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In this paper, a novel age-structured delayed mathematical model to control Aedes aegypti mosquitoes via Wolbachia-infected
mosquitoes is introduced. To eliminate the deadly mosquito-borne diseases such as dengue, chikungunya, yellow fever, and Zika
virus, theWolbachia infection is introduced into the wild mosquito population at every stage.)is method is one of the promising
biological control strategies. To predict the optimal amount of Wolbachia release, the time varying delay is considered. Firstly, the
positiveness of the solution and existence of both Wolbachia present and Wolbachia free equilibrium were discussed. )rough
linearization, construction of suitable Lyapunov–Krasovskii functional, and linear matrix inequality theory (LMI), the exponential
stability is also analyzed. Finally, the simulation results are presented for the real-world data collected from the existing literature
to show the effectiveness of the proposed model.

1. Introduction

Mosquito-borne diseases represent the vertical trans-
mission of bacteria and viruses from mosquitoes to hu-
man while female mosquito taking a blood meal.
Mosquito-borne diseases such as dengue, chikungunya,
yellow fever, Zika virus, and Japanese encephalities cause
over one million deaths per annum [1, 2]. Gubler in [3, 4]
explained that the dengue and dengue hemorrhagic fever
are the most common issues for public health. )e pri-
mary vector for most of the mosquito-borne diseases is
Aedes aegypti, and recently Aedes albopictus also add as a
secondary vector [5]. In the past sixty years, the spread of
mosquito-borne diseases has increased dramatically [6].
More than that, per year, dengue causes nearly 20

thousand deaths all over the world [7]. Also, nearly 112
countries are attacked by mosquito-borne diseases [8].

In recent years, there are several articles are available to
control vectors by genetic modifications [9]. Moreover,
some biological control methods to replace the wild mos-
quitoes by releasing genetically modifiedmosquitoes are also
tried by some researchers. )ose biological control methods
are sterilization of male mosquitoes [10, 11] and genetic
modification to reduce the reproduction and increase the
life-shortening bacteria Wolbachia [12]. Furthermore, via
finding the reproduction number of a mathematical model
which depicts the virus transmission via human sexual
contact was analyzed in [13]. In [14], the author tried some
other types of control agents such as bed nets, mosquito
repellents, indoor residual spray, condoms during sex,
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medically treating infected human, and quarantine. How-
ever, in [15], the author tried to control mosquitoes by
making modifications in feeding behaviours.

In this environment, our main aim is to control the
vector population that transmits the virus to the uninfected
human while taking a blood meal. )ere is a life-shortening
bacterium called Wolbachia which will be very useful to
reach our aim; in [16], Mcmeniman et al. analyzed the stable
introduction of Wolbachia in Aedes mosquitoes. Wolbachia
is a Gram-negative bacterium, and it is first reported in the
tissues of the mosquito Culex pipients (Hertig and Wolbach,
1924) [17]. In recent results, they found that yellow fever
virus can also be blocked by Wolbachia [18].

If a mosquito carries this bacterium, then the virus inside
the mosquito does not get transmitted into the uninfected
human. It blocks the virus inside the mosquito at salivary
gland. )is can be understood with Figure 1.

In Figure 1, the process of releasing Wolbachia bacteria
into mosquito population is as follows:

(1) In laboratory, the Wolbachia pipients are injected
into eggs, larvae, and pupae of Aedes aegypti via
microinjection.

(2) Cytoplasmic incapability (CI): the adult Wolbachia-
infected mosquitoes which are reared at the laboratory
are released to the wild mosquito population of Aedes
aegypti. )rough this process, there exist three types of
possibilities which are

(i) If the Wolbachia-infected female mosquitoes
mate with the Wolbachia-infected male, then
the progeny should have theWolbachia by birth
which is compatible.

(ii) If the Wolbachia-infected female crosses with
Wolbachia-uninfected male, then the progeny
face the same problems as in (i).

(iii) If Wolbachia-uninfected female crosses with
Wolbachia-infected male, then there is no viable
progeny.

)ese two processes can be virtually understood by
Figure 2.

In eggs, larvae, and pupae population, we can mi-
croinject the Wolbachia and release this in patches at
dengue-suspected areas. )is process is practically done
by placing “Zancu kits” around the people living areas.
And the adult mosquitoes which are reared at lab can also
be released into wild mosquito population. )is process is
called “introgression.”

Various mathematical models have been studied to
understand the interplay among Wolbachia and non-
Wolbachia mosquitoes. In [19], the author considered the
Wolbachia bacteria as a mechanism to control arbovirus,
and his experimental studies show that the spread of Zika
virus among mosquitoes and human was notably re-
duced. )e same process for dengue virus spread was
studied by Segoli et al. in [20]. In [21], the author has
created a mathematical model considering only adult
female mosquitoes and converted the model into
endoepidemic model consisting of adult female

mosquitoes and human population. In [22], the authors
proposed a mathematical model depicting the life stages
of mosquitoes with Wolbachia and proved that Wolba-
chia has excellent quality to control dengue virus spread.
In that work, Koiler et al. discussed the virus as well as
Wolbachia in both mosquitoes and human. Also, the
objective is to predict the appropriate release of this
bacterium, and the basic reproduction number was an-
alyzed. Supriatna et al. in [23] developed a mathematical
model to express the dynamics of dengue virus in both
human and Aedes aegypti mosquitoes. In that, the human
vaccination and Wolbachia introduction were used as
optimal control methods. In [24], authors discussed the
birth and death rate impulsive model to control mos-
quito-borne diseases using Wolbachia via the strobo-
scopic map method. )e integer-order mathematical
model which describes the interplay among the wild and
Wolbachia-infected mosquitoes was analyzed in [25]. In
that work, the author divided the mosquito population
into two groups: one is aquatic and another one is adult.
In [26], the author proposed a mathematical model to
describe the persistence of Wolbachia via two-sex stage-
structured model.

