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Abstract: The voltage amplitude generated by renewable energy sources is often unstable, 

necessitating the use of power electronic circuits for effective grid integration. Among these, 

DC-DC converters play a critical role in maintaining a constant DC link voltage, typically 400 

V or 800 V, at the input of inverter circuits that supply power to the load or the grid. The study 

focuses on the voltage gain behavior of a high-gain dual cascaded DC-DC boost converter 

designed for (photovoltaic) PV power systems. Using ANSYS Electronics software with its 

parametric solver, a comprehensive dataset was generated based on key parameters such as 

input voltage, power switch duty ratio, and switching frequency.  

The Improved Grey Wolf Optimizer (IGWO) algorithm was employed to estimate 

mathematical models for this dataset using linear and quadratic equations. The accuracy of the 

proposed models was validated across six test scenarios, demonstrating superior performance 

compared to traditional optimization algorithms, including Harmony Search (HS), Particle 

Swarm Optimization (PSO), Differential Evolution (DE), and the standard Grey Wolf 

Optimizer (GWO). Experimental validations yielded output voltages of 23.5 V and 36.1 V for 

input voltages of 4.8 V and 6.2 V, respectively, closely aligning with simulation results of 

23.113 V and 36.447 V. 

The findings, supported by detailed simulations and graphical analyses, highlight the IGWO 

algorithm's precision and reliability in predicting converter output voltages under variable input 

conditions. This work advances renewable energy systems integration by enhancing the 

modeling and performance of cascaded DC-DC boost converters. 

Keywords: Power electronics, Cascaded DC-DC boost converter, Parameter estimation, 

Renewable energy, Improved Grey Wolf Optimizer (IGWO). 
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1. Introduction 

Renewable energy sources (RESs) are increasingly being recognized as environmentally 

friendly and sustainable solutions for energy generation[1]. Solar, wind, and hydroelectric 

power are among the most prominent sources driving this transition. However, the widespread 

adoption of direct current (DC) power sources in photovoltaic (PV) cells, fuel cells, and various 

energy storage systems has drawn significant attention to DC microgrids[2], [3]. Research into 

energy management and integrating renewable energy systems is vital for advancing 

sustainable energy technologies [4].  

DC-DC converters are indispensable components in renewable energy systems, playing a 

critical role in converting the DC power generated by sources such as solar panels and wind 

turbines into alternating current (AC) for residential and commercial applications[5], as 

illustrated in Figure 1. These converters also regulate voltage and frequency to ensure power 

stability and reliability. Additionally, they facilitate energy storage in batteries or other devices, 

which enhances the efficiency and dependability of renewable energy systems. Consequently, 

Power electronics are essential for optimizing energy conversion and management in energy 

systems[6]. 

Among various DC-DC converter configurations, cascaded boost converters are particularly 

valued in renewable energy systems for their high efficiency, power density, voltage gain, and 

simple control features. Beyond voltage boosting, these converters provide critical isolation 

between input and output, ensuring the safety and protection of connected devices. This makes 

cascaded boost converters pivotal for efficiently converting low-voltage renewable energy 

sources into higher voltages suitable for practical applications [7]. 

 

Figure 1. Renewable energy - DC/DC converter circuits systems integration 



Parameter estimation is a cornerstone in the design and operation of non-linear systems, such 

as renewable energy systems, as it ensures accurate results and system validation. This critical 

process has been widely studied in the literature, with methods ranging from artificial neural 

networks (ANNs) and machine learning (ML) to optimization algorithms. Some notable 

examples include: 

• Marine Predator Algorithm for PV cell models: In [8], the Marine Predator Algorithm 

was applied to estimate the parameters of a double-diode PV cell model. The study 

reported a sum of individual absolute errors for the output current and power as 

0.02133487 A and 0.00876895 W, respectively. When compared to RTC France data, 

the root mean squared error (RMSE) was calculated as 9.8388×10-4A, demonstrating 

the algorithm’s accuracy.  

• ANN-based PV power estimation: A study in [9]applied an ANN model to estimate PV 

power output in a photovoltaic facility in southern Italy. Weather scenarios were used 

to create a comprehensive dataset for training and testing the ANN model. The ANN 

successfully predicted PV power output with a normalized root mean squared error 

(nRMSE) of less than 10% across all weather conditions, demonstrating its reliability 

and effectiveness.  

• Comparison of Traditional Estimation Methods: In[10], estimation methods, including 

Proportional-Integral-Derivative (PID), Artificial Intelligence (AI), Genetic Algorithm 

(GA), and Fuzzy Logic (FL), were comprehensively evaluated for their effectiveness in 

predicting PV system performance and solar radiation. The study highlighted the 

varying successes of these methods in practical application to PV systems.  

• Review of AI-based approaches: A review in [11] examined the advantages of AI-based 

methodologies, such as ANN, FL, GA, Evolutionary Strategies (ES), and Harmony 

Search (HS), in addressing key challenges in renewable energy systems. These 

challenges include forecasting and modelling meteorological data, simulation, control, 

and system sizing for PV systems, highlighting the versatility of AI-based methods.  

• Particle Swarm Optimization (PSO) for energy management: Another application in 

[12] employed the PSO algorithm to estimate parameters for the energy management 

system. The method achieved significant error reduction of 59% and 56% compared to 

experimental data, with an RMSE of 0.1245. The study also reported a strong correlation 

coefficient (R = 0.9927) between predicted and experimental results, emphasizing the 

robustness of the PSO approach. 



