
Mittag-Leffler state estimator design and

synchronization analysis for fractional order BAM

neural networks with time delays

A.Pratap a, J.Dianavinnarasi a, R.Raja b, G.Rajchakit c, J.Cao d,e ∗, O.Bagdasar f

a Department of Mathematics, Alagappa University, Karaikudi-630 004, India.
b Ramanujan Centre for Higher Mathematics, Alagappa University, Karaikudi-630 004, India.
c Department of Mathematics, Faculty of Science, Maejo University, Chiang Mai, Thailand.

d School of Mathematics, Southeast University, Nanjing 211189, China.
e School of Electrical Engineering, Nantong University, Nantong 226019, China.

f Department of Electronics, Computing and Mathematics, University of Derby, Derby, United Kingdom.

Abstract

This paper deals with the extended design of Mittag-Leffler state estimator and adaptive
synchronization for fractional order BAM neural networks (FBNNs) with time delays. By the aid
of Lyapunov direct approach and Razumikhin-type method a suitable fractional order Lyapunov
functional is constructed and a new set of novel sufficient condition are derived to estimate the
neuron states via available output measurements such that the ensuring estimator error system is
globally Mittag-Leffler stable. Then, the adaptive feedback control rule is designed, under which
the considered FBNNs can achieve Mittag-Leffler adaptive synchronization by means of some
fractional order inequality techniques. Moreover, the adaptive feedback control may be utilized
even when there is no ideal information from the system parameters. Finally, two numerical
simulations are given to reveal the effectiveness of the theoretical consequences.

Keywords. Mittag-Leffler synchronization; BAM neural networks; Fractional order; Time-delays;
Adaptive feedback control.

1 Introduction

Fractional order differential equation is a natural expansion of traditional integer order differential
equations, dating from around three hundred years prior. Many of the researchers threw themselves
into fractional order differential equations for plenty of years. However, due to lack of its application
history and its complexity in numerous areas, and also for a long time fractional order differential
equations were extensively studied within the field of mathematics. Until recently, the facts proved
that the principle of fractional order calculus are an excellent instrument in an epidemic model [1], fi-
nancial system[7], heat conduction[11], circuit systems [12], market dynamics[17], biological model[23],
dielectric polarization [27] and so forth. Compared to traditional integer order dynamical modeling,
fractional order dynamical modeling is more advanced, for this reason, it has infinite memory property
and more degree of freedom, for more details, one can refer to the monograph of [16, 28]. Since stability
issues are more effective to measure any dynamical behaviors. Up to now, there are numerous kinds
of stability problems of fractional order dynamical system that are available in the existing literature.
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For example, in Ref [29], V.N. Phat et al. discussed the finite time stability of nonlinear fractional
order system by means of Gronwall inequality approach. In [20], Liu et al introduced the asymptotic
stability of the fractional order nonlinear system based on the Riemann Liouville operator. In [50],
Yang et al. investigated the Mittag-Leffler stability of fractional order nonlinear system by using the
Lyapunov method, S-procedure and impulsive differential equations.

A form of bidirectional associative memory (BAM) neural networks was firstly proposed by Kosko,
which has a special structure of connection weights. As is known to all, BAM neural networks are
extended from one-layer auto-associative Hebbian-correlate to a two-layer pattern-matched hetero
associative circuit [22]. The major advantage of this extension is, it recalls and stores pattern pairs
regarded as the bidirectionally stable states. In contrast to other types of neural networks, BAM
neural networks is a composition of neurons which are organized in two layers, such as P-layer and
Q-layer. The neurons in one layer are completely interconnected to the neurons only in the different
layer, at the same time there is no interconnection among neurons in the similar layer. Nonlinear
dynamical systems are used in many practical situations, where time delays are inevitable because
of the finite speed of signal transmission and the network parameter fluctuations of the hardware
implementation. Therefore, the study of nonlinear delayed dynamical behaviors are meaningful. In
the past few years, the study of the dynamical behavior of delayed BAM neural networks grown
to be a hot research topic and it is efficaciously performed in different fields such as combinational
optimization, associative memory, parallel computing, automatic control and so on. In the meantime,
the dynamic behavior of BAM neural networks creates great interests among the researchers and
many of the excellent results have been reported, see Ref [31, 32, 33]. Substantially, in recent years a
developing issue on dynamical behavior of fractional order BAM neural networks such as stability[37,
42], stabilization [47], bifurcations[14] and synchronization [3, 38]. In application perspective, it is
difficult to completely acquire the state information of all neurons due to their entangled structure.
Mainly the state components of the neural network model are generally unknown or no longer to
be had for direct measurement. That is, the neuron states are not regularly completely available
within the network outputs. So the issues in state estimation of neural networks will become an
essential topic in neural networks in practice. As of late, a few researchers have determined numerous
outcomes on the outline of state estimator for a different sort of integer order neural network systems
[18, 24, 35, 43] and the state estimation of BAM neural networks has also been reported in [2, 36, 39].
For instance, the issues of state estimation for a class of discrete-time BAM neural networks with
delay was analyzed via LyapunovKrasovskii functional together with LMI techniques in [2]. Recently,
Ratnavelu et al. [36] has investigated the problem of state estimation for integer order fuzzy cellular
BAM neural networks with leakage delay and unbounded distributed delays by means of Lyapunov-
Krasovskii functional and LMI techniques. Sakthivel [39] et al. also studied the state estimator design
for integer order BAM neural networks with constant leakage delays and time-varying distributed
delays via LyapunovKrasovskii functional together with free-weighting matrix technique. Contrast
with the state estimation of integer-order BAM neural networks, the state estimation of FBNNs will
deliver more accurate neurons state estimation to advantage the application of neural networks. Till
now, only very little attention has been paid to fractional order state estimation of neural networks
with (or without) time delays [4, 44]. But there is no attention has been paid to state estimation of
fractional order BAM neural networks.

The drive-response concept of complete synchronization for a chaotic system has grown to be an
active research area, was first proposed by Pecora and Carroll in [30]. The author of [30], proposed the
response system which affects the behavior of the drive system but the drive system doesn’t depend
on the response system. i.e generated signal in driver sent over a channel to the responder, which
uses this signal synchronizes itself with the driver. Since they have been fruitfully applied to the
area of secure communication, fault diagnosis, biological systems, especially real world neural network
models. Up to now, many authors investigate the various sorts of synchronization, such as exponential
synchronization, Mittag-Leffler synchronization, Mittag-Leffler projective synchronization, asymptotic
synchronization, finite time synchronization, projective synchronization, lag synchronization, quasi-
uniform synchronization and O(t−α)− synchronization, see Ref [6, 8, 21, 19, 25, 26, 40, 46, 48, 49, 51,
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52, 55]. Lots of effective control strategies have been adopted to synchronize in fractional order neural
networks, including linear feedback control, adaptive feedback control, impulsive control, sliding mode
control, non-fragile control and so on. In the existing literature on synchronization of fractional order
BAM neural networks, most of them targeted on the linear feedback controller/delayed feedback
controller/impulsive controller. For example, The authors of [9] studied the global Mittag-Leffler
synchronization of fractional order delayed BAM neural networks by impulsive control and state
feedback control. In [48], the authors discussed the finite time synchronization analysis of fractional
order memristor based BAM neural networks with time delays via simple linear feedback controller and
the global Mittag-Leffler synchronization of BAM neural networks under the delayed feedback control
strategy was investigated in [51]. Under the impulsive controller, the authors [54], addressed the
exponential synchronization of fractional order BAM neural networks with different impulsive effects
by using Mittag-Leffler functions and average impulsive interval definitions. Since the control gains of
the linear feedback controller are very high, which is a kind of dissipating in practice. However, the
adaptive controller can avoid the high feedback control gains due to the fact that, it may self-adjust
the coupling strengths. Hence, adaptive feedback control is more effective, in comparison to the linear
feedback controller. Therefore, the study of an adaptive feedback control strategy for synchronization
of fractional order delayed BAM neural networks (FBNNs) is in great demand. Nonetheless, till now,
there are very few or even no published works at the issues of Mittag-Leffler state estimator design
and adaptive synchronization for FBNNs with time delays. Therefore, it is of great importance to fill
this gap. In addition to, it is important to pointed out that our result is true for exponential state
estimator and an adaptive exponential synchronization for integer order BAM neural networks with
time delays and this works has not been considered yet.