Hence, with a full understanding of the interplay among the
Wolbachia and non-Wolbachia mosquitoes in our work, we
have created a mathematical model consisting of 10 stages to
ensure the success of the proposed strategy. With reference of
the practical results in [18], we can release the Wolbachia in
every stages in the forms of “Zancu kits” and “Introgression.” So
to obtain an optimal control, it is necessary to consider each and
every variable. Because we know that in mathematical mod-
eling, each and every parameter plays an important role. Up to
our knowledge, this is the first article considering the control
inputs in 10 stages incorporated with time-varying delays.

By motivated by the above discussions, the main con-
tribution of this paper is as follows:

(i) )e main aim is to establish a novel mathematical
model to describe the interplay among the both
non-Wolbachia (wild mosquitoes) and Wolbachia-
infected mosquitoes with time-varying delay.

Uninfected wild
mosqutio

population with
WOLBACHIA

Bites the infected
human

10 to 12 days it is not
ready to transmit

the virus

Infected mosqutio
bites the uninfected

humanRemains as
uninfected human

Figure 1: Dynamics of virus infection after Wolbachia
introduction.
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(ii) We found that our method will increase Wolbachia-
infected mosquitoes in terms of CI rescue team and
non-Wolbachia mosquitoes go to annihilation.

(iii) We have proved that the releasing of adult female
Wolbachia-infected mosquitoes is more beneficial
than the releasing of adult male Wolbachia-infected
mosquitoes.

(iv) )ere exists no literature on exponential stability
results of delayed Wolbachia and non-Wolbachia
age-structured model. )is gap is filled by our work.
Finally, by using real-world data, we checked the
dynamics of the proposed model by usingMATLAB
LMI tool box.

)e rest of the paper is arranged as follows: in Section 2,
the novel mathematical model which describes the interplay
among the Wolbachia free andWolbachia present mosquito
population is proposed. In Section 3, the analysis of the
model such as positiveness of the solution and existence of
equilibrium points are discussed. In Section 4, the expo-
nential stability results of the linearized delayed system with
time-varying delay is presented. In Section 5, numerical
simulation results are presented. )e work is concluded in
Section 6.

2. Preliminaries and Model Formulation

In this section, some basic definitions and lemmas which are
used to derive our results are presented. And the interaction

between wild mosquitoes and Wolbachia-infected mos-
quitoes is modeled.

Definition 1 (see [27]). A model is said to be exponentially
stable at its equilibrium point, if there exists c> 0 such that

‖y(t)‖≤ ‖Φ‖e
− 2ct

, for every t> 0. (1)

Lemma 1 (Schur Complement, see [28]). Let us denote three
n × n matrices as Ψ1,Ψ2,Ψ3, where Ψ1 � Ψ⊤1 and
Ψ2 � Ψ⊤2 > 0. 6en Ψ1 + Ψ⊤3Ψ

− 1
2 Ψ3 < 0 if and only if

Ψ1 Ψ
⊤
3

Ψ3 − Ψ2
􏼢 􏼣< 0 or − Ψ2 Ψ3

Ψ⊤3 Ψ1
􏼢 􏼣< 0.

Lemma 2 (see [29]). For any scalar ϵ> 0, E, N ∈ Rn, and
matrix P1, then

E
⊤

P1N≤
1
2ϵ

E
⊤

P1P
⊤
1 E +
ϵ
2
N
⊤

N. (2)

2.1. Modeling the Life Stages of Wild Mosquito Population.
In a common environment, Aedes aegypti mosquito pop-
ulation has five important life stages such as eggs (We(t)),
larvae (Wl(t)), pupae (Wp(t)), matured female mosquitoes
(Wf(t)), and adult male mosquitoes (Wa(t)) (Figure 3).
)ese life stages with respect to time t can be modeled as
follows:

Female uninfected Male uninfected

Female infected Male infected

Uninfected progeny

Infected progeny

Infected progeny [CI rescue]

Female Male

None (i.e. CI-no viable progeny)

Results

Figure 2: Block diagram representing the mechanism of Wolbachia infection in mosquitoes.
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dWe(t)

dt
�
Λwe

WfWa

T
− λwe

We − cwe
We,

dWl(t)

dt
� cwe

We − λwl
Wl − cwl

Wl,

dWp(t)

dt
� cwl

Wl − λwp
Wp − cwp

Wp,

dWf(t)

dt
� ρcwp

Wp − λwf
Wf,

dWa(t)

dt
� (1 − ρ)cwp

Wp − λwa
Wa.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

2.2. Modeling the Interaction between Wild and Wolbachia-
Infected Mosquitoes. In this subsection, we modeled the
release of Wolbachia-infected mosquitoes into the wild
mosquitoes in the mosquito-borne disease suspected areas.
)e Wolbachia infection is released in both aquatic (Zanku
Kits) and ariel stages. )erefore, by using the language of
mathematics, we can model the interaction between wild
and Wolbachia mosquitoes as follows:

dWe(t)

dt
�
Λwe

WfWa

T
− λwe

We − cwe
We,

dWl(t)

dt
� cwe

We − λwl
Wl − cwl

Wl +(1 − α)cie
Ie,

dWp(t)

dt
� cwl

Wl − λwp
Wp − cwp

Wp +(1 − β)cil
Il,

dWf(t)

dt
� ρcwp

Wp − λwf
Wf +(1 − ε)cip

ρiw
Ip,

dWa(t)

dt
� (1 − ρ)cwp

Wp − λwa
Wa +(1 − ε)cip

1 − ρiw
􏼐 􏼑Ip,

dIe(t)

dt
�
Λie

If Wa + Ia( 􏼁

T
− λie

Ie − αcie
Ie,

dIl(t)

dt
� αcie

Ie − λil
Il − βcil

Il,

dIp(t)

dt
� βcil

Il − λip
Ip − εcip

Ip,

dIf(t)

dt
� ρiεcip

Ip − λif
If,

dIa(t)

dt
� 1 − ρi( 􏼁εcip

Ip − λia
Ia.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

To understand the system of equations in (4), refer
Figure 3.

In the above mathematical model, the production of eggs
can be found by the term (Λwe

WfWa/T). )at is, eggs
without Wolbachia infection (We(t)) are produced by the
mating between wild female (Wf(t)) and wild male (Wa(t))

mosquitoes, where T is the total population which can be
calculated by the following expression:

T � We(t) + Wl(t) + Wp(t) + Wf(t) + Wa(t) + Ie(t)

+ Il(t) + Ip(t) + If(t) + Ia(t).