Parameter estimation is also a fundamental aspect of DC-DC converter design, particularly in 

renewable energy systems, where it plays a critical role in ensuring efficient and reliable 

operation. There is an increasing interest in using optimization algorithms and artificial neural 

networks in parameter estimation processes in power electronic circuits used in renewable 

energy sources [13], [14]. For instance, AI-based estimators have been successfully utilized to 

predict the performance of DC-DC converter models using machine-learning techniques. These 

estimators have demonstrated their ability to accurately predict the performance of 

commercially available converters by analyzing parameters such as output voltage, input 

voltage, and output current [15]. Another notable study [16] proposed an artificial neural 

network (ANN)-based control method to manage active and reactive power in a single-phase 

grid-connected fuel cell system. It utilizes a DC-DC boost converter to regulate the voltage 

level produced by PEM fuel cells, ensuring stability through control methods that maintain the 

output voltage at a reference level.  In this work [17], the ANN model was hybridized with the 

PSO algorithm to optimize syngas production in a biomass gasification plant and predict 

biomass requirements to meet energy demand, achieving significant improvements in energy 

conversion efficiency. 

Despite advancements, inaccuracies in parameter estimation can result in significant 

drawbacks, such as voltage regulation errors, reduced efficiency, or damage to the converter or 

connected systems[18], [19]. Such issues highlight the need for robust and reliable estimation 

techniques to ensure the proper functioning of DC-DC converters in real-world applications. 

Despite advancements, several challenges persist in implementing parameter estimation and 

reliability prediction techniques for DC-DC converters. These challenges include limited data 

availability, complex failure modes, environmental variability, and cost considerations. 

However, addressing these obstacles is crucial for developing accurate models and designing 

robust systems that ensure efficiency and reliability over the lifetime of these converters. 

Accurate parameter estimation thus remains vital for optimizing renewable energy systems. 

For instance, long short-term memory (LSTM) networks have been applied in maximum power 

point tracking (MPPT) systems to estimate battery state of charge (SOC) and current energy 

production[20]. The estimation process achieved mean absolute error (MAE) values between 

0.0177 and 0.0431, and RMSE values between 0.0221 and 0.0790, showcasing the potential of 

such approaches. Additionally, parametric analyses in [21] demonstrated the effectiveness of 

artificial hybrid estimation intelligence techniques for achieving stable output voltage in DC-



DC converters under varying conditions, including different switching frequencies, input 

voltages, and duty ratio values.  

The limitations of traditional methods, including slow convergence, the risk of getting stuck in 

suboptimal solutions, and high computational costs, necessitate exploring advanced approaches 

Metaheuristic methods, such as the Improved Grey Wolf Optimizer (IGWO), address these 

limitations by enabling faster convergence, effective parameter exploration, and reduced 

computational requirements [22], [23]. Despite the extensive simulation-based studies in the 

literature, experimental validation under real-world conditions is still limited, particularly for 

high-gain, dual-stage DC-DC converters. 

The intermittent nature of renewable energy generation and the challenges of efficiently 

managing and converting power necessitate the optimization of DC-DC boost converters for 

higher voltage gain and energy efficiency. This work aims to address these challenges by 

applying advanced optimization techniques to improve the performance of a dual-stage DC-DC 

boost converter used in photovoltaic systems. By developing an advanced parameter estimation 

methodology, this study contributes to more reliable and efficient energy conversion systems. 

The paper makes the following contributions: 

• Proposes a novel methodology for parameter estimation of cascade boost DC-DC 

converters in PV systems using a metaheuristic-based modeling approach. 

• Investigates the relationship between the input voltage, duty ratio, output voltage, and 

switching frequency in cascade boost converters, a topic that has been minimally 

explored in existing studies. 

• Optimizes parameters to minimize output voltage fluctuation, improving system 

stability and efficiency. 

• Demonstrates the use of GWO and IGWO for parameter estimation in cascaded boost 

converters, providing experimental validation through real-world tests. 

The findings presented in this paper highlight the effectiveness of IGWO in addressing 

parameter estimation challenges and advancing the integration of renewable energy systems by 

improving the efficiency and reliability of power electronics circuits. 

Figures 2 and 3 visually summarize the workflow and methodology of the study. Figure 2 

provides a detailed representation of the process, starting with parameter acquisition through 

parametric analysis using ANSYS. Key inputs such as duty cycle, input voltage, and switching 



frequency are highlighted. The process continues with optimization using IGWO, GWO, PSO, 

and DE algorithms, followed by validation of the computed results. Finally, the validated 

parameters are tested and compared to assess the performance and accuracy of the proposed 

approach. Figure 3 complements this by outlining the step-by-step methodology. The workflow 

begins with parametric analysis in ANSYS to obtain the necessary data (Step 1 and Step 2). 

The data is then applied in the optimization procedure (Step 3), using both linear and quadratic 

modeling techniques. The optimized results are validated (Step 4) and compared against 

experimental results (Step 5) to evaluate the effectiveness of the proposed methodology. 

 

Figure 2.Visual workflow of the study 



 

Figure 3.Methodology framework of the study (template by PresentationGO [24]) 

 

2. System Design and Parameter Estimation Framework 

This section describes the high-gain DC-DC boost converter utilized in this study, highlighting 

parametric simulation studies and the data set preparation techniques. Additionally, the IGWO 

algorithm, one of the advanced parameter estimation methods, is discussed in detail. 

