header that describes general 

information about the environment (e.g. environment name, see Figure 7.1). 

Following the header there is an object list defined in C "struct" format as shown in 

list 7.1. 

typedef struct 
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Object data member variables 

T OBJDATACHUNK 

List 7.1 Virtual environment object data definition 

y!ew S~L ~etting. EdlOJ !ielp 

: Ed,. World DD 

Script conversion of file R08OCE~l . VLD 

Type : lIRLD 
Title : "'n'n'r" 

"Vorld fil e R08OCE~l.VLD revision 1 
"Saved fro. VRT version 5 . 10'n'r" 
"'K1A" 

;-----Layers----------------------

Chunk : LayerNames 
NUlIILayers: 2 
!lalle : "Default" 
!lame : "Syste." 

End_Chunk 

; -------0bject 0---------------------
Chunk : Standard 

lIalle : "RootObject" 
!lullber : 0 
Size : 2147483647 2147483647 214748364 
Position : 0 0 0 
Type : 65535 
Layer : 0 
DFlags : E 

End_Chunk 
Chunk : VievPoint 
!lumber : 100 
Subchunk 

lJ,.",,}o. ... · 1 

Qelele Cancel II UK 

Figure 7.1 Virtual environment script header 

_ 15' 'x 

Following the object list definition is the data section defined as C "unjon" and called 

T WORLD CHUNK, see List 7.2. Therefore, a pointer can be used to access the entire 

data structure and its data members. For example, the size of a virtual object can be 

located by a pointer p , which points to the STANDARD data section, 

XSize = p ~ Std.XSize . 

typedef union 

T STANDARD 

T ANGVELS 

T ANIMATIONS 

T ANIMCOLS 

T ATTACHMENTS 

Std ; //The standard data section 

Ang ; //Object angular velocity section 

Ani i //Animation movement definition 

Acl i //Animation colour data 

Att i //Specify objects attachment 
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T AUTOSOUND 

T BENDING 

T BUBBLE 

T COLLISION 

T COLOURS 

T DEFCOLS 

T DEFLITCOLS 

T DISTANCE 

T DYNAMICS 

T INITPOS 

T INITSIZE 

T LIGHTSOURCE 

T LITCOLS 

T ORIGINALCOL 

T PROPERTIES 

T ROTATIONS 

T SCL 

T SHOOTVEC 

T SORTING 

T TEXTINFO 

T TEXTURES 

T TRANSLATE 

T TRIGSCL 

T TRIGSCL 

T VIEWPOINT 

T MATERIAL 

T_WORLDCHUNK; 

Asn; //Sound definition 

Ben; //Shape bending control 

Bub; //Speech bubble definition 

Cln; //Collision detection setting 

Col; //Object colour data 

Def; //Initial colouring of the object 

Dlc; //Initial colouring when lighting 

Dis; //Distance replacement setting 

Dyn; //Object dynamic information 

Ips; //Object initial position 

Isz; //Object initial size 

Lig; //Lighting source definition 

Lit; //Object lit colour 

Ocl; //Original colour setting 

Prp; //Object properties 

Rot; //Rotational definition 

SCL; //Simulation control program 

Sho; //Define projectiles path 

Sor; //Object spatial position sorting 

Tex; //Text relate to the Object 

Txr; //Object surface texturing 

Spx; //Translation table for textures 

Glo; //Global simulation execution trigger 

Loc; //Local simulation execution trigger 

Vpt; //Viewpoint setting data 

Mat; //Object material type information 

List 7.2 Virtual environment data type 

T _ WORLD CHUNK is organised in four blocks according to its accessing methods: 

(i) shape properties, (ii) static properties, (iii) dynamic features, and (iv) general 

information. 

7.2.2 Configuring object shape properties 

Object shape property data are the lowest level of information in the data hierarchy. 

These define object geometry in terms of points, lines and facets. By directly 
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accessmg and altering these data, users or application programs can change the 

geometric appearance of individual objects through a sub-data section derived from 

T_ WORLDCHUNK. This derived sub-data section is listed in List 7.3. 

typedef union 

T ANIMCOLS 

T COLOURS 

T FACETCHK 

T LINECHK 

T LITCOLS 

T POINTSCHK 

T SCL 

T SHAPESIZE 

T TEXTINFO 

T TEXTURES 

T TRANSLATE 

T NORMALS 

T SHAPECHUNKi 

Acli 

COli 

Faci 

Lini 

Liti 

Pnti 

SCLi 

Siz; 

Texi 

Txri 

Spxi 

Nori 

//Shape animation colour 

//Shape colour 

//Defines the facets make up the shape 

//Define the lines of facet 

//Colouring when lighting 

//Define points make up the shape 

//Shape construing program 

//Shape size 

//Shape related text 

//Texture of the shape 

//Translation table for textures 

//Normalise shape angles 

List 7.3 Object shape information 

Accordingly, a set of operation functions were designed to access the shape 

properties, they are: 

• ChPoPos - accessing the absolute position of a specific point 

• ChSpSize - accessing the size of a specific object and its geometric properties 

• ChLitCol - accessing the lit colour properties 

• ChColor - accessing the colour information and related texture properties. 
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(a) Original object shape (b) Modified object shape 

Figure 7.2 Example of accessing shape property data 

Figure 7.2 shows a snapshot of a milling machine work table. The first is the original 

design and the second shows how it can be changed using functions ChSpSize and 

ChLitCol. 

7.2.3 on figuring object slatic properties 

Object static properties are parameters defining a virtual object's appearance, position 

and orientation in an environment. Figure 7.3 shows a flow chart of how these 

properties are accessed. 

Start I-

1 No 

Check the validity of -
object number 

.1. 

Find the required 
data section 

~ 

Modify the data 
values 

~ 

Push the result back 
into rendering engine 

Figure 7.3 Accessing object static properties 

125 



CHAPTER 7 ENVIRONMENT CONFIGURATION AND COMMUNICATION 

The object static properties are accessed and changed from an object's standard data 

which is defined in List 7.4. 

typedef struct 

unsigned short 

long 

void * 

void ** 
unsigned short 

long 

unsigned short 

long 

unsigned short 

T_STANDARD; 

ChkType,Length, 

TotLen,Number; 

Child, Sibling; 

Parent; 

List; 

MaxChunk; 

XSize,YSize,ZSize, 

XPos,YPos,ZPos, 

DiagDis; 

Type, Layer; 

DFlags,OFlags; 

Trigger; 

List 7.4 Object standard data section 

The above data structure contains the standard infonnation that is common to all 

objects, which include: 

• ChkType The data "chunk" type 

• Length The length of the data chunk 

• Tot Len Total length of the whole object description 

• Number ID number uniquely assigned to an object 

• Child Offset in the buffer between the start of this object to its first child 

• Sibling Offset in the buffer between the start of this object to its first sibling 

• Parent Absolute address of the parent object 

• List A pointer to the start of object address list 

• MaxChunk The index number of the largest chunk in the object 

• XSize, YSize, ZSize The size of the object bounding cube 

• XPos, YPos, Zpos The position of the object relative to its parent 

• DiagDis Not used 
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• Type The index of the shape that this object based on 

• Layer Layer number this object belongs to 

• DFlags Flags reflecting the data structure of the object 

• OFlags Flags reflecting the object status 

• Trigger Flags indicating the object event types 

The implementation of accessing the object static properties is by dynamic-linked

library (DLLs), which: 

• Defines a pointer to each data section; 

• Pops operation parameters from the environment data stack; 

• Finds data address for the specific object properties; 

• Pushes the address back to the return stack as a writable pointer; 

• Sends the property to render engine as a variable. 

The designed functions for accessing the object static data are: 

• ChObjSz - accessing the environment data section which contains object size to 

configure its geometry 

• ChOblnSz - accessing the object initial size to change its dimension 

• ChObjPos - accessing the object positional information to alter its 3D position 

• ChOblnPo - accessing the object initial position to set up its starting point 

• ChObjCol - accessing the object colouring information to configure its colouring 

property 

• ChObLiSo - accessmg the object lighting source information to change it's 

lighting property 

• ChObjTex - accessmg the object texture information to configure its surface 

property 

Figure 7.4 shows the result of the configuration attained through these functions. It is 

an environment of a virtual lathe that is fully configurable on the static object 

properties. 
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; Ed,t \!IOIld 6Ei 

Chunk : 
Name : 

Standard 
'ApronHolder' 
98 Number: 

Size : 
Position : 
Type : 

10515 15725 13782 
2010995 11076 1994982 
65535 

Layer : o 
DFlags : E 

End_Chunk 
Chunk : In i tPos 
Position : 2010995 

End_Chunk 

Children : 

: -----Object 

Chunk: Standard 

11076 1994982 

4----------------
Na.me : 'Vice - Handle[4]' 
Number : 4 
Size : 1000 6681 1000 
Position : 9220 488 4723 
Type : 38 
Layer : 0 
DFlags : r 

End_Chunk 
Chunk: Ini tPos 

Pos ition : 9220 488 4723 
End_Chunk 
Chunk : SCL 
.. (. (I .. ""' ..... , 

• 

frint 

ileiete Cancel II OK 

Figure 7.4 Virtual object static data 

7. 2. 4 Configuring dynamic properties 

::: 

Accessing and changing the dynamic properties of an object follows a similar 

approach, but different handles are assigned to different data sections that contain the 

dynamic properties including collision, rotation and translation. List 7.S to 7.7 shows 

the data sections defmed for accessing these dynamic properties. 

typedef struct 

unsigned short 

long 

long 

short 

short 

unsigned short 

short 

short 

ChkType , Length ; //Data t ype and length 

MType , IMType; 

Fuel , I Fuel ; 

Collided , CollCube ; 

Flags ; 

Coupled ; 

Grav , IGrav; 

Climb , IClimb ; 
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T LONGVECTOR 

T LONGVECTOR 

T LONGVECTOR 

T VECTOR 

long 

T VECTOR 

char 

T VECTOR 

T LONGVECTOR 

T LONGVECTOR 

T LONGVECTOR 

T MATRIX 

T LONGVECTOR 

short 

short 

T DYNAMICS; 

Drive, IDrive; 

External, IExternal; 

MaxForce, IMaxForce; 

GroundFric, IGroundFric; 

Mass, IMass; 

DeltaR; 

Spare1[10]; 

Restitution,IRestitution; 

Vel, IVel; 

MaxVel, IMaxVel; 

CofG; 

MotI; 

Stiction; 

Objln,ObjOn,GVel; 

Spare3,Spare4,Spare5; 

List 7.5 Object dynamic data structure 

typedef struct 

unsigned short 

short 

unsigned short 

long 

T ROTATIONS; 

ChkType,Length; 

XRot,YRot,ZRot, 

IXRot, IYRot, IZRot; 

Spare; 

XCentre,YCentre,ZCentre; 

List 7.6 Object rotational data properties definition 

typedef struct 

unsigned short 

unsigned short 

T COLLSPEC 

T COLLISION; 

ChkType,Length; 

NumColls; 

Collision [1] ; 

List 7.7 Collision data properties definition 
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The functions designed for accessing and configuring these data sections are: 

• SetObjMo - accessing movement information including rotation, translation and 

scaling. 

• SetExFor - accessing object external force information 

• SctOb Vel - accessing object velocity information 

• SetIn V el - accessing object initial velocity information 

• SetObRot - accessing object rotational information 

• SetlnRot - accessing object initial rotational information 

7.2.5 Configuring general environment properties 

List 7.8 and 7.9 show the definitions of global environment properties including the 

environment name, type, general data description, scene graph definition and 

navigation control path. 

typedef struct 

long Value; 

long Min; 

long Max; 

} T PROPERTY_LONG; 

typedef struct 

long Offset; 

long Length; 

long Strings; 

} T_PROPERTY_STRINGi 

typedef struct 

float Value; 

float Min; 

float Max; 

} T PROPERTY_FLOAT; 

typedef struct 
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short Value; 

} T_PROPERTY_BOOL; 

typedef struct 

unsigned short 

union 

Type; 

T PROPERTY LONG Long; 

T PROPERTY STRING String; 

T PROPERTY FLOAT Float; 

T PROPERTY BOOL Bool; 

Value; 

} T_PROPERTYDEF; 

typedef struct 

unsigned short 

unsigned short 

unsigned short 

T PROPERTYDEF 

T_PROPERTIES; 

ChkType,Length; 

NurnProperties; 

Changed; 

Property[l); 

List 7.8 Configurable environment properties 

typede£ struct 

unsigned short 

Length,ObjView,ObjCon,ObjMis,ObjFir,ShootVec, Point; 

unsigned short 

CurFrame, TotFrame, NumPosCont, NurnRotCont, OldZoom; 

unsigned char 

T POSCONT 

T_VIEW; 

typedef struct 

unsigned short 

unsigned short 

T VIEW 

T_VIEWPOINT; 

VPLock,Type; 

PosCont[l]; 

ChkType,Length; 

NumVPs; 

View[l); 

List 7.9 Data structure for accessing and configuring environment viewpoints 
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The functions for accessing and configuring the global environment data include: 

• ChgVwPnt - accessing viewpoint setting information to configure the viewpoint, 

e.g. viewpoint position and orientation 

• SetLong - accessing object "Long" property flag 

• SetFloat - accessing object "Float" property flag 

• SetString - accessing object "String" information 

• SetBool - accessing object "Boolean" information 

7.3 MIGRATING ENVIRONMENT PROPERTIES 

With the configurable data structures and corresponding accessing functions 

introduced in Section 7.2, the next step is to migrate object properties from an 

environment' s internal file or buffer to an external application in a way that can allow 

users to make any change and control on them. 

7. 3.1 Extracting and migrating shape properties 

Figure 7.5 shows a snapshot of an interface that can extract shape data of a virtual 

object. This interface (and other interfaces shown later in this section) was specially 

designed as an add-on module to most applications with DDE functions so that once 

the object properties are extracted from an environment's repository data pool, they 

are automatically streamlined to the application database or data buffers. 

ShpName JCOI< 

ShplD J1'::'1-;::-3 -------------; 

ShpCol 112 

ShpXSize 110.900 

ShpYSize 1.10000 

ShpZSize 14000 

M rS'hpUgh~ l... ................. , 

OK Cancel 

Figure 7.5 Interface for setting object shape properties 
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This mode also allows users to change the data between such data transfer. Similarly, 

when the application's data are to be pipe-lined back to the environment, the interface 

functions operate in the same way. 

7. 3. 2 Extracting and migrating object static properties 

Static properties are exposed in a similar style as the shape properties. For example, 

when object name, ID number, position, size and colour properties are extracted, users 

can set them into a virtual environment according to a given rendering requirement. 

Figure 7.6 shows the static property interface. It works in a similar style to that of the 

object shape property shown in Figure 7.5. 

ObiName IHandwheel 

ObjlD 12 

XPos 12000000 

YPos 10 

ZPos 12016424 

XSize 14277 

YSize /3982 

ZSize 13576 

IXPos 12000000 

IYPos 1300 

IZPos 12000000 

IXS ize 14000 

IYSize 14000 

IZSize 14000 

ObjColor 112 

r ObjLight 

~ Vis/lnvis 

1
•······ .. · .. /'·;Ii'· .. • .. · .. ··]1 Cancel 
~ ....... y ... ~.~............ ....' ---..I 

Figure 7.6 Interface of object static property 
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7. 3.3 Extracting and migrating object dynamic properties 

The dynamic properties including translation, rotation and external force are extracted 

and migrated using an object dynamic property interface as shown in Figure 7.7. 

XMove lJoo.Q 
YMove 10 
ZMove JO 

XAot 139.0 

YAol Jo 
ZAot 10 
'XAngV 10 
YAngV 1127.5 

ZAngV 10 
XVel 10 
Wei 10 
ZVel 10 

P' Collision 

n Trigger 

Figure 7.7 Interface of object dynamic property 

Using this interface, users can set-up object dynamic functions such as movement and 

rotation speed. In Figure 7.7, the example object has been given an angular velocity of 

127.5 degree along Y axis. The "Collision" and "Trigger" check boxes allow object 

collision detection and object triggering flags ( default functions) to be setup. 

7. 3. 4 Extracting and migrating global environment properties 

Finally, for the global environment data and user navigation control data, a global 

property interface was designed to extract and convey data about the environment 

name, indexing code, general task and viewpoint control. Figure 7.8 shows a snapshot 

of this interface. It works in a similar way to those described above. 
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WldName Jroom4 

WldlD 

Description IM ~n!Jfacturing w()!kcell 

Viewpoint J 4 

M LongPrp. 

R StringPrp 

P; FloatPrp 

rv BooleanPrp 

L OK 

Figure 7.8 Environment property interface 

7.4 SETTING AND UTILISING PROPERTIES 

If the configurable environment is to send or to receive from an application, the data 

properties have to be in a format that can be readable by both ends. Also, the data 

must be flexible for users to change and update during the transition between the 

environment and the application. For this reason, an application run-time shell 

platform was designed to accomplish the task (see Section 8.2). Before describing this 

platform, it is necessary to explain the techniques and methods used in designing it 

and how to set and utilise the object properties. 

7. 4.1 Setting the simulation triggers for an environment 

The property types, setting methods, and application events of the system are 

generalised in Table 7.1. 

A virtual object in the virtual environment can take the input of event signals, change 

its own properties and output new events to other objects. This is achieved by pre

defined control programs written in an environment simulation language (SCL in this 

research). The input events can be of three types: time-based events, action-based 

events, and condition-based events. For starting the pre-programmed simulation 

program, triggering functions such as "SetTrigger" has been used as control signals. 
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An application program can control the environment simulation loop by calling a 

function at system run-time. 

Properties Type Methods Type Events Type 

Shape properties Trigger methods Initialising event 

Static properties Counter methods Clearing event 

Dynamic properties Marker methods Environment event 

World properties V iewpoint methods Device event 

Property setting methods State event 

Pointing device methods 

Table 7.1 Application platform utilities 

7.4.2 Setting environment counters 

During a conditional environment simulation, by calling a condition-based function, 

an application program can have a multi-entry-point to the environment, to gain 

flexible control over the environment. A virtual robot cell control simulation 

presented in Chapter 8 is set-up in this way. The run-time functions supporting this 

setting are "SetMarker", "GetMarker", "SetCounter", and "GetCounterM. 

7.4.3 Setting object properties 

Perhaps the most useful environment setting methods derived in this research are 

those that directly manipulate individual object properties. The system enables eight 

such methods. 

• GetLongProperty - taking an object number, and its property name as parameters, 

returning the object long type property value 

• SetLongProperty - taking the object number, its property name, and a long type 

value as parameters, setting the value to the pointed object property 

• GetFloatProperty - taking an object number, and its property name as parameters, 

returning the object float type property value 
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• SetFloatProperty - - taking the object number, its property name, and a float type 

value as parameters, setting the value to the pointed object property 

• GetStringProperty - taking an object number, and its property name as parameters, 

returning the object string type property value 

• SetStringProperty - - taking the object number, its property name, and a string 

type value as parameters, setting the value to the pointed object property 

• GetlloolProperty - taking an object number, and its property name as parameters, 

returning the object boolean type property value 

• SetlloolProperty - - taking the object number, its property name, and a boolean 

type value as parameters, setting the value to the pointed object property 

7.4.4 Receiving environment events 

When a control or simulation event occurs in a virtual environment - such as an object 

collision, time limit reached or a certain condition is fulfilled in a simulation loop - an 

environment signal is sent to a container program. It is then passed to the application 

program. Suppose a user wants to move the cursor from point A to point B, and 

acquire the mouse position change during the operation. By declaring two integer 

variables in the environment simulation program to hold the mouse position, the real

time mouse movements can be passed to the application through firing an event 

carrying these two variables to the container program. Figure 7.9(a) and (b) has shown 

the firing event simulation program and the real-time mouse position display in the 

run-time platform. 
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(a) SCL firing event carrying two arguments 

(b) An application receiving the two arguments 

Figure 7.9 Firing event from a virtual environment 

7.5 PLATFORM-BASED DATABASE ACCESS 

The implementation of a virtual environment and database interaction at system run

time was achieved using Microsoft's open-database-connectivity (ODBC). It is a 

database application program interface, which enables a container program to access 

data from various databases and connecting with application operations. The 

procedure of this accessing method process is described in the following: 
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7. 5,1 Registering the environment database 

Before the environment database can be linked to an application environment, it needs 

to be registered in the Open Database Connectivity (ODBC) utility in the operating 

system (in this work, Microsoft WindowsNT 4). By registering it in the Data Source 

Administrator, the environment database address, name, and other information are 

saved and can be referred by external application programs as a Data Source. Figure 

7.10 shows the registering of the environment database VMEI that was introduced in 

Section 6.3. 

(lW D BCD ala S Duree Adminislr alOl 6 £i 

User DSN 1 System DSN I File DSN I Drivers I Tracing I Connection Pooling I About I 
.user Data Sources: 

Name 
dBASE Files 
Excel Files 
FoxPro Files 
MS Access 97 Database 
Text Files 
Visual F oxPro 0 atabase 
Visual F oxPro Tables 
ED 
VMEOEBUG 

10 river 
Microsoft dBase Driver (",dbf) 
Microsoft Excel Driver (",xis) 
Microsoft FoxPro Driver (",dbf) 
Microsoft Access Driver (",mdb) 
Microsoft Text Driver (",txt; ",csv) 
Microsoft Visual FoxPro Driver 
Microsoft Visual FoxPro Driver 
Microsoft Access Driver (",mdb) 
Microsoft Access Driver (", mdb) 

Agd .. , 

Bemove 

~onflgure" , 

An DDBC User data source stores information about how to connect to 
the indicated data provider. A User data source is only visible to you, 
and can only be used on the current machine, 

lo....._o_K_--'I . Cancel .BPpfy 

Figure 7.10 Registering the environment database 

7. 5, 2 Connecting the database 

After the environment database is registered, it needs to be connected to the 

application program. Figure 7.11 (a) and (b) shows the connection of the registered 

database and its data files. 
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Select Database Tables DEI 

Dynamiclnfo 
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Cancel 

(b) Selecting data files in the database 

Figure 7.11 Linking database and the VE application 

7. 5.3 Binding environment properties with database records 

The data binding of the environment and object properties with corresponding data 

fields enables environment monitoring, updating and recording. There are two 

possibilities in this process, retrieving data from the database for environment 

modification, and recording data or events from the environment to the database. As 

shown in Figure 7.11, a "dynaset" type data record is applied in the program that 

keeps synchronisation between the database data and the environment data. The 

access to the environment and properties of an object has been implemented by the 

"getProperty" and "setProperty" functions introduced in Section 7.4. Depending on a 

user's requirement, a modified object can be saved in a new record by calling the 
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database utility function (provided by C++ function library) "CRecordset::AddNew( 

)", or saved in an existing record by calling the "Update( )" function, then move the 

data into the record set's member variables, and finally update the data record using 

the "Update( )" function. 

7.6 INTERACTION BETWEEN VIRTUAL AND PHYSICAL 

ENVIRONMENTS 

The virtual and physical environment communication has been implemented in a 

serial communication mode (standard RS232) for two reasons: (i) most modern 

manufacturing equipment has a built-in serial port (in this work, the PUMA robot, the 

CNC lathe and the CNC miller, see Figure 4.14 in Chapter 4). (ii) serial 

communication is reliable and accurate for long distance data communication (the 

drawback is the data transfer rate is relative low). The following sections explain the 

KAMVR system communication functions using a PUMA and LANSING robot as a 

case study. The former has a serial port and the latter has not. 