(5)

Along with this, the terms λwe
(natural mortality rate of

non-Wolbachia eggs) and cwe
(maturation rate of non-

ΛWe (WfmWa/T)

ΛIe (Ifm(Wa+ Ia)/T)

ρiw

We

Wl

Wp

Wp Wp

λWe

λWl

λWp

γWe

γWl

γWp

ρw

Ie

Il

Ip

If Im

λi

(1 – ρw)

ρi (1 – ρi)

(1 – ρiw)

(1 – α)γie

αγie

λif λim

(1 – ε)γip

εγip
λip

λil

(1 – β)γil

βγil

Figure 3: Schematic representation of interaction between non-
Wolbachia and Wolbachia-infected mosquitoes.
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Wolbachia eggs) denote the limitations in the growth of
wild mosquito eggs. At the same time, after release of
Wolbachia-infected mosquitoes (in both aquatic and ariel
stages) in a common environment, the production of
Wolbachia-infected mosquito eggs Ie(t) depends on
mating between Wolbachia-infected female If(t) and non-
Wolbachia male Wa(t) and from mating between Wol-
bachia-infected female If(t) and Wolbachia-infected male
Ia(t). )is implies that the birth rate of Wolbachia-infected
mosquito egg population Ie(t) with the reproduction rate
Λie

is

Λie
IfWa + IfIa􏼐 􏼑

T
�
Λie

If Wa + Ia( 􏼁

T
. (6)

Similarly, the increase in growth is limited by the natural
mortality rate λie

and the maturation rate cie
(that is, the rate

in which the corresponding compartment moved into the
next stage).

Furthermore, (1 − α)cie
Ie is added to the wild mosquito

larvae population. Because the terms α and (1 − α) denote
the probability of getting larvae with and without Wolba-
chia, respectively. Similarly, β and (1 − β) denote the
probability of getting pupae with and without Wolbachia,
respectively, ϵ and (1 − ϵ) denote the probability rate of

having Wolbachia infection in adult mosquitoes by intro-
gression. )at is, ϵ be the probability of getting Wolbachia-
infected adults (with ρiw

� probability of getting male and
(1 − ρiw

) � probability of getting female). Because of these
reasons, the terms (1 − α)cie

Ie, (1 − β)cil
Il, (1 − ϵ)cip

ρiw
Ip,

and (1 − ϵ)cip
(1 − ρiw

)Ip are added to the corresponding
stages, and similarly, the terms αcie

Ie, βcil
Il and ϵcip

Iip
are

removed from the corresponding stages. And the other
parameters used in this model are described in Table 1.

3. Analysis of the Model

In this section, we analyze the positivity, existence of
equilibrium points, and stability of the system of equations
in (4).

3.1. Positivity of Solutions

Lemma 3. For all t> 0, the solutions (We, Wl,

Wp, Wf, Wa, Ie, Il, Ip, If, Ia) are all nonnegative if the initial
values We > 0, Wl > 0, Wp > 0, Wf > 0, Wa > 0, Ie > 0, Il > 0,
Ip > 0, If > 0, Ia > 0.

Proof. Let us define

􏽥μ � sup μ> 0: We(0)> 0, Wl(0)> 0, Wp(0)> 0, Wf(0)> 0, Wa(0)> 0􏽮 ,

Ie(0)> 0, Il(0)> 0, Ip(0)> 0, If(0)> 0, Ia(0)> 0 ∈ [0, μ]􏽯.
(7)

From (7), 􏽥μ> 0. Let us consider the first equation of
model (4), that is,

dWe(t)

dt
�
Λwe

WfWa

T
− λwe

We − cwe
We,

dWe(t)

dt
+ λwe

+ cwe
􏼐 􏼑We �

Λwe
WfWa

T
.

(8)

)e integrating factor is

I.F � e
􏽒
􏽥μ
0

λwe
+cwe

( 􏼁dμ
.

(9)

Multiply (9) with (8) on both sides

dWe(t)

dt
e
􏽒
􏽥μ
0

λwe
+cwe

( 􏼁dμ
+ λwe

+ cwe
􏼐 􏼑Wee

􏽒
􏽥μ
0

λwe
+cwe

( 􏼁dμ
�
Λwe

WfWa

T
e
􏽒
􏽥μ
0

λwe
+cwe

( 􏼁dμ
. (10)

)at is,

d

dμ
We(t)e

􏽒
􏽥μ
0

λwe
+cwe

( 􏼁dμ⎡⎢⎢⎣ ⎤⎥⎥⎦ �
Λwe

WfWa

T
e
􏽒
􏽥μ
0

λwe
+cwe

( 􏼁dμ
.

(11)
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Integrating on both sides with respect to μ ∈ [0, 􏽥μ],

We(t)e
􏽒
􏽥μ
0

λwe
+cwe

( 􏼁dμ⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

􏽥μ

0

� 􏽚
􏽥μ

0

Λwe
Wf(s)Wa(s)

T
e
􏽒
􏽥μ
0

λwe
+cwe

( 􏼁dsds,

We(􏽥μ)e
􏽚

􏽥μ

0
λwe

+ cwe
􏼐 􏼑d􏽥μ

− We(0)e
0

� 􏽚
􏽥μ

0

Λwe
Wf(s)Wa(s)

T
e
􏽚

􏽥μ

0
λwe

+ cwe
􏼐 􏼑ds

ds,

We(􏽥μ) � 􏽚
􏽥μ

0

Λwe
Wf(s)Wa(s)

T
e
􏽚

􏽥μ

0
λwe

+ cwe
􏼐 􏼑ds

ds + We(0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
e

− 􏽚
􏽥μ

0
λwe

+ cwe
􏼐 􏼑d􏽥μ

,

We(􏽥μ) � 􏽚
􏽥μ

0

Λwe
Wf(s)Wa(s)

T
e
􏽚

􏽥μ

0
λwe

+ cwe
􏼐 􏼑ds

dse
− 􏽚

􏽥μ

0
λwe

+ cwe
􏼐 􏼑d􏽥μ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ We(0)e
− 􏽚

􏽥μ

0
λwe

+ cwe
􏼐 􏼑d􏽥μ

.

