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Abstract

Evolutionary development of a fuzzy-logic controller is described and is evaluated in the context of hardware in the loop. It had
been found previously that a robust speed controller could be designed for a DC motor motion control platform via off-line fuzzy
logic controller design. However to achieve the desired performance, the controller required manual tuning on-line. This paper
investigates the automatic design of a fuzzy logic controller directly onto hardware. An optimiser which modifies the fuzzy
membership functions, rule base and defuzzification algorithms is considered. A multi-objective evolutionary algorithm is applied to
the task of controller development, while an objective function ranks the system response to find the Pareto-optimal set of
controllers. Disturbances are introduced during each evaluation at run-time in order to produce robust performance. The
performance of the controller is compared experimentally with the fuzzy logic controller which has been designed off-line, and a
standard PID controller which has been tuned online. The on-line optimised fuzzy controller is shown to be robust, possessing
excellent steady-state and dynamic characteristics, demonstrating the performance possibilities of this type of approach to controller

design.
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1. Introduction

This paper investigates the potential of multi-objec-
tive control design with hardware in the loop. Tuning of
PI parameters on-line has been achieved (Schroder et al.,
2001) with multi-objective genetic algorithms applied to
a sealed pump running on magnetic bearings. However,
parameter and controller structure tuning on-line
presents a further level of potential for control system
design. A DC motor dynamometer rig and a micro-
controller are used as a platform to develop and assess
the control algorithms. In particular, an on-line tuned
type (PI) and an off-line designed type (fuzzy logic) are
considered for performance comparison. An automatic
method for fuzzy logic control design is presented,
utilising a multiobjective evolutionary algorithm for the
optimisation process. Process uncertainty in the form of
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parameter variations has been investigated (Hughes,
2001) in which a model which includes parameter
uncertainty and measurement noise is utilised with the
aim of producing a controller which is also robust to
disturbances. Automatic controller design considered
here allows the evolutionary design to proceed in the
presence of real-life measurement noise and parameter
variation via the hardware in the loop. To further
develop the theme of robust design, external distur-
bances are injected during each on-line chromosome
assessment with the aim of increasing the controller
robustness. Moreover, a complete plant cycle is per-
formed during the evaluation phase for each chromo-
some.

Fuzzy logic control, comprising a fuzzification inter-
face, rule base and defuzzification algorithm (Mamdani,
1974; Zadeh, 1973), has been applied to a wide variety of
motion control applications (Betin et al., 2001; Guille-
min, 1994). A vital region of interest concerns
the implementation of the fuzzy controller. Several
different approaches have been postulated to extract the



knowledge base from experts or training examples to
construct the input-output membership functions and
the fuzzy rulebase. These methods can be based on
neural networks (Hong and Lee, 1996; Ishibuchi and
Tanaka, 1993) or the application of fuzzy clustering
techniques to construct a fuzzy controller from training
data sets (Grauel and Mackenberg, 1997). It has been
observed that the major drawback of most fuzzy
controllers and expert systems is the need to predefine
membership functions and fuzzy rules. In Hong and Lee
(1996) is proposed based on fuzzy clustering techniques
and decision tables to derive membership functions and
fuzzy rules from numerical data. A natural evolution of
the technique was to integrate Genetic Algorithms
(GAs) into the Fuzzy logic design process (Chang and
Wu, 1995; Homaifar and McCormick, 1995; Thrift,
1996). The robustness of the GA allows it to cover a
multidimensional search space while ensuring an opti-
mal or near-optimal solution, thus simultaneous design
of membership functions and fuzzy control rules can be
achieved (Wu and Liu, 2000). The development of these
techniques to design optimal robust fuzzy logic con-
trollers for example gas turbine engines (Jamshidi et al.,
2003) and aerospace autopilots (Blumel et al., 2001) has
arisen to satisfy the need which exists when expert
heuristic knowledge does not exist to translate into
controller design.

The performance of a particular control design is
fundamentally tied to the accuracy of the model upon
which it is based. This is especially true for iterative
control design and optimisation procedures. The sub-
stitution of hardware in the loop for the software model
opens up new possibilities for design based on real world
performance indicies. In this paper the implementation
of GA fuzzy design will be evaluated via an on-line
experimental DC motor connected to a DC shunt load
motor set to introduce dynamic disturbances. The
performance of the resulting motion controller is
compared with that of a manually tuned fuzzy
controller. The results presented here demonstrate a
convenient and practical method to produce a robust
controller design on a prototype plant.