7. 6.1 Communication with the Puma robot 

The PUMA 560 robot has a PC based robot controller interfaced with an ageing, 

inflexible Unimation Mark II controller. The simple hardware servo control was 

replaced with a software based control strategy. To communicate with multiple 

peripheral devices, an eight port intelligent RS-232 interface board (PCL-844) was 

installed in the host computer. All the physical equipment was linked with the host 

computer through this interface. The PUMA robot has a built-in 10-pin DIN RS-232 

port, only the data transmit (Tx), receive (Rx) and the ground (GND) pins were used. 

The data communication is controlled by the software (see Appendix D) with the 

computer internal clock monitoring the time intervals, so that handshaking pins are 

not necessary. The communication signal format was set at 9600b/s with no parity bit. 

Each data pack has 8 data bits and 1 stop bit. The communication software was 

programmed in C code. The working procedures are shown in Figure 7.12. 
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Run-time Platform 

Flush input buffer 

Read in 100 bytes 

Send command 

Figure 7.12 Connecting the PUMA robot 

It first checks if the multi-port PCL-844 board has been installed and the referred port 

has been opened, task-specific functions that come with the communication board are 

used in the program to check the return values. If the state is correct, then the program 

tries to read the signals from the robot control unit. If they are available, the control 

program reads and saves them into a pre-defined host computer buffer. Next, the users 

can read the message from the buffer and decide which command is to be sent to the 

robot. The program is designed to support both command and fi le level 

communication with the ability to transfer space point records and arm joint 

information. 
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7. 6.2 Communication with the LANSING robot 

The LANSING robot had a "teaching-playback" system and a sequential descriptive 

language for controlling the operation sequence. Because there was no ready-made 

standard serial or parallel communication port it was necessary to develop a single

way communication device for the physical link between the host computer and robot 

control unit. A major part of this work was to simulate the control instructions of the 

LANSING control panel. Figure 7.13 shows a snapshot of the physical control panel. 

The left and bottom side of the figure shows a grid system to locate each of the 

buttons on the panel. 

@ J @ @ ® ® 0 ' 

Figure 7.13 Lansing robot control panel 

There is a 50-way connector in the LANSING controller to transfer the user 

instructions input through the control panel to a central processor. It was found to 

have a similar electrical working mechanism to a conventional keyboard with 16 

high-voltage (5v) ways and 14 zero-voltage ways to give a maximum 224 

combinations. Figure 7.14 shows the combinations for each button on the control 

panel. The same grid as shown in Figure 7.13 was used to identify the keys. For 

example, The "DISP 1" button (8A) is controlled by pin 10 (Ov) and 17(5v) on the 

connector. 
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Figure 7.14 The keyboard control combinations 

A device was designed to simulate the control panel, so that the virtual control panel 

could send instructions to the real robot. The device has two CMOS 4067 analogue 

switches, which are Integrated Circuit (IC) chips having a 16~channel multiplexer, 

four binary control inputs and one common pin. Figures 7.15 shows the signal 

processing board diagram. 
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Figure 7.15 Virtual control panel signal processing board 

Every combination of input signal can determine an output channel that is connected 

with the common pin. The circuit board was designed to use a PC generated serial 

signal (8 data bits) to select two output pins (one from each chip) and a dual-way 
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linked through the common pins so that the host computer could imitate the robot 

control panel signals and control activities. A serial/parallel converter, a developed 

signal processing board and a switch board were used to support the link (see Figure 

4.14). The control program was designed to recognise the users' command in the form 

of ASCII code. Each code consists of 8 binary bits (4 high data bits D7- D4 and 4 low 

data bits D3- DO), so a single ASCII character can generates two inputs for the signal 

processing board to imitate a keystroke. For example, the ASCII number 50 is 

represented by 00110010 in binary format, the four high bits 001 1, and the four lower 

bits 0010, are used as inputs for the two IC chips, which results in one of the 16 

output pins from each chip being connected through the common pin and creating the 

request circuit (in this case, equal to the key 8A being stroked). The design enabled a 

software based virtual control panel to be created. Figure 7. ] 6 shows the ASCII 

number configuration for the virtual keyboard. 

0000 0010 0100 0110 1000 1010 1100 1110 
07D6D504 0001 0011 0101 0111 1001 1011 1101 1111 

(Pin No. )(14)(15)(16) (17)(22)(23)(24)(25)(26 )(27)(28) (29) (34){35)(36)(37) 
o 3020100 3~ 50 194 210 

0010(10) E;-O 1\-0 C-8 G-8 

35 51 ~~:> ~:' . .l OOll( 11) K-2 I-2 -2 -1 
0-1 20 36 52 196 212 228 244 

0100(12) N- - L-7 N-O L-O M-O 0-8 M- 0-7 
21 37 53 197 213 229 

0101(13) N-2 1.-1 L-3 L-2 N-3 N-1 
70 86 102 119 134 150 Hi6 102 

0110(10) G-7 E-7 C-7 1\-7 B-7 0-7 F-7 1-1-7 
71 07 103 119 135 151 167 163 

0111(19) G-5 E-5 C-5 1\-5 B-5 0-5 F-5 1-1-5 
72 88 104 120 136 152 168 194 

1000(20) G-3 E-3 C-3 1\-3 B-3 0-3 F-3 H-3 
73 09 105 121 137 153 169 

100](21 ) G-l E-l C-1 1\-1 B-1 0-1 F-l 
74 90 106 122 136 154 170 106 

1010(30) G-2 E-2 C-2 1\-2 B-2 0-2 ["-2 H-2 
75 91 107 123 139 155 171 107 

t01 l13l) G-4 E-4 C-4 1\-4 B-4 0-4 F-4 H-Ij 

76 92 106 124 HO 156 172 100 
1100(32) G-6 E-6 C-6 1\-6 8-6 0-6 F-6 H-6 

13 29 1\5 61 205 221 237 253 
1101j38) 1'1- 5 L-5 N-6 L-6 M-6 0-6 M-5 Q-5 

30 46 62 . 206 222 238 
1110(39) J-4 K- 5 I-5 J-5 1-4 K-I\ 

31 47 63 207 223 
111Ul\0) K-7 1-7 J-7 J-8 J-6 

Figure 7.16 Virtual keyboard ASCII value configuration 

145 



CHAPTER 7 ENVIRONMENT CONFIGURA TION AND COMMUNICATION 

7.7 CONCLUSIONS 

This chapter described the method of exporting the environment and object properties 

to a database and external programs. Using the this method, virtually all the data in an 

environment can be accessed, controlled and modified at environment run-time 

without the need for off-line editing. This enables an environment to be customised by 

the user and enhance the usability and flexibility of the environment. Furthermore, 

this method also enables template environments to be accessed and the database to be 

updated. 
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CHAPTER 8 

THE RUN-TIME IMPLEMENTATION 

This chapter reports how the modules developed in this research were integrated into a 

system. It also shows the results of testing the KAMVR system for user-envirorunent 

interaction, envirorunent-database interaction, envirorunent simulation, and virtual 

environment and real world interactions. 
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8.1 INTRODUCTION 

To verify the domain-analysis based top-down virtual environment construction approach 

and the KAMVR system development based on it, an integrated "module-container" 

program was coded using C++. In this program, the template environments, the database, 

and the application program interface are all embedded entities, which enable the 

template environments to be developed using various environment authorisers, and allow 

users to customise a specific environment for given simulation tasks. 

~').Un""ed . XuVf2 1lI9E1 

INTEGRATED CONTROLLER 

10 
Object name ObiecllD 

lP"ft19 1117 

Roady 

3D Control Environment Visualiser Application controls Database Utilities 

Figure 8.1 KAMVR run-time platfonn 

Figure 8.1 shows a snapshot of the program interface. It consists of three parts: 3D 

control environment visualiser, application controls and database utilities. For simplicity 

the following sections, refer to this program as the run-time platfonn. The run-time 

platform provides control or monitoring of the VB and applications activities. There are 

six "textfield" components, two used to monitor the VE or object state. Information, such 
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as the machining state (running or idle), simulation timing (in milli-second), and mouse 

cursor position (to identify which object is activated), can be displayed. Other text fields 

are used to display information retrieved from the database such as object name, 

identification number, its environment name, and the environment number. The toggle 

buttons on the run-time platform allow the retrieving of environment from the database 

and the loading of specific objects according to the user input from the aforementioned 

textfields. 

8.2 KAMVR RUN-TIME PLATFORM 

8.2.1 User-environment interaction controls 

When operating KAMVR, users can directly interact with the virtual environment 

through manipulating virtual objects, changing viewpoints, or moving around the virtual 

space. 

(1) Viewpoint control: A pull-down menu has been designed to control viewpoint 

positions according to user inputs. As shown in Figure 8.2, the "Navigator" menu can be 

activated by choosing a different viewpoint number, a virtual environment pre-set 

viewpoints position will be adopted to display the environment. 
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~D~I~~~~I~~I~~~I~~I~~' ~le~l~i~~~~II~~ ~ Viewpoint 2 
Vewpoint 3 
Viewpoint 4 

8ii'Wt1·t.iii+W 
More .... 

Figure 8.2 Viewpoint control menu 

INTEGRATED CONTROLLER 

P' Visfln-M tool for impection 

Get VE St~te . I 

Object n~me ObjectiD 

Ipert21 148 
VE neme VElD 

14 J4 

(2) Environment navigation: Except using the default viewpoints to explore an 

environment, navigation is also possible by using the three icons on the environment 

navigation bar as shown in Figure 8.3. By toggle and drag the left icon, a dynamic 

viewpoint will move up, down, left and right. The middle icon moves the viewpoint 

forward and backward, rotating it left and right, while the right most icon supports tilting 

the viewpoint up and down. 

Figure 8.3 The VE navigation bar 

8.2.2 Control environment and database interactions 

The purposes of the run-time environment and the database interaction are: (i) to update a 

database record when a certain condition in the environment is fulfilled or special events 
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occurred, (ii) to retrieve data for controlling environment properties and (iii) to store the 

environment for later reference. All three tasks require a run-time environment and 

database communication interface. The implementation of such an interface includes two 

steps: sharing information between the environment visualiser and container program, 

and data exchange between the container program and the database. The first step relies 

on the data migrating approach introduced in Chapter 7. The second step requires a 

database-access tool. 

The run-time platform provides a set of database access tools. By using the container 

control icons, menu items, and the text fields, data records saved in the database can be 

browsed and displayed. For example, the data record saved in the standard file in the 

database can be retrieved and displayed in the text fields. Figure 8.4 shows the retrieved 

database table of the environment "workce1l4". 

INTEGRATED CONTROLLER 

Machines l Tool. Palt. I 

~d~ 

Obiecl ;,. 

41 

1: 
5 133 13! 1: 
5: 176242 
5< 96431 ;0, 
5: 039!19 7' 

s: 103999 71 
51 79191 4 
Z 63!197 2 . 

I. I • r 
~ Genelel Masto, VltUei Environment Inlo"T\lItion~ 

Reset About I 

Diaplay Gone,eI VE riOfmation 

Figure 8.4 Updated general object information 

151 



CHAPTER 8 THE RUN-TIME IMPLEMENTA TION 

Except for the general VE and database controls, the simulation control functions in the 

run-time platform have been classified into two levels, functions concerning standalone 

machine controls and functions concerning cell activities. 

8.2.3 Stand alone machine controls 

Stand alone machine controls are mainly achieved through Machine Controllers attached 

on the primary and secondary objects in the environment. There are three different types 

of machine controller available on the run-time platform, object based 3D machine 

controller, 2D control dialog box, and a container menu-based controller. 

(1) 3D machine controller: as shown in Figure 8.5. It is usually attached on a 

machine. It controls machine parameters such as spindle speed. In this case, if the mouse 

cursor is moved to the right side of the controller, and the number keys pressed, the speed 

will be displayed in the LCD panel. If the selected speed is in the spindle speed range, 

then the new speed is adopted by the controller, otherwise, an error message occurs. 

Figure 8.5 3D machine controller 

(2) Environment-based 2D dialog controller: For controlling the robot an edit box 

takes user input, i.e. individual axis number and degrees of rotation. Other control 

components such as radio boxes, buttons, and slide bar are used to set up the move step 

size and control arm activities. Figure 8.6 shows the robot control unit dialog box. 
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t!"". Untilled - XuVE 2 1!!Ir;l13 
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Figure 8.6 Virtual robot control dialog 

(3) Run-time platform menu-based control: vanous machlne control dialog boxes 

have been provided for controlling common manufacturing equipment. Figure 8.7 shows 

a conveyor controller that can be used to start or stop the conveyor, control rotation 

moving speed and direction. The control dialog is started by clicking on the . platform 

"Machine-Controller" item, then selecting the "Conveyer". The menu items also provide 

the basic functions of connecting the virtual machlne controller with the physical 

machine control unit by assigning each machine an individual serial port on the serial 

card (see Section 4.3.3 and Section 7.6). 
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INTEGRATED CONTROUER 

Conveye, Controll", EJ 

Di,ection r Fo,wllfds ('I Backwards 

r. Slop 

Figure 8.7 System platform device controller 

8.2.4 Cell controller 

The cell controller interface is designed mainly for testing the time-sequenced control of 

a manufacturing cell. Those individual control commands form the sequence file, which 

link a series of pre-programmed actions performed by devices in the virtual robot world. 

As the sequence file plays, line by line, the actions will occur in the virtual world. Figure 

8.8 shows the cell controller operation sequence editor. 
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.. }Unlitled . XuVE2 !!Ira f3 

Sequence E d,lor 
INTEGRATED CONTROLLER 

E ditoring mac:hrlino sequence. 

Figure 8.8 Cell controller operation sequence editor 

8.3 WORKING MECHANISM 

At system run-time, the run-time platform program must be aware what is occurring in 

the environment for two reasons. Firstly, the container program is a holder for various 

ftmction modules in the system, which co-ordinates other modules' requirements for data 

and instructions. Secondly, the container program dispatches event messages in the 

KAMVR system. In other word, the role of the container in the system is merely a 

message collector, the actual processing and management of information is dealt with by 

different application modules, for instance, a database system or a "if-then" knowledge 

base. There are two ways to get information from the environment and simulation in 

computing terms: passive mode and active mode (the operation code is provided in 

Appendix C). 
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8.3.1 Monitoring and controlling an environment in active mode 

When running a simulation in the environment, conditions or thresholds can be set to 

monitoring the state of the simulation. If a condition is fulfilled or a threshold broken, 

then the VE sends a message to the application program using an internal function: 

fireevnt. This fireevnt can transfer two parameters (long type data) to the application and 

waits for the application to respond. For example, if two objects collided in the 

environment, their object IDs can be passed to the application program to be processed. 

The following code demonstrates the environment sending messages to the platform 

(actual code is programmed in SCL). 

/*Configure machine specification*/ 

MachineConfig[] = property(~MachineName", ~property[]"); 
/*Taking user input settings from various controllers*/ 

ApplicationSetting[] = input[]; 

/*Check event occurred*/ 

If (EventOccurs) 

/*Passing object 10 to container*/ 

Fireevnt(ObjIO); 

/*Object data retrieved by container and processed*/ 

wait; 

/*Oecide the route for the simulation and interaction*/ 

Marker = property (~Machine", ~Marker"); 

/*Running simulation routes*/ 

If (marker) {simulation instructions} 

8.3.2 Monitoring and controlling an environment in passive mode 

The paSSIve mode is used to configure an environment or send instructions to the 

environment during a simulation loop. For example, if a user wants to set a move 

distance of an object, the run-time platform calls the functions "setLong" to send the 

parameter to the SCL program in the environment, the received value gives the boundary 

of the simulation program (see Section 7.4). Two collided objects can activate an 

application process, which results in a command that forces the two objects to be 
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separated by a specific distance. The following code shows the process to configure a 

virtual lathe with simulation parameters (in contrast with active mode VE and application 

communication, the control processes for passive mode are programmed in the run-time 

platform using a C++ program). 

m_3dcontrol.SetLongProperty("Lathe", "MaxSpinSpeed", 

m_strElement[O]); 

m_3dcontrol.SetLongProperty("Lathe", "MinSpinSpeed", 

m_strElement[l]); 

m_3dcontrol.SetLongProperty("Lathe", "MaxTailMove", 

m_strElement(2)); 

m_3dcontrol.SetLongProperty("Lathe", "MaxSpinSpeed", 

m_strElement[3]); 

m_3dcontrol.SetLongProperty("Lathe", "MaxSpinSpeed", 

m_strElement[4)); 

m_3dcontrol.SetStringProperty("Lathe", "Cutter", m_strElement[5]); 

where, "m_3dcontrol" is the current VE visualiser object name. "SetLongProperty" is the 

default visualiser class method, which takes three arguments, virtual object name, 

property name, and the property value. The above VE configuration program sets the 

lathe object in the environment with a user defined object property values. 

In the environment's simulation program section (SCL), the user-defined parameters are 

received to control a machine's dynamic behaviour. For example, the user (or application 

programme) defined lathe properties are transferred into an environment and being 

assigned to variables in the lathe simulation program. 

/*Declare long type variables*/ 

long MaxSpinSpeed, MinSpinSpeedi 

/*Assign them with retrieved property values*/ 

MaxSpinSpeed = property ("Lathe", "MaxSpinSpeed"); 

MaxSpinSpeed = property ("Lathe", "MaxSpinSpeed"); 

/* Define the object dynamic activities*/ 

if(currentspinspeed < MinSpinSpeed) 
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exit (1); 

else if(currentspinspeed > MaxSpinSpeed) 

exit (2); 

else {zrot(me)= currentspeed} 

8.4 RUNNING THE SYSTEM 

To demonstrate the run-time platform, consider a user wants to create a machining 

environment where parts features will be produced in certain quantities. The process 

starts from recording information about the machined features, the number of parts and 

the type of operations required to form a task code. This code will be used as an index to 

search a suitable template environment in the database. The suitable environment name is 

used to retrieve the template environment and load it into a rendering buffer for display. 

Finally, the template environment is modified and configured to perform the required 

simulation tasks. The three sub-sections below explain in more details how the run-time 

platform performs these activities. 

8.4.1 Forming the task code 

Task coding is carried out by the user through a 3D coding panel. For the first time user, 

the coding instructions can be displayed in an information dialog (pressing "I" on the 

keyboard). This shows a definition of each task digit and its options (described in Section 

4.3.1). For example, a non-metal shape with a hole and pocket would have a code 21631 

as shown in Figure 8.9. The production size (small scale production) and the application 

type (training) are coded as 10 and 121 individually. The entire task for machining the 

part is then given as 2163110121. 
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Figure 8.9 KAMVR run-time platform task coding environment 

Based on the meta-code generating program in Section 4.3.1.2 and Task Classification 

method developed by Zhao [1998], the meta-code for retrieving an environment of the 

application requirements would be 03111 . The closest template environment code in the 

database is template environment 4 with an environment code (Envcode) as 03311 . The 

name of this environment ("workce114") is used to set the argument of an internal 

function "SetSrc(Filename)". This function loads the environment into a visualiser. 

Figure 8.10 shows this environment to include a lathe, a milling machine, transportation 

rollers and two robots. All of those manufacturing machines and transportation devices 

have default simulation functions (see section 5.2 to section 5.4). 
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Figure 8.10 Loaded environment 

8.4,2 Environment modification and initialisation 

After the environment is loaded, users can explore it using the navigation bar, or observe 

the environment from various default viewpoints (see Section 8.2.1), and activate the 

default animation and simulation functions. In this way the user can quickly become 

familiar with the environment and its control and behaviour. 

To demonstrate the data exchange function between the virtual environment and the 

database, the virtual lathe was changed along the X-axis 5000 steps (units) in the 

database. The environment simultaneously changes its layout and its overall size will be 

reduced by 10 percent. Figure 8.11 shows a snapshot of the modified environment. In 

addition to changing the environment layout and object size, the modification functions 

in the run-time platform also include: add, delete or duplicate objects (in this application, 
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the robot and the transportation roller might be removed to enhance the display frame 

rate). 
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Ready 
_____________ GI1 

Figure 8.11 Modified virtual manufacturing environment 

Before the system can be configured for a specific application and simulation, it needs to 

be initialised. This is done through the initialisation dialog box (activated by clicking the 

Initialiser menu item in the Cell-Controller menu, see Figure 8.8) shown in Figure 

8.l2(a). Four option buttons are available. The "Init-Pos" and the "Init-Size" buttons set 

objects that have initial size and initial position properties to their original values. The 

"Init-Trigger" and "Init-Flags" buttons clear remaining user configuration settings (from 

the last environment application) by resetting the animation flags, returning the dynamic 

objects to their home position, and cancelling all the randornised interaction triggers. To 

initialise the entire retrieved environment in this demonstration, all four buttons have 

been clicked. Figure 8. 12(b) shows a snapshot of the resulting initialised environment. 
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Figure 8.12(a) VE Initialiser 
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Figure 8 .12(b) Initialised application environment 
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8.4.3 Application configuration and simulation execution 

To customise the loaded environment, the run-time platform accesses the simulation 

functions in the environment (see Section 7.4) for the property setting. A setting dialog is 

activated and popped-up by clicking the menu items of the "Machine-Controller" menu 

(see Figure 8.7). The machine setting dialog allows users to set the machine operation 

parameters step by step, or load a stored set-up file in one step. In tlllS example, the 

machine setting only concerns the virtual lathe, and is through a step-by-step procedure. 

Figure 8.13 shows the defined machine parameters in the dialog. In addition, by clicking 

the "GetField" button, the virtual lathe setting data can be retrieved from the dynamic 

datafile in the database. 
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Figure 8.13 Application environment configuration 
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Finally, the configured environment can be used to simulate the machining activities. 

Figure 8.14 shows snapshots of changing different components on the lathe (by clicking 

the buttons on the platform named from "Part 1 " to "Part 9"). Figure 8.15 show snapshots 

of toggling the tool on a milling machine to view the processed component (by selecting 

the "Vis/invis" selection box). 

Figure 8.14 Simulation action - mounting different parts 

.... _---
Figure 8.15 Toggle the tool for part inspection 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

This chapter concludes the thesis and recommends the future research. 
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9.1 CONCLUSIONS 

This research started with a survey of existing VR research and VR projects that are 

mainly related to manufacturing applications. Problems were specified for this 

research and thereafter a research strategy was established to deal with the difficulties 

that had been involved in constructing virtual environments, acquiring and 

representing environment knowledge and interfacing the environments with real 

applications. 

The survey showed that the difficulties in the construction of virtual environments are 

most due to the so-called "bottom-up" geometric modelling process that often 

demands a great amount of labour-intensive computing operations and specialised 

programming techniques. The focuses of the end-users are restricted to this modelling 

process rather than the application purposes of the built environments. Hence the final 

built environments are inherently 3D graphical models that are lack of vital and useful 

application information or knowledge. 

The survey also revealed that the difficulties in constructing virtual environments are 

closely related to the complex and indirect relationships between the geometric and 

behavioural attributes of the individual virtual objects within the virtual environments 

and the application databases. There had been a lack of a clear mapping between the 

information encapsulated within the virtual environments and the real knowledge 

defined in an application database (for example, a manufacturing database). A 

straightforward solution to this problem was to enforce the virtual environments by 

using pre-defined simulation functions or simulation programmes. This is however 

based on the assumption that all the attributes of the virtual objects within the virtual 

environments do not necessarily to be altered by the users even if the real application 

requirements are to be changed. Various commercial VR software and research 

prototype VR systems have adopted different mechanisms to provide users with 

reasonably less restricted access to the virtual environments, but offer the users little 

flexibility to configure and modify the constructed environments. 