(12)

)is implies that We(􏽥μ)> 0.
Similarly, we can prove that for the positive initial values,

the solution is positive. □

3.2. Existence of Equilibrium Points. In this section, the
possible cases of existing equilibrium points are discussed.

Furthermore, the null mosquitoes equilibrium point
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0) is omitted because this case does not
exist in nature.

3.2.1. Wolbachia Free Equilibrium. In this subsection, we
can find Wolbachia free equilibrium by equating the system

Table 1: Parameters involved in the population dynamics of Aedes aegypti mosquitoe.

Λwe
, Λie

Reproduction rate of non-Wolbachia mosquitoes and Wolbachia-infected mosquitoes, respectively

λwe
)e mortality rate of non-Wolbachia eggs

λwl
)e mortality rate of non-Wolbachia larvae

λwp
)e mortality rate of non-Wolbachia pupae

λwf
)e mortality rate of non-Wolbachia adult female mosquitoes

λwa
)e mortality rate of non-Wolbachia adult male mosquitoes

λie
)e mortality rate of Wolbachia-infected eggs

λil
)e mortality rate of Wolbachia-infected larvae

λip
)e mortality rate of Wolbachia-infected pupae

λif
)e mortality rate of Wolbachia-infected adult female mosquitoes

λia
)e mortality rate of Wolbachia-infected adult male mosquitoes

cwe
)e rate at which the corresponding part of the wild mosquito eggs forms in which the larvae of wild mosquito emerge

cwl
)e rate at which the corresponding part of the wild mosquito larvae forms in which the pupae of wild mosquito emerge

cwp

)e rate at which the corresponding part of the wild mosquito pupae forms in which the immature female or male of wild
mosquito emerge

cie

)e rate at which the corresponding part of the Wolbachia-infected mosquito eggs matured into Wolbachia-infected or
uninfected larvae

cil

)e rate at which the corresponding part of the Wolbachia-infected mosquito larvae matured into Wolbachia-infected or
uninfected pupae

cip

)e rate at which the corresponding part of the Wolbachia-infected mosquito pupae matured into Wolbachia-infected or
uninfected adults

ρ )e probability of having male or female mosquitoes
T Total population
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of equations in (2) to zero and putting I∗e1 � 0, I∗l1
� 0,

I∗p1
� 0, I∗f1

� 0, and I∗a1
� 0.

)at is,

Λwe
W
∗
f1

W
∗
a1

T
− λwe

W
∗
e1

− cwe
W
∗
e1

� 0,

cwe
W
∗
e1

− λwl
W
∗
l1

− cwl
W
∗
l1

+(1 − α)cie
I
∗
e1

� 0,

cwl
W
∗
l1

− λwp
W
∗
p1

− cwp
W
∗
p1

+(1 − β)cil
I
∗
l1

� 0,

ρcwp
W
∗
p1

− λwf
W
∗
f1

+(1 − ε)cip
ρiw

I
∗
p1

� 0,

(1 − ρ)cwp
W
∗
p1

− λwa
W
∗
a1

+(1 − ε)cip
1 − ρiw

􏼐 􏼑I
∗
p1

� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

By solving equations (13), we get the equilibrium point
S1 as

S1 � W
∗
e1

,
cwe

W
∗
e1

λwl
+ cwl

􏼐 􏼑
,

cwl
cwe

W
∗
e1

λwl
+ cwl

􏼐 􏼑 λwp
+ cwp

􏼒 􏼓

,
ρcwp

cwl
cwe

W
∗
e1

λwf
λwl

+ cwl
􏼐 􏼑 λwp

+ cwp
􏼒 􏼓

⎧⎪⎪⎨

⎪⎪⎩

·
(1 − ρ) cwp

cwl
cwe

W
∗
e1

λwa
λwl

+ cwl
􏼐 􏼑 λwp

+ cwp
􏼒 􏼓

, 0, 0, 0, 0, 0, 0
⎫⎪⎪⎬

⎪⎪⎭
,

(14)

where

W
∗
e1

�
Tλwf

λwa
λwe

+ cwe
􏼐 􏼑 λwl

+ cwl
􏼐 􏼑

2
λwp

+ cwp
􏼒 􏼓

2

ρ(1 − ρ)Λwe
c
2
wp

c
2
we

c
2
wl

. (15)

3.2.2. Wolbachia Present Equilibrium. In this subsection, we
can find Wolbachia present equilibrium by equating the
system of equations in (4) to zero. )at is,

Λwe
W
∗
fn

W
∗
an

T
− λwe

W
∗
en

− cwe
W
∗
en

� 0,

cwe
W
∗
en

− λwl
W
∗
ln

− cwl
W
∗
ln

+(1 − α)cie
I
∗
en

� 0,

cwl
W
∗
ln

− λwp
W
∗
pn

− cwp
W
∗
pn

+(1 − β)cil
I
∗
ln

� 0,

ρcwp
W
∗
pn

− λwf
W
∗
fn

+(1 − ε)cip
ρiw

I
∗
pn

� 0,

(1 − ρ)cwp
W
∗
pn

− λwa
W
∗
an

+(1 − ε)cip
1 − ρiw

􏼐 􏼑I
∗
pn

� 0,

Λie
I
∗
fn

W
∗
an

+ I
∗
an

􏼐 􏼑

T
− λie

I
∗
en

− αcie
I
∗
en

� 0,

αcie
I
∗
en

− λil
I
∗
ln

− βcil
I
∗
ln

� 0,

βcil
I
∗
ln

− λip
I
∗
pn

− εcip
I
∗
pn

� 0,

ρiεcip
I
∗
pn

− λif
I
∗
fn

� 0,

1 − ρi( 􏼁εcip
I
∗
pn

− λia
I
∗
an

� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)
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By solving the system of equations in (16), we get the
following equilibrium point in terms of I∗a :