1.1. Multi-objective optimisation by evolutionary
algorithm

Evolutionary algorithms are global parallel search
and optimisation methods based around Darwinian
principles, working on a population of potential
solutions to a problem (in this case the on-line design
of an optimal fuzzy logic controller via hardware in the
loop). Every individual in the population represents a
particular solution to the problem, often expressed in
binary code. The population is evolved over a series of
generations to produce better solutions to the problem.

The general multiple objective optimisation problem
is described as (Jamshidi et al., 2003):

min{fi(x) = zi, ..., f[;{(X) = z;}, (1)
where
xeD. 2)

The solution of x =[x, ...,x;] is a vector of decision
variables, and D is the set of feasible solutions. If each
decision variable takes discrete values from a finite set,
then the problem is combinatorial.

The image of solution x in the objective space is a
point

z" = |z, ...z | = (), 3)
such that
=6, j=1...J (4)

Point z' dominates z*, z' > 7, if Vj z} <z} and z} <z} for
at least one ;. Solution x' dominates x if the image of x'
dominates the image of x°.

A solution x € D is efficient (Pareto-optimal) if there is
no x’ e D that dominates x. The point which is an image
of an efficient solution is nondominated. The set of all
efficient solutions is called the efficient set. The image of
the efficient set in the objective space is called the
nondominated set or Pareto front.

An approximation to the nondominated set is a set A of
points (and corresponding solutions) such that —3z',
z’e A such that z'>>z> that is set 4 is composed of
mutually nondominated points.

The point z* composed of the best attainable
objective function values is called the ideal point.

At every generational step, each individual of the
population is run on the hardware, and its performance
evaluated and ranked via a cost function. Individual
performance is indicated by a fitness value, an expres-
sion of the solution’s suitability in the solution of the
problem. The relative degree of the fitness value
determines the level of propagation of the individual’s
genes to the next generation. In the multi-objective
evolutionary algorithm (MOGA) in use here, the rank
of a certain individual corresponds to the number of
individuals in the current population by which it is
dominated. All nondominated individuals are assigned
rank 1, while dominated ones are penalized according to
the population density of the corresponding region of
the trade-off surface. Fitness assignment is performed as
follows (Blumel et al., 2001).

® Sort population according to rank.

® Assign fitness to individuals by interpolating from the
best (rank 1) to the worst (rank n< M), the Pareto
ranking assignment process (Jaszkiewicz et al., 2001),
according to a (usually) linear function.

® Average the fitness of individuals with the same rank,
so that all of them will be sampled at the same rate.



This keeps the global population fitness constant
while maintaining appropriate selective pressure.

Evolution is subsequently performed by a set of
genetic operators which stochastically manipulate the
genetic code. Most genetic algorithms include operators
which select individuals for mating, and produce a new
generation of individuals. Crossover and Mutation are
two well-used operators. The crossover operator ex-
changes genetic material between parental chromosomes
to produce offspring with new genetic code. The
mutation operator makes small random changes to a
chromosome.

Trade-offs occur between competing objectives with
the consequence that it is very rare to find a single
solution to a particular problem. In reality a family of
non-dominated solutions will exist. These Pareto-optimal
(Fonseca and Fleming, 1995, 1998) solutions are those
for which no other solution can be found which
improves on a particular objective without a detrimental
effect on one or more competing objectives. The
designer then has the opportunity to select an appro-
priate compromise solution from the trade-off family
based on a subjective engineering knowledge of the
required performance. Individuals which represent
candidate solutions to the optimisation problem (in this
case fuzzy controller parameters such as membership
functions, rule bases, etc.) are encoded as either binary
or real number strings, producing an initial population
of chromosomes by randomly generating these strings.

The population of individuals is evaluated using an
objective function which characterises the individual’s
performance in the problem domain. The experimental
system is run iteratively with each individual’s set of
controller parameters. The objective function determines
how well each individual performs based on experimental
data (in this case the current and velocity tracking
performance and power consumption), and is used as the
basis for selection via the assignment of a fitness value.
The motivation in this case for combining GAs with
fuzzy logic for control is to investigate a number of
factors. Firstly, the design potential which can be gained
by removing the need for knowledge solicitation to
enable the fuzzy logic design. Secondly, to reduce the
design time. Thirdly to examine a method for introducing
robustness features into the fuzzy design. Finally, to
investigate and define a method for multiobjective
controller design where an accurate system model is
either unavailable, or runs extremely slowly, a limiting
factor in the process of iterative evolutionary design.