2.1. DC-DC Boost Converter Systems 

High-gain DC-DC power converter circuits are widely used in power systems such as PV 

systems where voltage stability is a critical issue. The use of a conventional boost converter in 

these systems is not a practical technique because it will cause significant losses and low 

efficiency when the upper voltage range cannot be created and the duty cycle of the switch is 

high. To eliminate this problem, topologies such as cascade boost converter and quadratic boost 

converter are preferred. Moreover, they provide higher voltage gain without the need for high 

duty-cycle like conventional, but they have some problems such as lower efficiency and higher 

losses [25]. 

In this study, cascade boost converter topology is used due to its simple structure, easy 

maintenance, and high flexibility features. The dual-stage boost converter, shown in Figure 4, 

is designed by combining two equivalent base amplifiers connected in tandem. It consists of an 

input voltage source (𝑉𝑖𝑛), two independently controllable semiconductor switches, two free 

diodes (𝐷1 and 𝐷2), two capacitors (𝐶1 and 𝐶2), and two inductors (𝐿1 and 𝐿2) [26]. 

 



 

Figure 4. Double cascaded DC-DCboost converter circuit [26] 

Operating Mode 1: In this state, switch 𝑄1is turned on, while 𝑄2 remains off. The inductor𝐿1 is 

charged with the supply voltage and stores energy. This mode ends when 𝑄1 is turned off. The 

operation of this mode is illustrated in Figure 5. 

 

Figure 5. Mode 1 condition of double cascaded boost converter[26] 

Operation Mode 2: During this period, 𝑄1 is off, and 𝑄2 is turned on, as shown in Figure 6. The 

output of the first stage (𝑉1) becomes the input for the second stage. Inductor 𝐿2 is charged with 

the supply voltage and stores energy. This step concludes when 𝑆2 is turned off. The converter 

operates in continuous conduction mode across these two stages. 

 

Figure 6. Mode 2 condition of double cascaded boost converter[26] 



The output voltage (𝑉0) of the step-up converter is derived using the first-stage boost voltage 

(𝑉c1), and the second-stage boost voltage (𝑉c2), as given by Eqs. (1)-(3) [27], [28]. It is 

emphasized that the duty cycles of the two switches in the cascaded boost converter circuits are 

the same in Eq. (3) and the gain value is multiplied. Thus, both power switches operate at the 

same duty ratio. For this circuit topology, the duty ratios are accepted as 𝐷1 = 𝐷2 = 𝐷. Thus, 

a quadratic gain proportional to the square of the gain of a boost circuit can be achieved. 
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 (1) 

Vc2

Vc1
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V0

Vc1
=
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1
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To achieve the desired gain value (𝐾gain), Eq. (4) is used to calculate the duty ratio (D)of the 

switching elements.  

D = 1 −
1

√𝐾gain

 (4) 

However, the theoretically calculated gain value and switching element duty factor are 

practically limited to 0.65 to prevent the power switch from being subjected to stress during 

high-frequency turn-on and turn-off transitions. Therefore, it is recommended not to exceed the 

value of 0.65 in practice [27], [28]. The relationship between 𝐾gain and D is depicted in Figure 

7. 

 



Figure 7. 𝐾gain-D relationship according to switching parameters. 

2.2. IGWO Algorithm 

The IGWO algorithm is an advanced optimization method inspired by the natural hunting 

behavior of wolves. Its primary objective is to identify parameters that yield the optimal value 

of a given function. IGWO enhances the standard GWO algorithm [29] by addressing 

limitations such as population diversity, the imbalance between exploration and exploitation, 

and early convergence [30], [31].  

IGWO employs a dynamic strategy where leader wolves are selected randomly from the top 

three wolves in each iteration, ensuring better search space exploration. The algorithm models 

wolf hunting behavior more effectively by incorporating a specific distribution and increasing 

the number of aggressive wolves, leading to faster convergence. 

The IGWO algorithm consists of three main phases: initialization, movement, and 

selection/update phases.  

Initialization Phase: The IGWO algorithm defines a range to determine the possible solution 

area. The initial positions of the individuals are chosen randomly within this range. Initially, 

wolves (N: number of wolves) are randomly distributed in the search space in the list of [𝑙j, 

𝑢j].The initial positions (𝑋ij) are determined as follows: 

𝑋ij =  𝐼j +  𝑟𝑎𝑛𝑑j [0,1] 𝑥 (𝑢j − 𝑙j),   iЄ[1, 𝑁], jЄ[1, 𝐷] (5) 

Where 𝑋i(𝑡) = {𝑋i1, 𝑋i2, … . 𝑋iD} represents the 𝑖𝑡ℎ position in the 𝑡𝑡ℎ iteration (D=dimension). 

The population is recorded in a matrix with N rows and D columns.  

Movement Phase: In this phase, The IGWO computes the next position of the wolf  𝑋i(𝑡). For 

this computation, IGWO uses the wolf's different neighbors and a randomly selected wolf from 

the matrix. The 𝑅i(𝑡) is indicates the radius between the current position 𝑋j(𝑡) and the position 

of the candidate 𝑋j−GWO(𝑡 + 1)is given by: 

𝑅i(𝑡) = |𝑋j(𝑡) −  𝑋j−GWO(𝑡 + 1)| (6) 

The neighbors(𝑁i(𝑡))are calculatedusing: 

𝑁i(𝑡) = { 𝑋j(𝑡)| 𝐷i( 𝑋j(𝑡),  𝑋j(𝑡)) ≤  𝑅i(𝑡),  𝑋j(𝑡) Є 𝑀𝑎𝑡𝑟𝑖𝑥} (7) 

Where Di is the Euclidean distance between𝑋j(𝑡) and 𝑋i(𝑡). 