The survey also indicated that the interface between the data modelled within a virtual 

environment (for instant, a virtual machining cell) and the real data of an application 
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(for instant, a robot) is not only a challenging VR modelling problem, but also a 

bottleneck task for VR-based real-time simulation and control. 

Based on the findings from the survey, the research had objectives that were set for 

fundamental solutions to the aforementioned problems. To achieve those objectives, a 

so-called "domain-analysis based top-down" virtual environment construction 

approach were established in this research. To implement and validate this approach, 

a system named KAMVR was designed and developed. With this system, users can 

construct a virtual manufacturing environment rapidly without the lengthy process of 

building one from scratch. The system also enables the user to reconfigure an 

environment and to interface its internal data with external physical systems through 

specific interface protocols. 

The research has its novelty and contributions toward virtual environments and their 

applications in following aspects: 

• It has provided generic solutions for the fundamental problems that currently 

restrict the rapid construction of complex and large scale virtual environments. 

This resulted in the establishment of a (application) domain-analysis based top

down construction approach. This novel approach relies on the concept of 

application-oriented template environments that are built in a layered structure. 

Such a structure allows the users to reconfigure the environment according to 

classified (or object-oriented) data blocks like scene graph (3D cubical volumes 

or so-called place-holders) and environs attributes (object static and dynamic 

properties classified according to their natures). All virtual environment data is 

managed in an environment database system and can be used to construct 

different virtual environments and to control specific application tasks at run

time. An application task coding-scheme was developed to establish the 

relationships between the application requirements and the virtual environment 

modelling data and to index the template environments onto manufacturing data 

in the database. 

• The research laid a basis for integrated data management (for managing both 

virtual environment data and manufacturing information) in VR based 
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application systems. This could be further explored to establish new methods 

and to design new computing programmes for acquiring real manufacturing 

knowledge from physical manufacturing systems and representing the 

knowledge in virtual environments. With conventional virtual environments, 

representing real application data is a one-off process in which all the 

knowledge such as object appearance, simulation and operation interactions has 

to be implemented as pre-defined and pre-programmed modules and then 

embedded in the environments. The more knowledge an environment has, the 

more the computing overhead becomes and the poorer the run-time 

performance. The development of the environment data management in this 

research has enabled a precise one-to-one relationship between a virtual object 

model and its real world counterpart, which allows real world knowledge to be 

stored separately from the virtual environment data blocks (such as simulation 

programs and operation parameters). Currently, the research has achieved a 

flexible data management method, but physical information or external data 

sources (like user input) communicate with the virtual environments only at run

time or if necessary, through the database system, when the users are modifying 

or reconfiguring the virtual environments. This needs to be further researched to 

enable users to reconfigure the virtual environments in real-time, that is, the 

virtual environments and the physical systems could be communicate with each 

other in a close-loop in real-time. 

• The research also provided an integrated software system. The functional 

modules of this system have enabled various phases of the domain-analysis 

based top-down environment construction. These modules were unified in a 

single run-time platform, where each module can perform its own tasks as well 

as communicating with other modules through a message collecting and 

distributing mechanism. 

• Through building and testing a virtual robot and a real robot communication 

interface, this research has provided a new method of using VE to achieve 

realistic 3D simulation and real-time control for manufacturing operations. 
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The research in its present form has its limitations where further research is required 

and more development work should be provided: 

• The concept of the domain-analysis top-down environment construction 

approach and the derived KAMVR system are based on the desk-top virtual 

reality systems, the application of which to an immersive virtual reality system 

may not be straightforward due to the structural difference of the two type of 

VR programmes. It could be possible to use the work provided in this research 

only if adequate VR peripherals devices drivers are designed as integrated parts 

of the data base protocols of the KAMVR system. This mostly requires a great 

deal of development and VR programming work rather than new research 

efforts. 

• The coding scheme in the research has brought a method for classifying virtual 

environments by focusing on both the users' application requirements and the 

physical system characteristics. However the current scheme system only has 

limited digits for representing the crude but general application information. It 

should be ideal use specific manufacturing coding methods for specific 

simulation scenarios. Whether or not this is practical and achievable to apply 

different coding systems onto different manufacturing tasks is an issue that need 

further investigation. 

• The KAMVR system IS developed as a research prototype to verify the 

proposed VE construction concepts and approaches. The application of the 

system is generally for manufacturing simulation and training. Different users 

such as lectures, researchers, post- and under-graduate students have tested it in 

different occasions. It was also presented in seminars, national and international 

conferences, and journal publication, including demonstrations to industrial 

visitors. A general feedback from those occasions is that the future 

implementation of the specific system tools and functions for specific 

application areas is a most important part of the work to bring the system onto 

the users desktop. 
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9.2 FUTURE RESEARCH 

In the KAMVR system, the environment construction data are stored in an external 

commercial database that in its present form communicates with the environment 

visualiser through the "object-linking" mode. Because of this, the data transfer are 

very much limited in its efficiency and capacity by the connection tools, for example, 

the ODBC utility. If a user wants to change the database structure during the 

environment run-time, the current database is inflexible for this task. An internal 

database system that forms part of the rapid environment construction and knowledge 

acquisition system would be an ideal solution. It could provide a self-defined data 

definition language (DOL) and data manipulation language (DML) specifically 

designed to handle environment data with minimum environment construction and 

visualisation time. 

The environment task-coding scheme is fundamental part for developing an useful 

virtual environment for a specific application. The future research for this part is to 

take the advantage of the parallelism between the GT code for simulation models and 

the GT code for manufactured parts. Given the GT code of a part, the simulation 

environment should be able to suggest alternative manufacturing methods and a 

complete simulation scenario (based on various manufacturing criteria such as cost 

and shop floor load). That will provide a guideline for system analysis and conceptual 

model development by systematically identifying user goals and physical system 

characteristics. 

Further research is also necessary on the development of converting tools for 

translating various external data and knowledge sources (for example, the "if - then" 

rule base) into a unified environment data format. This could overcome the difficulties 

in exchanging the VRML data from, say, ProE CAD model to the Superscape VRT 

Visualiser and to prevent the data loss and data distortion. Media exchange utilities 

could be developed to support importing multimedia data such as sound, image and 

animation into the database. 

The current real world communication provided by the KAMVR system is mainly 

serial port based, even it has the highest data transfer the exchange rate is low. The 
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multiple physical devices that are connected with the VE to the hosting computer rely 

on a software program to control the port allocation and file operations like open, 

close, read, and write. The synchronisation between the VE and the physical devices 

operations was found to be a difficult problem. A more sophisticated approach could 

be to use ATM and ETHERNET via TCP/IP format communication to extend the 

ability of the KAMVR system. 

The on-line KAMVR system could also allow several users to interact in the same 

environment while at different locations. The research for this purpose needs to be 

extended to the use of distributed database systems and other methods of retrieving 

data for environment construction and configuration. 

Finally KAMVR has been implemented with a data glove based interaction and stereo 

sound effects. It is anticipated that using full-immersive VR techniques would provide 

more realistic effects. For example, with HMO and haptic devices, the environment 

operation interface could be improved by avoiding any programming based object 

control skills. Also with 3D sound effects, it could provide multimedia information to 

aid users explore unfamiliar sound-based environments. These functions, however, 

demands extensive low-lever programming work to establish the peripheral drivers 

that in turn need to be integrated with the KAMVR system. 
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Glossary of Terms 

GOOF: Six Degrees of Freedom. Ability to move in three spatial directions and orient about three 

axes passing through the center of the object. 

absolute values: Position and orientation within a virtual space as measured from a single, 

constant point of origin - the virtual universe. 

accelerator: Specialized hardware that increases the speed of graphics calculations. 

ambient light: Naturally occurring illumination arising from outside the apparatus. 

animation: recorded sequence of object activities. 

API: Application Programmers Interface. 

articulation: Objects composed of several parts that are separably moveable. 

artificial reality: Simulated spaces created from a combination of computer and video systems 

(also called virtual reality). 

augmented reality: The use of transparent glasses on which a computer displays data so that 

the viewer can simultaneously view computer generated and real world scenes. 

autonomy: Performance or action of the object on the rule of physics, biology, or a virtual world, 

but not by independent decision of a human operator. 

backdrop: The stationary background in a virtual world. The boundary of the world which cannot 

be moved or broken into smaller elements. 

BOOM: Binocular Omni-Orientation Monitor. A 3-D display device suspended from a weighted 

boom that can swivel freely so the viewer can use the device by bringing the device up to the 

eyes and viewing the 3-D environment while holding it. The boom's position and orientation 

communicates the user's point of view to the computer. 

bounding Box: Also known as Extents Box (smallest box that surrounds an object). The term 

bounding box sometimes refers to the fact that extents boxes can be made visible in the 

scene. 

Browser: Indexes, lists or animated maps, to provide a means of navigating through the physical, 

temporal, and conceptual elements of a virtual world. 

CAVE: VR world projected on the walls and ceiling of a room to give the illusion of immersion. 

child object: A scene graph node that is a direct descendent of another (parent) node. 

collision detection: Intersection testing of objects at either the bounding box level or at the 

polygon level. 

coordinates: A set of data values that determine the location of a paint in a space. The number 

of coordinates corresponds to the dimensionality of the space. 
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coordinate system: A positional system, containing X, Y, and Z components, by which three

dimensional entities can be described. 

culling: Removing invisible pieces of geometry and only sending potentially visible geometry to 

the graphics subsystem. Simple culling rejects entire objects not in the view. More complex 

systems take into account occlusion of some objects by others, e.g. a building hiding trees behind 

it. 

data glove: A glove wired with sensors and connected to a computer system for gesture 

recognition and navigation through a virtual environment. Known generically as a "wired glove." 

data source: an instance of a database management system. 

depth cueing: Use of shading, texture, color, interposition, or other visual characteristics to 

provide a cue for the distance of an object from the observer. 

dynamics: The rules that govern all actions and behaviors within the environment. 

environment: In VR terms, this is a computer-generated model that can be experienced by an 

observer as if it were a place. 

force feedback: An output device that transmits pressure, force or vibrations to provide the VR 

participant with the sense of resisting force, typically to weight or inertia. This is in contrast to 

tactile feedback, which simulates sensation applied to the skin. 

function: A scheme used in event-driven programs where the program registers a callback 

handler for a certain event. The program does not call the handler directly but when the event 

occurs, the handler is called, possibly with arguments describing the event. 

geometry: A collection of polygons (composed of vertices) used to model physical objects. 

group node: A scene graph node that has children, but no other properties. 

GUI: Graphical User Interface. 

haptic interfaces: Use of physical sensors to provide users with a sense of touch at the skin 

level, and force feedback information from muscles and jOints. 

head tracking: Monitoring the position and orientation of the head through various tracking 

device. 

hidden surface: A surface of a graphics object that is occluded from view by intervening objects. 

hierarchy: Used in the context of scene graphs, hierarchy refers to how the nodes in a scene 

graph are organized and the relationship of one node to another. 

HMO: Head Mounted Display. A set of goggles or a helmet with tiny monitors in front of each eye 

to generate images seen by the wearer as three-dimensional. Often the HMO is combined with a 

head tracker so that the images displayed in the HMO change as the head moves. 

Immersion: The observer's emotional reaction to the virtual world as being part of it. 

Interface: A set of devices, software, and techniques that connect computers with people to 

perform tasks. 
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inverse kinematics: A specification of the motion of dynamic systems from properties of their 

joints and extensions. 

KAMVR: A computing system developed in the University of Derby for dealing with virtual 

environment-based knowledge, its acquisition and management. 

latency: Lag between user motion and tracker system response, sometimes measured in from 

as. Delay between actual change in position and reflection by the program. Delayed response 

time. 

LCD: Liquid Crystal Display. Display devices that use bipolar films sandwiched between this 

panes of glass. They are lightweight and transmissive or reflective, and are often used in HMOs. 

LOO: Level-of-detail. A model of a particular resolution among a series of models of the same 

object. Greater graphic performance can be obtained by using a lower LOD when the object 

occupies fewer pixels on the screen or is not in a region of significant interest. 

matrix: An array of data used as mathematical entity for representing position and orientation in 

3D space. 

model: A computer-generated simulation physical things or events. 

navigation: Purposeful motion through virtual space. 

objects: Discrete 3-D shapes within the virtual world that a user can interact with. 

OOSC: Open Database Connectivity. A programming utility for linking applications with various 

database management system. 

perspective: The rules that determine the relative size of objects on a flat viewing surface to give 

the perception of depth. 

pitch: The angular displacement of the lateral axis about a horizontal axis perpendicular to the 

lateral axis. 

polygon: A display element that consists of an area enclosed by a set of by a set of broken 

straight lines. 

presence: A feeling of being immersed in an environment, able to interact with object there. A 

defining characteristic of a VR system. 

real time: Action taking place with no perceptible or significant delay after the input that initiates 

the action. 

rendering: Generation of a graphical image from mathematical models of three-dimensional 

objects, i.e. a scene. 

roll: Angular displacement about the lateral axis. 

rotation: The turning of an object so that it has a different orientation. 

scene: The virtual world being displayed. 

scene graph: A scene graph is a hierarchical arrangement of nodes (such as geometry, light, 

fog, and positional information) representing objects in a simulation. A universe can 

contain more than one scene graph. 
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scene graph tree The scene graph is arranged as an upside down tree, where the root is on the 

top and the branches and leaves are on the bottom. 

SDK: Superscape Developers Kit, a C function library for API programming. 

sibling object: Children of the same parent node are siblings. 

spatial navigation: Self-orientation and locomotion in virtual worlds. 

SQl: Structured Ouery language. A specialized programming language for sending queries to 

databases. Most industrial-strength and many smaller database applications can be addressed 

using SOL. Each specific application will have its own version of Sal implementing features 

unique to that application, but all Sal-capable databases support a common subset of SOL. 

tactile displays: Devices that provide tactile and kinesthetic sensations. 

telemanipulation: Robotic control of distant objects. 

teleoperator: Person doing telemanipulation. 

telepresence: Remote control with adequate sensory data to give the illusion of being at that 

remote location. 

tracker: A device that provides numeric coordinates to identify the current position andl or 

orientation of an object or user in real space. 

universe: The collection of all entities and the space they are embedded in for a VR world. 

viewpoints: Points from which ray tracing and geometry creation occurs. The geometric eye point 

of the simulation. 

virtual environments: Realistic simulations of interactive scenes. 

virtual prototype: Simulation of an intended design or product to illustrate the characteristics 

before actual construction. Usually used as an exploratory tool for developers or as a 

communications prop for persons reviewing proposed designs. 

virtual reality. A computer system used to create an artificial world in which the user has the 

impression of being in that world with the ability to navigate through the world and manipulate 

objects in the world. 

virtual world: Whole virtual environment or universe within a given simulation. 

visualisation: The ability to graphically represent abstract data that would normally appear as 

text and numbers on a computer. 

VRT: 3D authoring studio from Superscape Co. Ltd. for virtual environment editing. 

WAN: Wide Area Network. Any internet or network that covers an area larger than a single 

building or campus. 

WWW: World wide Web. A hypermedia system that allows you to browse through lots of 

information using a browser. It is a preferred method of presenting and accessing information on 

the Internet. 

yaw: The angular displacement about the vertical axis. 
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Appendix A: KAMVR task coding scheme 

G 1: Describes the type of key virtual object, which can have one of three values 0, 1 

and 2. 0 is for a rotational object, 1 is for a prismatic object, and 2 is for a 

complex shape. 

G2: For a rotational object, it represents the length-diameter ratio (LID). It has 4 

options, 0 for LID ratio less than 1, 1 for LID ratio greater than 1 and less than 15, 

2 for LID ratio greater than 15 and less than 50, and 3 for LID ratio greater than 

50. If the object is a prismatic or complex shape, the digit represents the shape, 0 

for a cube, 1 for a cuboid, 2 for a composite, or 3 for a triangular shape. 

G3: Defines the length of the part. It has 12 options, 0 for length of less than 40mm, 1 

for greater than 40mm and less than 80 mm, until B (Hexadecimal) for less than 

2900mm. 

G4: Defines features of the object. If the object is rotational, the digit has 4 options, 0 

for no features, 1 for a stepped shaft, 2 for a pocket, 3 for a hole. For a non

rotational object, 0 for step milling, 1 for slot milling, 2 for a through hole, 3 for a 

blind hole. 

G5: Defines the material, 0 for metal or 1 for non-metal. 

S 1: Defines the scale of a virtual manufacturing environment, where 0 stands for large 

scale and 1 for small scale. 

S2: Provides details description of the environment. Depending on the scale digit, if it 

is a large scale environment, then 0 is for object quantities greater than 10000, 1 

is for less than 10000. Otherwise, 0 for greater than 10, 1 for single object. 

Rl: Geometry detail level digit, 0 for low, 1 for high. 

R2: Simulation level digit, 0 for low, 1 for medium, 2 for high. 

R3: Interaction mode digit, 0 for immersive, I for desktop. 
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Appendix B: Function modules for VE data acquisition 

/* 
This program has registered a new SCL function - "SaveStan", 
which taking an object number from data stack as function parameter, 
and then writting the object standard information into a ASCII file. 
*/ 

/*Included header files*/ 

#include "APP DEFS.H" //Defines various short cuts and values 
//for the short cut 

#include 
#include 
#include 
#include 

<stdio.h> 
<stdlib. h> 
<string.h> 
<ctype.h> 

/*Internal function declaration*/ 

static void vrtcall SCL_Saverl(void); 

/* 
Defined function properties 
*/ 

short App_Init(void); 
short App_Exit(void); 

/*New SCL function declaration*/ 

static T COMPILEREC 

command 

'procedure' 

parameter type is 

object number 

parameter type is 

number represents MVEID 

static short 

NewSCL= 
{ 

} ; 

SCLCode; 

"SaveStan", //Name of the new 

0, 
Ox20, 

0, 

//Function code 
//2 input, 0 output 

//Compiler code 

E_PROCEDURE,//Function type is 

E_SSNONE, //None return value 
E_SSOBJNUM, //First input 

//virtual 

E_SSINTEGER,//Second input 

//an interger 

//Deinstallation code 
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/*Application initialisation*/ 

short App_Init(void) 
( 

APPENDIXB 

SCLCode=RegisterSCL(&NewSCL,SCL_Saverl);//Register new SCL 
function 

if(SCLCode<O) //Checking 
registration result 

return(E_ERROR); 
return(E_OK); 

/*Application exit,unregisters SCL instructions*/ 

short App_Exit(void) 
{ 

UnRegisterSCL(SCLCode); 

return (E_OK) ; 

/*Internal function definitions*/ 

static void 
( 

vrtcall SCL_Saverl(void) 

short ObjNum; 
input value 

short MVEIO; 
master 

//Oeclare variable for holding 

//Oeclare variable for holding 

//environment 10 

/*Oeclare pointers pointing to the object attribute data 
structure*/ 

T WORLOCHUNK *Object, *1nitSize, *1nitPos, *Rotation, 
*Viewpolnt; // 

FILE *f; 
information 

//File pointer for saving object 

/*This two values will be used as combined external key values 
in the data file*/ 

MVEIO=PopN(E_SSINTEGER); 
the stack 

ObjNum=PopN(E_SSOBJNUM); 

//Get master environment 10 from 

//Get object number from the 
stack 

/*Find addresses of required attributes data section*/ 

Object=ChunkAdd(ObjNum,E_CTSTANOARO); 
1nitSize=ChunkAdd(ObjNum,E_CT1N1TSIZE); 
1nitPos=ChunkAdd(ObjNum,E_CTINITPOS); 

Rotation=ChunkAdd(ObjNum,E_CTROTAT10NS); 
Viewpoint=ChunkAdd(ObjNum,E_CTV1EWP01NT); 

/*retrieving and saving information in a file*/ 

if (Object !=NULL) 
{ 
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f=fopen("Stansardlnfo.txt", "a"); 

fprintf(f,"%ld\t", Object->Std.Number); 
fprintf(f,"%ld\t", MVEID); 

fprintf(f,"%ld\t", Object->Std.XSize); 
fprintf(f,"%ld\t", Object->Std.YSize); 
fprintf(f,"%ld\t", Object->Std.ZSize); 
fprintf(f,"%ld\t", Object->Std.XPos); 
fprintf(f,"%ld\t", Object->Std.YPos); 
fprintf(f,"%ld\t", Object->Std.ZPos); 
fprintf(f,"%ld\t", InitSize->Isz.IXSize); 
fprintf(f,"%ld\t", InitSize->Isz.IYSize); 
fprintf(f,"%ld\t", InitSize->Isz.IZSize); 
fprintf(f,"%ld\t", InitPos->Ips.IXPos); 
fprintf(f,"%ld\t", InitPos->Ips.IYPos); 
fprintf(f,"%ld\t", InitPos->Ips.IZPos); 
fprintf(f,"%ld\t", Rotation->Rot.XCentre); 
fprintf(f,"%ld\t", Rotation->Rot.YCentre); 
fprintf(f,"%ld\t", Rotation->Rot.ZCentre); 
fprintf(f,"%ld\t", Viewpoint->Vpt.NumVPs); 
fprintf (f, "%Id\ t", (Viewpoint->Vpt. View) ->ObjView) ; 
fprintf (f, "%Id\t\n", (Viewpoint->Vpt. View) ->ObjCon); 

fclose (f) ; 
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/* 
This program has registered a new SCL function - "SaveDyna", 
which taking an object number from data stack as function parameter, 
and then writting the object dynamic information into a ASCII file. 
*/ 

/*Included header files*/ 

#include "APP DEFS.H" //Defines various short cuts and values 
//for the short cut 

#include 
#include 
#include 
#include 

<stdio.h> 
<stdlib.h> 
<string.h> 
<ctype.h> 

/*Internal function declaration*/ 

static void vrtcall SCL_Saver2(void); 

/* 
Defined function properties 
*/ 

short App Init(void); 
short App=Exit(void); 

/*New SCL function declaration*/ 

static T COMPILEREC 

command 

'procedure' 

parameter type is 

object number 

parameter type is 

number represents MVEID 

static short 

NewSCL= 
{ 

} ; 

SCLCode; 

/*Application initialisation*/ 

short App_Init(void) 
{ 

"SaveDyna", //Name of the new 

0, 
Ox20, 

0, 

//Function code 
//2 input, 0 output 

//Compiler code 

E_PROCEDURE,//Function type is 

E_SSNONE, //None return value 
E_SSOBJNUM, //First input 

//virtual 

E_SSINTEGER,//Second input 

//an interger 

//Deinstallation code 
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SCLCode=RegisterSCL(&NewSCL,SCL_Saver2)i//Register new SCL 
function 

if(SCLCode<O) //Checking 
registration result 

return(E_ERROR)i 
return (E_OK) i 

/*Application exit,unregisters SCL instructions*/ 

short App_Exit(void) 
{ 

UnRegisterSCL(SCLCode)i 

return (E_OK) i 

/*1nternal function definitions*/ 

static void 
{ 

vrtcall SCL_Saver2(void) 

short ObjNumi 
input value 

//Oeclare variable for holding 

short MVE10i //Oeclare variable for holding 
master 

//environment 10 

/*Oeclare pointers pointing to the object attribute data 
structure*/ 

T WORLOCHUNK *Object, *Oynamics, *AngVel, *Rotationi 

FILE *fi 
information 

//File pointer for saving object 

/*This two values will be used as combined external key values 
in the data file*/ 