1.2. Hardware overview
The application consists of a brushed DC permanent

magnet field motor fed by a four quadrant DC chopper
drive operating at 5kHz. Fig. | shows a schematic of the
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Fig. 1. On-line optimisation hardware setup.

on-line control system and hardware set-up. The
objective is to perform robust closed loop speed control
on this motor. The drive motor is connected via a
flexible coupling to a field wound DC load motor which
itself is fed directly by a 200V DC supply. The
disturbance torque from this load motor is indepen-
dently controllable, based on the applied armature
voltage. Current control is embedded in the INTEL
80C196K C microcontroller as is the fuzzy logic velocity
controller. The microcontroller also hosts the velocity
and current feedback signals from the motor set and
chopper drive, respectively. The multi-objective optimi-
sation programme runs under Matlab (Chipperfield
et al., 1994), and resides on a PC. Candidate controllers
are downloaded from this host to the microcontroller
via the serial link and on-line debug facility allowing
direct access to programme memory. Assessment of the
candidate controllers is performed on the PC according
to a pre-programmed performance cost function. A
National Instruments data acquisition board performs
signal acquisition to bring feedback signals into the PC,
to facilitate performance evaluation via the objective
function.

2. On-line PID control design

Various methods exist to tune the gains of a PID
controller off-line to attain the prescribed transient
response and steady-state error criteria. These methods
generally involve some form of iterative approach to
achieve performance criteria such as rise—time, over-
shoot and settling—time (Kuo and Hanselman, 1994). In
keeping with the development of the fuzzy controller
designed later in this paper, the PID control scheme was
designed and tuned on-line. This on-line method has
been shown to be extremely effective in a variety
of applications including active magnetic bearings



(Schroder et al., 2001). In the application under
consideration here, the PID controllers to be optimised
comprise two cascaded (Kuo and Hanselman, 1994)
control loops (Fig. 2). An outer loop performs tracking
of a velocity demand, supplying a current demand based
upon velocity error to the inner control loop which
tracks the current demand based on current error. The
output of the PID current controller is applied as a
voltage to the DC drive motor via the PWM channel of
the microcontroller and four quadrant DC chopper
drive. The dynamic performance of the system is limited
by current and voltage restraints specified by the motor
manufacturer, namely

® Supply to chopper drive: 150V DC
e Current limit: 1.5A

The parameters to be tuned here are the proportional
K,, integral K; and derivative gains Ky for both the
current and velocity control loops, to achieve tracking
performance, and also load disturbance rejection for the
velocity loop.

1
C:E‘[K"<1+K_is+ de)], )

where E, is the tracking error and C is the commanded
control action. The optimisation engine chosen for this
application is the multi objective genetic algorithm
(MOGA) which runs on the PC platform (Chipperfield
et al., 1994), and is interfaced to Simulink. Genetic
algorithms can tolerate experimental noise, and are as
such ideal for this application, since a population of
potential solutions evolve by means of a selection and
transformation process which is stochastic by nature.
The on-line control optimisation was based on the
structure of a standard manually tuned controller. A
software interface allows the controller parameters to be
altered on the microcontroller in real time from within
the MOGA environment and also allows measured data
to be read back into MATLAB for performance
assessment. The optimisation procedure is constructed
with the PID parameters for the two control loops as
decision variables and direct measurements of the
controllers performance to form the basis for assessment
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Fig. 2. On-line PID current and velocity controller optimisation setup.

as optimisation objectives. The current and velocity
controllers were tuned concurrently, and performance
was assessed in response to a step velocity demand of
200rads~'. The objective function comprised three
elements, and was of the form