Selection/Update Phase: The new position(XiDLH,d) for DLH model is computed as: 

𝑋iDLH,d(𝑡 + 1) = ( 𝑋i,d(𝑡) + 𝑟𝑎𝑛𝑑[0,1] 𝑥 ( 𝑋n,d(𝑡) −  𝑋r,d(𝑡)) (8) 

Where(n) is the number of wolves, and (d) is the dimension. The updated position (𝑋i(𝑡 + 1)) 

is chosen based on the fitness value: 

𝑋i(𝑡 + 1) = {
𝑋i_GWO

(𝑡 + 1), 𝑖𝑓 𝑓 (𝑋i_GWO
(𝑡 + 1)) < 𝑓(𝑋iDLH

(𝑡 + 1))

𝑋iDLH
(𝑡 + 1)otherwise

 (9) 

The IGWO algorithm achieves faster convergence compared to standard optimization methods 

and has demonstrated success in various real-world applications. By incorporating advanced 

hunting strategies and leader selection, IGWO ensures a balance between exploration and 

exploitation, making it a robust choice for parameter estimation in non-linear systems. For more 

detailed information about the algorithm, please refer to the study titled [30], [32]. 

3. Optimization Procedure for Cascaded Boost DC-DC Converter Parameter Estimation 

3.1. Optimization Model Development 

This section outlines the optimization procedure for cascaded boost DC-DC converter 

parameter estimation. A comprehensive dataset was generated using parametric simulation in 

ANSYS-Electronics software, as shown in Figure 8. The data set consists of 714 scenarios, with 

each capturing unique combinations of input voltage, duty ratio, and switching frequency. The 

parameter limits are summarized in Table 1, and technical specifications of the converter are 

provided in Table 2. 

 

Figure 8. Parametric simulation circuit [21]. 

Table 1. The limit of parameters. 

Parameter Name Minimum Limit Maximum Limit 

Input Voltage 40 V 120 V 



Duty Ratio 0.15 0.65 

Switching Frequency 10 kHz 40 kHz 

 

 

Table 2. Technical parameters of the double cascaded boost converter 

Input Voltage (𝑉𝑖) 40 V 

Output Voltage (𝑉0) 400 V 

First Stage Inductor (𝐿1) 100 µH 

Second Stage Inductor (𝐿2) 100 µH 

First Stage Capacitor (𝐶1) 680 µF 

Second Stage Capacitor (𝐶) 680 µF 

Load 100 Ohms 

 

In this study, the internal resistances of passive circuit elements, such as inductors and 

capacitors of the converter circuit, and the voltage drops of diodes and power switching 

elements are also neglected. Thus, parametric simulation studies are carried out under ideal 

conditions. The primary objective of this study is to model the parameters of the step-up DC-

DC converter by analyzing the relationship between the input voltage, duty ratio, switching 

frequency, and output voltage. This is because, as seen in Eqs. (1)-(2), the output voltage is 

directly related to the duty cycle and input voltage under ideal conditions. In addition, the ripple 

in the output voltage varies directly and inversely proportional to the switching frequency. 

There is no other parameter that directly affects the output voltage under ideal conditions.  An 

IGWO-based heuristic algorithm was employed to examine the dataset and derive mathematical 

relationships, expressed in linear and quadratic equations. 

The linear function represents a straight-line relationship that best captures the linear correlation 

between the input variables and output data. The mathematical representation of this three-

variable linear function is provided in Eq. (10). 

𝐸linear = 𝑎1 + 𝑎2𝑋1 + 𝑎3𝑋2 + 𝑎4𝑋3                                                                 (10) 

For datasets with non-linear relationships, a linear function may fail to represent the underlying 

patterns in the data accurately. In such cases, more sophisticated mathematical techniques are 

essential. To address this, the study also models the parameter estimation for the cascade boost 



DC-DC converter using a quadratic equation. The quadratic equation, which accounts for both 

interaction and non-linear effects among the variables, is expressed in Eq. (11). 

𝐸quadratic = 𝑎1 + 𝑎2𝑋1 +  𝑎3𝑋2 + 𝑎4𝑋3 + 𝑎5𝑋1𝑋2 +  𝑎6𝑋1𝑋3 +  𝑎7𝑋2𝑋3 + 𝑎8𝑥1
2 +  𝑎9𝑥2

2  +  𝑎10𝑥3
2 (11) 

The variables 𝑋1,𝑋2, 𝑋3 in Eqs. (10)-(11) represent the input voltage, duty ratio, and switching 

frequency, respectively. These equations aim to mathematically express the relationship 

between the experimental parameters listed in Table 1 and the output voltage. In these 

equations, 𝑎1is the independent weight (constant term), while the coefficients(𝑎2, 𝑎3,…, 𝑎10)are 

dependent weights. 

The objective function, by minimizing the difference between the actual output voltage and the 

computed output voltage derived from Eqs. (10)–(11). 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑(𝑂𝑢𝑡𝑝𝑢𝑡𝑉𝑜𝑙𝑡𝑎𝑔𝑒n − 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝑉𝑜𝑙𝑡𝑎𝑔𝑒n)2

𝑋

𝑛=1

 (12) 

Where the 𝑋 is used to symbolize the number of scenarios. The 𝑂𝑢𝑡𝑝𝑢𝑡𝑉𝑜𝑙𝑡𝑎𝑔𝑒n represents the 

Output Voltage value in nth scenario while 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝑉𝑜𝑙𝑡𝑎𝑔𝑒nrepresents the linear or 

quadratic equation results obtained by Eqs. (10)-(11). 