Sn � W
∗
en

, W
∗
ln

, W
∗
pn

, W
∗
fn

, W
∗
an

, I
∗
en

, I
∗
ln

, I
∗
pn

, I
∗
fn

, I
∗
an

􏽮 􏽯, n � 2, 3,

W
∗
en

�
λwl

+ cwl

cwe

􏼠 􏼡
λwp

+ cwp

cwl

􏼠 􏼡
TB1B2B3λif

λwa

Λie
(1 − ρ)ρicwp

⎛⎝ ⎞⎠ −
I
∗
an

cwe

· B4 λwl
+ cwl

􏼐 􏼑
λwp

+ cwp

cwl

􏼠 􏼡 + λwl
+ cwl

􏼐 􏼑
(1 − β)cil

cwl

􏼠 􏼡
λia

B1

βcil
1 − ρi( 􏼁

􏼠 􏼡 +
(1 − α)cie

λia
B1B2

αcie
1 − ρi( 􏼁

􏼢 􏼣,

W
∗
ln

�
λwp

+ cwp

cwl

􏼠 􏼡
TB1B2B3λif

λwa

Λie
(1 − ρ)ρicwp

− B4I
∗
an

⎡⎢⎣ ⎤⎥⎦ −
(1 − β)cil

cwl

􏼠 􏼡
λia

B1

βcil
1 − ρi( 􏼁

􏼢 􏼣,

W
∗
pn

�
TB1B2B3λif

λwa

Λie
(1 − ρ)ρicwp

− B4I
∗
an

⎡⎢⎣ ⎤⎥⎦,

W
∗
fn

�
ρcwp

λwf

TB1B2B3λif
λwa

Λie
(1 − ρ)ρicwp

− B4I
∗
an

⎡⎢⎣ ⎤⎥⎦ +
(1 − ϵ)ρiw

λia

ϵλwf
1 − ρi( 􏼁

I
∗
an

,

W
∗
an

�
TB1B2B3λif

ρiΛie

− I
∗
an

,

I
∗
en

�
B1B2λia

I
∗
an

αcie
1 − ρi( 􏼁

,

I
∗
pn

�
λia

1 − ρi( 􏼁ϵcip

I
∗
an

,

I
∗
fn

�
ρiλia

I
∗
an

1 − ρi( 􏼁λif

,

(17)

with I∗a3
> I∗a4

, both roots can be found from the quadratic
equation:

a1I
∗ 2
a + a2I

∗
a + a3 � 0, (18)

where

a1 �
Λwe

ρB4cwp

Tλwf

;

a2 �
λwe

+ cwe

Tλwf

⎛⎝ ⎞⎠
λwe

λif
ρB1B2B3

ρiΛie
λwf

⎛⎝ ⎞⎠
λwa

(1 − ρ)
+ B4cwp

􏼠 􏼡

·
λwl

+ cwl
􏼐 􏼑 λwp

+ cwp
􏼒 􏼓B4

cwl

+
λwl

+ cwl
􏼐 􏼑(1 − β)λia

B1

cwl
β 1 − ρi( 􏼁

+
(1 − α)λia

B1B2

α 1 − ρi( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠;

a3 �
Λwe

ρTB
2
1B

2
2B

2
3λwa

Λ2ie (1 − ρ)ρ2i λwf

.

(19)
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where

B1 � 1 +
λip

ϵcip

;

B2 � 1 +
λil

βcil

;

B3 � 1 +
λie

αcie

;

B4 � 1 +
(1 − ϵ) 1 − ρiw

􏼐 􏼑λia

(1 − ρ) 1 − ρi( 􏼁ϵcwp

.

(20)

3.2.3. Existence of Wolbachia Free and Wolbachia Present
Equilibrium. )e equilibrium points exist if it satisfies the
following conditions:

(i) S1 exists provided that W∗e1 ≠ 0 and 0< ρ< 1.
(ii) S2 and S3 exist provided that I∗a2

, I∗a3
≠ 0 and

(1 − ρ)ϵcip
I∗p < λia

.

4. Stability Analysis

In this section, the stability results of the system of equations
in (2) by linearization, Lyapunov–Karasovskii functional, and
LMI approach. To optimize our differential model, we con-
sider the delay terms into account as discussed in [30] i.e.,
where We(t − τ1(t)) is the produced wild egg density at time
(t − τ1(t)) from which the wild larvae density at time t is
produced, Wl(t − τ2(t)) is the produced wild larvae density
at time (t − τ2(t)) from which the wild pupae density at time
t is produced, Wp(t − τ3(t)) is the produced wild pupae
density at time (t − τ3(t)) fromwhich the wild female ormale
density at time t is produced, Ie(t − τ6(t)) is the produced
Wolbachia-infected egg density at time (t − τ1(t)) from
which the Wolbachia-infected larvae density at time t is
produced, Il(t − τ7(t)) is the produced Wolbachia-infected
larvae density at time (t − τ7(t)) from which the Wolbachia-
infected pupae density at time t is produced, and Ip(t − τ8(t))

is the produced Wolbachia-infected pupae density at time
(t − τ8(t)) from which the Wolbachia-infected female or
male density at time t is produced.)ese considerations make
our system of differential equations to system of delay dif-
ferential equations:

dWe(t)

dt
�
Λwe

WfWa

T
− λwe

We − cwe
We,

dWl(t)

dt
� cwe

We t − τ1(t)( 􏼁 − λwl
Wl − cwl

Wl +(1 − α)cie
Ie,

dWp(t)

dt
� cwl

Wl t − τ2(t)( 􏼁 − λwp
Wp − cwp

Wp +(1 − β)cil
Il,

dWf(t)

dt
� ρcwp

Wp 1 − τ3(t)( 􏼁 − λwf
Wf +(1 − ε)cip

ρiw
Ip,

dWa(t)

dt
� (1 − ρ)cwp

Wp 1 − τ3(t)( 􏼁 − λwa
Wa +(1 − ε)cip

1 − ρiw
􏼐 􏼑Ip,

dIe(t)

dt
�
Λie

If Wa + Ia( 􏼁

T
− λie

Ie − αcie
Ie,

dIl(t)

dt
� αcie

Ie 1 − τ6(t)( 􏼁 − λil
Il − βcil

Il,

dIp(t)

dt
� βcil

Il 1 − τ7(t)( 􏼁 − λip
Ip − εcip

Ip,

dIf(t)

dt
� ρiεcip

Ip 1 − τ8(t)( 􏼁 − λif
If,

dIa(t)

dt
� 1 − ρi( 􏼁εcip

Ip 1 − τ8(t)( 􏼁 − λia
Ia.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)
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By linearizing, the following system describes the in-
teraction between wild mosquitoes and Wolbachia mos-
quitoes as

