

Endemicity and climatic niche differentiation in three marine ciliated protists

Journal:	Limnology and Oceanography
Manuscript ID	LO-17-0420.R2
Wiley - Manuscript type:	Original Article
Date Submitted by the Author:	04-Jun-2018
Complete List of Authors:	Williams, Richard; Linneuniversitet Fakulteten for halso och livsvetenskap, EEMiS; Universidad Complutense de Madrid, Department of Zoology and Physical Anthropology; University of Kansas, Biodiversity Institute Owens, Hannah; University of Florida, Department of Biology; University of Kansas, Biodiversity Institute Clamp, John; North Carolina Central University, Department of Biological and Biomedical Sciences Peterson, Town; University of Kansas, Biodiversity Institute Warren, Alan; The Natural History Museum, Department of Zoology Martin-Cereceda, Mercedes; Universidad Complutense de Madrid, Department of Microbiology III
Keywords:	Ciliate, Ecological Niche Models, Niche Differentiation
Abstract:	The biogeographic pattern of single-celled eukaryotes (protists), including ciliates, is poorly understood. Most marine species are believed to have a relatively high dispersal potential, such that both globally-distributed and geographically-isolated taxa exist. Primary occurrence data for three large, easily identified ciliate species, Parafavella gigantea, Schmidingerella serrata and Zoothamnium pelagicum, and environmental data drawn from the National Oceanic and Atmospheric Administration's (NOAA) World Ocean Atlas were used to estimate each species' spatial and environmental distributions using Maxent v3.3.3k. The predictive power of the models was tested with a series of spatial stratification studies, which were evaluated using partial receiver operating characteristic statistics. Differences between niches occupied by each taxon were evaluated using background similarity tests. All predictions showed significant ability to anticipate test points. The null hypotheses of niche similarity were rejected in all background similarity tests comparing the niches among the three species. This paper provides a first quantitative assessment of environmental conditions associated with three species of ciliates and a first estimate of their spatial distributions in the North Atlantic, which can serve as a benchmark against which to document distributional shifts. These species follow consistent, predictable patterns related to climate and environmental biochemistry; the importance of climatic conditions as regards protist distributions is noteworthy considering the effects of global climate change.

SCHOLARONE[™] Manuscripts

1 TITLE				
2 Endemicity and climatic niche differentiation in three marine ciliated protists				
3				
4 AUTHORS				
5 Richard AJ Williams ^{1,2,3*} , Hannah L Owens ^{2,4} , John Clamp ⁵ [†] , A Townsend Peterson ² , Al	an			
6				
7 Warren ⁶ , Mercedes Martín Cereceda ⁷				
8				
9				
10				
11				
12 ¹ Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus Univers	ity,			
13 SE-391 82, Kalmar, Sweden				
14 ² Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA				
³ Department of Biodiversity, Ecology and Evolution, Universidad Complutense de	;			
16 Madrid, 28040, Madrid, Spain				
⁴ Department of Biology, University of Florida, Gainesville, FL 32611, USA				
18 Department of Biological and Biomedical Sciences, North Carolina Central				
19 University, Durham, NC 27707, USA 20 ⁶ Department of Life Sciences, Natural History Museum, London SW7 5BD, UK				
20 Department of Life Sciences, Natural History Museum, London Sw / 5DD, OK				
21 Department of Genetics, Firyslology and Microbiology, Oniversidad Completense	: de			
22 Madrid, 28040, Madrid, Spain				
23 * Corresponding author: <u>richard.williams@lnu.se</u>				
²⁴ [†] John Clamp passed away on Feb. 6 th , 2018, following a short illness				
25				
26 27 28				
27				
20				
 29 KEYWORDS 30 Ciliates, Ecological Niche Models, Niche Differentiation, <i>Parafavella gigantea</i>, 				
31 Schmidingerella serrata, Zoothamnium pelagicum				
32 Schmangerena serrana, zoomammum peragicum				
32 33 RUNNING HEAD				
34 Marine ciliate niche and distribution				
35 Warme emate mene and distribution				
36				
37 Abstract: 213 words				
38 Paper: 4445 words				
39 References: 53				
40				
41				