MVE10=PopN(E_SS1NTEGER)i 
the stack 

ObjNum=PopN(E_SSOBJNUM)i 

//Get master environment 10 from 

//Get object number from the 
stack 

/*Find addresses of required attributes data section*/ 

Object=ChunkAdd(ObjNum,E_CTSTANOARO)i 
Oynamics=ChunkAdd(ObjNum, E_CTDYNAMICS)i 
AngVel=ChunkAdd(ObjNum, E_CTANGVELS)i 
Rotation=ChunkAdd(ObjNum, E_CTROTAT10NS)i 

/*retrieving and saving information in a file*/ 

if(Object!=NULL) 
{ 
f=fopen("Dynamic1nfo.txt", "a")i 

fprintf(f,"%ld\t", Object->Std.Number)i 
fprintf(f,"%ld\t", MVE10)i 

/*Note: 3D vector data, not array*/ 
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fprintf(f, "%ld\t", (Dynamics->Oyn.Drive) .x); 
fprintf(f, "%ld\t", (Dynamics->Dyn.Drive) .y); 
fprintf(f, "%ld\t", (Dynamics->Oyn.Orive) .z); 
fprintf(f, "%ld\t", (Oynamics->Oyn.External) .x); 
fprintf(f, "%ld\t", (Oynamics->Oyn.External) .y); 
fprintf (f, "%ld\ t", (Oynamics->Oyn. External) . z) ; 
fprintf(f, "%ld\t", (Oynamics->Oyn.Vel) .x); 
fprintf(f, "%ld\t", (Oynamics->Oyn.Vel) .y); 
fprintf(f, "%ld\t", (Oynamics->Oyn.Vel) .z); 
fprintf(f, "%ld\t", (Oynamics->Oyn.GroundFric) .x); 
fprintf(f, "%ld\t", (Oynamics->Oyn.GroundFric) .y); 
fprintf(f, "%ld\t", (Oynamics->Oyn.GroundFric) .z); 
fprintf(f,"%ld\t", AngVel->Ang.XAngV); 
fprintf(f,"%ld\t", AngVel->Ang.YAngV); 
fprintf(f,"%ld\t", AngVel->Ang.ZAngV); 
fprintf(f,"%ld\t", AngVel->Rot.XRot); 
fprintf(f,"%ld\t", AngVel->Rot.YRot); 
fprintf(f,"%ld\t", AngVel->Rot.ZRot); 
fprintf (f, "%ld\ t", (Oynamics->Oyn. IOri vel . x) ; 
fprintf (f, "%ld\ t", (Oynamics->Oyn. IOri ve) . y) ; 
fprintf (f, "%ld\ t", (Oynamics->Oyn. IOri vel . z) ; 
fprintf (f, "%ld\ t", (Oynamics->Dyn. IExternal) . x) ; 
fprintf (f, "%ld\ t", (Oynamics->Oyn. IExternal) . y) ; 
fprintf (f, "%ld\ t", (Oynamics->Oyn. IExternal) . z) ; 
fprintf (f, "%ld\ t", (Oynamics->Oyn. IVel) . x) ; 
fprintf (f, "%ld\ t", (Oynamics->Oyn. IVel) . y) ; 
fprintf(f, "%ld\t", (Oynamics->Oyn.IVel) .z); 
fprintf (f, "%ld\t", (Dynamics->Dyn. IGroundFric) .x); 
fprintf (f, "%ld\ t", (Oynamics->Oyn. IGroundFric) . y) ; 
fprintf (f, "%ld\ t", (Dynamics->Oyn. IGroundFric) . z) ; 
fprintf(f,"%ld\t", AngVel->Ang.IXAngV); 
fprintf (f, "%ld\t", AngVel->Ang. IYAngV) ; 
fprintf (f, "%ld\ t", AngVel->Ang. IZAngV) ; 
fprintf(f,"%ld\t", AngVel->Rot.IXRot); 
fprintf(f,"%ld\t", AngVel->Rot.IYRot); 
fprintf (f, "%ld\ t \n", AngVel->Rot. IZRot) ; 

fclose(f); 
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/* 
This program has registered a new SCL function - "SaveStat", 
which taking an object number from data stack as function parameter, 
and then writting the object shape information into a ASCII file. 
*/ 

/*Included header files*/ 

#include "APP DEFS.H" //Defines various short cuts and values 
//for the short cut 

#include 
#include 
#include 
#include 

<stdio.h> 
<stdlib. h> 
<string.h> 
<ctype.h> 

/*Internal function declaration*/ 

static void vrtcall SCL_Saver3(void)i 

/* 
Defined function properties 
*/ 

short App_Init(void)i 
short App_Exit(void)i 

/*New SCL function declaration*/ 

static T COMPILEREC 

command 

'procedure' 

parameter type is 

object number 

parameter type is 

number represents MVEID 

static short 

NewSCL= 
{ 

} i 

SCLCodei 

/*Application initialisation*/ 

short App_Init(void) 
{ 

"SaveStat", //Name of the new 

0, 
Ox20, 

0, 

//Function code 
//2 input, 0 output 

//Compiler code 

E_PROCEDURE,//Function type is 

E_SSNONE, //None return value 
E_SSOBJNUM, //First input 

//virtual 

E_SSINTEGER,//Second input 

//an interger 

//Deinstallation code 
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SCLCode=RegisterSCL(&NewSCL,SCL Saver3);//Register new SCL 
function -

if (SCLCode<O) //Checking 
registration result 

return(E_ERROR); 
return(E_OK); 

/*Application exit,unregisters SCL instructions*/ 

short App_Exit(void) 
{ 

UnRegisterSCL(SCLCode) ; 

/*Internal function definitions*/ 

static void 
{ 

vrtcall SCL_Saver3(void) 

short ObjNum; 
input value 

//Oeclare variable for holding 

short MVEIO; //Oeclare variable for holding 
master 

//environment 10 

/*Oeclare pointers pointing to the object attribute data 
structure*/ 

T WORLOCHUNK *Object, *Color, *Oistance, *Sorting, *Collision, 
*Attachment, *LightSrc, *LitColor, *Texture; 

FILE *f; 
information 

//File pointer for saving object 

/*This two values will be used as combined external key values 
in the data file*/ 

MVEID=PopN(E_SSINTEGER); 
the stack 

ObjNum=PopN(E_SSOBJNUM); 

//Get master environment ID from 

//Get object number from the 
stack 

/*Find addresses of required attributes data section*/ 

Object=ChunkAdd(ObjNum,E_CTSTANOARO)i 
Color=ChunkAdd(ObjNum,E_CTCOLOURS); 
Distance=ChunkAdd(ObjNum,E_CTDISTANCE); 
Sorting=ChunkAdd(ObjNum,E_CTSORTING); 
Collision=ChunkAdd(ObjNum,E_CTCOLLISION); 
Attachment=ChunkAdd(ObjNum,E_CTATTACHMENTS); 
LightSrc=ChunkAdd(ObjNum,E_CTLIGHTSOURCE); 
LitColor=ChunkAdd(ObjNum,E_CTLITCOLS); 
Texture=ChunkAdd(ObjNum,E_CTTEXTURES)i 

/*retrieving and saving information in a file*/ 

if(Object!=NULL) 
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f=fopen("StaticInfo.txt", "a"); 

fprintf(f,"%ld\t", Object->Std.Nurnber); 
fprintf(f,"%ld\t", MVEID); 

APPENDIXB 

fprintf(f,"%c\t", Color->Col.Colour); 
fprintf(f,"%ld\t", Distance->Dis.VisDist); 
fprintf(f,"%ld\t", Distance->Dis.InvDist); 
fprintf(f,"%ld\t", Distance->Dis.RepIace); 
fprintf(f,"%ld\t", Sorting->Sor.XPos); 
fprintf(f,"%ld\t", Sorting->Sor.YPos); 
fprintf(f,"%ld\t", Sorting->Sor.ZPos); 
fprintf(f,"%ld\t", Sorting->Sor.XSize); 
fprintf(f,"%ld\t", Sorting->Sor.YSize); 
fprintf(f,"%ld\t", Sorting->Sor.ZSize); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->XSize); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->YSize); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->ZSize); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->XOff); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->YOff); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->ZOff); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->IXSize); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->IYSize); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->IZSize); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->IXOff); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->IYOff); 
fprintf(f,"%ld\t", (Collision->Cln.Collision)->IZOff); 
fprintf (f, "%ld\ t", (Attachment->Att. Att) ->Facet) ; 
fprintf(f, "%ld\t", (Attachrnent->Att.Att)->Object); 
fprintf(f,"%ld\t", LightSrc->Lig.XVOff); 
fprintf(f,"%ld\t", LightSrc->Lig.YVOff); 
fprintf(f,"%ld\t", LightSrc->Lig.ZVOff); 
fprintf(f,"%ld\t", LightSrc->Lig.IXVOff); 
fprintf(f,"%ld\t", LightSrc->Lig.IYVOff); 
fprintf(f,"%ld\t", LightSrc->Lig.IZVOff); 
fprintf(f,"%ld\t", LightSrc->Lig.Bright); 
fprintf(f,"%ld\t", LightSrc->Lig.IBright); 
fprintf(f,"%ld\t", LightSrc->Lig.BeamWidth); 
fprintf(f,"%ld\t", LightSrc->Lig.IBearnWidth); 
fprintf(f,"%ld\t", LightSrc->Lig.Dispersion); 
fprintf(f,"%ld\t", LightSrc->Lig.IDispersion); 
fprintf(f,"%ld\t", LightSrc->Lig.BeamEdge); 
fprintf(f,"%ld\t", LightSrc->Lig.IBeamEdge); 
fprintf(f,"%ld\t", LightSrc->Lig.ColR); 
fprintf(f,"%ld\t", LightSrc->Lig.ColG); 
fprintf(f,"%ld\t", LightSrc->Lig.ColB); 
fprintf(f,"%ld\t", LightSrc->Lig.IColR); 
fprintf(f,"%ld\t", LightSrc->Lig.IColG); 
fprintf(f,"%ld\t", LightSrc->Lig.IColB); 
fprintf(f,"%c\t", LitColor->Lit.LitCol); 
fprintf(f,"%ld\t", Texture->Txr.NTextures); 
fprintf (f, "%Id\ t", (Texture->Txr. Tex) ->Facet) ; 
fprintf (f, "%ld\t\n", (Texture->Txr. Tex) ->Texture); 

fclose (f); 
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/* 
This program has registered a new SCL function - "SaveShp", 
which taking an object number from data stack as function parameter, 
and then writting the object shape information into a ASCII file. 
*/ 

/*Included header files*/ 

#include "APP DEFS.H" //Defines various short cuts and values 
//for the short cut 

#include 
#include 
#include 
#include 

<stdio.h> 
<stdlib.h> 
<string.h> 
<ctype.h> 

/*Internal function declaration*/ 

static void vrtcall SCL_Saver4(void); 

/* 
Defined function properties 
*/ 

short App Init(void); 
short APp=Exit(void); 

/*New SCL function declaration*/ 

static T COMPILEREC 

command 

'procedure' 

parameter type is 

object number 

parameter type is 

number represents MVEID 

static short 

NewSCL= 
{ 

} ; 

SCLCode; 

/*Application initialisation*/ 

short App_Init(void) 
{ 

"SaveShp", //Name of the new 

0, 
Ox20, 

0, 

//Function code 
//2 input, 0 output 

//Compiler code 

E_PROCEDURE,//Function type is 

E_SSNONE, //None return value 
E_SSOBJNUM, //First input 

//virtual 

E_SSINTEGER,//Second input 

//an interger 

//Deinstallation code 
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SCLCode=RegisterSCL(&NewSCL,SCL_Saver4)://Register new SCL 
function 

if(SCLCode<O) //Checking 
registration result 

return(E_ERROR): 
return(E_OK): 

/*Application exit,unregisters SCL instructions*/ 

short App_Exit(void) 
{ 

UnRegisterSCL(SCLCode): 

return (E_OK) : 

/*Internal function definitions*/ 

static void 
{ 

vrtcall SCL_Saver4(void) 

short ObjNum: 
input value 

//Oeclare variable for holding 

short MVEIO: //Oeclare variable for holding 
master 

//environment 10 

/*Oeclare pointers pointing to the object attribute data 
structure*/ 

T WORLOCHUNK *Object: 

/*Oeclare pointers pointing to the shape attribute data 
structure*/ 

T SHAPECHUNK *ShpSize, *Facet, *Line, *Point: 

FILE *f: 
information 

//File pointer for saving object 

/*This two values will be used as combined external key values 
in the data file*/ 

MVEIO=PopN(E_SSINTEGER): 
the stack 

ObjNum=PopN(E_SSOBJNUM): 

//Get master environment 10 from 

//Get object number from the 
stack 

/*Find address of required object data*/ 

Object=ChunkAdd(ObjNum,E_CTSTANDARD): 

/*Find addresses of required shape attributes data section*/ 

ShpSize=(*C ShapeAdd) [Object->Std.Type]: 
Facet=(*C ShapeAdd) [Object->Std.Type]: 
Line=(*C ShapeAdd) [Object->Std.Type]: 
POint=(*C_ShapeAdd) [Object->Std.Type]: 

/*retrieving and saving information in a file*/ 
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if(Object!=NULL) 
{ 

f=fopen("Shapelnfo.txt", "a"); 

fprintf(f,"%ld\t", Object->Std.Number); 
fprintf(f,"%ld\t", MVEID)i 
fprintf(f,"%ld\t", Object->Std.Type); 

fprintf(f,"%ld\t", ShpSize->Siz.XSize); 
fprintf(f,"%ld\t", ShpSize->Siz.YSize); 
fprintf(f,"%ld\t", ShpSize->Siz.ZSize)i 
fprintf(f,"%ld\t", Facet->Fac.NumFacets)i 
fprintf(f,"%ld\t", Line->Lin.NumLines); 
fprintf(f,"%ld\t", Point->Pnt.NumPoints); 

fclose (f) i 
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/* 
This program has registered a new SCL function - "ObjList". 
It scans all objects inside a virtual environment in terms of 
their name, base shape number, position in the scene graph tree, 
parent, children, and sibling relationships. And then writting 
the objects information into a ASCII file. 
*/ 

/*Included header files*/ 

#include "APP DEFS.H" //Defines various short cuts and values 
//for the short cut 

#include 
#include 
#include 
#include 

<stdio.h> 
<stdlib.h> 
<string.h> 
<ctype.h> 

/*Internal function declaration*/ 

static void vrtcall SCL_Saver5(void); 

/* 
Defined function properties 
*/ 

short App_Init(void); 
short App_Exit(void); 

/*New SCL function declaration*/ 

static T COMPILEREC 

command 

'procedure' 

parameter type is 

object number 

parameter type is 

number represents MVEID 

static short 

NewSCL= 
{ 

} ; 

SCLCode; 

/*Application initialisation*/ 

"ObjList", //Name of the new 

0, 
Ox20, 

0, 

//Function code 
//2 input, 0 output 

//Compiler code 

E_PROCEDURE,//Function type is 

E_SSNONE, //None return value 
E_SSOBJNUM, //First input 

//virtual 

E_SSINTEGER,I/Second input 

/Ian interger 

/IDeinstallation code 
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short App_Init(void) 
{ 
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SCLCode=RegisterSCL(&NewSCL,SCL_Saver5);//Register new SCL 
function 

if(SCLCode<O) //Checking 
registration result 

return(E_ERROR); 
return(E_OK); 

/*Application exit,unregisters SCL instructions*/ 

short App_Exit(void) 
{ 

UnRegisterSCL(SCLCode); 

return(E_OK); 

/*Internal function definitions*/ 

static void 
{ 

vrtcall SCL_Saver5(void) 

short ObjNum; 
input value 

//Declare variable for holding 

short MVEID; //Declare variable for holding 
master 

//environment 10 

/*Oeclare pointers pointing to the object attribute data 
structure*/ 

T WORLOCHUNK *Object, **Parent; 

FILE *f; //File pointer for saving object 
information 

/*This two values will be used as combined external key values 
in the data file*/ 

MVEIO=PopN(E_SSINTEGER); 
the stack 

ObjNum=PopN(E_SSOBJNUM); 

//Get master environment 10 from 

//Get object number from the 
stack 

/*Find address of required object data*/ 

Object=ChunkAdd(ObjNum,E_CTSTANOARD); 
Parent=Object->Std.Parent; 

/*retrieving and saving information in a file*/ 

if(Object!=NULL) 
{ 
f=fopen("ObjList.txt", "a"); 

fprintf(f,"%ld\t", Object->Std.Number); 
fprintf(f,"%ld\t", MVE10); 
fprintf(f,"%ld\t", Object->Std.TotLen); 
fprintf(f,"%ld\t", Object->Std.Type); 
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fprintf(f,"%ld\t", Object->Std.Layer); 

/*Get the parent object number through its absolute address*/ 
fprintf(f, "%ld\t", (*Parent)->Std.Number); 

/*if has child object, and sibling*/ 
fprintf(f,"%ld\t", Object->Std.Child); 
fprintf(f,"%ld\t", Object->Std.Sibling); 

fclose(f); 
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Appendix C: Run-time platform and SCL communication code 

1* The following codes are abstracted from the container programme 
for communicating virtual environments and database.*1 

II CXuVE2Set implementation 

IMPLEMENT_DYNAMIC (CXuVE2Set, CRecordset) 

CXuVE2Set: :CXuVE2Set(CDatabase* pdb) 
: CRecordset(pdb) 

11{{AFX_FIELD_INIT(CXuVE2Set) 
I/Record set from the GeneralRef Table 
m MVEID = _T(""); 
m MVEName = _T(""); 
m_Envcode = _T(""); 
m_PrimaryRes = _T(""); 
m SecondaryRes = T(""); 
17Record set from-the ObjectLists Table 
m_VirObjID _T("");; 
m Tot Len = T(""); 
m_ShpNum = =T(""); 
m_Layer = _T(""): 
m Parent = _T("");; 
m Child = _T("");; 
m Sibling = T(""); 
/7Record set-from the Property Tables 

////Record set from the Manufacturing data Table 
m Part ID = 0; - -m Part Name = T(""); 
m=part=category = 0; 
m_Machining_process 
m_Shape = 0; 

_T(''''); 

m Dimension = 0; 
m_Raw_material_form _T(""); 
m Feature list _T(""); 
m-Build method = _T(""); 
m_nFields = 9; 
I/))AFX_FIELD_INIT 
m_nDefaultType = dynaset; 

CString CXuVE2Set::GetDefaultConnect() 
( 

return _T("ODBC;DSN=VME1"); 

CSt ring CXuVE2Set::GetDefaultSQL() 
( 

return _T("[GeneraIRef)"); 

void CXuVE2Set::DoFieldExchange(CFieldExchange* pFX) 
{ 

//({AFX FIELD MAP(CXuVE2Set) 
pFX->SetFieldType(CFieldExchange::outputColumn); 
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IIEnvironment tables record set exchange 

Ilpart tables record set exchange 
RFX_Int(pFX, _T("[Part 10]"), m_Part_ID); 
RFX_Text(pFX, _T("[Part Name]"), m_Part_Name); 
RFX_Int(pFX, _T("[Part category]"), m_Part_category); 
RFX_Text(pFX, _T(" [Machining process]"), m Machining process); 
RFX_Int(pFX, _T("[Shape]"), m_Shape); - -
RFX_Int(pFX, _T("[Dimension]"), m_Dimension); 
RFX Text (pFX, T("[Raw material form]"), m Raw material form); 
RFX-Text(pFX, -T("[Feature list]"), m Feature list); 
RFX -Text (pFX, - T (" [Build method]"), m -Build method); 
II}}AFX_FIELD_MAP - -

I*The main class of handling environment and container programme 
communications, XuVE2View.cpp : implementation of the CXuVE2View 
class*1 

#include "stdafx.h" 
#inc1ude "XuVE2.h" 

#inc1ude "XuVE2Set.h" 
#inc1ude "XuVE2Doc.h" 
#inc1ude "XuVE2View.h" 
#include "Machine.h" 
#include "MVE.h" 

I*Enable the direct interaction between the two parts. By clicking 
the buttons on the container, different parts will be displayed*1 
IMPLEMENT_DYNCREATE(CXuVE2View, CRecordView) 

BEGIN MESSAGE MAP(CXuVE2View, CRecordView) 
-11{{AFX=MSG_MAP(CXuVE2View) 

ON_BN_CLICKED{IDC_LOAD_WORLD, OnLoadWorld) 
ON_BN_CLICKED(IDC_ABOUT_BTN, OnAboutBtn) 
ON_BN_CLICKED(IDC_TOGGLE_TOOL, OnToggleTool) 
ON BN CLICKED(IDC PARTl, OnPartl) 
ON=BN=CLICKED{IDC=PART3, OnPart3) 
ON BN CLICKED{IDC PART4, OnPart4) 
ON-BN-CLICKED(IDC-PART5, OnPart5) 
ON-BN-CLICKED(IDC-PART6, OnPart6) 
ON-BN-CLICKED(IDC-PART7, OnPart7) 
ON-BN-CLICKED{IDC-PART8, OnPart8) 
ON-BN-CLICKED{IDC-PART9, OnPart9) 
ON=BN=CLICKED{IDC=PART2, OnPart2) 
ON BN CLICKED(IDC TOOL INFO, OnToo1Info) 
ON-BN-CLICKED(IDC-MACHINE, OnMachine) 
ON-BN-CLICKED{IDC-LOAD DATA, OnLoadData) 
ON=NOTIFY(TCN_SELCHANGE, I DC_TAB 1 , OnSelchangeTabl) 
II} }AFX MSG MAP 
II Standard-printing commands 
ON COMMAND(ID FILE PRINT, CRecordView::OnFilePrint) 
ON=COMMAND(ID=FILE=PRINT_DIRECT, CRecordView::OnFilePrint) 
ON COMMAND(ID FILE PRINT PREVIEW, 

CRecordView::OnFilePrintPrevie~) 
END_MESSAGE_MAP() 

IIEnvironment configuration 
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void CXuVE2View::DoDataExchange(CDataExchange* pOX) 
{ 

CRecordView::DoDataExchange(pDX)i 
11{{AFX_DATA_MAP(CXuVE2View) 
DDX_Control(pDX, IDC_TABl, m_resources); 
DDX_Control(pDX, IDC_SUPERSCAPEl, m_3dcontrol); 
DDX_Text(pDX, IDC_EDITl, m_xpos); 
DDX_Text(pDX, IDC_EDIT2, m_ypos); 
DDX_FieldText(pDX, IDC_FIELDl, m_pSet->m_MaxSpindleSpeed, 
mySet); 
DDX_FieldText(pDX, lDC_FIELD2, m_pSet->m_MinSpindleSpeed, 
m_pSet) ; 

IILoading environment from local disk 

void CXuVE2View::OnLoadWorld() 
{ 

only. 