Prompted via the above discussion, in this letter we study the Mittag-Leffler state estimator
design and synchronization analysis for FBNNs with time delay, the problem remains open and is
not report in existing works literature. Consequently, we can try to remedy this hard and essential
problem. In [6, 9, 15, 45, 51], the authors provided the definition of Mittag-Leffler stability and
Mittag-Leffler synchronization of fractional-order neural networks. In [51], the authors presented the
Mittag-Leffler synchronization of BAM neural networks. Motivated by these definitions, we introduce
the definitions of Mittag-Leffler state estimator and adaptive Mittag-Leffler synchronization of FBNNs.
The main challenge and contributions of this letter are embodied in the following aspects: (1). In
the light of the bilayer structure of FBNNs, global Mittag-Leffler state estimator and global Mittag-
Leffler synchronization are first time presented. (2). By utilizing a proper Lyapunov functional,
some inequalities and Razumikhin condition, the novel algebraic sufficient conditions are obtained to
ensure the estimator error system is globally Mittag-Leffler state estimator in the form of linear matrix
inequality. (3). The novel adaptive feedback controller is designed for the FBNNs and the proposed
controller is different from [34, 38], while a new type of fraction order inequality is proposed, which
helps to achieve the global Mittal-Leffler synchronization goal. (4). The proposed works are new that
fill a few gaps in the prevailing works and our outcomes generalize and enhance the ones in present
literature.

The rest of this paper is prepared as follows: In Section 2, some necessary fractional order defi-
nitions are listed. Further, a few assumptions and Mittag-Leffler state estimator definitions together
with a few beneficial lemmas needed in this paper are provided. The main theoretical consequences
are derived in Section 3. In Section 4, two numerical examples and their simulations are given to
illustrate the effectiveness of the acquired results.

Nomenclature. In this letter, N, R, Rm denotes that the set of all natural numbers, real numbers
and m-D Euclidean space, respectively, and Rm×m represent the set of all m ×m real matrices. Let
q = (q1, ..., qm)T ∈ Rm represents a column vector, where superscript T stands for the transpose
operator. The two norm of vector q is defined by ∥q∥2 =

√
q21 + ...+ q2m. Υ > 0

(
Υ < 0

)
suggest

that Υ is positive definite (negative definite), while λ̃max

(
Υ
)
and λ̃min

(
Υ
)
delegate the maximum

and minimum values eigenvalue of Υ. For η > 0, C([−η, 0],Rm) represents the family of continuous
function from [−η, 0] to Rm. The symbol ∗ involves the convolution operator.
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2 Preliminaries

In this part, we will display the basic definition’s, system description, lemmas of fractional order
derivative and assumptions.

2.1 Fractional order derivative concept and tools

Definition 2.1 [28]. The fractional order integral of an integrable function p(t) is defined as

Iλt0 p(t) =
1

Γ(λ)

∫ t

t0

(t− ω)λ−1p(ω) dω, t ≥ 0,

where λ ∈ R+ and Γ(·) is the Gamma function.

Definition 2.2 [16, 28]. The Caputo type of fractional-order derivative of order λ ∈ (m−1,m), m ∈
Z+ for a function p(t) is defined by

Dλ
t0,t p(t) =

1

Γ(m− λ)

∫ t

t0

p(m)(ω)

(t− ω)λ−m+1
dω, t ≥ t0.

In addition, the following properties about Caputo fractional-order derivative are given.

Property 1.[16] Dλζ = 0, where ζ is any constant.

Property 2.[16] For any constant α and β, the linearity of Caputo fractional order derivative gives

Dλ
(
αp(t) + βq(t)

)
= αDλp(t) + βDλq(t).

Mittag-Leffler function is generalization of exponential function, which is usually used to describe the
solutions of fractional order dynamical behaviors.

Definition 2.3 [16, 28] A two-parameter Mittag-Leffler function is listed as follows:

Eλ,χ(z) =
+∞∑
j=0

zj

Γ(λj + χ)
,

where λ > 0, χ > 0 and z ∈ C. For χ = 1, its one parameter Mittag-Leffler function it is shown as

Eλ,1(z) =
+∞∑
j=0

zj

Γ(λj + 1)
.

In particular, one obtains E1,1(z) = exp(z) for λ = χ = 1. Additionally, The Laplace transform of
two parameter Mittag-Leffler function is

L{tχ−1Eλ,χ(−Φtα)} =
sλ−χ

sλ +Φ
, (Re(s) ≥ |Φ| 1

λ ),

where t and s are, respectively, the variables in the domain and Laplace domain, while L{·} stands
for the Laplace transform.

Remark 2.4 Let 0 < λ ≤ 1 and t ∈ R, we have Eλ,λ(t) > 0, Eλ,1 > 0 and d
dtEλ,λ(t) > 0.

Remark 2.5 The initial values of Caputo derivative can be expressed the integer order terms, which
looks like same as initial values of integer order differential equations. Moreover, these operator
satisfies the linearity property. Hence the Caputo derivative operator has more effective tool compared
to Riemann Liouville operator and it has more applicable to real world-problems, for more details see
[10, 28]. Throughout in this letter, we deal with Caputo fractional order derivative operator.
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In order to obtain the Mittag-Leffler state estimator and Mittag-Leffler synchronization results, we
provide a following Lemma’s as follows:

Lemma 2.6 [45] For 0 < λ < 1, the continuous function x(t) is defined on the positive interval
[0,+∞), then there exist a positive scalar Φ1 > 0 and Φ2 ≥ 0 such that

Dλ
0,t x(t) ≤ −Φ1x(t) + Φ2, t ≥ 0,

then

x(t) ≤ x(0)Eλ
(
− Φ1t

λ
)
+Φ2t

λEλ,λ+1

(
− Φ1t

λ
)
, t ≥ 0.

The following Lemma 2.7 is an extension of the previous Lemma 2.6.

Lemma 2.7 For 0 < λ < 1, the two continuous functions x(t) and y(t) are defined on the positive
interval [0,+∞), 0 < l ≤ y(t) ≤ L and satisfy

Dλ
0,t

[
x(t) + y(t)

]
≤ −Φ1x(t) + Φ2, t ≥ 0, (1)

then there exist T > 0 such that

x(t) ≤
[
x(0) + y(0)

]
Eλ

(
− Φ1t

λ
)
+Φ2t

λEλ,λ+1

(
− Φ1t

λ
)
, t ≥ T ,

where Φ1 > 0, Φ2 ≥ 0, l and L are scalars.

Proof. By (1), it follows there exist a non negative function J(t) satisfies

Dλ
0,t

[
x(t) + y(t)

]
+ J(t) = −Φ1x(t) + Φ2, t ≥ 0, (2)

Making Laplace transform on (2), one has obtain

sλ
[
x(s) + y(s)

]
− sλ−1

[
x(0) + y(0)

]
+ J(s) = −Φ1x(s) +

Φ2

s
, t ≥ 0,

where x(s) = L
(
x(t)

)
, y(s) = L

(
y(t)

)
and J(s) = L

(
J(t)

)
. It follows that

x(s) =
sλ−1

[
x(0) + y(0)

]
− J(s)− sλy(s) + Φ2

s

sλ +Φ1
. (3)

Next by making a inverse Laplace transform of (3), then the unique solution of (2) is the following
form:

x(t) =
[
x(0) + y(0)

]
Eλ

(
− Φ1t

λ
)
− J(t) ∗ tλ−1Eλ,λ

(
− Φ1t

λ
)

−y(t) ∗
[
1− Φ1t

λ−1Eλ,λ
(
− Φ1t

λ
)]

+Φ2t
λEλ,λ+1

(
− Φ1t

λ
)
, t ≥ 0,

where ∗ is the convolution operator. Next, we will to prove that, there exist a T > 0 such that

y(t) ∗
[
1−Φ1t

λ−1Eλ,λ
(
−Φ1t

λ
)]