® minimise [|e;| dz,
® minimise [|e,| ds,
® minimise [ vi dt,

where ¢; is the current tracking error, e, is the velocity
tracking error, and [ vi d is the power consumption of
the system. In this way, it is required that a search be
performed for a pair of controllers which deliver the
most accurate current and velocity tracking perfor-
mance, while utilising the minimum possible energy. An
extra feature which was built into the optimisation
procedure was the injection of a disturbance via the load
motor of approximately 0.3 N m which is approximately
30% of torque at the rated current of 1.5 A. In this way,
it was expected that a controller set would be designed
robust to external load disturbances. The optimisation
algorithm was set according to the following para-
meters:

Number of individuals per generation: 40

Number of random immigrants per generation: 6

Number of generations: 100

Number of decision variables: 6 (PID parameters for

two controllers)

Number of objectives: 3 (current tracking, velocity

tracking and power consumption)

® Number of immigrants per generation: 6 (random
individuals to ensure complete search)

® Decision variable range: 0-2000

® All objectives set to minimise at zero.

2.1. Results of on-line PID design

The selection of the PID controller was extremely easy
in this case. Minimisation of current tracking error also
results in the minimisation of velocity tracking error.
The power integral minimisation objective is to a greater
extent a trade-off with the tracking objectives. Relaxa-
tion of the power criteria results in improved tracking
performance up to a point where no improvement is
achieved. From this point onwards, no improvement is
made in tracking, even with the expenditure of larger
amounts of energy. Evidently, the larger gains asso-
ciated with controllers beyond this point waste energy in
a more aggressive control action without any improve-
ment in performance. Consequently, the controller gains
which are associated with this boundary are chosen as
the optimal set.

® Current controller gains: P=293.5, I=50, D=0.
® Velocity controller gains: P=43.8, I=13.8, D=0.



The solution was converged on the 15th generation. This
response (Fig. 3) defines the baseline performance by
which subsequent controllers will be compared, giving a
rise-time from 0 to 200 rads™' in approximately 3.5s in
the case without external disturbances. The correspond-
ing response (Fig. 4) defines the performance by which
subsequent controllers will be evaluated under condi-
tions of external disturbance. The switching pattern of
the relay controlling the voltage to the load motor is
shown in graph (c). The values shown have been scaled
to the value of applied disturbance torque. This
compares with a maximum torque of | Nm from the
drive motor at a rated current of 1.5A. Under these
conditions, a rise-time from 0 to 200rads™' in
approximately 4.5s can be expected.
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disturbance: (a) velocity response, (b) current response, (c) estimated
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3. Off-line fuzzy-logic controller design

A fuzzy-logic velocity control scheme had been
developed for this system previously in order to
investigate the implementation issues involved with this
type of control structure. Although claims are made
concerning the reduction of development time (Drian-
kov et al., 1993), in fact the development time to pro-
duce the fuzzy controller off-line was significantly
greater than the time required to manually produce
and tune a robust PID tracking controller. This can to a
certain extent be explained by unfamiliarity with the
technique of fuzzy design, a factor which is exacerbated
by the complexity of the design procedure. The designer
must choose input and output membership functions, a
meaningful rule base, and an effective defuzzification
strategy. In essence this requires the implementation of a
controller with many degrees of freedom in the design,
and consequently a complex implementation to achieve
robust design.

An iterative design approach was utilised, to investi-
gate the effects of the various degrees of design freedom
in order to design the best controller. The most effective
control structure was found to be input membership
functions for error (v(k)) and change of error (Av(k)) at
time k, where

Av(k) = v(k) — v(k — 1). (6)

The form of the membership function is shown in Fig. 5,
the input functions are linked to the controller output by
a rule base of the form;

® [F error is Positive Big THEN output is Positive Big,
® [F error is Positive Small THEN output is Positive
Small,

IF error is Zero THEN output is Zero,

IF error is Negative Small THEN output is Negative
Small, and

Input membership function

confidence
o
o
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arror or change of error

Fig. 5. Input membership functions for v and Av.



® [F error is Negative Big THEN output is Negative
Big.

This rule base is repeated for change of error, and was
implemented experimentally, the structure being shown
in Fig. 6. The error and change of error controllers were
constructed as follows. The fuzzy inference rule base is
implemented using the intersection operator. A matrix
of input and output sets included in each rule is
constructed. Assuming for example, two classical sets
A and B in a universe U, with membership functions 4
and pp, the minimum operator intersection can be
defined as (Driankov et al., 1993)

1 5(x) = Min(p,(x), 15(x)). (7)

The overall transfer surface for the controller was
achieved by combining the matrix representation of all
the individual rules into one overall matrix and applying
the maximum operator union. This operation exemplifies
the Cartesian cross product operator defined on n
classical sets A4;,...,4,, as

XL, =4, x - x4,
=((x1, ..., xp)lX1 €A1, ..., Xn € Ay). (8)

The resulting transfer characteristic for velocity error is
shown in Fig. 7. A corresponding surface consequently
exists for change of velocity error.