_M(t) � AM(t) + BM(t − τ(t)) + g(M(t)) + Cu(t), t≥ 0,

M(t) � π(t), t ∈ [− τ⌣, 0],

⎧⎨

⎩

(22)

where

M(t) � We(t)Wl(t)Wp(t)Wf(t)Wa(t)Ie(t)Il(t)Ip(t)If(t)Ia(t)􏽨 􏽩
⊤

;

M(t − τ) � We t − τ1(t)( 􏼁 Wl t − τ2(t)( 􏼁 Wp t − τ3(t)( 􏼁 Wf t − τ4(t)( 􏼁 Wa t − τ5(t)( 􏼁 Ie t − τ6(t)( 􏼁􏽨

· Il t − τ7(t)( 􏼁 Ip t − τ8(t)( 􏼁 If t − τ9(t)( 􏼁 Ia t − τ10(t)( 􏼁 􏽩
⊤

,

u(t) � 0 0 0 0 0 u1 u2 u3 u4 u5􏼂 􏼃
⊤

; 0≤ τ⌣≤ 􏽢τ.

A �

− λwe
− cwe

0 0 0 0 0 0 0 0 0

0 − λwl
− cwl

0 0 0 (1 − α)cie
0 0 0 0

0 0 − cwp
− λwp

0 0 0 (1 − β)cil
0 0 0

0 0 0 − λwf
0 0 0 (1 − ϵ)cip

ρiw
0 0

0 0 0 0 − λwa
0 0 (1 − ϵ)cip

1 − ρiw
􏼐 􏼑 0 0

0 0 0 0 0 − λie
− αcie

0 0 0 0

0 0 0 0 0 0 − λil
− βcil

0 0 0

0 0 0 0 0 0 0 − λip
− ϵcip

0 0

0 0 0 0 0 0 0 0 − λif
0

0 0 0 0 0 0 0 0 0 − λia

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

0 0 0 0 0 0 0 0 0 0

cwe
0 0 0 0 0 0 0 0 0

0 cwl
0 0 0 0 0 0 0 0

0 0 ρcwp
0 0 0 0 0 0 0

0 0 (1 − ρ)cwp
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 αcie
0 0 0 0

0 0 0 0 0 0 βcil
0 0 0

0 0 0 0 0 0 0 ρiϵcip
0 0

0 0 0 0 0 0 0 1 − ρi( 􏼁ϵcip
0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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C �

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

g(M(t)) �

Λwe
m4m5

T

0

0

0

0

Λie
m9 m5 + m10( 􏼁

T

0

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(23)

Assume that τ(t) � max τ1(t), τ2􏼈 (t), τ3(t), τ4(t),

τ5(t), τ6(t), τ7(t), τ8(t), τ9(t), τ10(t)}, and it is bounded,
differentiable, and nonnegative. Now, consider an equilib-
rium point of system (22) as

M
∗

� W∗e (t)W∗l (t)W∗p(t)W∗f(t)W∗a(t)I∗e (t)I∗l (t)I∗p(t)I∗f(t)I∗a(t)􏽨 􏽩
⊤
,

u
∗

� 0 0 0 0 0 u∗1 u∗2 u∗3 u∗4 u∗5􏼂 􏼃
⊤

.
(24)

Let y (t) � M(t) − M∗, and this implies that
y (t) + M∗ � M(t). And U(t) � u(t) − u∗. )en the mod-
ified system is

_y (t) � Ay (t) + By (t − τ(t)) + g(y(t)) + CU(t), t≥0,

y (t) � ψ (t), t ∈ [− τ⌣,0],
􏼨

(25)

with ψ(t) � π − M∗ be the initial condition.

In general, stability is an important requirement to study
dynamical systems [31–33]. In following theorem, we de-
rived the sufficient for exponential stability results for system
(25).

Theorem 1. 6e system (25) is said to be exponentially stable
if there exist positive definite matrices P1 and P2 and positive
scalars ϵ1 and ϵ2 such that
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Ψ �

2σP1 + A
⊤

P1 + K
⊤

C
⊤

P1 + AP1 + P1CK + BP2 BP1 P1 0 0

∗ − ϵ1 0 0 0

∗ ∗ − ϵ2 0 0

∗ ∗ ∗ ϵ1 − (1 − η)P2B 0

∗ ∗ ∗ ∗ ϵ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0, (26)

with _τ(t) � η. Moreover,

‖y(t)‖ ≤ e
− 2σt

�����������������������������������

λM P1( 􏼁 + λM P2( 􏼁‖ψ‖ 1 − e
2στ(t)/2σ􏽨 􏽩􏽨 􏽩‖ψ‖

λM P1( 􏼁

􏽶
􏽴

.

(27)

Proof. Let us consider the following Lyapunov–Krasovskii
function:

V(y(t)) � e
2σt

y
⊤

(t)P1y(t) + 􏽚
t

t− τ(t)
y
⊤

(s)Be
2σs

P2y(s)ds.