≥ 0. Then, assume that 0 < t1 < t2 and by taking t2 ≤ T , such that

Φ1

Γ(λ)tλ−1
1

= 1 and

[
t2 −

Φ1t
λ
2

Γ(λ+ 1)

]
l ≥

(
L− l

)
t1

[ 1
λ
− 1

]
. (4)
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From Remark 2.4, it follows that Φ1t
λ−1Eλ,λ

(
− Φ1t

λ
)
≤ Φ1

Γ(λ)tλ−1
1

, t ≥ 0 and

y(t) ∗
[
1− Φ1t

λ−1Eλ,λ
(
− Φ1t

λ
)]

=

∫ t

0

y(t− ω)
[
1− Φ1ω

λ−1Eλ,λ
(
− Φ1ω

λ
)]

dω

≥
∫ t

0

y(t− ω)

[
1− Φ1

Γ(λ)
ωλ−1

]
dω

≥ L

∫ t1

0

[
1− Φ1

Γ(λ)
ωλ−1

]
dω + l

∫ t2

t1

[
1− Φ1

Γ(λ)
ωλ−1

]
dω

= L

[
t1 −

Φ1

λΓ(λ)
tλ1

]
+ l

[
t2 −

Φ1

λΓ(λ)
tλ2 − t1 +

Φ1

λΓ(λ)
tλ1

]

= l

[
t2 −

Φ1

Γ(λ+ 1)
tλ2

]
+

[
L− l

]
t1

[
1− Φ1

λΓ(λ)t1
tλ1

]

Then by using Eq.(4), we obtain

y(t) ∗
[
1− Φ1t

λ−1Eλ,λ
(
− Φ1t

λ
)]

= l

[
t2 −

Φ1

Γ(λ+ 1)
tλ2

]
− [L− l

]
t1

[ 1
λ
− 1

]
≥ 0

for any t ≥ t2. Otherwise, J(t), tλ−1 and Eλ,λ
(
− Φ1t

λ
)
≥ 0 are non negative functions, which is

defined on [0,+∞), thus J(t) ∗ tλ−1Eλ,λ
(
− Φ1t

λ
)
≥ 0, t ≥ 0. Therefore

x(t) ≤
[
x(0) + y(0)

]
Eλ

(
− Φ1t

λ
)
+Φ2t

λEλ,λ+1

(
− Φ1t

λ
)
, t ≥ T .

Hence, this proof of Lemma has been completed.

2.2 Model description

We consider a class of fractional order BAM neural networks with delay as follows:{
Dλpj(t) = −ajpj(t) +

∑m
k=1 bkjgk(qk(t)) +

∑m
k=1 ckjgk(qk(t− η)) +Gj ,

Dλqk(t) = −ukqk(t) +
∑n

j=1 vjkhj(pj(t)) +
∑n

j=1 wjkhj(pj(t− η)) +Hk,
(5)

j = 1, 2, ..., n, k = 1, 2, ...,m, where λ ∈ (0, 1), Dλp(·) is the Caputo fractional order derivative of
p(·) from 0 to t, namely Dλ

0,t; There are twin layer such as P-Layer and Q-Layer in the fractional
order neural network systems such as P = {p1, ..., pn} and Q = {q1, ..., qm}; pj(t) and qk(t) are the
state vectors of the j−th neuron in the P-layer and k−th neurons in the Q-layer, respectively; aj > 0
and uk > 0 represent the self-inhibitions; η ≥ 0 is constant time delay; gk(·) and hj(·) represent the
neurons activations; bkj , ckj , vjk and wjk indicate the synaptic connection weights of the neurons;
Gj and Hk denotes the external inputs of P-Layer and Q-Layer.

The matrix form of the system (5) is represented by:{
Dλp(t) = −Ap(t) +Bg(q(t)) + Cg(q(t− η)) +G,

Dλq(t) = −Uq(t) + V h(p(t)) +Wh(p(t− η)) +H,
(6)

where p(t) = (p1(t), ..., pn(t))
T , q(t) = (q1(t), ..., qm(t))T , A = diag{a1, ..., an}, U = diag{u1, ..., um},

B =
(
bkj

)
m×n

, C =
(
ckj

)
m×n

, V =
(
vjk

)
n×m

, W =
(
wjk

)
n×m

, h
(
p(·)

)
=

(
h1

(
p1(·)

)
, ..., hn

(
pn(·)

)T)T

,
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g
(
q(·)

)
=

(
g1
(
q1(·)

)
, ..., gm

(
qm(·)

)T)T

, G =
(
G1, ..., Gn

)T
and H =

(
H1, ..., Hm

)T
.

Suppose the concerned FBNNs have the following output measurements:{
xp(t) = Ep(t) +R(t, p(t)),

xq(t) = Fq(t) + S(t, q(t)),
(7)

where xp(t) ∈ Rn and xq(t) ∈ Rm are actual measurement output. R(t, p(t)) and S(t, q(t)) denote
neuron dependent nonlinear disturbances on the network measurement outputs, while E > 0 and
F > 0 are known matrices with constant parameters.

In this letter, the designed full order state estimator of the concerned FBNNs is the following ex-
pression:{

Dλp̂(t) = −Ap̂(t) +Bg(q̂(t)) + Cg(q̂(t− η)) +G+M
[
xp(t)− Ep̂(t) +R(t, p̂(t))

]
Dλq̂(t) = −Uq̂(t) + V h(p̂(t)) +Wh(p̂(t− η)) +H +N

[
xq(t)− F q̂(t) + S(t, q̂(t))

]
,

(8)

where p̂(t) ∈ Rn, q̂(t) ∈ Rm are estimation of the neuron states p(t) and q(t), respectively. M ∈
Rn×n, N ∈ Rm×m are the estimator gain matrices, which is designed to be later.

Let p
(
t, σp(t)

)
, q

(
t, σq(t)

)
and p̂

(
t, φp(t)

)
, q̂

(
t, φq(t)

)
be the state evaluations of FBNNs (5) and

the state estimator system (8) respectively, with the initial values
(
p(t), q(t)

)
=

(
σp(t), σq(t)

)
∈

C
(
[−η, 0],Rn

)
and

(
p̂(t), q̂(t)

)
=

(
φp(t), φq(t)

)
∈ C

(
[−η, 0],Rm

)
.

Denote zp(t) = p(t) − p̂(t) and zq(t) = q(t) − q̂(t), the estimator of the error state is described
as the following expression:{

Dλzp(t) = −[A+ME]zp(t) +Bḡ(zq(t)) + Cḡ(zq(t− η))−M
[
R̄(t, zp(t))

]
Dλzq(t) = −[U +NF ]zq(t) + V h̄(zp(t)) +Wh̄(zp(t− η))−N

[
S̄(t, zq(t))

]
,

(9)

where ḡ(zq(·)) = g(q(·))− g(q̂(·)), h̄(zp(·)) = h(p(·))− h(p̂(·)), R̄(t, zp(t)) = R(t, p(t))−R(t, p̂(t)) and
S̄(t, zq(t)) = R(t, q(t))−R(t, q̂(t)).

Let us provide the definition of global Mittag-Leffler state estimator.

Definition 2.8 The zero solutions of concerned estimator system (8) is said to be globally Mittag-
Leffler state estimator of the FBNNs (6), if the error system (9) is globally Mittag-Leffler stable, i.e.,

for any ζ > 0, ς > 0 if there exist H
(
(ζ, ς)

)
> 0, ν > 0, ϖ > 0 such for any two curves

(
p(t)T , q(t)T

)T
and

(
p̂(t)T , q̂(t)T

)T
with initial conditions

(
σp(t)T , σq(t)T

)T
and

(
φp(t)T , φq(t)T

)T
, respectively, as

that ∥∥p(t)− p̂(t)
∥∥+

∥∥q(t)− q̂(t)
∥∥ ≤

{
H
(
(ζ, ς)

)
Eλ

(
−ϖtλ

)}ν

, for any t ≥ 0,

when
∥∥σp − φp

∥∥ ≤ ζ,
∥∥σq − φq

∥∥ ≤ ς. Here ϖ is the degree of Mittag-Leffler state estimator, which
can be visible the convergence rate as state estimator error tends to zero when time t goes to infinity.