The utilisation of the centre of area defuzzification
strategy (Driankov et al., 1993) results in a controller
structure shown in (Fig. 8). The surface provides a
nonlinear relationship between velocity error, change of
velocity error, and the controller output.

3.1. Results of off-line fuzzy logic controller design

The performance of the off-line designed fuzzy logic
velocity controller is presented in Fig. 9 for the non-
disturbance case, and Fig. 10 for the case with external
disturbance. In this case, a bi-directional velocity
demand is supplied to the controller. In both the
disturbed and undisturbed state, velocity tracking is
comparable both in terms of rise time and steady-state
accuracy to the PID controller. Although it is beyond
the central remit of this paper, a substantial amount of
time was spent selecting an appropriate defuzzification
strategy and the selection of the input-output sets in
order to achieve this tracking performance. Conse-
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Fig. 9. Off-line designed fuzzy controller performance.

quently, the investigation of an on-line fuzzy logic
design becomes an attractive proposition which is
described in the next section. The development for an
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automatic design scheme with hardware in the loop will
be considered and experimentally tested.

4. On-line fuzzy logic controller design

Evolutionary algorithms have been used to optimise
various aspects of intelligent control systems. In
particular, the algorithm can generate the fuzzy rule-
base, and tune the parameters of the associated
membership functions. The application of evolutionary
algorithms to fuzzy optimisation is broadly split into
two general areas; namely membership function tuning
and rulebase design with tuning. GA has been applied
(Tzes et al., 1998) to the off-line tuning of fuzzy
membership functions, using a fuzzy clustering techni-
que a fuzzy model was developed to describe the friction
in a DC-motor system. In this case, the GA was seeded
initially by the results obtained by fuzzy clustering. The
results were greatly improved over those obtained by the
non-tuned version. An asynchronous evolutionary algo-
rithm has been used to generate membership functions
to facilitate the rapid prototyping of fuzzy controllers
(Kim et al., 1995). This approach utilized parallel
processing, being implemented on a 512 processor
CM-5 Connection Machine. The application in question
was a simulated space-based oxygen production system.
Evolutionary methods have also been used where the
derivation of an obvious set of fuzzy rules is not
immediately apparent. In this case, the designer may
either pre-specify a number of rules, or allow the
number of rules to become an extra degree of freedom
in the design. In all cases, the computational intensive-
ness of the designed optimisation technique must be
borne in mind, particularly in the case of on-line
optimisation.

Due to the considerable computational and experi-
mental considerations implicit in this method, certain
constraints are included in the bounds of the decision
variable vector in order to bring the automatic design
time down to a reasonable level. A flowchart of the
experimental set-up is shown in Fig. 11 and contains a
number of elements.

The objective function contains the elements of
performance and design to be minimised, principally

® rise-time in response to step changes in velocity
demand,

® steady-state error in response to step changes in
velocity demand,

® overall [vi dr power utilisation for a complete plant
cycle,

® control complexity, i.e. the structure of the fuzzy
logic controller is to be kept as simple as possible.

The decision variable vector contains the elements of
controller design which are implemented in each individual
during the evolutionary process. The decision variables
include the number of inputs, number of membership
functions for each input and output, number of rules in the
rule base, and- or-ignore conjugates in each rule, and
finally the defuzzification algorithm. The selected values in
the decision variables vector are passed to the Matlab
Fuzzy Logic Toolbox to be constructed into a controller
file. In order to reduce the necessary execution time to
converge to a satisfactory conclusion the decision variable
vector is bounded as follows:

® number of inputs: 1-2

® number of membership functions for each input 3-5

® membership functions limited to triangular, with 2
base and one peak co-ordinate

® number of rules: 3-5

® conjugates: and, or, none

® defuzzification: centre of maximum.