(28)

Now, the time derivative of the Lyapunov–Krasovskii
functional V(y(t)) along with the trajectories of system of
equation (25) is

_V(y(t)) � 2σe
2σt

y
⊤

(t)P1y(t) + e
2σt

_y
⊤

(t)P1y(t) + e
2σt

y
⊤

(t)P1 _y(t)

+ y
⊤

(t)Be
2σt

P2y(t) − (1 − _τ(t))y
⊤

(t − τ(t))Be
2σt

P2y(t − τ(t))

� e
2σt 2σy

⊤
(t)P1y(t) + _y

⊤
(t)P1y(t) + y

⊤
(t)P1 _y(t)􏽨

+y
⊤

(t)BP2y(t) − (1 − η)y
⊤

(t − τ(t))P2By(t − τ(t))􏽩

� e
2σt

y
⊤

(t)2σP1y(t) + Ay(t) + By(t − τ(t)) + f(y(t)) + CU(t))
T
P1y(t)􏽨

+ y
⊤

(t)P1 Ay(t) + By(t − τ(t)) + f(y(t)) +CU(t)) + y
⊤

(t)BP2y(t)(

− (1 − η)y
⊤

(t − τ(t))P2By(t − τ(t))􏽩.

(29)

Put U(t) � Ky(t), the linear feedback control,

� e
2σt

y
⊤

(t)2σP1y(t) + y
⊤

(t)A
⊤

P1y(t) + y
⊤

(t − τ(t))B
⊤

P1y(t) + f
⊤

(y(t))P1y(t)􏽨

+ y
⊤

(t)K
⊤

C
⊤

P1y(t) + y
⊤

(t)AP1y(t) + y
⊤

(t)BP1y(t − τ(t)) + y
⊤

(t)P1f(y(t))

+ y
⊤

(t)P1CKy(t) + y
⊤

(t)BP2y(t) − (1 − η)y
⊤

(t − τ(t))P2By(t − τ(t))􏽩

� e
2σt

y
⊤

(t) 2σP1 + A
⊤

P1 + K
⊤

C
⊤

P1 + AP1 + P1CK + BP2( 􏼁y(t) + y
⊤

(t − τ(t))B
⊤

P1y(t)􏽨

+y
⊤

(t)BP1y(t − τ(t)) + f
⊤

(y(t))P1y(t) + y
⊤

(t)P1f(y(t)) − y
⊤

(t − τ(t))(1 − η)P2By(t − τ(t))􏽩.

(30)
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By using Lemma 2, we can get the following inequalities:

y
⊤

(t − τ(t))B
⊤

P1y(t) + y
⊤

(t)BP1y(t − τ(t))≤ ϵ1y
⊤

(t − τ(t))y(t − τ(t))

+ ϵ− 11 y
⊤

(t)BP1B
⊤

p
⊤
1 y(t),

f
⊤

(y(t))P1y(t) + y
⊤

(t)P1f(y(t))≤ ϵ2f
⊤

(y(t))f(y(t)) + ϵ− 12 y
⊤

(t)P1P
⊤
1 y(t)

≤ e
2σt

y
⊤

(t) 2σP1 + A
⊤

P1 + K
⊤

C
⊤

P1 + AP1 + P1CK + BP2( 􏼁y(t)􏽨

+ ϵ1y
⊤

(t − τ(t))y(t − τ(t)) + ϵ− 11 y
⊤

(t)BP1B
⊤

P
⊤
1 y(t)

+ ϵ2f
⊤

(y(t))f(y(t)) + ϵ− 12 y
⊤

(t)P1P
⊤
1 y(t)

� e
2σt

y
⊤

(t)(. . .2􏽨

+ ϵ− 11 BP1P
⊤
1 B
⊤

+ ϵ− 12 P1P
⊤
1 􏼑y(t)

+ f
⊤

(y(t))ϵ2f(y(t)) + y
⊤

(t − τ(t)) ϵ1(

− (1 − η)P2B􏼁y(t − τ(t))􏼃.

(31)

_V(y(t)) ≤ e2σtζ⊤(t)Ψζ(t), where

Ψ �

Ψ11 0 0

0 ϵ1 − (1 − η)P2B 0

0 0 ϵ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (32)

where Ψ11 � 2σP1 + A⊤P1+ K⊤C⊤P1 + AP1 + P1CK + BP2
+ϵ− 11 BP1P

⊤
1 B⊤ + ϵ− 12 P1P

⊤
1 .

Ψ �

2σP1 + A
⊤

P1 + K
⊤

C
⊤

P1 + AP1 + P1CK + BP2 BP1 P1 0 0

∗ − ϵ1 0 0 0

∗ ∗ − ϵ2 0 0

∗ ∗ ∗ ϵ1 − (1 − η)P2B 0

∗ ∗ ∗ ∗ ϵ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0. (33)

Hence, by Lemma 1, Ψ> 0⟹ _V(y(t))< 0. Moreover,
V(y(t))≤V(y(0)). Here,

V(y(0)) � e
2σ(0)

y
⊤

(0)P1y(0) + 􏽚
0

0− τ(t)
y
⊤

(s)Be
2σs

P2y(s)ds

≤ λM P1( 􏼁‖ψ‖ + λM P2( 􏼁‖ψ‖
2

􏽚
0

− τ(t)
e
2σsds

� λM P1( 􏼁‖ψ‖ + λM P2( 􏼁‖ψ‖
2 1 − e

2στ(t)

2σ
􏼢 􏼣

� λM P1( 􏼁 + λM P2( 􏼁‖ψ‖
1 − e

2στ(t)

2σ
􏼢 􏼣􏼢 􏼣‖ψ‖.

(34)

where λM(·) is the maximum eigen value of (·).Here,

V(y(t))≥ e
2σtλM p1( 􏼁‖y(t)‖

2
. (35)

Now,

V(y(t))≤V(y(0)) ≤ λM P1( 􏼁 + λM P2( 􏼁‖ψ‖
1 − e

2στ(t)

2σ
􏼢 􏼣􏼢 􏼣‖ψ‖.

(36)

)is implies that

‖y(t)‖≤ e
− 2σt

�����������������������������������

λM P1( 􏼁 + λM P2( 􏼁‖ψ‖ 1 − e
2στ(t)/2σ􏽨 􏽩􏽨 􏽩‖ψ‖

λM P1( 􏼁
,

􏽶
􏽴

(37)

and by Definition 1, our system (25) is exponentially
stable. □

Remark 1. If the system (25) is without time-varying delay
terms, then the results of)eorem 1 have changed as follows:
the possible Lyapunov function is V(t) � e2σty⊤(t)P1y(t)

with the sufficient conditions

Mathematical Problems in Engineering 13



Ψ �

2σP1 + A
⊤

P1 + P1A + P1CK P1 P2

∗ − ϵ1 0

∗ ∗ − ϵ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0.