In order to derive the main results, we need the following assumptions and lemmas.

Assumption I. For all j = 1, 2..., n, k = 1, 2, ...,m, the neuron activation function hj and gk satisfy
the Lipschitz condition, that is, there exist positive scalars Ij > 0 and Jk > 0 such that

|hj(p)− hj(p̂)| ≤ Ij |p− p̂|, |gk(q)− gk(q̂)| ≤ Jk|q − q̂|, ∀ p, p̂, q, q̂ ∈ R.
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Assumption II. For all j = 1, 2..., n, k = 1, 2, ...,m,, the non-linear disturbance functions Rj(·) and
Sk(·) are also assumed to Lipschitz continuous:∣∣Rj(t, p)−Rj(t, p̂)

∣∣ ≤ Dj

∣∣(p− p̂)
∣∣, ∣∣Sk(t, q)− Sk(t, q̂)

∣∣ ≤ Lk

∣∣(q − q̂)
∣∣, ∀p, p̂, q, q̂ ∈ R.

where Dj , Lk are known positive constants.

Assumption III. There exist constant Dj such that |hj(·)| ≤ Dj , j = 1, 2, ..., n.

Assumption IV. There exist constant Lk such that |gk(·)| ≤ Lk, k = 1, 2, ...,m.

Lemma 2.9 [53] Let p(t) ∈ Rn be a continuous and differentiable vector valued function if there exist
a positive definite matrix Λ ∈ Rn×n such that

Dλ[pT (t)Λp(t)] ≤ 2pT (t)ΛDλp(t), ∀ λ ∈ (0, 1).

Lemma 2.10 [53] For the given positive constant α > 0, p, q ∈ Rn and matrix Υ, then

pTΥq ≤ α−1

2
pTΥΥT p+

α

2
qT q.

Lemma 2.11 [13] For ϑ ≥ 1 and if z1, ..., zm ≥ 0, then we have

m1−ϑ
[ m∑
k=1

zk

]ϑ
≤

m∑
k=1

zϑk .

3 Main results

In this section, we present Mittag-Leffler state estimator and Mittag-Leffler adaptive synchronization
results.

3.1 Mittag-Leffler state estimator results

The goal of this subsection is to layout the Mittag-Leffler state estimator for FBNNs by using suitable
Lyapunov functional and Razumikhin method.

Theorem 3.1 Under Assumption (I) and (II), let Φmin > Ψmin > 0 be two known positive scalar and
the enhanced system (8) becomes a globally Mittag-Leffler state estimator of system (6) if there exist
positive definite matrices Λ, Υ, real matrices Yp, Yq and positive scalars α1, α2, δ, λ1, λ2, µ, ξ1, ξ2, θ1
and θ2 such that the following LMI holds:

Φ1 = −ΛA−ATΛT − YpE − ETY T
p + α−1

1 ΛBBTΛT + α−1
2 ΛCCTΛT

+δ−1ΛMMTΛT + δDTD + λ1I
T I < −ξ1Λ

Φ2 = −ΥU − UTΥT − YqF − FTY T
q + λ−1

1 ΥV V TΥT + λ−1
2 ΥWWTΥT

+µ−1ΥNNTΥT + µLTL+ α1J
TJ < −ξ2Υ,

(10)

Ψ1 = λ2I
T I < θ1Λ, Ψ2 = α2J

TJ < θ2Υ, where D = diag{D1, ..., Dn}, L = diag{L1, ..., Lm}, I =
diag{I1, ..., In} and J = diag{J1, ..., Jm}. Furthermore, the estimator gain matrices M and N are
designed by M = Λ−1Yp and N = Υ−1Yq.

Proof . We construct a following Lyapunov functional:

V
(
t, zp(t), zq(t)

)
=

1

2
zTp (t)Λzp(t) +

1

2
zTq (t)Υzq(t) (11)
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By virtue of Lemma 2.9, then the fractional derivative of V (t) along the trajectory of error system
(9) can be calculated as:

DλV
(
t, zp(t), zq(t)

)
≤ zTp (t)ΛD

λ[zp(t)] + zTq (t)ΥD
λ[zq(t)]

= zTp (t)Λ
[
− [A+ME]zp(t) +Bḡ(zq(t)) + Cḡ(zq(t− η))−M

[
R̄(t, zp(t))

]]
+zTq (t)Υ

[
− [U +NF ]zq(t) + V h̄(zp(t)) +Wh̄(zp(t− η))−N

[
S̄(t, zq(t))

]]
≤ 1

2
zTp (t)

[
− ΛA−ATΛT − YpE − ETY T

p

]
zp(t) + zTp (t)ΛBḡ(zq(t)) + zTp (t)Λ

×Cḡ(zq(t− η))− zTp (t)ΛMR̄(t, zp(t)) +
1

2
zTq (t)

[
−ΥU − UTΥT − YqF − FT

×Y T
q

]
zq(t) + zTq (t)ΥV h̄(zp(t)) + zTq (t)ΥWh̄(zp(t− η))− zTq (t)ΥNS̄(t, zq(t))

By means of Assumption I, Assumption II and Lemma 2.10, we get

DλV
(
t, zp(t), zq(t)

)
≤ 1

2
zTp (t)

[
− ΛA−ATΛT − YpE − ETY T

p + α−1
1 ΛBBTΛT + α−1

2 ΛCCTΛT

+δ−1ΛMMTΛT + δDTD + λ1I
T I

]
zp(t) +

1

2
zTp (t− η)

[
λ2I

T I
]
zp(t− η)

+
1

2
zTq (t)

[
−ΥU − UTΥT − YqF − FTY T

q + λ−1
1 ΥV V TΥT + λ−1

2 ΥWWTΥT

+µ−1ΥNNTΥT + µLTL+ α1J
TJ

]
zq(t) +

1

2
zTq (t− η)

[
α2J

TJ
]
zq(t− η)

≤ −ΦminV
(
t, zp(t), zq(t)

)
+Ψmax sup

t−η≤ω≤t
V
(
ω, zp(ω), zq(ω)

)
where Φ1 < −ξ1Λ, Φ2 < −ξ2Υ, Ψ1 < θ1Λ, Ψ2 < θ2Υ, Φmin = min{ξ1, ξ2} and Ψmax = max{θ1, θ2}.
Based on the above estimate, any solution of the system (9) satisfies the following Razumikhin con-
dition [15].

V
(
ω, zp(ω), zq(ω)

)
≤ V

(
t, zp(t), zq(t)

)
, t− η ≤ ω ≤ t.

That is

DλV
(
t, zp(t), zq(t)

)
≤ −

[
Φmin −Ψmax

]
V
(
t, zp(t), zq(t)

)
.

Then by aid of Lemma 2.6, it follows that

V
(
t, zp(t), zq(t)

)
≤

[
V
(
0, zp(0), zq(0)

)]
Eλ

[(
Ψmax − Φmin

)
tλ
]
, ∀ t ∈ [0,+∞). (12)

Otherwise, Lyapunov function V
(
t, zp(t), zq(t)

)
satisfies

1

2
λ̃min(Λ)∥zp(t)∥2 +

1

2
λ̃min(Υ)∥zq(t)∥2 ≤ V

(
t, zp(t), zq(t)

)
≤ 1

2
λ̃max(Λ)∥zp(t)∥2 +

1

2
λ̃max(Υ)∥zq(t)∥2,

which implies

1

2
ϵmin

[
∥zp(t)∥2 + ∥zq(t)∥2

]
≤ V

(
t, zp(t), zq(t)

)
≤ 1

2
ϵmax

[
∥zp(t)∥2 + ∥zq(t)∥2

]
(13)

where ϵmin = min{λ̃min(Λ), λ̃min(Υ)} and ϵmax = max{λ̃max(Λ), λ̃max(Υ)}.
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On the other hand,

V
(
0, zp(0), zq(0)

)
≤ 1

2
λ̃max(Λ)∥σp − φp∥2 +

1

2
λ̃max(Υ)∥σq − φq∥2,

≤ 1

2
ϵmax

[
∥σp − φp∥2 + ∥σq − φq∥2

]
(14)

Combining Eq.(12), Eq.(13) and Eq.(14), it follows that[
∥zp(t)∥2 + ∥zq(t)∥2

]
≤ ϖ

[
∥σp − φp∥2 + ∥σq − φq∥2

]
Eλ

[(
Ψmax − Φmin

)
tλ
]
, ∀ t ∈ [0,+∞). (15)

By utilizing Lemma 2.11, it follows that[
∥p(t)− p̂(t)∥+ ∥q(t)− q̂(t)∥

]
≤

[
H
(
(ζ, ς)

)
Eλ

[(
Ψmax − Φmin

)
tλ
]] 1

2

, ∀ t ∈ [0,+∞).

where ϖ = ϵmax

ϵmin
and H

(
(ζ, ς)

)
= 2ϖ(ζ + ς) ≥ 0. According to Definition 2.8, the system (8) becomes

a globally Mittag-Leffler state estimator of the system (6). Hence completed the proof.