42 ABSTRACT

43 The biogeographic pattern of single-celled eukaryotes (protists), including ciliates, is poorly 44 understood. Most marine species are believed to have a relatively high dispersal potential, 45 such that both globally-distributed and geographically-isolated taxa exist. Primary occurrence data for three large, easily identified ciliate species, Parafavella gigantea, Schmidingerella 46 47 serrata and Zoothamnium pelagicum, and environmental data drawn from the National 48 Oceanic and Atmospheric Administration's (NOAA) World Ocean Atlas were used to 49 estimate each species' spatial and environmental distributions using Maxent v3.3.3k. The 50 predictive power of the models was tested with a series of spatial stratification studies, which 51 were evaluated using partial receiver operating characteristic statistics. Differences between 52 niches occupied by each taxon were evaluated using background similarity tests. All 53 predictions showed significant ability to anticipate test points. The null hypotheses of niche 54 similarity were rejected in all background similarity tests comparing the niches among the 55 three species. This paper provides a first quantitative assessment of environmental conditions 56 associated with three species of ciliates and a first estimate of their spatial distributions in the 57 North Atlantic, which can serve as a benchmark against which to document distributional 58 shifts. These species follow consistent, predictable patterns related to climate and 59 environmental biochemistry; the importance of climatic conditions as regards protist 60 distributions is noteworthy considering the effects of global climate change.

61 **INTRODUCTION**

62 Marine microorganisms are essential to the planet's health, marine biodiversity, and the 63 fishing industry. They carry out nearly 50% of the world's photosynthesis, 70% of which is 64 locked up in long-term carbon storage (Field et al. 1998). Microbes are the base of the marine ecological pyramid, and are vital to the marine food web that transfers energy from primary 65 66 producers to higher trophic levels (Azam et al. 1983; Fenchel 2008). Understanding the 67 current spatial distributions of marine microorganisms is thus important to improving 68 understanding of their functions, and is fundamental for impact assessment of effects of 69 climate change.

70

71 Microorganisms—used here to refer to all microscopic organisms (including protists, 72 archaea, bacteria and fungi)—are generally considered to be cosmopolitan in distribution 73 (Beijerinck 1913): "everything is everywhere, but the environment selects". They are thought 74 to be ubiquitous thanks to huge population sizes and a consequent low probability of 75 extirpation; also, they are limitlessly dispersible, have negligible rates of allopatric speciation 76 compared to larger organisms, and can potentially occur at any place that meets their 77 biological requirements (Finlay et al. 1996). These assumptions suggest that processes 78 driving biogeographic patterns of microbe diversity are fundamentally different from 79 macroscopic organisms, with profound implications for understanding mechanisms driving 80 microbial distributions and evolution. A variant on this view states that whereas most free-81 living protist species are globally distributed, about one-third of them may be 82 biogeographically restricted (Foissner 1999; Foissner 2006). 83 84 Nonetheless, microbial geographic patterns are still poorly understood. Description of the

biogeography of protists is hampered by a scarcity of taxonomists, high frequency of