II TODO: Add your control notification handler code here 
CString m_Filename; 
FILE *f; 

char *FileName=NULL; 

IICan only load XVR worlds so create a filter for this filetype 

char BASED CODE szFilter[] = "Superscape XVR (*.xvr) I*.xvrl I"; 

IICreate and handle an open dialog box. 
CFileDialog *dialog; 
CSt ring exten; 

dialog = new CFileDialog(TRUE,"XVR",NULL, NULL,szFilter); 
if (dialog->DoModal() == lOOK) 
{ 

IINow handle file open procedures. 
exten = dialog->GetFileExt()i 
exten.MakeUpper(); 
if (exten == "XVR") 
{ 

IIJust inform the user that we are loading a world. 
MessageBox("Loading selected 

world.", "Message",MB_ICONlNFORMATlON+MB_OK); 

m Filename = dialog->GetPathName(); 
f-= fopen(dialog->GetPathName(), "rb"); 
if (f == NULL) 
{ 

MessageBox("Can't open selected 
file.", "ERROR",MB_OK + MB_ICONSTOP); 

else 
( 

return; 

IISet the source for the world to the file 
selected in the open dialog. 

m_3dcontrol.SetSrc(m_Filename); 
} 

fclose (f) ; 
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delete dialog; 

IIControlling the appearances of the objects 
void CXuVE2View::OnToggleTool() 
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II TODO: Add your control notification handler code here 
UINT m_check; 

IIHandle the tool checkbox. If checked, tool is OFF otherwise 
tool is ON. 

if ( (m_check=IsDIgButtonChecked( IDC_TOGGLE_TOOL ) ) == 0) 
m_3dcontrol.SetBooIProperty("Cutter","Propb",FALSE); 

else 
m_3dcontrol.SetBooIProperty("Cutter","Propb", TRUE); 

IIChanging default part 
void CXuVE2View: :OnPartl() 
( 

II TODO: Add your control notification handler code here 
m_3dcontrol.SetMarker(1,1); 

void CXuVE2View: :OnPart2() 
{ 

II TODO: Add your control notification handler code here 
m 3dcontrol.SetMarker(1,2): 

void CXuVE2View::OnPart3() 

II TODO: Add your control notification handler code here 
m_3dcontrol.SetMarker(1,3); 

IIGetting current tool information 

void CXuVE2View::OnTooIInfo() 
{ 

II TODO: Add your control notification handler code here 
IIGet the position data. 
long m_xpos m_3dcontrol.GetLongProperty("slotl", "X 

Position") ; 
long m_ypos m_3dcontrol.GetLongProperty("slotl", fly 

Position"); 
IIRefresh the data display on the dialog. 
UpdateData(FALSE); 

IIHandling event fired from the environment 
BEGIN EVENTSINK MAP (CXuVE2View, CRecordView) 

17{{AFX EVENTSINK MAP(CXuVE2View) 
ON EVENT(CXuVE2View, IDC SUPERSCAPE1, 6 1* SCLEvent *1, 

OnSCLEve~tSuperscapel, VTS_I4 VTS 14) 
II}}AFX_EVENTSINK_MAP 

END EVENTSINK_MAP() 

void CXuVE2View::OnSCLEventSuperscapel(long argl, long arg2) 
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II TODO: Add your control notification handler code here 
m_ObjID = argl; 

IIarg2 is the total movie length in ms. 
m Timer = arg2; 

IIRefresh the data display on the dialog. 
UpdateData(FALSE); 

IISet simulation parameters and markers 

void CMySettingDlg::OnDiverLoop() 
{ 

IIPass over the parameter to the lathe. 
m_3dcontrol. SetBoolProperty ("Lathe", "mainswitch", m_marker); 

IISet the marker to stop user turn on machine 
m_3dcontrol.SetMarker(2,1); 



/*Simulation program (partial) on the lathe*/ 

//Configure machine specification 

short Marker, eventcounter, Obj10, timer, P=O, speed; 
long MachineConfig[), settting[); 

MachineConfig[O] property (" Lathe-Holder" , "property1" ) ; 

MachineConfig[l] property("Lathe-Holder", "property2" ) ; 

MachineConfig[2) property ("Lathe-Holder" , "property3" ) ; 

MachineConfig[3] property (" Lathe-Holder" , "property4" ) ; 

MachineConfig[4) property ("Lathe-Holder" , "property5" ) ; 

MachineConfig[5) property("Lathe-Holder", "property6") ; 

//Taking user input settings from various controllers*/ 

if(activate("#12", 0)) 

speed = rot(me)/30; 

switch (speed) 

case 0; 

Setting[O) 1; 

case 0; 

Setting [0] 2; 

else if (activate("#13",0) 

//Check event occurred 

if(eventcounter == 1) 

//Passing object 10 to container 

Fireevnt(Obj10, timer); 

//Object data retrieved by container and processed 

wait (1000) ; 

//Decide the route for the simulation and interaction 

Marker = property ("Machine", "Marker"); 
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//Running simulation routes 

it (Marker == 1) 
{ 

zrot (me)=O; 
resume (0, 2); 
if (actchild (me, 0)) 
{ 

while (mouseb) 
waitt; 

sound (1, 64, -100000, 0); 
repeat (3) 
{ 

zrot (me)+=12; 
waitf; 

++P; 
if (P==10) 

P"'O; 
actchild (me, 0); 

if (actchild (me, 13)) 
{ 

while (mouseb) 
waitt; 

sound (1, 60, -100000, 0); 
repeat (3) 
{ 

zrot (me)-=12; 
wait t; 

--Pi 
if (P"'=-l) 

P=9; 
actchild (me, 13); 

it (Marker 2) 
{ 

xrot ('Vice - Handle[4] ')=90; 
resume (0, 2); 
if (activate (me, 0) 
{ 

it (xrot ('Vice - Handle[4] '»80 && xrot 
('Vice - Handle[4] ')<100) 

h=l; 
it (xrot ('Vice - Handle(4] '»40 && xrot 

('Vice - Handle[4] ')<60) 
h=2; 

switch (h); 
case 1: 
{ 

repeat (3) 
{ 

xrot ('Vice - Handle[4) ')-=15; 
waitt; 

xangv ('chunk')"'zrot ('SAFE:dial'); 
waitt; 

case 2: 
{ 

repeat (3) 

C-7 

APPEND/XC 



xrot ('Vice - Handle[4] ')+=15; 
waitf; 

xangv ('chunk')=Oi 
waitf; 

else if(Marker 3) 
{ 

short 
fixed 

mx, my; 
rx, rYi 

resume (1, 0); 
if (activate (me, 0) && zrot ('Vice - Handle[210] ')==90) 
{ 

mx=mousex; 
my=mousey; 
ry=yrot (parent (me)); 
while (mouseb) 
{ 

xrot (me)=ry+mousex-mx; 
waitf; 
xpos ('TailGroup')+=ry+mousex-mx; 
waitf; 

clrtrig (me, 0); 

else if(Marker == 5) 
{ 

short mx, my; 
fixed rx, ry; 

resume (1, 0); 
if (activate (me, 0)) 
{ 

mx=mousex; 
my=mousey; 
ry=yrot (parent (me)); 
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while (mouseb && xpos ('NewCone'»O && xpos ('NewCone')<1100 
&& yrot ('handle2')==135) 

xrot (me)=ry+mousex-mxi 
waitf; 
xpos ('NewCone')+=ry+mousex-mx; 
waitf; 
if (xpos ('NewCone')<=O I I xpos ('NewCone'»=1100) 

xpos ('NewCone')=ixpos ('NewCone'); 

clrtrig (me, 0); 

//quill or tail stock locker 
resume (0, 1); 
if (activate (me, 0) && zrot ('Vice - Handle[210] ')<80) 
{ 

zrot ('Vice - Handle[210] ')+=45; 
wai tf; 
sptext (me)="Tailstock moveable"; 
wai tf; 

if (activate (me, 13) && zrot ('Vice - Handle[210] '»55) 
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zrot ('Vice - Handle[2l0] ')-=45; 
waitf; 
sptext (me)="Tailstock locked"; 
waitf; 

else 
{ 
//Apron holder 
short mx, my; 
fixed rx, ry; 

resume (1, 0); 
if (activate (me, 0)) 
{ 

mx=mousex; 
my=mousey; 
ry=yrot (parent (me)); 
while (mouseb) 
{ 

zrot (me)=ry+mousex-mx; 
waitf i 
xpos ('ApronHolder')+=ry+mousex-mx; 
waitfi 

clrtrig (me, 0); 
} 

if (first) 
{ 

marker (1)==0; 
invis ('P-Contour-turn')i 
invis ('P-Boring'); 
invis ('P-Drilling')i 
invis ('P-Parting'); 
invis ('P-Shoulder-face'); 
invis ('P-Sra-turn'); 
invis ('P-Taper-Boring'); 
invis ('P-Taper-turn')i 
invis ('P-Threading')i 

else 
{ 

if (marker (1)==1) 
{ 

vis ('P-Contaur-turn'); 
invis ('P-Boring'); 
invis ('P-Drilling'); 
invis ('P-Parting'); 
invis ('P-Shoulder-face'); 
invis ('P-Sra-turn'); 
invis ('P-Taper-Boring'); 
invis ('P-Taper-turn'); 
invis ('P-Threading'); 
marker (1)==0; 

else 
{ 

if (marker (1)==2) 
{ 

invis ('P-Cantaur-turn'); 
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vis ('P-Boring'); 
invis ('P-Drilling'); 
invis ('P-Parting'); 
invis ('P-Shoulder-face'); 
invis ('P-Sra-turn'); 
invis ('P-Taper-Boring'): 
invis ('P-Taper-turn'); 
invis ('P-Threading'); 
marker (1)==0; 

else 
{ 

if (marker (1)==3) 
{ 

invis ('P-Contour-turn'); 
invis ('P-Boring'): 
vis ('P-Drilling'); 
invis ('P-Parting'); 
invis ('P-Shoulder-face'); 
invis ('P-Sra-turn'): 
invis ('P-Taper-Boring'); 
invis ('P-Taper-turn'): 
invis ('P-Threading'); 
marker (1)==0: 

else 
{ 

if (marker (1)==4) 
{ 

invis ('P-Contour-turn'); 
invis ('p-Boring'): 
invis ('P-Drilling'): 
vis ('P-Parting'): 
invis ('P-Shoulder-face'); 
invis ('P-Sra-turn'): 
invis ('P-Taper-Boring'); 
invis ('P-Taper-turn'); 
invis ('P-Threading'); 
marker (1)==0: 

else 
{ 

if (marker (1)==5) 
{ 

invis ('P-Contour-turn'); 
invis ('P-Boring'); 
invis ('P-Drilling'); 
invis ('P-Parting'); 
vis ('P-Shoulder-face'): 
invis ('P-Sra-turn'); 
invis ('P-Taper-Boring'); 
invis ('P-Taper-turn'); 
invis ('P-Threading'); 
marker (1)==0; 

else 
{ 

if (marker (1)==6) 
{ 

invis ('P-Contour-turn'); 
invis ('P-Boring'); 
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} 

} } } } 

invis ('P-Drilling'); 
invis ('P-Parting'); 
invis ('P-Shoulder-face'); 
vis ('P-Sra-turn'); 
invis ('P-Taper-Boring'); 
invis ('P-Taper-turn'); 
invis ('P-Threading'); 
marker (1)==0; 

else 
{ 

if (marker (1)==7) 
{ 

invis ('P-Contour-turn'); 
invis ('P-Boring'); 
invis ('P-Drilling'); 
invis ('P-Parting'); 
invis ('P-Shoulder-face'); 
invis ('P-Sra-turn'); 
vis ('P-Taper-Boring'); 
invis ('P-Taper-turn'); 
invis ('P-Threading'); 
marker (1)==0; 

else 
{ 

if (marker (1)==8) 
{ 

invis ('P-Contour-turn'); 
invis ('P-Boring'); 
invis ('P-Dri1ling'); 
invis (' P-Parting') ; 
invis ('P-Shoulder-face'); 
invis ('P-Sra-turn'); 
invis ('P-Taper-Boring'); 
vis ('P-Taper-turn'); 
invis ('P-Threading'); 
marker (1)==0; 

else 
{ 

if (marker (1)==9) 
{ 

invis ('P-Contour-turn'); 
invis ('P-Boring'); 
invis ('P-Dri1ling'); 
invis ('P-Parting'); 
invis ('P-Shoulder-face'); 
invis ('P-Sra-turn'); 
invis ('P-Taper-Boring'); 
invis ('P-Taper-turn'); 
vis ('P-Threading'); 
marker (1)==0; 
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Appendix D: Virtual and real manufacturing cell communication 

/*--robot main menu--*/ 
'include "stdio.h" 
'include "graphics.h" 
'include "stdlib.h" 
'include "head-c.h" 
'include "conio.h" 
'include "dos.h" 
'include "ctype.h" 
'include "math.h" 

void mainl(); 
void mainn ( ) ; 
void menuu(); 
void mouse(),mousea(); 
void mouse_function(); 
void show_mouse(); 
void get_mouse(); 
void hide_mouse(); 
void init_mouse(): 
void mainll () : 
void main22(): 
void edit ( ) : 
void jobteach(): 
void progteach(): 
void playback(); 
void split_space(); 
void test fileO(char filename[20]): 
void test-filel(char filename[20]); 
void test-file(char filename[20]): 
void puma-com(),bpot com(),audit com(): 
void receiving com();receivingl com(); 
void transmit com(),transmitO com(),transmitl com(),transmitOl com(); 
void test_save(char data[lOO]),command_test()~menu(): 
void nett(),rec_com(),trans_com(),transO_com(): 
void send_file_name(),wait(),get_file_name(); 
void robot_init(); 
namecomp(); 
charact(); 
monitor_com(); 
chmov (); 

FILE * fileptr=NULL; 

unsigned int xl,yl,n; 
unsigned short int buttons; 
char str[2S], strl[20), strname[SO) , address[SO], midvar[SO]; 
char *name, *namel,namexu(20); 
char chv; 
unsigned int i, x, pos,posl, pos2, name_pos; 
unsigned int filesize(); 

main () 
{ 

char chi 
int X,Yi 
int driver, mode; 
register int i; 
driver=DETECT; 
mode=O; 
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initgraph(&driver, &mode, "c:\\tc\\bgi"); 

settextstyle(DEFAULT_FONT,HORIZ_DIR,3); 
setbkcolor(MAGENTA); 
Quttextxy(140,60,"INDUSTRIAL ROBOT"); 
Quttextxy{lOO,lOO,"LOCAL NETWORK SYSTEM"); 
settextstyle(TRIPLEX_FONT,HORIZ_DIR,l); 

Quttextxy(200,400,"Please Input Your Choice"); 
Quttextxy(200,440,"by Mouse Cursor"); 
settextstyle(TRIPLEX_FONT,HORIZ_DIR,l); 

setfillstyle(SOLID_FILL,LIGHTBLUE); 
bar3d(79,223,159,375,20,1); 
outtextxy(94,231,"< 1 >"); 
outtextxy(91,259,"PUMA"); 
outtextxy(91,299,"ROBOT"); 
outtextxy(91,339,"WORLD"); 

setfillstyle(SOLID_FILL,GREEN); 
bar3d(279,223,359,375,20,1); 
outtextxy(294,231,"< 2 >"); 
Quttextxy(283,259,"LANSING"); 
outtextxy(283,299,"ROBOT"); 
outtextxy(283,339,"WORLD"); 

setfillstyle{SOLID_FILL,RED); 
bar3d(479,223,559,375,20,1); 
outtextxy(494,231,"< 3 >"); 
Quttextxy(495,259,"END"); 
outtextxy(495,299,"OF"); 
outtextxy(495,339,"WORK"); 

gotoxy(l,l); 
show_mouse(); 

/* init_mouse(); */ 
do 

{ 
get_mouse(); 
gotoxy{l,l); 
printf("%d,%d",xl,yl); 

if{xl>=lO&&xl<=20&&yl>=28&&yl<=47&&buttons==1) 

} 

hide_mouse{); 
cleardevice(); 
mainl(); 

/* if{{ch=getch{))=='l') 
{ 

cleardevice{); 
mainl{); 

} */ 
if{xl>=35&&xl<=45&&yl>=28&&yl<=47&&buttons==1) 

( 

hide_mouse{); 
cleardevice{); 
mainn{); 

) 

if (xl>=60&&xl<=70&&yl>=28&&yl<=47&&buttons==1) 
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} 

hide_mouse(); 
closegraph(); 
exit (0); 

}while(buttons!=3); 
cleardevice(); 
exit (0); 

return 0; 
} 

void mainl ( ) 

int x,y,c; 

settextstyle(TRIPLEX_FONT,HORIZ DIR,4); 
setbkcolor(LIGHTBLUE); 
outtextxy(200, 120, "WELCOME TO"); 
outtextxy(145,220,"DNC COMMUNICATION"); 
settextstyle(TRIPLEX_FONT,HORIZ_DIR,l); 
outtextxy(250,400,"CLICK TO START"); 
do 

{ 

get_mouse(); 
if (buttons==l) 

{ 

cleardevice ( ) ; 
menu(); 

} 

}while(buttons!=3); 

void menu () 
{ 

int x,y,c; 
/* int driver,mode; 

register int i; 
driver=DETECT; 
mode=O; 
initgraph(&driver,&mode,"c:\\tc\\bgi"); */ 
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setbkcolor(LIGHTBLUE); 
settextstyle(TRIPLEX_FONT,HORIZ_DIR,l); 
outtextxy(120,50,"DNC for Flexible Manufacturing System"); 
setfillstyle(SOLID_FILL,RED); 
bar3d(128,144,536,184,0,0); 
outtextxy(140, 150,"1. Communication for PUMA Robot"); 
setfillstyle(SOLID_FILL,RED); 
bar3d(128,192,536,232,O,0); 
outtextxy(140,200,"2. Communication for AUDIT Lathe"); 
setfillstyle(SOLID_FILL,RED); 
bar3d(128,240,536,280,0,0); 
outtextxy(140,2S0,"3. Communication for Bridgeport"); 
setfillstyle(SOLID_FILL,RED); 
bar3d(128,296,S36,336,0,O); 
outtextxy(140,300,"4. Communication for NETWORK SERVER"); 
setfillstyle(SOLID_FILL,RED); 
bar3d(128,344,S36,384,0,O); 
outtextxy(140, 350, "S. PCB Assembly"); 
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setfillstyle(SOLID_FILL,RED); 
bar3d(128,392,536,432,O,O); 
outtextxy(140,400,"6. EXIT"); 
outtextxy(2l0,450,"[ Enter Your Choice J"); 

gotoxy(l,l); 
show_mouse(); 
do 

( 
get_mouse(); 
if(xl>=16&&xl<=67) 
( 

if(yl>=18&&yl<=23&&(buttons==lI Ibuttons==2)) 
( 

hide_mouse(); 
puma_com () ; 
closegraph(); 

} 

if(yl>=24&&yl<=29&&(buttons==11Ibuttons==2)) 
{ 

hide_mouse(); 
closegraph(); 
audit_com() ; 

} 

if(yl>=30&&yl<=35&&(buttons==11Ibuttons==2)) 
( 

hide_mouse(); 
closegraph(); 
bpot_com () ; 

} 
if(yl>=37&&yl<=42&&(buttons==lI Ibuttons==2)) 
( 

hide_mouse(); 
closegraph(); 
nett_com (); 

} 

if(yl>=43&&yl<=48&&(buttons==11Ibuttons==2)) 
{ 

hide_mouse(}; 
assembly () ; 
closegraph(); 

} 
if(yl>=49&&yl<=54&&(buttons==11Ibuttons==2)) 
( 

hide_mouse(); 
cleardevice(); 
main () ; 

} 

}while(buttons!=3); 
/* do 

( 
c=getch(); 

switch (c) 
( 

case'l': 
puma_com(); 
cleardevice(}; 
break; 

case' 2' : 
audit_com () ; 
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break; 

case' 3' : 
bpot_com(); 
break; 

case' 4' : 
nett_com(); 
break; 

case' 5' : 
assembly(); 
cleardevice(); 
break; 

case' 6' : 
II restorecrtmode(); 

II clrscr(); 
II exit(O); 

cleardevice(); 
main () ; 
break; 
default: 

I I exit (0) ; 
break; 

APPENDIXD 

}while(c!='1' && c!='2' && c!='3'&& c!='4'&&c!='S'&&c!='6'); *1 

void puma_com() 
( 

0) 

int 
int 
char 
char 
char 

i,j, port, portl,stat,statl; 
card no, total port, data item; 
data(20),filen~me[20); -

w_data[20),command[20); 
ch,str[20); 

restorecrtmode(); 
clrscr(}; 
printf("Reset the moxa cards .... \n"); 
if ((card_no = sio_reset(}) == O} 
( 

printf("No Card Found !\n"); 
exit(O); 

printf("Total Card: %d\n", card_no); 

printf("Read the ID ..•. \n"); 
for (i = 1; i <= card_no; i++) 
( 

printf("(%d)\tSerial no: %d", i, sio id(i)); 
printf("\tMapping %X\n", sio_bank(i}); 

printf("Setting port 7 to 9600, N, 8, l .... \n"); 
port = 7; 
if ( sio_ioctl(port, B9600, BIT 8 P NONE 

printf("Port #%d IOCTL error !\n", port); 
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/* 

/* 

exit (0); 

for(port=6;port<=13;port++) 
( stat=sio open(port); 
if(stat != 0) -
(printf("Port #%d can not be opened!\n",port); 

exit (O);} 
} 

/* port=8; 
statl=sio_enableTX(port); 
if(stat1!=O) 

( printf("PORT 8 TRANSMIT ERROR\N"); 
exit (0); 

} */ 
printf("Read information from PUMA Controller .... \n"); 
do 

( 
while(kbhit()==O) 
( 

port=7; 
statl=sio_read(port,data,lOO); 

/* sio_timeout(50); 
statl=sio_linput_t(port,data,100,13); */ 
if (stat1>=O) 

( 

data[statl]=O; 
printf("%s",data); 

} 

else exit (0); */ 

if((i=sio_read(port,data,lOO))==O) 
( 
printf("No data received\n"); 
exit (0); 
} 

APPENDIXD 

else if (i = sio_read(port, data, 100)) < 0) ( 
printf("Port #%d READ error,i= %d !\n", 

port,i); 

do 
( 

exit (0); 

else if (i) ( 
data [i) = 0; 
printf("%s",data); 

*/ 

ch=getch(); 
switch (ch) 
( 

case 'N': 
case 'n': 

w_data[O] = Chi 
w_data[l] = '\r'; 
sio_write(7,w_data,2); 

/* if((i = sio_write(7,w_data,2)) < 0) ( 
if((i = sio_write(6,w_data,2)) < 0) 
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printf("\naaa"); 
exit (0); 

break; 
default: break; 

} 

*/ 

APPENDIXD 

}while(ch!='n' && ch!='N' && ch!='.' && ch!='y' && 
ch!='Y'); 

}while(ch!='.' && ch!='y'); 
II command_test(); 

for ( ; ; ) 

printf("\n\nInput the program file name:"); 
gets(filename); 
if (strcmp(filename,"esc")==O I I strcmp(filename,"ESC")==O) 

command_test(); 
break; 
} 

test_file(filename); 

void test file(char filename[20)) 
{ 

FILE *fp,*testfile; 
char p_data(20); 
int 

port,i,temp_c,read_statu,data_item,ask_sign=O,find_file_end=O; 
char data(20); 

if (access("test.dat",OO)==O) 
remove("test.dat"); 

if «fp=fopen(filename,"r+"))==NULL) ( 
printf("cannot open file\n"); 
return; 

} 
data[O]='\O'; 
for(ii) 
{ 

data_item=Oi 
for (;;) 

{ 

if «p_data[data_item)=getc(fp))==EOF) 
{ 

find_file_end=O; 
breaki 

if (p_data[data_item)==10 I I 

p_data[data_item)='\r'; 
data_item++; 
p_data[data_item]=O; 
break; 

data item++; 
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if (find_file_end==l) 
break; 

if (sio_write (7,p_data,data_item+l) <=0) 
{ 

APPENDIXD 

printf("port #%d write error !\n",7); 
exit(O); 

read_statu=O; 
ask_sign++; 
while (read_statu==O) 
{ 

port=7; 
if ((i = sio_read(port,data,lOO)) < 0) 
{ 

printf("Port #%d READ error,i=%d !\n", 
port,i); 