Corollary 3.2 Under Assumption (I) and (II), the enhanced system (8) without delay term becomes
a globally Mittag-Leffler state estimator of system (6) without delay term if there exist positive definite
matrices Λ, Υ, real matrices Yp, Yq and positive scalars α1, δ, ξ3, ξ4, λ1 and µ such that the following
LMI holds:{
Φ3 = −ΛA−ATΛT − YpE − ETY T

p + α−1
1 ΛBBTΛT + δ−1ΛMMTΛT + δDTD + λ1I

T I < −ξ3Λ
Φ4 = −ΥU − UTΥT − YqF − FTY T

q + λ−1
1 ΥV V TΥT + µ−1ΥNNTΥT + µLTL+ α1J

TJ < −ξ4Υ,

where D = diag{D1, ..., Dn}, L = diag{L1, ..., Lm}, I = diag{I1, ..., In} and J = diag{J1, ..., Jm}.
Furthermore, the estimator gain matrices M and N are designed by M = Λ−1Yp and N = Υ−1Yq.

Remark 3.3 The authors in [4] considered a class of state estimation of fractional order neural
networks without time delay via absolute value Lyapunov functional and Mittag-Leffler functions.
In [44], state estimation of fractional-order memristor-based neural networks with time delays were
investigated by utilizing LMI techniques and positive definite quadratic Lyapunov functional. However,
the Mittag-Leffler state estimator design for FBNNs with (or without) time delay has not been seen in
the previous literature. Therefore, the results based on the state estimation in this paper are completely
new in contrast with the existing works.

Remark 3.4 Theorem 3.1 and Corollary 3.2 are derived by means of LMI techniques. To find the
feasible solution of the LMI in the case of bigger LMIs in size, can be get solved by the interior point
algorithms in convex optimization technique and the LMI toolbox in MATLAB. Yet there is a increase
in Computational time.

3.2 Mittag-Leffler synchronization results

In this subsection, sufficient conditions are given to realize the global Mittag-Leffler synchronization
for FBNNs via adaptive feedback controller.

Model (5) is called as a master system. By means of master-slave synchronization concept, the
corresponding slave system of Model (5) can be expressed in the following form:{

Dλp̃j(t) = −aj p̃j(t) +
∑m

k=1 bkjgk(q̃k(t)) +
∑m

k=1 ckjgk(q̃k(t− η)) +Gj + δj(t),

Dλq̃k(t) = −ukq̃k(t) +
∑n

j=1 vjkhj(p̃j(t)) +
∑n

j=1 wjkhj(p̃j(t− η)) +Hk + θk(t),
(16)

where p̃j(t) and q̃k(t) are corresponding state variable of the slave system, while δj(t) and θk(t) are
adaptive delayed feedback controller and all other parameters are the similar as those in master system.
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Let p
(
t, σp(t)

)
, q

(
t, σq(t)

)
and p̃

(
t, γp(t)

)
, q̃

(
t, γq(t)

)
be the state trajectories of the master sys-

tem (5) and the slave system (16) respectively, with the initial values
(
p(t), q(t)

)
=

(
σp(t), σq(t)

)
∈

C
(
[−η, 0],Rn

)
and

(
p̃(t), q̃(t)

)
=

(
γp(t), γq(t)

)
∈ C

(
[−η, 0],Rm

)
.

Let epj(t) = p̃j(t) − pj(t), eqk(t) = q̃k(t) − qk(t), j = 1, 2, ..., n, k = 1, 2, ...m. Then the fractional
order synchronization error system is defined as:{

Dλepj(t) = −ajepj(t) + Ẽj(t) + δj(t),

Dλeqk(t) = −ukeqk(t) + F̃k(t) + θk(t),
(17)

where

Ẽj(t) =
m∑

k=1

bkjgk(q̃k(t))−
m∑

k=1

bkjgk(qk(t)) +
m∑

k=1

ckjgk(q̃k(t− η))−
m∑

k=1

ckjgk(qk(t− η))

F̃k(t) =

n∑
j=1

vjkhj(p̃j(t))−
n∑

j=1

vjkhj(pj(t)) +

n∑
j=1

wjkhj(p̃j(t− η))−
n∑

j=1

wjkhj(pj(t− η)).

Lemma 3.5 |Ẽj(t)| ≤ βp
j , where β

p
j =

∑m
k=1 2Lk

(
|bkj |+ |ckj |

)
for j = 1, 2..., n.

Proof . With the aid of Assumption III, it can be easily proved from the definition of |Ẽj(t)|.

Lemma 3.6 |F̃k(t)| ≤ βq
k, where β

q
k =

∑n
j=1 2Dj

(
|vjk|+ |wjk|

)
for k = 1, 2...,m.

Proof . With the aid of Assumption IV , it can be easily proved from the definition of |F̃k(t)|.

The fractional order synchronization error system (17) can also be converted into the following matrix
form:

{
Dλep(t) = −Aep(t) + Ẽ(t) + δ(t),

Dλeq(t) = −Ueq(t) + F̃ (t) + θ(t),
(18)

where ep(t) =
(
ep1(t), ..., epn(t)

)T
, eq(t) =

(
eq1(t), ..., eqm(t)

)T
, Ẽ(t) =

(
Ẽ1(t), ..., Ẽn(t)

)T
, F̃ (t) =(

F̃1(t), ..., F̃m(t)
)T
, δ(t) =

(
δ1(t), ...δm(t)

)T
and θ(t) =

(
θ1(t), ...θm(t)

)T
.

Designing the adaptive feedback control for fractional order system (16) which involves the sign
function in the following expression:{

δ(t) = −α(t)ep(t)− µ(t) sgn[ep(t)],

θ(t) = −ϕ(t)eq(t)− ξ(t) sgn[eq(t)]
(19)

with the adaptive updated law is{
Dλαj(t) =

∑m
k=1 epk(t)πjepj(t), D

λµj(t) = ρj |epj(t)|
Dλϕk(t) =

∑n
j=1 eqj(t)εkeqk(t), D

λµk(t) = ϱk|eqk(t)|,

where α(t) = diag{α1(t), ..., αn(t)}, µ(t) = diag{µ1(t), ..., µn(t)}, ϕ(t) = diag{ϕ1(t), ..., ϕm(t)} and
ξ(t) = diag{ξ1(t), ..., ξm(t)}. πj , ρj , εk and ϱk are positive scalars for j = 1, 2, ..., n and k = 1, 2, ...,m.