‖y(t)‖ ≤ e
− σt

���

‖ψ‖

􏽱

.

(38)

)en the system (25) is without time-varying delay is ex-
ponentially stable.

5. Numerical Simulations

)e numerical simulation results of system of equations in
(21), based on the real-world data, are mentioned in Table 2.

Consider the following system:

_y(t) � Ay(t) + By(t − τ(t)) + g(y(t)) + CU(t), t≥ 0,

y(t) � ψ(t), t ∈ [− τ⌣, 0],
􏼨

(39)

with numerical values

A �

− 0.2784 0 0 0 0 0 0 0 0 0

0 − 0.2784 0 0 0 0.0300 0 0 0 0

0 0 − 0.2784 0 0 0 0.0300 0 0 0

0 0 0 − 0.0714 0 0 0 0.0600 0 0

0 0 0 0 − 0.0714 0 0 0.0150 0 0

0 0 0 0 0 − 0.2484 0 0 0 0

0 0 0 0 0 0 − 0.2484 0 0 0

0 0 0 0 0 0 0 − 0.2035 0 0

0 0 0 0 0 0 0 0 − 0.1429 0

0 0 0 0 0 0 0 0 0 − 0.1429

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

0 0 0 0 0 0 0 0 0 0

0.1499 0 0 0 0 0 0 0 0 0

0 0.1499 0 0 0 0 0 0 0 0

0 0 0.1199 0 0 0 0 0 0 0

0 0 0.0300 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0.1199 0 0 0 0

0 0 0 0 0 0 0.1199 0 0 0

0 0 0 0 0 0 0 0.0600 0 0

0 0 0 0 0 0 0 0.0150 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

C �

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

(40)

with the control gain matrix
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K �

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 − 0.1882 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1.2860 0.1611

0 0 0 0 0 0 0 0 0.0979 1.1765

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (41)

with ϵ1 � 0.7875 and ϵ2 � 0.9151.

Remark 2. )enumerical simulations derived in our paper
shows that the allowable upper bound of the time-varying
delay τ(t) � 0.7899. However, the existing literature used
the classical method such as Pontryagin maximum
principle and Jacobian matrix method, by finding the sign
of eigen values, fractional-order mathematical models [38,
39], and through finding the reproduction number to
analyze the stability of the model. In our work, we have
used LMI approach. However, compared with the other
algebraic methods LMI approach is less conservative.

Figures 4 and 5 depict the population dynamics of
wild mosquitoes and Wolbachia-infected mosquitoes at
the initial release of Wolbachia, respectively. From
Figure 6, we can observe that the Wolbachia-infected
population also tends to decrease in numbers. Our aim is
to maintain the Wolbachia population in certain
quantity to spread Wolbachia among wild mosquitoes
naturally. Because of this reason, we have released an-
other batch of Wolbachia-infected mosquitoes as an
optimal control. After this release, we can observe from
Figures 7 and 8 that the level of Wolbachia-infected
mosquitoes is increased to certain quantity and wild
mosquito population is decreased to zero.

Remark 3. For the optimal control to ensure the successful
release ofWolbachia, the data from Table 2 are substituted in
the system of equations in (21). From this we obtained the
following results: Figure 4 denotes the dynamics of non-
Wolbachia mosquitoes, and Figure 5 denotes the dynamics

Table 2: )e parameters used in numerical simulation.

Λwe
Reproduction rate of non-Wolbachia mosquitoes 1.25/day [34]

λwe
, λwl

, λwp
Non-Wolbachia aquatic death rate (1/7.78)/day [35]

cwe
, cwl

, cwp
Non-Wolbachia maturation rate (1/6.67)/day [36]

λwf
, λwa

Non-Wolbachia adult death rate (1/14)/day [35]
λie

, λil
, λip

Wolbachia adult death rate (1/7.78)/day [35]
λif

, λia
Wolbachia adult death rate (1/7)/day [37]

Λie
Wolbachia reproduction rate (0.95∗Λwe

/day) [34]
cie

, cil
, cip

Wolbachia-infected mosquitoes maturation rate (1/6.67)/day [37]

 

 

20 40 60 80 1000
Time t (days)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

W
ild

 m
os

qu
ito

es

We
Wl
Wp

Wf
Wa

Figure 4: Population dynamics of wild mosquito.
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Figure 5: Population dynamics of Wolbachia-infected mosquitoes.
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of Wolbachia-infected mosquitoes. We can observe that the
Wolbachia release in two main stages is not enough to
control wild mosquitoes. In this, we noticed that the
Wolbachia-infected mosquito population also goes to an-
nihilation. Refer Figure 6, when comparing wild mosquitoes
with Wolbachia-infected mosquitoes, it is increased and
Wolbachia is not carried out to next generation. By
implementing our proposed strategy, if we released Wol-
bachia in every stage, the Wolbachia-infected population is
increased to certain level and maintained at that level
(Figure 7) for the remaining period; at the same time, the
Wolbachia population is annihilated without any increase
(Figure 8).

6. Conclusion

A novel integer-ordered age-structured delayed mathe-
matical model to describe the interplay among the wild and
Wolbachia-infected mosquitoes was proposed. )e posi-
tiveness of the solution and existence of both Wolbachia
present and Wolbachia free equilibriums were analyzed. By
using some mathematical techniques such as linearization,
Lyapunov–Krasovskii functional, and LMI theory, the ex-
ponential stability results of the proposed model were
established. By using MATLAB, the numerical simulation
results were presented to show the effectiveness of the
created mathematical model. Our results show that the
release of adult female Wolbachia-infected mosquitoes is
more beneficial than the release of adult male Wolbachia-
infected mosquitoes.
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Figure 6: Population dynamics of both wild and Wolbachia-in-
fected mosquitoes.
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Figure 7: Population dynamics of Wolbachia-infected mosquitoes
after the linear feedback control.
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Figure 8: Population dynamics of both wild andWolbachia-infected
mosquitoes after the linear feedback control.
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