} 

} 

exit (0); 

else if(i) 
{ 

if (read_statu==2) 
brea ki 

read statu=O; 

data[i] = 0; 
printf("%s",data); 
test_save(data); 
if((testfile=fopen("test.dat","a"))==NULL) 

{ 

printf("Can not open file\n"); 
getch () ; 
exit (1) ; 

} 

fprintf(testf!le,"%s",data); 
fclose(testfile); 

if (ask_sign==l) 
{ 

if (strchr(data, '\r') !=NULL) 
read_statu=l; 

if (strchr(data, '?') !=NULL) 
read_statu=l; 

if (strchr(data, '*') !=NULL && ask_sign>2) 
read_statu=2; 

1* - test_save(data); *1 
strcpy(p_data,""); 

fclose (fp) i 
command_test(); 
exit(O)i 

void test_save(char data[20]) 

FILE *testfile; 
char filename[20],num[4]; 
int x; 
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if((testfile=fopen("test.dat","w+"))==NULL) 
( 

printf("can not open file\n"); 
getch(); 
exit (1) ; 

/* for (x=1;x<=500;x++); 
printf("Enter the Line_Num: "); 
fscanf (stdin, "%s", num); * / 
fprintf(testfile,"%s",data); 

fclose(testfile); 

void command_test() 
/* send the command to the controller */ 

char str[20), endch='x'; 
int driver,mode; 

for ( i ;) { 

if ( endch=='?') 
// printf("\nPlease input data: " ); 

gets (str) ; 
strcat(str,"\r")i 
sio_write(7,str,strlen(str)); 
endch=get_data(str); 

printf("\nlnput the command_line:\n")i 
gets (str) i 
if(fileptr!=NULL) fclose(fileptr); 
if(!strcmp(str,"esc")) main(); 

APPENDIXD 

/* the exit of the unlimited recursion */ 
strcat(str,"\r")i 
sio_write(7,str,strlen(str)); /* send the command to puma 

controller 
and the controller runs the command */ 

endch=get_data(str)i 

void audit_com () 
( 

int 
int 
char 
char 
char 

restorecrtmode(); 
clrscr()i 

i, port, port1; 
card no, total port; 
data(20),filename[20); 

w_data[20); 
Chi 

printf("Reset the sio cards .... \n"); 
if ((card_no = sio_reset()) == 0) 
( 

printf("No Card Found !\n"); 
exit(O); 

printf("Total Card: %d\n", card_no); 

printf("Read the ID .... \n"); 
for (i = 1; i <= card_no; i++) 
{ 
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printf("(%d)\tSerial no: %d", i, sio id(i)); 
printf("\tMapping %X\n", sio_bank(i)); 

printf("Setting port 3 to 300, N, 7, 1 .... \n"); 
port = 3; 

APPENDIXD 

if ( sio_ioctl (3, B300, BIT_7 I P_EVEN I STOP 1) != 0) 
( 

c1rscr(); 

printf("Port #%d IOCTL error !\n", port); 
exit (0); 

printf("\nDo you want to receive file from the audit 
machine?\n"); 

printf(" 'Y' or 'N' ?"); 

do 
( 

ch=getch(); 
switch (ch) 
( 

case' Y' : 
case'y' : 
receiving_com(); 
exit (0); 
break; 

case'N': 
case 'n': 
transmit_com(); 
break; 
default: 
break; 
} 

}while(ch!='y' && ch!='Y' && ch!='n' && ch!='N'); 

void receiving_com() 
( 

lnt 
int 
char 
char 
char 
FILE 

i, port, port1,read_statu=0; 
card no, total port; 
data[20l,filename[20l; 

w_data[ 20 l; 
chi 
*testfile; 

if((testfile=fopen("test.dat","w"))==NULL) 
printf("can not open fi1e\n"); 
getch () ; 
exit(l); 

} 
printf("\nReceive File from AUDIT Lathe Machine .... \n"); 

read statu=O; 
fori;;) 

{ 
port=3; 
if ((i = sio read(port, data, 100)) < 0) ( 

printf("Port #%d READ error !\n", port); 
exit (0); 

else if (i) { 
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data[i] = 0: 
printf("%s",data): 
fprintf(testfile,"%s",data): 
if (strchr(data, '\n') !=NULL) 

read_statu++: 

APPENDIXD 

if (strchr(data, '%') !=NULL && read_statu>l) 
break: 

fclose(testfile); 

void transmit_com() 

int c: 

printf("\nDo you want to transmit file to the audit 
machine?\n"): 

do 
{ 

printf(" '¥' or 'N' ?"): 

c=getch(): 
switch(c) 
{ 

case'Y' : 
case' y' : 
transmitO_com(): 
break; 

case'N' : 
case'n' : 
menu () ; 
exit(O); 
break; 
default: 
exit (0) ; 
break; 
} 

}while(c!='¥' && c!='y' && c!='N' && c!='n'); 

void transmitO_com() 
{ 

int i, port, portl; 
char data[20],filename[20]; 
char w_data[lOO]; 

printf("\nTransmit File to AUDIT Lathe Machine .... \n"); 
for ( ; ; ) 
{ 

printf("\n\nInput the program file name:"); 
scanf("%s",filename); 
if (strcmp(filename,"esc")==O I I strcmp(filename,"ESC")==O) 

menu () ; 
test_fileO(filename); 
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void 
{ 

APPENDIXD 

test fileO(char filename[20]) 

FILE *fPi 
char p_data[20]i 
int port,i,temp c,read statu,data item, find file end=O; 
char test_in(50); - - --
char data(20); 

if ((fp=fopen(filename,"r+"))==NULL) { 
printf("cannot open file/n"); 
return; 

do 
{ 

data_item=O; 
for (;i) 

{ 

if ((p_data[data_item)=getc(fp))==EOF) 
{ 

find_file_end=1; 
break; 

if (p_data[data_item]==10 I I 

p data[data item)='\n'; 
data_item++; 
p_data [data_item] =0; 
break; 

if (find_file_end==1) 
breaki 

if (sio_write (3,p_data,data_item+1) !=O) 
{ 

printf("port #Id write error !\n",2)i 
exit(O); 

}while(find_file_end!=1); 
fclose (fp) i 
menu()i 
exit (0); 

void bpot_com () 

int 
int 
char 
char 
char 

i,port, port1; 
card_no, total_port; 

data(20),filename[20],temp_data[20),old_data[20)i 
w_data(20); 
ch,*ptr; 

restorecrtmode(); 
clrscr () ; 
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printf("Reset the sio cards .... \n"); 
if ((card_no = sio_reset()) == 0) 
{ 

printf("No Card Found !\n"); 
exit (0) ; 

printf ("Total Card: %d\n", card_no); 

printf("Read the ID .... \n"); 
for (i = 1; i <= card_no; i++) 
{ 

printf("(%d)\tSerial no: %d", i, sio id(i)); 
printf("\tMapping %X\n", sio_bank(i)); 

printf("Setting port 4 to 9600, N, 8, 1 .... \n"); 
port = 4; 
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if sio_ioctl(4, B9600, BIT_7 I P_EVEN I STOP_2) != 0) 
{ 

printf("Port #%d IOCTL error !\n", port); 
exit(O); 

printf("read line lctrl status \n"); 
port=4; 

if(sio lctrl(4,C RTSIC DTR)<O) { 
p~intf("por~ #%d Ictrl error!\n",port); 
exit(O); 
} 

printf("port 4 line lctrl 
status:%04x\n",4,sio_lctrl(4,C_RTSIC_DTR)); 

printf("read line status from port 4 \n"); 
port=4; 
printf("port 4 line 

status:%04x\n",4,sio_lstatus(4)); 

clrscr()i 
printf("\nDo you want to receive file from the brigeport 

machine7\n"); 
printf(" 'Y' or 'N' 7"); 
do 
{ 

ch=getch(); 
switch (ch) 
{ 

case'Y' : 
case'y' : 
receivingl_com(); 
exit (0); 
break; 

case'N' : 
case'n': 
transmitl_com(); 
menu (); 
break; 
default: 
break; 
} 
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}while(ch!='y' && ch!='Y' && ch!='n' && ch!='N'); 

void receiving1_com() 
{ 

int i, j, port, portl, read statu=O; 
int card_no, total_port; 
char data(20),filename[20); 
char w_data(20), *ptr; 
char ch, temp_data(20), 01d_data(20); 
FILE *testfile; 

if((testfile=fopen("test.dat","w"))==NULL) 
printf("can not open file\n"); 
getch(); 
exit (1) ; 
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printf("\nReceive File from Bridge PORT Milling Machine .... \n"); 
read_statu=O; 
for ( ; ;) { 

port=4; 
if ((i = sio read (port, data, 100)) < 0) ( 
printf("Port #%d READ error !\n", port); 
exit (0); 

} 

else if(i) ( 
data[i) = 0; 
printf("%s",data); 
fprintf(testfile,"%s",data); 

strcpy(temp_data,data); 
if (old_data[strlen(old_data)-l]=='E') 

if (temp_data[O]=='N' && temp_data[l]=='D') 
read statu=l; 

if (old data[strlen(01d_data)-2]=='E' && 

old_data[strlen(old_data)-l)=='N') 
{ 

if (temp_data[O]=='D') read_statu=l; 

if (read_statu!=l) ( 
for (;;) { 

} 

if ((ptr=strchr(temp_data, 'E'))==NULL) 
break; 

if (strlen(ptr)<3) 
break; 
if (ptr[l]=='N' && ptr(2)=='D') { 
read_statu=l; 
break; 

} 

ptr=strchr(ptr,ptr[l]); 
strcpy(temp_data,ptr); 

for (i=1;i<=10000;i++) i++; 
if (read statu==l) { 

if (strchr(temp_data, '\n') !=NULL) 
break; 

} 

strcpy(old_data,data); 
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} 

} 

fclose(testfile); 

void transmitl_com() 
{ 

int c; 

APPENDIXD 

printf("\nDo you want to transmit file to the bridgeport 
machine?\n"); 

do 
{ 

printf(" 'Y' or 'N' ?"); 

c=getch(); 
switch(c) 
{ 

case'Y' : 
case' y' : 
transmitOl_com(); 
menu () ; 
break; 

case'N' : 
case'n' : 
menu (); 
exit (0); 
break; 
default : 
exit (0); 
break; 
} 

}while(c!='Y' && c!='y' && c!='N' && c!='n'); 

void transmitOl_com() 
{ 

int 
char 
char 

i, port, portl; 
data[20),filename[20); 

w_data[20); 

printf("\nTransmit File to BridgePort Milling Machine .... \n"); 
for(;;) 
{ 

void 
{ 

printf("\n\nlnput the program file name:"); 
scanf("%s",filename); 
if (strcmp(filename,"esc")==O I I strcmp(filename,"ESC")==O) 

break; 
test filel(filename); 

test_filel(char filename[20)) 

FILE *fp; 
char p data[20); 
int port,i,temp_c,read_statu,data_item,find_file_end=O; 
char test_in[50); 
char data[20); 
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if ((fp=fopen(filename,"r+"))==NULL) ( 
printf("cannot open file/n"); 
return; 

do 
{ 

data_itern=O; 
p_data [data_iteml =02; 
data_item++; 
p_data [data_item] =0; 
sio_write(4,p_data,data_itern+1); 
data_item=O; 
p_data [data_item] =0; 
sio_write(4,p_data,data_item+1); 

data_item=O; 
p_data[data_iteml=13; 
data_itern++; 
p_data[data_itern]=13; 
data_item++; 
p_data [data_item] =13; 
data_item++; 
p_data [data_item] =10; 
data_item++; 
p_data [data_item] =0; 
sio_write(4,p_data,data_itern); 
data itern=O; 
for (;;) 
{ 

if ((p_data[data_item]=getc(fp))==EOF) 
{ 

find_file_end=l; 
break; 

if (p_data[data_item]==10 I I 

p_data[data_item]=O; 
break; 

if (find_file_end==l) 
break; 
if (sio_write(4,p_data,data_item+l) !=O) 
{ 

} 

printf("port #%d write error !\n",2); 
exit (0); 

}while(find_file_end!=l); 
p_data[data_itern]=03; 
data_itern++; 

p data[data item]=O; 
- - sio_write(4,p_data,data item); 

fclose (fp); 
menu () ; 
exit(O); 
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int 
int 
char 
char 
char 

i,j, port, portl; 
card_no, total_port; 
data[100],filename[20]; 

w_data[10]; 
ch, c [2] ; 

restorecrtmode(); 
clrscr(); 
printf("Reset the sio cards .... \n"); 
if «card_no = sio_reset()) == 0) 
{ 

printf("No Card Found !\n"); 
exit (0); 

printf("Total Card: %d\n", card_no); 

printf("Read the ID .... \n"); 
for (i = 1; i <= card_no; i++) 
{ 

printf("(%d)\tSerial no: %d", i, sio id(i)); 
printf("\tMapping %X\n", sio_bank(i)); 

printf("Setting port 0 to 9600, N, 8, 1 .... \n"); 
port = 0; 
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if ( sio_ioctl(O, 89600, 8IT_8 I P NONE I STOP_2) != 0) 
{ 

clrscr () ; 

printf("Port #%d IOCTL error !\n", port); 
exit (0) ; 

printf("\nDo you want to receive file or command from Network 
Computer? 'Y' or 'N' ?"); 

do 
{ 

ch=getch(); 
switch (ch) 
{ 

case'Y' : 
case'y' : 
sio_write(O,"s",I); 
dol 
sio read(O,c,I); 
}whIle(! (strchr(c, '. ') !=NULL)); 
rec_com () ; 
break; 

case'N' : 
case'n' : 
trans_com(); 
break; 
default: 
exit (0); 
break; 
} 

}while(ch!='y' && ch!='Y' && ch!='n' && ch!='N')i 
return 0; 
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FILE 
char 
int 
union{ 

char 

*fp; 
ch,fname[20),data[20); 
port,i; 

c [2) ; 
unsigned int count; 
}cnt; 
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printf("\n\n\nReceive File or command from Network 
Computer .... \n"); 

void 
char 
{ 

char 
int 

printf("Receiveing file %s\n",fname); 
remove(fname); 
if((fp-fopen(fname,"w"))--NULL) { 

printf("cannot open input file\n"); 
exit (0); 

sio_write(0,".",2); 
sio_read(O,data,l); 
cnt.c[O]-data[O]; 
sio_write(0,".",2); 
sio_read(O,data,l); 
cnt.c[l]-data[O]; 
sio_write(0,".",2); 
fori; cnt.count; cnt.count--) 
I 

if ((i - sio read(O, data, 20)) < 0) { 
printf("Port #%d READ error !\n", 5); 

exit(O); 

else if(i) 
I 

} 

data[i] = 0; 
printf("%s",data); 
fputs(data,fp); 

fclose (fp) ; 
printf("\nFile %s has been received.\n"); 
printf("\nPress any key to continue.\n"); 

get_file_name (f) 
* f; 

ch[2],data[20],temp[2]; 
i; 

printf("Receiver Waiting ... \n"); 
dol 
sio read(0,data,2); 
}whlle(! (strchr(data,'?') !-NULL)); 
sio_write(O,".",l); 
fori;;) { 
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} 

void 

sio_write(O,".",l); 
do{ 
sio_read(O,data,2); 
*f=data[O); 
ch[O)=*f; 
}while(ch[O)=='?'); 
for(i=1;i<=30000;i++) i++; 
f++; 
if ( ch [ ° ) == , \ 0 ' ) 
break; 

wait () 

char c(2); 
c[O)='\O'; 
do{ 
sio_read(O,c,2); 
} while (c (0) ! =' ?' ) ; 

void trans_com() 

int c; 
char ch[2]; 
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printf("\n\n\nDo you want to transmit file to Network 
Computer? 'Y' or 'N' ?"); 

do 
{ 

c=getch(); 
switch(c) 
{ 

case'Y': 
case'y' : 
sio_write(O,"r",l); 
ch [ ° ) = , \ ° ' ; 
dol 
sio_read(O,ch,l); 
}while (! (strchr (ch,'.') !=NULL»; 
transO_com () ; 
break; 

case'N': 
case'n' : 
exit(O); 
break; 
default: 
exit(O); 
break; 
} 

}while(c!='Y' && c!='y' && c!='N' && c!='n'); 

void transO_com() 
{ 

FILE 
char 

*fPi 
fname[20], buffer(2),data[20],ch[2]; 
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int i,data_item; 

union 
char c[2]; 
unsigned int count; 

cnt; 
send file name(fname); 
buffer[O]~'\O' ; 
if«fp=fopen(fname,"r"))==NULL) ( 

} 

printf("cannot open input file\n"); 
exit(O); 

ch [0] =' \ 0' ; 
printf("sending file %s\n",fname); 
cnt.count=filesize(fp); 
printf("File size %d\n",cnt.count); 
ch[O]=cnt.c[O]; 
sio_write(O,ch,I); 
wait () ; 
ch[O]=cnt.c[I]; 
sio_write(O,ch,I); 
dol 

buffer[O]=getc(fp); 
if(ferror(fp)) ( 

} 

printf("error reading input file"); 
break; 

if(!feof(fp)){ 
for(i=1;i<=30000;i++) i++; 
sio_write(O,buffer,I); 
} 

while(!feof(fp)); 
fclose (fp); 
printf(" \n\nThe file have been sent out\n"); 

unsigned int filesize(fp) 
FILE *fp; 
( 

unsigned long int i; 

i=O; 
dol 

getc (fp) ; 
i++; 
}while(!feof(fp)); 
rewind (fp) ; 
return i-I; 
} 

void 
char 
{ 

send_file_name(fname) 
*fname; 

char buffer[2],ch[2]; 
printf("\n\nTransmitter Waiting ... \n"); 
printf("\n\nlnput the file name:"); 
scanf("%s",fname); 
if (strcmp(fname,"esc")==O I I strcmp(fname,"ESC")==O) 
exit (0); 
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do 
sio_write(O,"?",l); 
sio_read(O,ch,l); 
while ( ! (strchr (ch, , . ' ) ! =NULL) ) ; 

printf("\n\nsending filename %s\n",fname); 
for ( ; ;) { 

dot 
buffer[O)=*fname; 
sio_write(O,&buffer,l); 
sio_read(O,ch,l); 
while (ch (0) ! =' . ' ) ; 

fname++; 
if (* fname==' \ 0') { 
sio_write(O, '\0',1); 

} 

printf(" \n\nThe filename have been sent out\n"); 
break; 

get_data(char *cmdline) 
int port, i,j=l, rlt=l; 
char anychar, endch='x', data(100), *p,ch; 
do { 

port=7; 
if ((i= sio_read(port, data, 100)) < 0) 
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/* read the result after the controller run the command str 
*/ 

} 

printf("Port I%d READ error !\n", port); 
ex1t(O); 

rlt=O; if ( (i==O)&(j==O)&(endch=='. ') 
/* the exit of the unlimited recursion 

if (i) { 
j=O ; 
data[il=O; 
printf("%s",data); 
endch=data[i-11; /* 
p=strchr(data, '?'); 
if (p!=NULL ) return 

set the.end status 

while (rlt) ; 

'?' . . , 

if ( (cmdline [01 ==' 1 ' ) I I (cmdline [0 1 ==' L') ) { 
printf(" save? (Y/N): "); 
anychar=getch(); 
if ( (anychar=='y') I I (anychar=='Y') ) { 

sio_write(7,cmdline,strlen(cmdline))i 
write_data(cmdline); 

return endch; 

write_data(char * cmdline) 
{ 

int port, i,j=l, rlt=li 
char endch='x', data[1001; 
char *fname, *filename; 
FILE *fPi 
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filename= strchr(cmdline, I '); 

split_space(fname,filename); 
if ( (fp=fopen(fname,"w+") )==NULL) 

printf("Cannot open file"); 
exit (1); 

} 

do { 
port=7; 
if ((i= sio_read(port, data, 100)) < 0) 
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1* read the result after the controller run the command str 
*1 

} 

printf("Port I%d READ error !\n", port); 
exit (0); 

rlt=O; if ( (i==O)&(j==O)&(endch=='.') 
1* the exit of the unlimited recursion 

1* 

if (i) { 
j=O; 
data[i)=O; 

printf(" I am ZJX 
fprintf(fp,"%s",data); 
endch=data [i-1); 1* set 

while 
fileptr=fp; 

return 0; 

rlt) ; 

") ; * I 

the end status 

void split_space(char * out, char* str) 
{ 

int t=O; 
do { 

if (isspace(str[t))) t++; 
else { 

*out=str[t]; 
t++; 
out++; 

while(! str[t)=='\O'); 
*out='\O'; 

assembly () 
{ 

char *power; 
int k; 
float delayl; 

cleardevice(); 
restorecrtmode(); 

robot_init(); 

II monitor_com(); 

printf("\nPlease input your name: H); 
gets(name): 
strlwr(name); 
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posl=strlen(name); 

printf("\n"); 

for (i=O; i<=posl-l; i++) 
{ strname[i)='?'; } 

charact(); 

for (i=O; i<=posl-l; i++) 
{ midvar[i)=strname[i); 

strrev(name); 
charact(); 
strcpy (namexu,"do move home"); 
monitor_com(); 
strcpy (namexu, "ex main3"); 
monitor_com(); 
strcpy (namexu,"ex main2"); 
monitor_com(); 

/1 printf("The Input Name is 

for (i=O; i<=posl-l; i++) 
{ 

if ( midvar[i]=='?') 
{ 

\n "); 

midvar[i)=strname[posl-i-l]; 

II printf("%c", midvar[i)); 
if (i==O) 

{ strcpy (namexu,"do set lo=p21"); 
monitor_com(); 
for (k=l; k<=lOO; k++) II this is for delay. 

{ 
delayl=sin (k); 
} 

chmove(); 

if (i==l) 
{ strcpy (namexu,"do set lo=p22"); 

monitor_com(); 
for (k=l; k<=lOO; k++) II this is for delay. 

{ 
delayl=sin (k); 
} 

chmove(); 

if (i==2) 
{ strcpy (namexu,"do set lo=p23"); 

monitor_com() ; 
for (k=l; k<=lOO; k++) II this is for delay. 

{ 

delayl=sin (k); 
} 

chmove(); 

if (i==3) 
{ strcpy (namexu,"do set lo=p24"); 

monitor_com () ; 
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for (k=l; k<=lOO; k++) II this is for delay. 
( 

delayl=sin (k) ; 
} 

chrnove(); 
} 

if (i==4) 
{ strcpy (narnexu, "do set lo=p25"); 

monitor corn () ; 
for (k=l; k<=100; k++) II this is for delay. 

( 
delayl=sin (k) ; 
} 

chmove(); 

if (i==5) 
strcpy (narnexu, "do set lo=p26") ; 
monitor corn () ; -
for (k=l; k<=lOO; k++) II this is for delay. 

( 
delayl=sin (k) ; 
} 

chrnove(); 
} 

if (i==6) 
{ strcpy (narnexu, "do set lo=p27"); 

monitor corn () ; 
for (k=l; k<=lOO; k++) II this is for delay. 

( 

delayl=sin (k) ; 
} 

chrnove()i 

if (i==7) 
{ strcpy (narnexu, "do set lo=p28"); 

monitor corn ( ) ; 
for (k=l; k<=lOOi k++) II this is for delay. 

( 
delayl=sin (k) ; 
} 

chrnove()i 
} 

if (i==8) 
{ strcpy (narnexu, "do set lo=p29"); 

monitor corn ( ) ; 
for (k=l; k<=lOO; k++) II this is for delay. 