Finally, we will provide the definition of global Mittag-Leffler synchronization, which will be used
to the main part of theorem.
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Definition 3.7 The slave system (5) is said to be global Mittag-Leffler synchronized with in the master
system (16) based on the controller (19) for any ζ1 > 0, ς1 > 0 if there exist H

(
(ζ1, ς1)

)
> 0, ν >

0, ϖ > 0 and T > 0 such for any two curves
(
p(t)T , q(t)T

)T
and

(
p̃(t)T , q̃(t)T

)T
with initial conditions(

σp(t)T , σq(t)T
)T

and
(
γp(t)T , γq(t)T

)T
, respectively, as that∥∥p̃(t)− p(t)

∥∥+
∥∥q̃(t)− q(t)

∥∥ ≤
{
H
(
(ζ1, ς1)

)
Eλ

(
−ϖtλ

)}ν

, for any t ≥ T ,

when
∥∥γp − σp

∥∥ ≤ ζ1,
∥∥γq − σq

∥∥ ≤ ς1. Here ϖ is the degree of Mittag-Leffler synchronization, which
can be visible the convergence rate as synchronization error goes to zero when time t approaches to
infinity.

Theorem 3.8 Suppose the assumption (III) and (IV ) hold, then the slave system (16) is globally
Mittag-Leffler synchronized with the master system (5) under the controller (19) if there exist positive
definite matrices Λ̃ = diag

{
Λ̃1, ..., Λ̃n

}
> 0, Υ̃ = diag

{
Υ̃1, ..., Υ̃m

}
> 0, and positive scalars r1 and

r2 such that the following LMI holds:{
Ω1 = −ΛA−AT Λ̃T − Λ̃Π−ΠTΛT < −r1Λ̃,
Ω2 = −ΥU − UT Υ̃T − Υ̃Φ− ΦT Υ̃T < −r2Υ̃,

(20)

Furthermore, the control gains are subjected to

µj ≥ βp
j =

m∑
k=1

2Lk

(
|bkj |+ |ckj |

)
, ξk ≥ βq

k =
n∑

j=1

2Dj

(
|vjk|+ |wjk|

)
(21)

where Π = diag{α1, ..., αn} > 0 and Φ = diag{ϕ1, ..., ϕm} > 0.

Proof . We construct a following Lyapunov functional:

Ṽ
(
t, ep(t), eq(t)

)
= Ũ(t) + W̃ (t) (22)

where

Ũ(t) =
1

2
eTp (t)Λ̃ep(t) +

1

2
eTq (t)Υ̃eq(t),

W̃ (t) =
n∑

j=1

[
Λ̃j

2πj

[
αj(t)− αj

]2
+

Λ̃j

2ρj

[
µj(t)− µj

]2]
+

m∑
k=1

[
Υ̃k

2εk

[
ϕk(t)− ϕk

]2
+

Υ̃k

2ϱk

[
ξk(t)− ξk

]2]

where αj , µj , ϕk and ξk are positive constants.

By means of Lemma 2.9, then the fractional-order derivative of Lyapunov functional Ũ(t) along
the trajectory of error system (18) can be calculated as:

DλŨ(t) ≤ eTp (t)Λ̃D
λ[ep(t)] + eTq (t)Υ̃D

λ[eq(t)]

= eTp (t)Λ̃
[
−
(
A+ α(t)

)
ep(t) + Ẽ(t)− µ(t)ψp(t)

]
+eTq (t)Υ̃

[
−
(
U + ϕ(t)

)
eq(t) + F̃ (t)− ξ(t)ψq(t)

]
(23)

where ψp(t) =
)T
ψp1(t), ..., ψpn(t)

)T
, ψq(t) =

(
ψq1(t), ..., ψqm(t)

)T
implies that, ψpj(t) = sgn(epj(t))

if epj(t) ̸= 0 and ψqk(t) = sgn(eqk(t)) if eqk(t) ̸= 0, once epj(t) = 0, eqk(t) = 0, while ψpj(t) and
ψqk(t) can be chosen on [−1, 1].
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Then, the last few term of right hand side of Eq.(23) can be given as follows:

eTp (t)Λ̃
[
Ẽ(t)− µ(t)ψp(t)

]
≤

n∑
j=1

Λ̃j |epj(t)|

[
βp
j − µj(t)ψpj(t)

]

≤
n∑

j=1

Λ̃jβ
p
j |epj(t)| −

n∑
j=1

Λ̃jµj(t)|epj(t)| (24)

and

eTq (t)Υ̃
[
F̃ (t)− ξ(t)ψq(t)

]
≤

m∑
k=1

Υ̃k|eqk(t)|

[
βq
k − ξk(t)ψqk(t)

]

≤
m∑

k=1

Υ̃kβ
q
k|eqk(t)| −

m∑
k=1

Υ̃kξk(t)|eqk(t)|, (25)

where Lemma 3.5 and Lemma 3.6 has been used.

Next, by calculating the Caputo derivative of W̃ (t), one can read that

DλW̃ (t) ≤
n∑

j=1

[
Λ̃j

πj

[
αj(t)− αj

]
Dλ[αj(t)] +

Λ̃j

ρj

[
µj(t)− µj

]
Dλ[µj(t)]

]

+
m∑

k=1

[
Υ̃k

εk

[
ϕk(t)− ϕk

]
Dλ[ϕk(t)] +

Υ̃k

ϱj

[
ξk(t)− ξk

]
Dλ[ξk(t)]

]

=
n∑

j=1

m∑
k=1

epk(t)Λ̃j

[
αj(t)− αj

]
epj(t)−

n∑
j=1

Λ̃jµj |epj(t)|+
n∑

j=1

Λ̃jµj(t)|epj(t)|

+

m∑
k=1

n∑
j=1

eqj(t)Υ̃k

[
ϕk(t)− ϕk

]
eqk(t) +

m∑
k=1

Υ̃kξk(t)|eqk(t)| −
m∑

k=1

Υ̃kξk|eqk(t)|

= eTp (t)Λ̃
[
α(t)−Π

]
ep(t)−

n∑
j=1

Λ̃jµj |epj(t)|+
n∑

j=1

Λ̃jµj(t)|epj(t)|

+eTq (t)Υ̃
[
ϕ(t)− Φ

]
eq(t) +

m∑
k=1

Υ̃kξk(t)|eqk(t)| −
m∑

k=1

Υ̃kξk|eqk(t)| (26)

Combining Eq.(23)-Eq.(25) and Eq.(26), one has obtain

DλṼ
(
t, ep(t), eq(t)

)
≤ eTp (t)

[
− Λ̃A− Λ̃Π

]
ep(t) + eTq (t)

[
− Υ̃U − Υ̃Φ

]
eq(t)−

n∑
j=1

Λ̃jµj |epj(t)|

+

n∑
j=1

Λ̃jβ
p
j |epj(t)| −

m∑
k=1

Υ̃kξk|eqk(t)|+
m∑

k=1

Υ̃kβ
q
k|eqk(t)|

≤ 1

2
eTp (t)

[
− Λ̃A−AT Λ̃T − Λ̃Π−ΠT Λ̃T

]
+

1

2
eTq (t)

[
− Υ̃U − UT Υ̃T

−Υ̃Φ− ΦT Υ̃T
]
−

n∑
j=1

Λ̃j

[
µj − βp

j

]
|epj(t)| −

m∑
k=1

Υ̃k

[
ξk − βq

k

]
|eqk(t)|

≤ −1

2
eTp (t)r1Λ̃ep(t)−

1

2
eTq (t)r2Υ̃eq(t)

≤ −ΩminṼ
(
t, ep(t), eq(t)

)
, (27)

13



where Ωmin = min{r1, r2}. Then by means of Lemma 2.7, it follows that

Ũ(t) ≤
[
V
(
0, ep(0), eq(0)

)]
Eλ

[
− Ωmint

λ
]
, ∀ t ≥ T . (28)

Otherwise, Ũ(t) satisfies

1

2
ϵ̃min

[
∥ep(t)∥2 + ∥eq(t)∥2

]
≤ Ũ(t) ≤ 1

2
ϵ̃max

[
∥ep(t)∥2 + ∥eq(t)∥2

]
(29)

where ϵ̃min = min{λ̃min(Λ̃), λ̃min(Υ̃)} and ϵ̃max = max{λ̃max(Λ̃), λ̃max(Υ̃)}. On the other hand,

V
(
0, ep(0), eq(0)