The circuit parameters derived from the output voltage model are instrumental in designing an 

adaptive voltage controller as seen in Figure 9. Specifically, the proposed model facilitates 

dynamic adjustments to the duty cycle in response to input voltage variations under different 

load conditions. For instance, when the converter input voltage fluctuates between 40 V and 

120 V, the duty cycle of the controller adaptively adjusts within the range of 0.15 to 0.65. This 

ensures that the converter output voltage remains stable at 400 V, regardless of input voltage 

changes. 

 

 

Figure 9. Block diagram of the proposed model. 

 



The derived mathematical model provides precise guidelines for determining the optimal duty 

cycle based on real-time input voltage variations. These parameters can directly inform the 

design of a controller, ensuring robust performance and adaptability in varying operational 

conditions [33] [34].  

4. Results for Cascaded Boost DC-DC Converter Parameter Estimation and Validation 

4.1. Benchmarking of the IGWO Algorithm 

The IGWO algorithm, implemented on the MATLAB platform, was validated using standard 

benchmark functions listed in Table 3. Benchmark functions are mathematical tools used to 

assess the performance of the created optimization algorithm by testing it on different features. 

The IGWO code was tested using six benchmark functions (𝑓1 to 𝑓6), where the functions 

(𝑓1to𝑓4) evaluated the convergence speed of the IGWO, and functions (𝑓5 and 𝑓6)assessed 

exploration performance. 

Table 3. The benchmark functions. 

No Function Name 

f1 ∑ yj
2

m

j=1

 Sphere 

f2 ∑|yj| + ∏|yj|

m

j=1

m

j=1

 
Schwefel 

2.22 

f3 ∑ (∑ yi

j

i=1

)

2
m

j=1

 
Schwefel 

1.2 

f4 maxj{|yj|, 1 ≤ j ≤ m} 
Schwefel 

2.21 

f5 ∑[yj
2 − 10cos(2πyj) + 10]

m

j=1

 Rastrigin 

f6 −20exp (−0.2 (
1

m
∑ yj

2

m

j=1

)

Λ

0.5) − exp (
1

m
∑ Cos(2πyj)

m

j=1

) + 20 + e Ackley 

 

IGWO was run 25 times for each function to ensure statistical reliability. The results, including 

the mean value and standard deviation (SD), are shown in Table 4. A lower SD indicates better 

consistency in the algorithm's performance. 



 

 

Table 4. Results of benchmark test functions 

Methods  f1 f2 f3 f4 f5 f6 

IGWO 
MEAN 2.31E-195 4.74E-206 0 2.91E-209 0 8.88E-17 

SD 0 0 0 0 0 0 

 

4.2. Results for Cascaded Boost DC-DC Converter Parameter Estimation  

The IGWO-based optimization model was applied to parameter estimation for the cascaded 

boost DC-DC converter. The weights in Eqs. (10)–(11) were optimized over 25 runs. The 

average of the best results yielded the following linear and quadratic equations: 

𝐸linear = −98 − 1,3569 𝑋1 +  1,6878𝑋2 + 6,3416𝑋3 (13) 

𝐸quadratic = −0,2771−0,14 𝑋1 +  3,6193𝑋2 − 11.5229 𝑋3−0,0144𝑋1𝑋2 +  1,9259𝐸5 𝑋1𝑋3

+ 0,0807𝑋2𝑋3 ±  0,0280 𝑥1
2 −  0,0191𝑥2

2 +   0,1747𝑥3
2 

(14) 

The best optimization scores obtained using Eq.(12) are 46,5629 for the linear model and 

0,1314 for the quadratic models. Figures 10 and 11 demonstrate the convergence trends of the 

IGWO and Classical GWO methods for parameter estimation. In these figures, the objective 

function, as defined in Eq. (12), represents the difference between computed and measured 

values. Figure 10 represents the convergence trend for the linear model, while Figure 11 depicts 

the quadratic model. In both cases, the objective function value falls below 10 within 100 

iterations, demonstrating the rapid convergence of the IGWO method. Compared to classical 

GWO, IGWO achieves faster convergence, as evidenced in both figures. These results confirm 

IGWO's superior performance and its high convergence speed in solving the cascaded boost 

DC-DC converter parameter estimation problem. 



 

Figure 10. Convergence of IGWO and GWO for the linear model  

 

 

Figure 11. Convergence of IGWO and GWO for the quadratic model  

This paper evaluates the accuracy of the heuristic-based IGWO method through four key 

approaches: validation using an independent data set, comparative analysis, performance 

metrics, and comparison with actual data. An independent validation data set distinct from the 



original data set was employed to assess the accuracy of the proposed prediction method. 

IGWO's prediction results have been compared with other commonly used classical 

optimization methods, such as PSO, DE, and GWO. Various performance measures (Mean 

Absolute Error, Mean Absolute Percentage Error, Mean Squared Error, and Sum of Squared 

Errors) are used to evaluate the IGWO-based prediction model's performance. Additionally, 

IGWO's estimation results were validated against actual data obtained using the ANSYS Twin 

Builder simulation program, which enables observation of the prediction model's performance 

under real-world conditions. This comprehensive evaluation demonstrates the robustness and 

reliability of the IGWO method in accurately modeling the cascaded boost DC-DC converter 

parameters. 