( 
delayl=sin (k) ; 
} 

chmove()i 
} 

if (i==9) 
{ strcpy (narnexu, "do set lo=p20")i 

monitor corn () i 
for (k=li k<=lOO; k++) II this is for delay. 

( 

delayl=sin (k) i 
} 

chrnove()i 
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main () ; 

getch(); 
return 0; 

charact() 
{ 

for (i =1; i<=28; i++) 
position */ 

{ if (i==l) 
( chv='a'; 

namecomp(); 
} 

if (i==2 ) 
( chv='b'; 

namecomp () ; 

if (i==3) 
( chv='c'; 

namecomp(); 
} 

if (i==4) 
{ chv='d' ; 

namecomp(); 
} 

if (i==5) 
{ chv='e'; 

namecomp(); 
} 

if (i==6) 
( chv='f'; 

namecomp(); 
} 

if (i==7 
{ chv='g' ; 

namecomp () ; 
} 

if (i==8 ) 

{ chv='h'; 
namecomp(); 

if (i==9 ) 

{ chv='i'; 
namecomp()i 

} 

if (i==10 ) 
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/* locat the charaters and 
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chv='j'i 
namecomp () ; 

if ( i==ll ) 

{ chv='k'i 
namecomp(); 

} 

if (i==13 ) 

{ chv='l'i 
namecomp()i 

if (i==13 ) 

{ chv='m'i 
namecomp(); 

if (i==14 ) 

{ chv='n'i 
namecomp(); 

if (i==15 ) 

{ chv='O'i 
namecomp()i 

if (i==16 ) 
{ chv='P'i 

namecomp()i 

if (i==17 ) 

{ chv='q'i 
namecomp(); 

if (i==18 ) 

{ chv='r'i 
namecomp()i 

if ( i==19 ) 

{ chv='S'i 
namecomp ( ) i 

if (i==20 ) 

{ chV='t'i 
namecomp(); 

if (i==21 ) 

{ chv='U'i 
namecomp()i 

if (i==22 ) 

{ chv='V'i 
namecomp ( ) ; 

if (i==23 ) 

{ chV='W'i 
namecomp () ; 

if (i==24 ) 

{ chv='x'i 
namecomp()i 

if (i==25 ) 

{ chv='Y'i 
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namecomp(); 
} 

if (i==26 ) 

{ chv='z'; 
namecomp()i 

if (i==27 ) 
{ chv=' , . , 

namecomp()i 

if (i==28 ) 

{ chv=' . ' ; 
namecomp(); 

return 0; 
) 

chmove () 

int k; 
float delayl; 

if (midvar [ij ==' a') 
{ strcpy (namexu," ex aa ") ; 

monitor com () i 

for (k=l; k<=lOO; k++) II this is for delay. 
{ 

delayl=sin (k) ; 
} 

if (midvar [i j ==' b' ) 
{ strcpy (namexu," ex bb") ; 

monitor com () ; 
for (k=l; k<=lOO; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
} 

if (midvar[ij=='c' ) 
{ strcpy (namexu," ex cc") ; 

monitor com () ; 
for (k=l; k<=lOO; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
) 

if (midvar [i j ==' d' ) 
{ strcpy (namexu," ex dd") ; 

monitor com () ; 
for (k=l; k<=lOO; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
} 

if (midvar[ij=='e') 
{ strcpy (namexu," ex ee") ; 
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monitor com() i -
for (k=l; k<=100; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
} 

if (midvar [i) ==' f'} 
{ strcpy (namexu," ex ffll); 

monitor com() ; 
for (k=l; k<=100; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
} 

if (midvar[i]=='g' ) 
{ strcpy (namexu," ex gg") ; 

monitor com() ; 
for (k=l; k<=100; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
) 

if (midvar[ij=='h' ) 
{ strcpy (namexu," ex hh") ; 

monitor com() ; 
for (k=l; k<=100; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
) 

if (midvar [i) ==' i') 
{ strcpy (namexu,"ex ii ") ; 

monitor com () ; 
for (k=l; k<=100; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
) 

if (midvar [i) ==' j') 
{ strcpy (namexu," ex j j ") i 

monitor com () ; 
for (k=l; k<=100; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
) 

if (midvar [ij ==' k') 
{ strcpy (namexu,"ex kk") ; 

monitor com() ; 
for (k=l; k<=100; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
} 

if (midvar[ij=='l') 
{ strcpy (namexu," ex 11") ; 

monitor com () ; 
for (k=l; k<=100; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
) 
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if (midvar[i]=='m' ) 
{ strcpy (namexu, "ex rom"); 

monitor com() ; -
for (k=l; k<=lOO; k++) II this is for delay. 

( 

delayl=sin (k) ; 
} 

if (midvar [i) =='n') 
{ strcpy (namexu,"ex nn") ; 

monitor com() ; 
for (k=l ; k<=lOO; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
} 

if (midvar[i]=='o' ) 
{ strcpy (namexu,"ex 00") ; 

monitor com() ; 
for (k=l; k<=lOO; k++) II this is for delay. 

( 

delayl=sin (k) ; 
} 

} 

if (midvar [i) ==' p' ) 
{ strcpy (namexu, "ex pp") ; 

monitor com() ; 
for (k=l; k<=lOO; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
} 

if (midvar[i]=='q' ) 
{ strcpy (namexu,"ex qq") ; 

monitor com () ; 
for (k=l; k<=lOO; k++) II this is for delay. 

( 

delayl=sin (k) ; 
} 

if (midvar[i]=='r') 
{ strcpy (namexu,"ex rr") ; 

monitor com () ; 
for (k=l; k<=lOO; k++) II this is for delay. 

( 

delayl=sin (k) ; 
} 

if (midvar[i]=='s') 
{ strcpy (namexu,"ex ss") ; 

monitor_com() ; 
for (k=l; k<=lOO; k++) II this is for delay. 

{ 

delayl=sin (k) ; 
} 

if (midvar[i]=='t') 
{ strcpy (namexu,"ex tt") ; 

monitor com() ; -
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for (k=lj k<=lOOj k++) II 
{ 

delayl=sin (k) j 

} 

if (midvar[i]=='u' ) 
{ strcpy (namexu,"ex uu") j 

monitor com () j -
for (k=l; k<=lOO; k++) II 

( 

delayl=sin (k) ; 
} 

if (midvar[i]=='v' ) 
{ strcpy (namexu," ex Vv") j 

monitor com() i -
for (k=li k<=lOOj k++) 

( 

delayl=sin (k) i 
} 

if (midvar[i]=='w' ) 
{ strcpy (namexu," ex ww") ; 

monitor com () ; 
for (k=l; k<=lOO; k++) 

( 

delayl=sin (k) ; 
} 

if (midvar [iJ ==' x') 
{ strcpy (namexu," ex xx") ; 

monitor com (); 
for (k=li k<=100; 

{ 

delayl=sin (k) ; 
} 

} 

if (midvar[iJ=='y') 
{ strcpy (namexu," ex 

monitor com() ; 
for ( k=l; k<=100; 

{ 

delayl=sin (k) ; 
} 

} 

if (midvar [iJ ==' z') 
{ strcpy (namexu," ex 

monitor com () ; -
for (k=li k<=lOOj 

( 
delayl=sin (k) j 

} 

namecomp () 
{ 

k++) 

yy") i 

k++) 

zz ") ; 

k++) 

II 

II 

II 

II 

II 

this 

this 

this 

this 

this 

this 

this 
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char *ptr; 

I I clrscr () ; 

strcpy(str, name)i 
ptr = (char *) memchr(str, chv, strlen(str»)i 
if (ptr) 

{ 

APPENDIXD 

II printf("The character %c", chv, " is at position: %d\n", ptr 
- str)i 
II printf("\n present string is %s ", ptr)i 

name1=ptri 
II printf("the name1 is %s\n", name1); 

pos=ptr-stri 
II printf("the pos is%d\n", pOS)i 

strname[pos)=chVi 
} 

II else 
II printf("The character was not found\n")i 

II getch(); 
return 0; 

void robot_init() 
{ 

0) 

int 
int 
char 
char 
char 

i,j, port, port1,stat,stat1i 
card_no, total_port,data_itemi 
data(20),filename[20); 

w_data[20),command[20)i 
power, ch,str(20); 

restorecrtmode(); 
clrscr(); 
printf("Reset the moxa cards .... \n"); 
if ((card_no = sio_reset(» == 0) 
{ 

printf("No Card Found !\n")i 
exit (0) i 

printf("Total Card: %d\n", card_no)i 

printf("Read the 10 . ... \n")i 
for (i = 1i i <= card_noi i++) 
{ 

printf("(%d)\tSerial no: %d", i, sio_id(i))i 
printf("\tMapping %X\n", sio_bank(i»i 

printf("Setting port 7 to 9600, N, 8, 1 .... \n"); 
port = 7i 
if ( sio_ioctl(port, B9600, BIT 8 P NONE 

printf("Port I%d IOCTL error !\n", port)i 
exit (0) i 

for (port=6;port<=13;port++) 
{ stat=sio_open(port); 
if(stat != 0) 
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(printf{"Port I%d can not be opened!\n",port); 
exit (O) ; } 
) 

printf{"Do you want to run the power on program? \n"l; 
power=getch{li 
if ( power=='Y'1 I power=='y') 
( 

printf{"Read information from PUMA Controller .... \n"); 
do 

( 

while{kbhit{)==O) 
( 

port=7; 
statl=sio_read{port,data,lOO); 

if (statl>=O) 
( 

data[statl]=O; 
printf{"%s",data); 

} 

do 
{ 

ch=getch{); 
switch (ch) 
{ 

case 'N': 
case 'n': 

w_data[O] = Chi 
w_data[l] = '\r'; 
sio_write{7,w_data,2); 

break; 
default:breaki 

APPENDIXD 

}while{ch!='n' && ch!='N' && ch!='.' && ch!='y' && 
Ch!='Y')i 

}while{ch!='.' && ch!='y'); 
II for power switch. 

II strcpy (namexu,"cal"); 
II monitor_com{); 

moni tor_com ( ) 

*1 
char 

1* send the monitor command to the controller, It accepts 
the monitor varibale "strl" and send to Robot Controller 

endch='X'i 
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I I for ( ; ;) ( 
II if( endch=='?') 

l*printf("\nPlease input data: " ); *1 
II gets(strl); 

II strcat(strl,"\r"); 
II sio write(7,strl,strlen(strl)); 
II endch=get data(strl)i 

I I } -
II printf("\nlnput the command_line:\n")i 
strcpy (strl, namexu)i 
if(fileptr!=NULL) fclose(fileptr}; 
II if(!strcmp(strl,"esc")) menu()i 

APPENDIXD 

1* the exit of the unlimited recursion *1 
strcat(strl,"\r"); 
sio_write(7,strl,strlen(strl)); 1* send the command to puma 

controller 

endch=get_data(strl); 

II } 
} 

void mainn () 
( 

int xl,yl,ci 
/* int driver, mode; 
register int i; 
driver=DETECT; 

and the controller runs the command *1 

mode=O; 
initgraph(&driver,&mode,"c:\\tc\\bgi"); *1 

settextstyle(TRIPLEX_FONT,HORIZ_DIR,4); 
setbkcolor(CYAN); 
outtextxy(200,120,"WELCOME TO"); 
outtextxy(145,220,"LANSING ROBOT WORLD"); 
settextstyle(TRIPLEX_FONT,HORIZ_DIR,l)i 
outtextxy(250,400,"CLICK TO START"); 
do 

( 

get_mouse(): 
if (buttons==l) 

( 
cleardevice(); 
menuu()i 

} 

}while(buttons!=3); 
1* getch()i 
cleardevice()i 
menuu()i *1 

void menuu ( ) 
{ 

int c: 
1* int driver,mode; 
register int ii 
driver = DETECT: 
mode = 0: 
initgraph(&driver,&mode,"c:\\tc\\bgi"): */ 

D - 33 



setbkcolor(LIGHTRED); 
settextstyle(TRIPLEX_FONT,HORIZ_DIR,l); 
outtextxy(120,50,"Selection of Lansing Robot Control H); 
setfillstyle(SOLID_FILL,CYAN); 
bar3d(128,144,488,184,O,O); 
outtextxy(140,150,"1. Mouse and Screen Method"); 
setfillstyle(SOLID_FILL,CYAN)i 
bar3d(128,192,488,232,O,O); 
outtextxy(140,200,"2. User Friendly Teaching Method"); 
setfillstyle(SOLID_FILL,CYAN); 
bar3d(128,240,488,280,O,O); 
outtextxy(140,250,"3. EXIT"); 
outtextxy(210,400," Enter Your Choice "); 
gotoxy(l,l); 
show_mouse(); 
do 

{ 

get_mouse(); 
if(xl>=16&&xl<=61) 
{ 

if(yl>=18&&yl<=23&&(buttons==11Ibuttons==2)) 
{ 

hide_mouse(); 
cleardevice(); 
mouse(); 

} 

if(yl>=24&&yl<=29&&(buttons==11Ibuttons==2» 
{ 

} 

hide_mouse(); 
closegraph(); 
mainll () ; 

if (yl>=30&&yl<=35&& (buttons==l I Ibuttons==2» 
{ 

} 

hide_mouse(); 
cleardevice(); 
main(); 

}while(buttons!=3); 
/* do 

( 

c=getch(); 
switch (e) 
{ 

case'l': 
cleardeviee(); 
mouse(); 
break; 

case'2': 
closegraph(); 
mainll () ; 
break; 

case'3': eleardeviee()i 
main () i 
break; 

default: 
break; 

}while(c!='l' && c!='2' && c!='3'); */ 
} 
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void mouse ( ) 
{ 1* request auto detection *1 
1* int driver = DETECT, mode, errorcode; *1 

int i; 

1* initialize graphics, local variables*1 
II initgraph(&driver, &mode, "c:\\tc\\bgi"); 

1* read result of initialization */ 
II errorcode = graphresult(); 
II if (errorcode != grOk) 1* an error occurred *1 
II { 
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II printf("Graphics error: %s\n", grapherrormsg(errorcode)); 
II printf("Press any key to halt:"); 
I I getch () ; 
II exit(l); /*terminate with error code *1 
II 

1* midx = getmaxx() / 2; 
midy = getmaxy() I 2; */ 

setbkcolor(BLUE); 
setfillstyle(EMPTY_FILL, getmaxcolor()); 
settextstyle(DEFAULT FONT,HORIZ DIR,l); 
1* draw the 3-d bar */ -
setfillstyle(SOLID_FILL,RED); 
bar3d(592,16,623,47,0,0); 
outtextxy(593,30,"EXIT"); 
setfillstyle(SOLID_FILL,GREEN); 
bar3d(592,56,623,87,0,0); 
outtextxy(596,64,"JOB"); 
outtextxy(593,76,"SAVE"); 
bar3d (592,96,623,127, 0, 0); 
outtextxy(593,104,"SAVE"); 
outtextxy(596,116,"END"); 
setfillstyle(SOLID_FILL,LIGHTGRAY); 
bar3d(16,152,87,183,0,0); 
outtextxy(28,166,"DISP 1"); 
bar3d(96,152,167,183,0,0); 
outtextxy(108,166,"DISP 2"); 
bar3d(176,152,247,183,0,0); 
outtextxy(188,166,"DISP 3"); 
bar3d(256,152,327,183,0,0); 
outtextxy(268,166,"DISP 4"); 
bar3d(384,152,415,183,0,0); 
outtextxy(392,166,"UP"); 
bar3d(472,152,503,183,0,0); 
outtextxy(486,166,"1"); 
bar3d(512,152,543,183,0,0); 
outtextxy(526,166,"2"); 
bar3d(552,152,583,183,0,0); 
outtextxy(566,166,"3"); 
bar3d(592, 152, 623, 183, 0, 0); 
outtextxy(606,166,"4"); 

bar3d(16,192,47,223,0,0) ; 
outtextxy(17,200,"CALL"); 
outtextxy(30,212,"n"); 
bar3d(56,192,87,223,0,0); 
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outtextxy(57,200,"CALL"); 
outtextxy(70,212,"xl"); 
bar3d(96,192,127,223,O,O); 
outtextxy(104,200,"DO"); 
outtextxy(110,212,"n"); 
bar3d(136,192,167,223,O,O); 
outtextxy(144,200,"DO"); 
outtextxy(137,212,"WHIL"); 
bar3d(176,192,207,223,O,O); 
outtextxy(190,206,"C"); 
bar3d(216,192,247,223,O,O); 
outtextxy(230,206,"D"); 
bar3d(256,192,287,223,O,O); 
outtextxy(270,206,"E"); 
bar3d(296,192,327,223,O,O); 
outtextxy(310,206,"F"); 
bar3d(344,192,375,223,O,O); 
outtextxy(345,206,"LEFT"); 
bar3d(384,192,415,223,O,O); 
outtextxy(398,206,"H"); 
bar3d(424,192,455,223,O,O); 
outtextxy(425,206,"RIGH"); 
bar3d(472,192,503,223,O,O); 
outtextxy(473,200,"PAGE"); 
outtextxy(476,212,"CTL"); 
bar3d(512,192,543,223,O,O); 
outtextxy(513,200,"MACH"); 
outtextxy(513,212,"LOCK"); 
bar3d(552,192,583,223,O,O); 
outtextxy(556,200,"OUT"); 
outtextxy(560,212,"ON"); 
bar3d(592,192,623,223,O,O); 
outtextxy(593,200,"MEAS"); 
outtextxy(600,212,"ON"); 

bar3d(16,232,47,263,O,O); 
outtextxy(20,240,"PFM"); 
outtextxy(30,252,"n"); 
bar3d(56,232,87,263,O,O); 
outtextxy(64,246,"IF"); 
bar3d(96,232,127,263,O,O); 
outtextxy(97,246,"THEN"); 
bar3d(136,232,167,263,O,O); 
outtextxy(137,246,"ELSE"); 
bar3d(176,232,207,263,O,O); 
outtextxy(190,246,"8"); 
bar3d(216,232,247,263,O,O); 
outtextxy(230,246,"9"); 
bar3d(256,232,287,263,O,O); 
outtextxy(270,246,"A"); 
bar3d(296,232,327,263,O,O); 
outtextxy(310,246,"B"); 
bar3d(384,232,415,263,O,O); 
outtextxy(385,246,"DOWN"); 
bar3d(472,232,503,263,O,O); 
outtextxy(473,246,"EDIT"); 
bar3d(512,232,543,263,O,O); 
outtextxy(513,246,"DIAG"); 
bar3d(552,232,583,263,O,O); 
outtextxy(553,246,"TAPE"); 
bar3d(592,232,623,263,O,O); 
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outtextxy(593,246,"MONI"); 

bar3d (16,272,47,303,0,'0) : 
outtextxy(17,286,"BEGN"): 
bar3d(56,272,87,303,O,O): 
outtextxy{60,286,"END"); 
bar3d(96,272,127,303,O,O); 
outtextxy(97,286,"WAIT"); 
bar3d(136,272,167,303,O,O); 
outtextxy(140,286,"OUT"): 
bar3d(176,272,207,303,O,O); 
outtextxy(190,286,"4"); 
bar3d(216,272,247,303,O,O); 
outtextxy{230,286,"5"); 
bar3d(256,272,287,303,O,O); 
outtextxy(270,286,"6"); 
bar3d(296,272,327,303,O,O); 
outtextxy(310,286,"7"); 
bar3d(344,272,375,303,O,O); 
outtextxy(348,280,"JOB"); 
outtextxy(345,292,"STEP"); 
bar3d{384,272,415,303,O,O); 
outtextxy(385,280,"PROG"); 
outtextxy(385,292,"STEP"); 
bar3d(424,272,455,303,O,O); 
outtextxy(428,286,"TWO"); 
bar3d(472,272,503,303,O,O); 
outtextxy(476,280,"JOB"): 
outtextxy(473,292,"TECH"); 
bar3d{512,272,543,303,O,O); 
outtextxy(513,280,"PROG"); 
outtextxy(513,292,"TECH"); 
bar3d(552,272,583,303,O,O); 
outtextxy(553,280,"PLAY"); 
outtextxy(553,292,"BACK"); 
bar3d(592,272,623,303,O,O); 
outtextxy(593,280,"MODE"); 
outtextxy{606,292,"xl"); 

bar3d(16,312,47,343,O,O); 
Quttextxy(20,326,"AND"); 
bar3d(56,312,87,343,O,O); 
outtextxy(64,326,"OR"); 
bar3d(96,312,127,343,O,O); 
outtextxy(100,326,"EOR"): 
bar3d(136,312,167,343,O,O); 
outtextxy(140,326,"NOT"); 
bar3d(176,312,207,343,O,O); 
outtextxy(190,326,"O"); 
bar3d(216,312,247,343,O,O); 
outtextxy(230,326,"1"): 
bar3d(256,312,287,343,O,O): 
Quttextxy(270,326,"2"); 
bar3d{296,312,327,343,O,O): 
outtextxy(310,326,"3"); 
bar3d(344,312,375,343,O,O); 
Quttextxy(348,326,"JOB"); 
bar3d(384,312,415,343,O,O); 
outtextxy(385,326,"PROG"); 
bar3d(424,312,455,343,O,O); 
Quttextxy{428,326,"ONE"); 
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bar3d(16,352,47,383,O,O); 
outtextxy(17,366,"ENTR"); 
bar3d(56,352,87,383,O,O); 
outtextxy(57,366,"CONS"); 
bar3d(96,352,127,383,O,O); 
outtextxy(100,366,"DUP"); 
bar3d(136,352,167,383,O,O); 
outtextxy(137,366,"REMV"); 
bar3d(176,352,207,383,O,O); 
outtextxy(190,360,"/"); 
outtextxy(177,372,"HEXA"); 
bar3d(216,352,247,383,O,O); 
outtextxy(230,366,"-"); 
bar3d(256,352,287,383,O,O); 
outtextxy(270,366,"."); 
bar3d(296,352,327,383,O,O); 
outtextxy(310,366,","); 
bar3d(472,352,543,383,O,O); 
outtextxy(488,366,"RESET"); 
bar3d(552,352,623,383,O,O); 
outtextxy(562,366,"RECOVER"); 

bar3d(16,392,47,423,O,O); 
outtextxy(20,400,"JOB"); 
outtextxy(20,412,"END"); 
bar3d(56,392,87,423,O,O); 
outtextxy(60,400,"CLR"); 
outtextxy(60,412,"CTR"); 
bar3d(96,392,127,423,0,0); 
outtextxy(100,400,"ADD"); 
outtextxy(100,412,"CTR"); 
bar3d(136,392,167,423,O,O); 
outtextxy(140,400,"CHK"); 
outtextxy(140,412,"CTR"); 
bar3d(176,392,207,423,O,O): 
outtextxy(184,406,"SP"); 
bar3d(216,392,247,423,0,0); 
outtextxy(230,406,"+"); 
bar3d(256,392,287,423,O,O); 
outtextxy(270,406,"*"); 
bar3d(296,392,327,423,O,O); 
outtextxy(310,406,"&"); 
bar3d(344,392,375,423,0,0); 
outtextxy(348,406,"DEL"); 
bar3d(384,392,415,423,O,O); 
outtextxy(388,406,"CHG"); 
bar3d(424,392,455,423,O,O); 
outtextxy(428,406,"ADD"); 
bar3d(472,392,543,423,0,O); 
outtextxy(488,406,"START"); 
bar3d(552,392,623,423,O,O); 
outtextxy(558, 406, "SERVO ON"); 

bar3d(16, 432, 47,463,0,0); 
outtextxy(20,440,"SEL"); 
outtextxy(17,452,"MREG"); 
bar3d(56,432,87,463,0,0) ; 
outtextxy(60,440,"CLR"); 
outtextxy(57,452,"MREG"); 
bar3d(96,432,127,463,0,0); 
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outtextxy(lOO,440,"ADD"); 
outtextxy(97,452,"MREG"); 
bar3d(136,432,167,463,O,O); 
outtextxy(137,440, "UNIT"); 
outtextxy(137,452,"MREG"); 
bar3d(176,432,207,463,O,O): 
outtextxy(177,446,"CNCL"); 
bar3d(216,432,247,463,O,O); 
outtextxy(220,440,"RUB"); 
outtextxy(220,452,"OUT"); 
bar3d(256,432,327,463,O,O); 
outtextxy(280,446,"SET"); 
bar3d(384,432,415,463,O,O)i 
outtextxy(385,446,"TECH"); 
bar3d(472,432,543,463,O,O); 
outtextxy(492,446,"STOP"); 
bar3d(552,432,623,463,O,0): 
outtextxy(553,446,"SERVO OFF"): 