)
≤ 1

2
λ̃max(Λ̃)∥γp − φp∥2 +

1

2
λ̃max(Υ̃)∥γq − φq∥2 +

1

2

n∑
j=1

[
Λ̃j

πj

[
αj(0)− αj

]2
+
Λ̃j

ρj

[
µj(0)− µj

]2]
+

m∑
k=1

[
Υ̃k

εk

[
ϕk(0)− ϕk

]2
+

Υ̃k

ϱk

[
ξk(0)− ξk

]2]
,

≤ 1

2

[
ϵ̃max

[
∥γp − φp∥2 + ∥γq − φq∥2

]
+

n∑
j=1

Λ̃j

πj

[
αj(0)− αj

]2
+

n∑
j=1

Λ̃j

ρj

[
µj(0)− µj

]2
+

m∑
k=1

Υ̃k

εk

[
ϕk(0)− ϕk

]2
+

m∑
k=1

Υ̃k

ϱk

[
ξk(0)− ξk

]2]
,

(30)

According to Eq.(28)-Eq.(30) and by utilizing Lemma 2.11, it follows that[
∥p̃(t)− p(t)∥+ ∥q̃(t)− q(t)∥

]
≤

[
H
(
(ζ1, ς1)

)
Eλ

[
− Ωmin t

λ
]] 1

2

, t ≥ T .

where

H
(
(ζ, ς)

)
=

2

ϵ̃min

[
ϵ̃maxζ1 + ϵ̃maxς1 +

n∑
j=1

Λ̃j

πj

[
αj(0)− αj

]2
+

n∑
j=1

Λ̃j

ρj

[
µj(0)− µj

]2
+

m∑
k=1

Υ̃k

εk

[
ϕk(0)− ϕk

]2
+

m∑
k=1

Υ̃k

ϱk

[
ξk(0)− ξk

]2] ≥ 0.

By virtue of Definition 3.7, the slave system (16) is globally Mittag-Leffler synchronized with the
master system (5) under the controller (19). Hence completed the proof.

When C = W = 0, i.e., the system (5) and (16) has without time delays. Then the following
corollary is directly obtained from Theorem 3.8.

Corollary 3.9 Suppose the assumption (III) and (IV ) hold, then the slave system (16) is globally
Mittag-Leffler synchronized with the master system (5) under the controller (19) if there exist positive
definite matrices Λ̃ = diag

{
Λ̃1, ..., Λ̃n

}
> 0, Υ̃ = diag

{
Υ̃1, ..., Υ̃m

}
> 0, and positive scalars r1 and

r2 such that the following LMI holds:{
Ω1 = −ΛA−AT Λ̃T − Λ̃Π−ΠTΛT < −r1Λ̃,
Ω2 = −ΥU − UT Υ̃T − Υ̃Φ− ΦT Υ̃T < −r2Υ̃,

(31)

Furthermore, the control gains are subjected to

µj ≥
m∑

k=1

2Lk|bkj |, ξk ≥
n∑

j=1

2Dj |vjk|, (32)

where Π = diag{α1, ..., αn} > 0 and Φ = diag{ϕ1, ..., ϕm} > 0.
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Remark 3.10 Reviewing the existing works in the literatures, a large number of studies on the adap-
tive synchronization of fractional order neural networks can be found by many researchers, see Ref
[3, 6, 38, 46]. But there is few results focused on adaptive synchronization of fractional order BAM
neural networks with time delays [33] and by using maximum absolute value method. However, there
is no one studied the adaptive synchronization of fractional order BAM neural networks with (or with-
out) time delays via positive definite quadratic Lyapunov-functional and Mittag-Leffler functions. Up
to best of authors knowledge, the proposed synchronization results are considered as new.

Remark 3.11 In some earlier literature, the Lyapunov-functionals are constructed by nonsmooth
absolute functions with one-norm, two-norm and p-norm (p > 1) functions and the obtained results are
all in the form of matrix elements, which caused greater complicated calculation for the system solutions
because their results has to check one by one for n times. To overcome the above computational burden
in Theorem 3.1 and 3.8, the Lyapunov functions are used in positive definite quadratic function and
the results can be checked easily by LMI MATLAB toolbox. Different from the synchronization results
in [3, 6, 34, 48, 52, 54], the activations are only assumed to be bounded, which helps to reduce the
computational complexity for computation. Furthermore, in our proposed synchronization criteria, we
used less number of whole matrices and matrix elements which is much more simpler, it leads to less
conservatism.

Remark 3.12 Different from the control techniques in the earlier publications [9, 48, 51], adaptive
feedback control (19) is more effective and the designer requirements of adaptive feedback controllers
are very effortless. The sufficiently small control gains πj , ρj , εk and ϱk of (19) would lead to small
control inputs. However the required synchronization speed may be very gradual. Subsequently, when
the adaptive feedback control used to realize synchronization goal, the adaptive control gains ought to
be chosen to increase the synchronization speed and to reduce the values of control inputs.

4 Numerical Simulations

In this section, two numerical examples and simulations are given to reveal the effectiveness of the
theoretical results derived formerly.

Example 4.1 Consider the three dimensional FBNNs{
Dλp(t) = −Ap(t) +Bg(q(t)) + Cg(q(t− η)) +G,

Dλq(t) = −Uq(t) + V h(p(t)) +Wh(p(t− η)) +H,

with network measurement output is{
xp(t) = Ep(t) +R(t, p(t)),

xq(t) = Fq(t) + S(t, q(t)),

where λ = 0.98, p(t) =
(
p1(t), p2(t), p3(t)

)T
, q(t) =

(
q1(t), q2(t), q3(t)

)T
, g(q(t)) = tanh(q(t)), S(t, q(t)) =

sin(q(t)), h(p(t)) = tanh(p(t)), R(t, p(t)) = sin(p(t)), G = H = [0, 0, 0]T , A = diag{3, 3, 3}, U =
diag{2.75, 2.75, 2.75}, E = diag{1, 1.2, 0.8}, F = diag{0.5, 0.5, 0.5}, η = 1.5, ξ1 = 1.5, ξ2 =
2, θ1 = 1, θ2 = 1.3,

B =

 2.8 1.2 −1.1
−2.2 2.3 2.2
1.2 −1.1 2.1

 , C =

2.8 1 −2.1
−2 2.3 0.2
1.5 −3 2.1

 ,
V =

 2.5 1.2 −2.2
−2.6 2.3 3
1.4 −1.1 1.8

 , W =

 0.5 1.5 −2.1
−1.3 2.3 1.4
1 −3 1.8

 ,
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Figure 1: State evolution of p1(t), p̂1(t), q1(t), q̂1(t) and its estimations with Example 4.1
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Figure 2: State evolution of p2(t), p̂2(t), q2(t), q̂2(t) and its estimations with Example 4.1

By means of Assumption (I) and Assumption (II), we select I = diag{0.2, 0.2, 0.2}, J = D =
diag{0.5, 0.5, 0.5}, L = diag{0.8, 0.8, 0.8}. Obviously these assumptions are holds. By utilizing the
Matlab to solve the LMIs (10), the feasible solutions are given follows,

Λ =

0.1342 0.0370 0.0654
0.0370 0.1315 0.0357
0.0654 0.0357 0.2074

 , Υ =

 0.4550 −0.2439 −0.3056
−0.2324 0.6894 −0.0809
−0.3041 −0.0846 0.5916

 ,
Yp =

 0.8406 −0.0396 −0.1160
−0.0396 0.7910 −0.0338
−0.1160 −0.0338 0.7382

 , Yq =

 0.0997 −0.0384 −0.0513
−0.0384 0.1548 −0.0230
−0.0513 −0.0230 0.1306

 ,
M =

 8.1375 −1.7812 −2.9140
−1.8308 6.7204 −0.6821
−2.8085 −0.7572 4.5945

 , N =

 0.4550 −0.2439 −0.3056
−0.2324 0.6894 −0.0809
−0.3041 −0.0846 0.5916

 ,
α1 = 0.6289, α2 = 2.0313, δ = 1.8925, λ1 = 3.1802, λ2 = 3.3681 and µ = 0.3461.