4.3. Validation and Comparison 

This section explains the validation experiments for the estimation model used for the cascaded 

boost DC-DC converter parameter estimation. Table 5 shows the validation data for five 

scenarios used in this work. These five scenario points, completely independent of 714 

scenarios, were selected to evaluate the performance of this function. The validation dataset 

consists of new samples located outside of the original dataset. These selected data were used 

to test the function's generalizability. 

Table 5. Validation dataset 

Switching Frequency (fs) 

kHz 

Input Voltage (𝑉in) 

V 

Duty 

Ratio 

Output Voltage 

V 

12  48 0.55 231.13 

18 51 0.63 354.50 

36 112 0.48 422 

27 104 0.51 440.60 

12  48 0.55 231.13 

The actual output voltage values of the validation dataset selected for performance evaluation 

were compared with the values predicted by the function. The performance of the linear and 

quadratic models was evaluated using error metrics: MAE, MAPE, MSE, and SSE, as listed in 

Table 6.  

Table 6. Performance evaluation results 

Methods MAE MAPE MSE SSE 

Linear 46.59 13.8609 3.2E3 1.97E4 



Quadratic 0.1314 0.0355 0.0660 0.3962 

MAE represents the mean value of the absolute differences between predicted and actual values. 

It considers the balance between positive and negative errors and is expressed in units. A lower 

MAE value indicates that the estimate is closer to the actual value. The MAE results of linear 

and quadratic models are 46.59 and 0.1314, respectively. 

MAPE shows the error the predicted values make concerning the actual values in percentage 

terms. The absolute percentage errors are averaged for each observation. It is usually expressed 

as a percentage and represents the ratio of the predicted value to the actual value. The linear 

model's MAPE is 13.8609, while the quadratic's MAPE is 0.0355. The lower the MAPE value, 

the result of quadratic's MAPE, the closer the estimate is to the true value. 

MSE is the mean of the squares of the differences between predicted and actual values. Positive 

errors carry more weight and are expressed in units. The result of the quadratic model is 0.0660. 

A smaller MSE value indicates the estimate is closer to the actual value.  

SSE refers to the sum of the squares of the differences between predicted and actual values. 

The computed SSE values are 1.97E4 and 0.3962 for linear and quadratic models, respectively. 

A lower SSE indicates that the estimate is closer to the exact values. 

The results, shown in Table 6, indicate that the quadratic model outperforms the linear model 

in all metrics. As a result of this comparison, it has been measured that the values calculated by 

the quadratic function are close to the actual values. 

Table 7 compares the cases where quadratic function results were obtained using classical 

optimization methods such as GWO, PSO (Particle Swarm Optimization), DE (Differential 

Evolution), HS (Harmonic Search), and GA (Genetic Algorithm). Table 7 presents each 

method's prediction results and the criteria used to evaluate their accuracy. 

Table 7. Comparison of quadratic model with classical methods 

Methods MAE MAPE MSE SSE 

IGWO 0.1314 0.0355 0.0660 0.3962 

GWO 0.2195 0.0577 0.0929 0.5573 

PSO 3.2195 0,9425 19.1316 114.7899 

DE 3.3663 0.9720 20.040 120.2399 

HS 3.3797 0.9840 21.020 122.337 

GA 4.0120 1.0032 24.0068 140.297 



First, when the mean absolute error (MAE) values are examined, IGWO has the lowest MAE 

value (0.1314). These MAE results show that IGWO's estimates are closer to the actual values. 

The MAE value of GWO (0.2195) is slightly higher than that of IGWO, but the MAE values 

of PSO, DE, GA, and HS methods are significantly higher (3.2195, 3.3663, 4.0120, and 3.3797, 

respectively). 

Secondly, considering the average absolute percentage error (MAPE) values, IGWO again has 

the lowest MAPE value (0.0355). This shows that IGWO's forecasts make fewer errors than the 

actual values. On the other hand, the MAPE values of different methods are higher than those 

of IGWO. 

Thirdly, when the mean square error (MSE) and the sum of square error (SSE) values are 

examined, IGWO has the lowest MSE and SSE values. MSE results confirm that IGWO's 

estimates are closer to the actual values. The MSE and SSE values of GWO, PSO, DE, GA, and 

HS are higher, confirming the superior performance of IGWO in minimizing the error between 

predicted and actual values. 

As demonstrated in Table 7, the IGWO method consistently outperforms other optimization 

techniques. Among the methods evaluated, wolf-based systems such as GWO and IGWO yield 

superior results compared to classical approaches. By mimicking the leadership and hunting 

strategies of grey wolf packs [35], these methods effectively address problem diversity and 

complexity. 

IGWO, an enhanced version of GWO, has been recognized in the literature for its improved 

convergence speed [30]. It achieves faster and more accurate solutions by refining the 

exploration and exploitation balance, enabling better analysis of relationships between various 

parameters. Additional advantages of IGWO include its ability to operate within a more 

expansive solution space and its superior global search performance. 

The findings presented in Figure 11 and Table 7 further validate IGWO's effectiveness, 

corroborating its reported success in the literature. These results highlight IGWO as a robust 

and efficient tool for addressing cascaded boost DC-DC converter parameter estimation 

challenges. 

The Friedman test is a non-parametric test used to compare the performance of multiple 

algorithms. The Friedman test is commonly used to evaluate the performance of heuristic 

algorithms, where each algorithm is ranked according to a performance metric, and these ranks 

are compared statistically. 