Rise time,
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Evolutionary (Membership functions
Algorithm etc.)
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Fuzzy Logic
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Fig. 11. On-line fuzzy logic design setup.
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In addition, a random +/—0.2Nm disturbance is
injected during each experimental run to introduce an
element of robustness into the design procedure. For
each iteration of the design, the fuzzy controller was run
on the motor rig and its performance ranked. It was
found that the selected controller appeared early on in
the procedure (generation 17 in a population of 10), in
an initial run of 50 generations. The Pareto-optimal set
of solutions included several configurations and combi-
nations of membership functions, including one which
was markedly similar to the solution defined by the off-
line fuzzy design with on-line tuning. The solution
chosen for presentation here, however, exhibits the
required dynamic and steady-state performance but is
coupled with a minimal set of membership functions
(comprising an additional objective) and rules which
presents computational advantages.

4.1. Results of on-line fuzzy logic controller design

The first results to present are those which show the
dynamic and steady-state performance of the velocity
controller. The undisturbed case is shown in Fig. 12, and
the disturbed case in Fig. 13. In both cases, the velocity-
tracking response of the system is comparable with
earlier designs achieved by both PI and fuzzy logic
control. One difference of particular interest is the
current waveform in both cases which exhibits high-
frequency components. This effect has been commented
upon (Zhu et al., 2002) in the context of fuzzy logic
control design, concluding that some off-line or on-line
tuning is necessary to eliminate or effectively reduce the
harmonics. In the case of the off-line fuzzy logic
controller described earlier in this paper, the harmonics
were reduced by on-line tuning. For future work in this
case, the addition of frequency analysis to the objective
function to minimise the unwanted harmonics would be
a beneficial area of research. Hardware and computa-
tional constraints precluded the implementation of this
analysis on-line at this time, but it is intended that the
investigation of this phenomenon on an upgraded rig be
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Fig. 12. On-line designed fuzzy logic velocity controller performance.
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with disturbance.

performed at some future time. Although the perfor-
mances of the various controllers are very similar, the
structure of the on-line and oft-line designed controllers
are very different. Both have similar rule bases, but
whereas the off-line design has inputs of both error and
change-of-error, the automatically designed controller
solely acts on error input. The membership functions
which make up the input set are shown in Fig. 14, being
the same number (5) as in the off-line designed case, but
are far more closely clustered around the zero set. The
membership functions which make up the output set are
shown in Fig. 15 and are linked to the input set by the
rule base;

e if velocity error is neghig THEN current demand is
negbig,

e if velocity error is negsmall THEN current demand is
negsmall,

® if velocity error is zero THEN current demand is zero,

e if velocity error is poshbig THEN current demand is
posbig,

e if velocity error is possmall THEN current demand is
possmall.

The methods attached to the fuzzy logic controller were
as follows.

and:min

or:max
implication:min
aggregation:max
defuzzification:mom

5. Conclusions

The primary objective of this work, to assess the
feasibility of automatically designing fuzzy logic con-
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trollers on-line with hardware in the loop has been
demonstrated. A hardware platform previously intended
for fuzzy logic design, formed the hardware in the loop
since it was well characterised. The design of a fuzzy
logic controller by traditional off-line methods had
required manual tuning on line to maximise perfor-
mance, and in particular, to reduce current harmonics
introduced by the control action. It has been shown
experimentally that on-line fuzzy logic controller design
is feasible, and also that excellent dynamic and steady-
state performance can be achieved. The design was
optimised without the solicitation of knowledge because
of the stochastic nature of the evolutionary optimisation

algorithm which searches the multidimensional space of
membership functions and rules for combinations which
can achieve the performance specified in the objective
function. Controller design based around models and
simulation is often limited by the veracity of the model
under consideration. For example, electromagnetic
actuators may be approximated by relatively simple
expressions. However under certain circumstances,
dynamic effects such as eddy currents, which are
extremely difficult to model, need to be included in
dynamic simulation. In this case, the differences between
actual and simulated plant can make a significant
difference to the controller performance. It appears that
the on-line fuzzy controller design offers considerable
advantages and is worthy of serious consideration, also
the possibility of injecting random disturbances during
the design phase resulting in a controller capable of
rejecting at least bounded disturbances shows particular
promise. This topic together with consideration of the
effects of controller dynamics on the harmonic content
of the current waveforms will form part of a further,
investigation.
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