Therefore it follows from Theorem 3.1, the error system (9) is globally Mittag-Leffler stable. That
is, the system (8) becomes a globally Mittag-Leffler state estimator of system (6). Under the ini-

tial conditions p(t) =
(
3.5,−0.3, 1.75

)T
, p̃(t) =

(
2,−1.3, 1.5

)T
, q(t) =

(
− 0.5, 1.5, 1.75

)T
and

q̃(t) =
(
0.5,−0.3, 4.75

)T
, t ∈ [−1, 0], the state evolution for each variable of the considered sys-

tems pj(t), p̂j(t), qk(t), q̂k(t) (j = k = 1, 2, 3) are illustrated in Fig.[1]-Fig.[3]. Fig.[4] depict the
estimator error states of zpj(t), zqk(t) (j = k = 1, 2, 3), it notice that the corresponding error states
tends to zero, which ensure the validity of our analytical results.

Example 4.2 In system (6), we choose the parameter λ = 0.98, η = 0.1, g(q(t)) = tanh(q(t)), h(p(t)) =
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Figure 3: State evolution of p3(t), p̂3(t), q3(t), q̂3(t) and its estimations with Example 4.1
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Figure 4: State error evolution of zp(t), zq(t) and its estimations in Example 4.1

tanh(q(t)), G = H = [0, 0, 0]T , A = diag{2, 2, 2}, U = {1.5, 1.5, 1.5},

B =

 2 2 −4.5
−3.75 1.51 −1.1
1.1 −3 1.1

 , C =

 1.5 2.5 −0.4
1.75 0.5 1
2.5 −2.5 0.8

 ,
V =

2.1 1 −2
1.8 1.7 1
1.2 −2.1 1

 , W =

 1 2.5 1.8
−2.2 1.6 0.2
1 0.4 1

 .
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Figure 5: State response of
(
p1(t), p̃1(t)

)
and

(
q1(t), q̃1(t)

)
in Example 4.2

It is simply to get L = diag{0.1, 0.1, 0.1}, D = diag{0.2, 0.2, 0.2}. Therefore Assumption (III)
and Assumption (IV ) are holds. Now we select πj = 0.6, ρj = 0.8, εk = 0.5 and ϱk = 0.5. Then the
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and
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in Example 4.2
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Figure 7: State response of
(
p3(t), p̃3(t)

)
and

(
q3(t), q̃3(t)

)
in Example 4.2

adaptive feedback controller (19) is{
δj(t) = −αj(t)epj(t)− µj(t) sgn[epj(t)],

θk(t) = −ϕk(t)eqk(t)− ξk(t) sgn[eqk(t)]
(33)

and the adaptive updated law is{
Dλαj(t) =

∑3
k=1 0.6epk(t)epj(t), D

λµj(t) = 0.8|epj(t)|,
Dλϕk(t) =

∑3
j=1 0.5eqj(t)εkeqk(t), D

λµk(t) = 0.5|eqk(t)|,
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Figure 8: State response of the control gains α(t) and ϕ(t) in Example 4.2

for j = k = 1, 2, 3. Take the values of r1 = 0.8, r2 = 0.6, α1 = α2 = α3 = 3.8, µ1 = µ2 = µ3 =
3, ϕ1 = ϕ2 = ϕ3 = 2, ξ1 = 4, ξ2 = 5 and ξ3 = 3. By means of LMI MATLAB control toolbox, it is
easily to obtain the LMI is feasible and the feasible solution is as follows:

Λ = 108 ×

8.7446 0 0
0 8.7446 0
0 0 8.7446

 Υ = 109 ×

1.4757 0 0
0 1.4757 0
0 0 1.4757

 .
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Figure 9: State response of the control gains µ(t) and ξ(t) in Example 4.2
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Figure 10: Synchronization error evolution with control inputs in Example 4.2

And after by direct manipulation, it is simply to check that

3 = µ1 >
3∑

k=1

2Lk

(
|bkj |+ |ckj |

)
= 2.9, 2.5 = µ2 >

3∑
k=1

2Lk

(
|bkj |+ |ckj |

)
= 2.4,

2 = µ3 >
3∑

k=1

2Lk

(
|bkj |+ |ckj |

)
= 1.6, 4 = ξ1 >

n∑
j=1

2Dj

(
|vjk|+ |wjk|

)
= 3.7

5 = ξ2 >
n∑

j=1

2Dj

(
|vjk|+ |wjk|

)
= 4.6, 3 = ξ3 >

n∑
j=1

2Dj

(
|vjk|+ |wjk|

)
= 2.5.

Therefore all conditions of Theorem 3.4 are holds. Let the initial conditions of (5) and (16) be p(t) =(
2,−0.8, 1.5

)T
, p̃(t) =

(
1,−1.5, 2

)T
, q(t) =

(
− 0.8, 1, 1.5

)T
and q̃(t) =

(
1.5,−1, 2

)T
, t ∈ [−0.1, 0]. In

Fig.[5]-Fig.[7] displays the evolutions of each variable of the considered systems pj(t), p̃j(t), qk(t) and
q̃k(t) (j = k = 1, 2, 3). Then, the initial values of the control inputs (33) are α1(0) = 0.03, α2(0) =
0.06, α3(0) = 0.01, µ1(0) = 0.03, µ2(0) = 0.06, µ3(0) = 0.01, ϕ1(0) = 0.06, ϕ2(0) = 0.05, ϕ3(0) =
0.02, ξ1(0) = 0.06, ξ2(0) = 0.05 and ξ3(0) = 0.02. Further it should be mentioned that for the above
values, the adaptive coupling strengths αj(t), µj(t), ϕk(t) and ξk(t) (j = k = 1, 2, 3) are shown in
Fig.[8]-Fig.[9], it is observed that the adaptive control gains may tends to some positive constants. In
Fig.[10] describes time responses synchronization errors epj and eqk (j = k = 1, 2, 3). It is notice that
the synchronization errors converges to zero, which confirms the effectiveness of our results. Hence,
these simulations results indicates the slave system (16) are globally Mittag-Leffler synchronized with
the master system (5) under the controller (33).

Remark 4.3 The authors in [48] designed the state feedback controller δ(t) = −Kep(t) and θ(t) =
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−K̃eq(t) to the slave system, which control gain is denoted by K = diag{14, 14} and K̃ = diag{16, 16},
respectively. The authors in [5] utilizing the adaptive feedback controller δ(t) = −ζ(t)ep(t)−η(t) sgn(ep(t))
and θ(t) = −α(t)ep(t) − β(t) sgn(eq(t)) to the slave system and obtained final control gains are
ζ(t) ≤ 2.1, η(t) ≤ 2.8, α(t) ≤ 1.2 and β(t) ≤ 1.25. But, our control gains α(t) ≤ 0.112, ϕ(t) ≤ 0.222,
µ(t) ≤ 0.471 and ξ(t) ≤ 0.341 in example 4.2 are much smaller than control gains of above men-
tioned references. Hence, example 4.2 shown that the designed adaptive controller in FBNNs is more
effective comparing to Ref [5, 48]. However, the adaptive Mittag-Leffler synchronization of FBNNs
have not yet been seen, hence the result is new. Moreover, in example 4.2 we deal with the adaptive
synchronization of FBNNs via Theorem 3.8. If memristive connection weights are invariable in Ref
[33], it is worth pointing that the numerical examples of integer order BAM neural networks in [33]
can be the special cases of example 4.2.

5 Conclusions

In this paper, we devoted to demonstrate the issues of the extended design of Mittag-Leffler state
estimator and synchronization for FBNNs with time delay. By a key role of the Razumikhin-type
method, some new sufficient criteria ensuring Mittag-Leffler state estimator of the proposed model
are investigated in terms of LMI approach. Moreover, a novel adaptive feedback controller is designed.
By using this controller, algebraic sufficient conditions are obtained to guarantee the Mittag-Leffler
synchronization. Again, the corollaries had been given to demonstrate the obtained theoretical out-
comes within the paper are also authentic for FBNNs without delay term. Lastly, two simulation
examples affirm the rationality of the theoretical results. It would be interesting to extend the results
proposed in this paper to the state estimator and synchronization analysis for fractional order memris-
tor based Cohen-Grossberg BAM neural networks with discrete time delays, which will be considered
in our future research.
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