According to the Friedman ranking test results in Table 8, IGWO was ranked as the best-

performing method. GWO was ranked second, while HS, DE, and PSO took third, fourth, and 

fifth places, respectively. The results in Table 7 show that IGWO performs better than other 

methods, outperforming the heuristic optimization methods. The Friedman rank test statistically 

evaluates these performance differences and reveals that IGWO is more successful than other 

methods. These results indicate that IGWO is one of the most effective methods that can be 

preferred for a cascaded DC-DC boost converter parameter estimation problem. 

Table 8. Friedman ranking test results. 

Methods IGWO GWO HS DE PSO GA 

Friedman 

Rankings 

1 2 3 4 5 6 

Parametric simulation studies and data set analysis based on the IGWO-based method have 

provided valuable information about the voltage gain behaviour of the cascaded DC-DC boost 

converter circuit for renewable energy systems. It has been observed that the voltage gain is 

affected by various parameters, such as the input voltage, the duty ratio of the power switches, 

and the switching frequency. Thus, it became clear that optimizing these parameters can 

significantly improve circuit performance and efficiency. According to the parameters given in 

Table 2, the power electronics circuit software runs to prove the accuracy of the proposed 

method, and the converter output voltage graph for the input variables given in Figure 12 is 

shown. Accordingly, while the input variables of the parametric simulation were 𝑓s=12 kHz, 

𝑉in=48 V, and duty ratio=0.55, the converter output voltage value was determined as 

approximately 231V. 

 
Figure 12. Output voltage waveform in𝑓s=12 kHz, 𝑉in=48 V, duty ratio=0.55 situation. 



Likewise, when the input variables of the power electronics circuit are set as fs=18 kHz, 𝑉in=51 

V, and duty ratio=0.63, the converter output voltage value becomes approximately 354 V, as 

given in Figure 13.  

 
Figure 13. Output voltage in 𝑓s=18 kHz, 𝑉in=51 V, duty ratio=0,63 situation. 

 

Since the increase in the switching frequency value reduces the converter output voltage's ripple 

value, the output voltage's increase is essentially adjusted with the duty ratio parameter. As seen 

in Figure 14, the duty ratio is reduced to 0.43 when the converter input voltage value increases.  

 
Figure 14. Output voltage in 𝑓s=24 kHz, 𝑉in=125 V, duty ratio=0,43 situation 

As given in Figure 15, when 𝑓s=27 kHz, 𝑉in=104 V, and duty ratio=0.51, the converter output 

voltage value comes to approximately 440 V. Also, with the increased switching frequency, the 

ripple in DC voltage is smaller in amplitude. In grid integration circuits, DC bus voltages are 

usually kept constant at 400 V at the inputs of the inverters. Thus, even if the converter input 

voltage changes, the DC bus voltage can quickly be brought to the desired value by setting the 

switching variables in Figure 15. 



 
Figure 15. Output voltage in𝑓s=27 kHz, 𝑉in=104 V, duty ratio=0,51 situation 

To see the ripples in the output voltage caused by load changes, a parametric simulation was 

run for the proposed cascaded DC-DC boost converter in the 5-30 Ohm load range, and the 

output voltage levels, and ripple levels seen in Figure 16 were obtained. This simulation resulted 

in a difference between 340-370 V load changes on the load for the switching parameters 𝑓s=24 

kHz, 𝑉in=125 V, and duty ratio = 0.43. Thus, it was seen that the output voltage was not affected 

much by load changes. This difference of approximately 30 V is a change that the duty ratio 

can compensate for. 

 

a 

 

b 

Figure 16. a) Parametric output voltage according to different load conditions, b) Voltage ripple 

differences in 48-50 ms. 



4.4. Experimental Validation 

To validate the proposed method, an experimental setup was designed to replicate the 

conditions outlined in the parametric dataset. The input variables were carefully controlled to 

match the values used for simulation, allowing for a direct comparison between the theoretical 

predictions and actual experimental results. 

The experimental outcomes were recorded based on the parameters provided in Table 5. In two 

different experiments, the switching frequency, input voltage, duty ratio, and output voltage 

parameters were defined, and the output voltage values were measured under these conditions.  

The double-cascaded boost converter-based experimental setup was designed using two DC-

DC boost converters connected in series. The physical parameter values used in the double-

cascaded boost converter are provided in Table 2. The input voltage values for the experiments 

were limited to 15 volts in the experimental setup, which is why the values in Table 5 have been 

scaled down by a factor of 1/10 to match the experimental conditions. 

Table 9. Experimental results of the proposed method. 

Switching Frequency 

(fs) (kHz) 

Input Voltage (𝑉in) 

(V) 

Duty 

Ratio 

Output Voltage 

(V) 

Exp. Output 

Value (V) 

12  4.8 0.55 23.113 23.5  

14 6.2 0.59 36.447 36.1 

Table 9 shows the experimental results of the proposed method. In the first experiment, the 

switching frequency was set to 12 kHz, input voltage to 4.8 V, and duty ratio to 0.55, with a 

theoretical output voltage of 23.113 V. The experimental measurement yielded an output 

voltage of 23.5 V, which is in close agreement with the theoretical value. The corresponding 

experimental setup for this test is shown in Figure 17 below. 



 

Figure 17. Experimental setup for 12 kHz switching frequency, 4.8 V input voltage, and 0.55 

duty ratio. 