/* settextstyle(DEFAULT FONT,HORIZ DIR,l): 
outtextxy(592,23,"UNIT~); -
outtextxy(592,35,"MREG"); 
outtextxy(592,29,"EXIT"): */ 
/* int xl,yl,c: 

int driver, mode; 
register int i; 
driver==DETECT; 
mode=O: 

initgraph(&driver, &mode, "c:\\tc\\bgi"): 
setbkcolor(LIGHTBLUE): 
settextstyle (TRIPLEX_FONT, HORIZ_DIR, 1): 
restorecrtmode(): 
clrscr (); * / 
outtextxy(120, 50, "KEYBOARD OF LANSING ROBOT"): 

/* bar3d(15,15,576,143,O,O):*/ 
/* bar3d(): */ 
mouse_function(); 

} 

void mouse_function() 
{ 

FILE *fp; 
char fn[20): 

gotoxy(l,l); 
show mouse(): 

/* inIt_mouse():*/ 
do 

{ 

get_mouse(): 
gotoxy(l,l): 
printf("%d,%d",xl,yl); 

if (xl>=74&&xl<=77&&yl>=2&&yl<=5&&buttons==1) 
{ 

/* cleardevice(): 
outtextxy(l50,50,"ARE YOU ALRIGHT"): 
menuu(): */ 
hide_mouse(): 
cleardevice(); 

menuu(): 
/* exit (0): */ 

} 
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1* if(xl>=74&&xl<=77&&yl>=7&&yl<=lO&&buttons==1) 

printf("Please input file name: H); 
gets(fn); 

if((fp=fopen(fn,"w"))==NULL) 
( 

} 

printf("Can not create file\n"); 
return; 

printf("Please input JOB procedure:\n"); 
} * I 

if(yl>=19&&yl<=22) 
( 
if(xl>=2&&xl<=lO&&buttons==1) 

( 
sio_putch(13,50); 
sound(2500); 
delay(200); 
nosound () ; 

II sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 

if(xl>=13&&xl<=20&&buttons==1) 
( 
sio_putch(13,194); 
sound(2500);delay(100);nosound(); 
sio_putch(13,O); 

} 
if(xl>=22&&xl<=30&&buttons==1) 

( 
sio putch(13,34); 
sou~d(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 

if(xl>=32&&xl<=40&&buttons==1) 
( 
sio putch(13,210); 
sound(2500);delay(100);nosound(); 
sioyutch(13,0); 

} 

if(xl>=48&&xl<=51&&buttons==1) 
( 

} 

sio putch(13,207); 
sound(2500);delay(lOO);nosound()i 
sio_putch(13,O); 

if (xl>=59&&xl<=62&&buttons==1) 
( 
sio_putch(13,52); 
sound(2500);delay(lOO);nosound(); 
sio_putch (13,0) ; 

} 

if(xl>=64&&xl<=67&&buttons==1) 
( 

} 

sio putch(13,196); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O)i 

if (xl>=69&&xl<=72&&buttons==1) 
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sio putch(13,36); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 

if(xl>=74&&xl<=77&&buttons==1) 
{ 

} 

sio_putch(13,212); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

if(yl>=24&&yl<=27) 
{ 

if(xl>=2&&xl<=5&&buttons==1) 
{ 

sio_putch(13,118); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13, 0); 

} 
if(xl>=7&&xl<=10&&buttons==1) 

{ 
sio_putch(13,134); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

) 
if(xl>=13&&xl<=15&&buttons==1) 

{ 
sio putch(13,102); 
sound(2500);delay(lOO);nosound(); 
sio_putch (13,0); 

) 
if(xl>=17&&xl<=20&&buttons==1) 

{ 

) 

sio putch(13,150); 
sound(2500);delay(lOO);nosound(); 
sio_putch (13,0); 

if (xl>=22&&xl<=25&&buttons==1) 
{ 

sio_putch(13,86); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O) ; 

) 
if(xl>=27&&xl<=30&&buttons==1) 

{ 
sio putch(13,166); 
sound(2500);delay(100);nosound(); 
sio_putch (13, 0) ; 

} 
if(xl>=32&&xl<=35&&buttons==1) 

{ 

sio_putch(13,70); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=37&&xl<=40&&buttons==1) 

{ 
sio putch(13,182); 
sound(2500);delay(lOO);nosound(); 
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sio_putch(13,O); 
} 

if(xl>=43&&xl<=46&&buttons==1) 
{ 

sio_putch(13,47); 
sound(2500);delay(100);nosound(); 
sio_putch (13, 0) ; 

} 

if(xl>=48&&xl<=51&&buttons==1) 
{ 

sio~utch(13/63); 
sound(2500);delay(100);nosound(); 
sio_putch (13, 0); 

} 
if(xl>=53&&xl<=56&&buttons==1) 

( 
sio_putch(13,31); 
sound(2500);delay(100);nosound(); 
sio_putch (13, 0); 

} 
if(xl>=59&&xl<=62&&buttons==1) 

( 
sio_putch(13,20); 
sound(2500);delay(lOO)inosound()i 
sio_putch(13,0); 

} 
if(xl>=64&&xl<=67&&buttons==1) 

( 

sio putch(13,228); 
sou~d(2500);delay(lOO);nosound()i 
sio~utch(13,0); 

} 
if(xl>=69&&xl<=72&&buttons==1) 

( 

sio_putch(13,4); 
sound(2500);delay(lOO);nosound()i 
sio_putch(13,0); 

} 

if(xl>=74&&xl<=77&&buttons==1) 
( 

} 

sio_putch(13,244); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

if(yl>=29&&yl<=32) 
( 
if(xl>=2&&xl<=5&&buttons==1) 

{ 

sio_putch(13,124); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=7&&xl<=10&&buttons==1) 

( 

sio_putch(13,140); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=13&&xl<=15&&buttons==1) 
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sio putch(13,108); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 

if(xl>=17&&xl<=20&&buttons==1) 
{ 

sio_putch(13,156); 
sound(2500):delay(lOO);nosound{); 
sio_putch(13,O)i 

} 
if(xl>=22&&xl<=25&&buttons==1) 

{ 
sio_putch(13,92); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=27&&xl<=30&&buttons==1) 

{ 

} 

sio_putch(13,172); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

if (xl>=32&&xl<=35&&buttons==1) 
{ 
sio_putch(13,76); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=37&&xl<=40&&buttons==1) 

{ 
sio putch(13,188}; 
sou;d(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=48&&xl<=51&&buttons==1) 

{ 

} 

sio putch(13,223); 
sou;d(2500);delay(lOO);nosound(); 
sio_putch(13,O)i 

if (xl>=59&&xl<=62&&buttons==1) 
{ 

} 

sio putch{13,61); 
sou;d(2500);delay(lOO);nosound(); 
sio_putch(13,O) ; 

if (xl>=64&&xl<=67&&buttons==1) 
( 
sio putch(13,205); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

I 
if(xl>=69&&xl<=72&&buttons==1) 

{ 

sio_putch(13,45) ; 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=74&&xl<=77&&buttons==1) 

{ 
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} 

} 

sio_putch(13,221); 
sound(2500)idelay(lOO);nosound(); 
sio_putch(13,O); 

if(yl>=34&&yl<=37) 
( 

if(xl>=2&&xl<=5&&buttons==1) 
{ 

sio_putch(13,119); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O)i 

} 
if(xl>=7&&xl<=lO&&buttons==1) 

{ 
sio_putch(13,135); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 

if(xl>=13&&xl<=15&&buttons==1) 
{ 
sio_putch(13,103); 
sound(2500);delay(100);nosound(); 
sio_putch(13,O); 

} 
if(xl>=17&&xl<=20&&buttons==1) 

{ 

sio putch(13,151)i 
sound(2500)idelay(lOO)inoSound()i 
sio_putch(13,O)i 

} 
if(xl>=22&&xl<=25&&buttons==1) 

{ 
sio putch(13,87)i 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O)i 

} 

if(xl>=27&&xl<=30&&buttons==1) 
{ 
sio_putch(13,167)i 
sound(2500)idelay(lOO)inosound()i 
sio_putch(13, 0) i 

} 
if(xl>=32&&xl<=35&&buttons==1) 

( 

sio putch(13,71); 
sound(2500);delay(100)inoSound(); 
sio_putch(13, 0) i 

} 
if(xl>=37&&xl<=40&&buttons==1) 

( 
sio_putch(13,183)i 
sound(2500);delay(100)inosound(); 
sio_putch(13,O) ; 

} 
if(xl>=43&&xl<=46&&buttons==1) 

( 

sio_putch(13,62); 
sound(2500)idelay(100)inosound()i 
sio_putch(13, 0) i 
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if(xl>=48&&xl<=51&&buttons==1) 
{ 

} 

sio_putch(13,206)i 
sound(2500)idelay(lOO)inosound()i 
sio_putch(13,O)i 

if (xl>=53&&xl<=56&&buttons==1) 
{ 

sio_putch(13,46)i 
sound(2500);delay(lOO);nosound()i 
sio_putch(13,O); 

} 

if(xl>=59&&xl<=62&&buttons==l} 
( 
sio_putch(13,29)i 
sound(2500};delay(lOO);nosound(); 
sio_putch(13,O); 
bar3d(15,15,576,143,3,l) i 

} 

if(xl>=64&&xl<=67&&buttons==1) 
{ 
sio_putch(13,237); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=69&&xl<=72&&buttons==l} 

( 
sio putch(13,13); 
sound(2500};delay(lOO);nosound(); 
sio_putch(13,O}; 

} 

if(xl>=74&&xl<=77&&buttons==1) 
{ 

} 

sio putch(13,253}; 
sound(2500);delay(lOO);nosound(); 
sio_putch(13, 0) i 

if(yl>=39&&yl<=42) 
( 
if (xl>=2&&xl<=5&&buttons==1) 

{ 

} 

sio putch(13,123)i 
sound(2500)ide1ay(lOO);nosound()i 
sio_putch(13,O); 

if (xl>=7&&xl<=lO&&buttons==1) 
( 
sio_putch(13,139); 
sound(2500);delay(lOO);nosound()i 
sio_putch(13,O); 

} 

if(xl>=13&&xl<=15&&buttons==1) 
( 
sio putch(13,107); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=17&&xl<=20&&buttons==1) 
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sio_putch(13,155); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=22&&xl<=25&&buttons==1) 

{ 

} 

sio_putch(13,91); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

if (xl>=27&&xl<=30&&buttons==1) 
{ 
sio_putch(13,171); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=32&&xl<=35&&buttons==1) 

{ 
sio_putch(13,75); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=37&&xl<=40&&buttons==1) 

{ 
sio_putch(13,187); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=43&&xl<=46&&buttons==1) 

{ 
sio putch(13,222); 
sound(2500) ;delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=48&&xl<=51&&buttons==1) 

{ 
sio putch(13,30); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=53&&xl<=56&&buttons==1) 

( 

} 

sio putch(13,238); 
sound(2500);delay(lOO);nosound(}; 
sio_putch(13,O); 

if(yl>=44&&yl<=47) 
( 
if(xl>=2&&xl<=5&&buttons==1) 

{ 

} 

sio_putch(13,120): 
sound(2500):delay(lOO):nosound(); 
sio_putch(13,O); 

if(xl>=7&&xl<=lO&&buttons==1) 
{ 
sio_putch(13,136)i 
sound(2500);delay(lOO);nosound(); 
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s i ° _pu t ch ( 13, 0) i 

} 
if(xl>=13&&xl<=15&&buttons==1) 

( 

sio_putch(13,104)i 
sound(2500);delay(100);nosound(); 
sio_putch(13,0); 

} 

if(xl>=17&&xl<=20&&buttons==1) 
( 

sio_putch(13,152)i 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=22&&xl<=25&&buttons==1) 

( 
sio_putch(13,88)i 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

) 
if(xl>=27&&xl<=30&&buttons==1) 

( 

} 

sio_putch(13,168); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

if (xl>=32&&xl<=35&&buttons==1) 
( 
sio putch(13,72); 
sound(2500);delay(100);nosound(); 
sio_putch (13, 0) ; 

) 
if(xl>=37&&xl<=40&&buttons==1) 

( 
sio putch(13,184); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 

if(xl>=59&&xl<=67&&buttons==1) 
( 
sio putch(13,53); 
sound(2500)idelay(lOO);nosound(); 
sio_putch (13, 0); 

} 
if(xl>=69&&xl<=77&&buttons==1) 

( 

} 

sio_putch(13,213); 
sound(2500);delay(lOO);nosound(); 
sio_putch (13, 0); 

if(yl>=49&&yl<=52) 
( 
if(xl>=2&&xl<=5&&buttons==1) 

( 
sio putch(13,122); 
sound(2500)idelay(100);nosound(); 
sio_putch(13,O); 

} 

if(xl>=7&&xl<=10&&buttons==1) 
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sio_putch(13,138); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 

if(xl>=13&&xl<=15&&buttons==1) 
( 
sio_putch(13,106); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=17&&xl<=20&&buttons==1) 

( 

sio_putch(13,154); 
sound(2500);delay(100);nosound(); 
sio_putch(13,O); 

} 
if(xl>=22&&xl<=25&&buttons==1) 

( 
sio_putch(13,90); 
sound(2500);delay(100);nosound(); 
sio_putch(13,0); 

) 
if(xl>=27&&xl<=30&&buttons==1) 

{ 

} 

sio_putch(13,170); 
sound(2500);delay(100);nosound(); 
sio_putch(13,0); 

if (xl>=32&&xl<=35&&buttons==1) 
( 

sio putch(13,74)i 
sound(2500)idelay(lOO)inosound()i 
sio_putch(13,O); 

} 
if(xl>=37&&xl<=40&&buttons==1) 

{ 

sio putch(13,186); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if(xl>=43&&xl<=46&&buttons==1) 

{ 

sio_putch(13,51); 
sound(2500);delay(100);nosound(); 
sio_putch(13,O); 

} 
if(xl>=48&&xl<=51&&buttons==1) 

( 

} 

sio_putch(13,195); 
sound(2500);delay(100);nosound(); 
sio_putch(13,O) ; 

if (xl>=53&&xl<=56&&buttons==1) 
{ 

sio_putch(13,35); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13, 0); 

} 

if(xl>=59&&xl<=67&&buttons==1) 
{ 
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sio_putch(13,197}; 
sound(2500};delay(lOO};nosound(}; 
sio_putch(13,0}; 

} 

if(xl>=69&&xl<=77&&buttons==1} 
{ 

} 

sio_putch(13,21}; 
sound(2500};delay(100};nosound(}; 
sio_putch(13,O}; 

if(yl>=54&&yl<=57} 
{ 

if (xl>=2&&xl<=5&&buttons==1) 
{ 

sio_putch(13,121}; 
sound(2500};delay(lOO};nosound(}; 
sio_putch(13,O); 

} 

if(xl>=7&&xl<=10&&buttons==1} 
( 
sio_putch(13,137); 
sound(2500);delay(lOO);nosound(}; 
sio_putch (13, O); 

} 

if(xl>=13&&xl<=15&&buttons==1) 
{ 

sio putch(13,105}; 
sou;d(2500);delay(lOO};nosound(}; 
sio_putch(13,0}; 

} 
if(xl>=17&&xl<=20&&buttons==1} 

( 
sio putch(13,153); 
sou;d(2500);delay(100};nosound(}; 
sio_putch (13, 0); 

} 
if(xl>=22&&xl<=25&&buttons==1} 

{ 

sio putch(13,89}; 
sou;d(2500};delay(lOO);nosound(}; 
sio_putch(13,O}; 

} 
if(xl>=27&&xl<=30&&buttons==1} 

( 
sio_putch(13,169); 
sound(2500};delay(lOO};nosound(); 
sio_putch(13,0); 

} 
if(xl>=32&&xl<=40&&buttons==1) 

{ 

sio_putch(13,73}; 
sound(2500};delay(100};nosound(}; 
sio_putch(13,O); 

} 
if(xl>=48&&xl<=51&&buttons==1) 

( 
sio_putch(13,211); 
sound(2500};delay(100)inosound()i 
sio_putch(13,0}; 
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} 

if(xl>=59&&xl<=67&&buttons==l) 
( 

sio_putch(13,37); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 

} 
if{xl>=69&&xl<=77&&buttons==l) 

{ 

} 

sio_putch(13,229); 
sound(2500);delay(lOO);nosound()i 
sio_putch{13,O); 

if (buttons==2) 
( 

cleardevice(); 
} 

}while(buttons!=3); 
hide_mouse(); 
menuu()i 

void show_mouse{) 

} 

struct REGPACK reg; 
reg.r_ax=l; 
intr(Ox33,&reg); 

void init_mouse() 
( 

} 

struct REGPACK regi 
reg.r_ax=Oi 
intr(Ox33,&reg); 

void get_mouse () 
( 

} 

struct REGPACK reg; 
reg.r_ax=3; 
intr(Ox33,&reg); 
xl=reg.r cx/8; 
yl=reg.r=dx/8; 
buttons=reg.r_bx; 

void hide_mouse() 
( 

) 

struct REGPACK regi 
reg.r_ax=2; 
intr(Ox33,&reg); 

void mainll () 

int i,j,port,stat; 
int card_no,total_port,data_itemi 
char command[20Ji 

restorecrtmode()i 
clrscr(); 
printf("RESET THE MOXA CARDS ...... \n"); 
if ((card_no sio_reset()) == 0) 
{ 
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} 

printf("NO CARD FOUND !\n"); 
exit (0); 

printf ("TOTAL CARD : %d\n", card_no) ; 

printf("READ THE 10 ...... \n"); 
for (i=l; i<=card_no; i++) 
{ 

} 

printf("(%d)\tSerial no: %d",i,sio id(i)); 
printf("\tMapping : %X\n",sio_bank(i)); 

printf("Setting port 13 to 9600, n, 8, 1 ...... \n"); 
port = 13; 
if ( sio_ioctl (port,B9600, 8IT_8 I P_NONE I STOP_I) != 0) 
{ 

} 

printf("Port lid IOCTL error !\n",port); 
exit (0); 

printf("Open port 13 ...... \n"); 
port = 13; 
stat = sio_open(port); 
if(stat != 0) 

{ 

} 

printf("Port 13 can't be opened !\n"); 
exit (0); 

printf("\n\n\nPRESS ANY KEY TO CONTINUE !\n"); 
getch(); 

clrscr(); 

APPENDIXD 

main22(); 
} 

void main22 () 
{ 

char command[20]; 
char Chi 
int i,c; 

printf("NOW LET'S START !\n"); 
printf("I, SWITCH THE CONTROL UNIT POWER ON,WAITING 15 SECONDS\n"); 
printf("2, TURN THE POSITION OF SELECTION SWITCH TO LOW SPEED\n"); 
printf("3, INTUT 'SERVO ON' TO START ROBOT\n"); 
sio_putch(13,O); 
do 
{ 

gets(command); 
i=stricmp(command,"SERVO ON"); 
if(i!= 0) 
printf("Input fault,try it again ..... \n"); 

}while (i! =0) ; 
sio_putch(13,21); 
sound(2500);delay(100);nosound(); 
sio_putch(13,O); 
printf("Press 'ZERO ADJ' on Teaching Box to get zero adjustment\n"); 
printf("Waiting for ready\n"); 
printf("\n\n\nIf Emergency Stop occurs, press and hold ABNOR REL on 

T.B\n"); 
printf("Input 'R' or 'r'to recover, then adjust axises position by 

T.B,\n"); 
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printf("or input 'Y' or 'y' to be continue at normal 
circumstances.\n"); 

do 
( 

ch=getch(); 
switch (ch) 
( 

case'r': 
case 'R': 

sio putch(13,213); 
sound(2S00);delay(100);nosound(); 
sio_putch (13,0); 
for(n=1;n<=20000;n++) {} 
sio_putch(13,2l); 
sound(2S00);delay(100);nosound(); 
sio_putch(13,O); 
printf("Try zero adjustment again\n"); 
break; 

case 'y': 
case 'y': 

break; 
default: break; 

} 
}while(ch!='y' && ch!='Y'); 

printf("Input SERVO OFF to stop preparation\n"); 
do 

( 

gets(command); 
i = stricmp(command,"servo off"); 
if(i!=O) 
printf("Input fault, try it again\n"); 

}while (i! =0); 
sio putch(13,229); 
sound(2S00);delay(lOO);nosound(); 
sio putch(13,O); 
printf("Turn the key position to MOTOR POWER OFF\n"); 
printf("Press any button to continue\n"); 
getch(); 
clrscr () ; 
printf("Selection of Working Mode\n"); 
printf("\n\n\nl. EDIT\n"); 
printf("\n2. JOB TEACH\n"); 
printf("\n3. PROGRAM TEACH\n"); 
printf("\n4. PLAYBACK\n"); 
printf("\nS. EXIT\n"); 
printf("\n\n\n[ Enter Your Choice ]\n"); 
do 

( 

c=getch(); 
switch(c) 

{ 

case' 1 ': edit ( ) ; 
break; 

case'2': jobteach(); 
break; 

case'3': progteach(); 
break; 

case'4': playback(); 
break; 

case'S': clrscr(); 
exit(O); 
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break; 
default: 

break; 

}while(c!='l' && c!='2' && c!='3' && c!='4'&&c!='5'); 

void edit () 
{ 

main () ; 
} 
void j obteach () 
{ 

char ch,str[20]; 
int n,i,xl; 

clrscr(); 
printf("Press and hold button 'A' on T.B,\n"); 
printf("then input 'J' or 'j' to enter Teach Mode .... \n"); 
do 

{ 
ch=getch () ; 
switch (ch) 

{ 

case'J': 
case'j': 

sio putch(13,29); 
sound(2500);delay(lOO);nosound(); 
sio_putch(13,O); 
break; 

default: 
printf("Input fault, try it again\n"); 
break; 

}while(ch!='J' && ch!='j'); 
printf("\n"); 
for(;;) 
{ 

printf(IIInput command number ..... \n"); 

gets (str) ; 
if(strcmp(str,"esc")==Ollstrcmp(str,"ESC")==O) 
{ 

main () ; 
} 

i=atoi(str); 

sio_putch(13,i); 
sound(2500);delay(lOO);nosound(); 
sio putch(13,O); 
printf(IIInput string is %d\n",i); 

} 

void progteach() 
{ 

main () ; 
} 
void playback () 
{ 

main(); 
} 
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