In the second experiment, the switching frequency was set to 14 kHz, the input voltage to 6.2 

V, and the duty ratio to 0.59. The theoretical output voltage was calculated to be 36.447 V, 

while the experimental output voltage was 36.1 V. This also shows a close match with the 

theoretical prediction. The experimental setup for this test is shown in Figure 18. 



 

Figure 18. Experimental setup for 14 kHz switching Frequency, 6.2 V input Voltage, and 

0.59 Duty Ratio. 

The experimental results, when compared to the theoretical values, confirm the reliability and 

accuracy of the proposed method. This consistency demonstrates that the method can be 

effectively applied in real-world scenarios. 

5. Conclusions 

This study comprehensively analyses the voltage gain behaviour of step-up DC-DC amplifier 

circuits designed for renewable energy systems. Through parametric simulation studies and 

dataset analysis, the key parameters influencing voltage gain were identified, and their effects 

on circuit performance were investigated. 

The IGWO algorithm was successfully applied to optimize the input and output variables of the 

amplifier circuit. The results demonstrate that IGWO effectively enhances both voltage gain 

and the circuit's overall efficiency. Figures 9–18 present evidence supporting these conclusions. 

These findings highlight IGWO's potential for designing and optimizing power electronic 

circuits in renewable energy systems. 

The experimental validation of the proposed method showed that the output voltages from the 

two experiments were 23.5 V and 36.1 V for input voltages of 4.8 V and 6.2 V, respectively, 



which closely matched the simulation results (23.113 V and 36.447 V). These results indicate 

the effectiveness of the IGWO method in predicting and optimizing the performance of the 

circuit. The quadratic model, which exhibited better prediction accuracy than the linear model, 

highlighted the advantages of using IGWO for renewable energy applications. 

The electrical energy obtained from solar panels produces an unstable DC voltage and is likely 

to change at any time during the day. Therefore, the proposed method is important in ensuring 

the efficiency and reliability of power electronic circuits, such as adaptive duty ratio control to 

keep the output voltage constant at a certain level. Thus, it can increase the efficiency and 

productivity of high-gain DC-DC power converter circuits that can be used in grid interfaces of 

renewable energy sources. 

A key finding of this study is IGWO's effectiveness in estimating and optimizing the input and 

output variables within the dataset. The algorithm demonstrated its capability to efficiently 

search parameter space and converge to optimal or near-optimal solutions, making it a robust 

tool for designing and optimizing power electronics circuits in renewable energy systems. 

The quadratic model's superior performance, as evidenced in Table 6, illustrates its ability to 

produce predictions closer to actual values than the linear model. This makes the quadratic 

model a powerful predictor, offering significant advantages for renewable energy systems. Its 

ability to deliver accurate energy production and consumption forecasts is particularly valuable 

for planning and managing renewable energy systems. This model enables more efficient 

evaluation of energy resources and better responsiveness to future energy demands. 

However, the quadratic model's application is subject to certain limitations. The model requires 

sufficient data quantity and quality to ensure accurate results. It also relies on up-to-date 

datasets and periodic retraining to maintain its accuracy and performance. Addressing these 

limitations will ensure the model remains effective in evolving operational conditions. 

The findings contribute to understanding and designing high-gain, dual-stage DC-DC amplifier 

circuits for PV power systems. Optimizing circuit parameters to achieve stable and reliable DC 

link voltages is crucial for integrating renewable energy sources into the grid. As demonstrated, 

optimizing voltage gain in cascaded DC-DC booster circuits enhances the efficiency of 

renewable energy systems, facilitating more effective energy conversion and utilization. Using 

advanced optimization techniques such as IGWO, renewable energy systems can achieve higher 

operational reliability through optimized parameter estimation, minimizing performance 

variations and uncertainties. 



As a future study, an adaptive output voltage controller can be designed. With the developed 

IGWO algorithm, the output voltage value can be kept at 400 V levels when the converter input 

voltage fluctuates in the range of 40-120 V. In microgrid structures, there are high-gain 

converter requirements for the integration of electrical energy provided from mixed renewable 

energy sources into the grid/load. In this context, high-gain DC-DC converter circuits can be 

designed in isolated/non-isolated and cascade circuit structures. Thus, with the future smart grid 

structure, various mixed renewable energy sources such as solar energy, fuel cells, and wind 

have the potential to produce electrical energy from a few kW to MW levels. 

 However, the dual cascaded boost converter circuit discussed in this article suggests non-

isolated high-gain applications with a parametric simulation approach. Such circuits may not 

be able to reach very high-power levels alone, but high-power levels can be reached with 

multiphase interleaved dual-cascaded DC-DC power converter circuits. In addition, the 

efficiency of non-isolated DC-DC boost converter circuits can reach very high levels such as 

95% compared to their isolated versions. Because, isolated DC-DC power converter circuits 

provide an indirect conversion, and contain an inverter circuit, a high-frequency transformer, 

and a rectifier circuit established with high-speed diodes. The performance studies can be 

performed with the parametric data set approach of the isolated DC-DC power converter circuit 

as the future studies. 

Also, the applicability of the quadratic model for different energy sources and regions can be 

examined in more detail, and improvements can be made to enhance the model's performance. 

Additionally, it is essential to compare the algorithm's effectiveness on different converter 

structures, such as direct current-to-current (DC-DC) converters, direct current-to-grid (DC-

AC) converters, or direct current-integrated storage systems. Also, studies can be conducted 

examining the integration of the IGWO algorithm with real-time control systems. These studies 

can evaluate how the algorithm behaves under dynamic conditions and meets the real-time 

requirements of power electronics systems. 
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