86	misidentification and dramatic under-sampling (Foissner 2006). Traditionally, protists have
87	been identified by morphological features, though this approach risks lumping organisms
88	with discrete biogeography, ecology and genetics into single morphospecies (Gentekaki and
89	Lynn 2010; Katz et al. 2011). The high rates of synonymy and existence of polymorphic life
90	stages (phenotypic variability) in ciliates can exacerbate the problem (Dolan 2016). Protist
91	biogeography has benefited from molecular studies, as environmental sequencing can provide
92	abundant distributional data. Several contributions have described geographic
93	circumscription in 18 S rDNA sequences from diverse aquatic protist groups-diatoms
94	(Evans et al. 2009), Cercozoa (Bass et al. 2007), Amoebozoa (Aguilar et al. 2014),
95	heterotrophic flagellates (Boenigk et al. 2006), and ciliates (Bass et al. 2009). Several recent
96	morphological and molecular studies have found that many protists, particularly the rarer
97	ones, follow discrete biogeographic patterns (Filker et al. 2016; Logares et al. 2015; Segovia
98	et al. 2017). Further studies relating morphology, functionality and molecular information are
99	needed to describe the dispersal ability of these and other protist species.
100	
101	Ciliophora is a diverse phylum of heterotrophic or mixotrophic protists—the ciliates—with
102	~4500 taxonomically valid, free-living species (Foissner et al. 2008), characterized by the
103	presence of hair-like organelles called cilia, used for locomotion, attachment, feeding,
104	sensation, etc., and nuclear dimorphism (Gao et al. 2016). They have been sampled from
105	marine environments; indeed, the Ocean Biogeographic Information System (OBIS) has
106	locality data for nearly 200,000 Ciliophora observations, albeit with a clear bias towards
107	sampling along major trade routes. Some microbial species are more conspicuous and easier
108	to identify with confidence than others, leading some authors to propose these "flagship"
109	species as the ultimate proof of endemism (Foissner 2006). Such species, the "elephants" of
110	the migraphial world, connect he migrad if they are present because of their distinctive

the microbial world, cannot be missed if they are present, because of their distinctive

Limnology and Oceanography

111	morphological features and/or significantly large size, with the caveat that traditional
112	morphological-based identification of microbial species risks lumping diverse ecological and
113	genetic species into a single morphospecies complex and underestimating cryptic diversity
114	(Gentekaki and Lynn 2010).
115	
116	Ecological niche models (ENM) infer suitable abiotic habitat conditions for non-model
117	organisms by generating a correlational model that unites occurrence information and
118	environmental data for the taxon of interest to determine the geographic distribution of
119	habitat conditions correlated with species occurrences (Soberón and Peterson 2005). They
120	have been used to explore diverse topics in distributional ecology, including species'
121	geographic distributions, niche conservatism, spread of invasive macrospecies and diseases,
122	and effects of climate change on species distributions; see Peterson et al. (2011) for a
123	summary. ENMs have long been used to infer distributions of species in the marine
124	environment (Wiley et al. 2003). To date, marine ENMs have been used mainly to create
125	models for macrofaunal distributions (Bentlage et al. 2013; Saupe et al. 2014), although some
126	authors have applied ENM approaches to characterize phytoplankton (Brun et al. 2015) and
127	Foraminifera (Langer et al. 2013). Relatively few attempts have been made to describe the
128	ecological dimensions of microbial distributions for free-living terrestrial microbes (Aguilar
129	and Lado 2012). One noteworthy recent contribution explored the phylogeography of 18S
130	rDNA variants of the myxomycete Badhamia melanospora (phylum Amoebozoa) (Aguilar et
131	al. 2014).
132	

The aim of this contribution is to show, for the first time in ciliates, the utility of ENMs in

134 putting ciliate morphospecies on the map, that is, in analysing and understanding their

biogeography. We focus on three flagship species from the phylum Ciliophora: *Parafavella*

136 gigantea (Brandt, 1896), Schmidingerella (= Favella) serrata (Möbius, 1887), and 137 Zoothamnium pelagicum Du Plessis, 1891. These species are particularly obvious thanks to their large body size. Parafavella gigantea (up to 750 µm in length) and Schmidingerella 138 139 serrata (up to 350 µm long) are relatively obvious within plankton samples as they are much 140 larger than many other protists. *Zoothamnium pelagicum*, though somewhat smaller (up to 141 120μ m), is colonial, and often forms discoidal clusters 2-3 mm thick that are clearly visible 142 to the human eye (Laval 1968). These were the only species for which sample size and 143 taxonomic clarity were sufficient to permit developing ecological niche models (ENMs). 144

145 METHODS

146 Data on ciliate distributions and ecological dimensions

147 Primary occurrence data for Ciliophora species were downloaded from the Global

148 Biodiversity Information Facility (GBIF; <u>http://www.gbif.org/</u>) and Ocean Biogeographic

149 Information System (OBIS; <u>http://www.iobis.org/)</u> on 10 December 2015. We obtained more

than 200,000 observations, but most were not usable for development of ENMs: many were

151 not supported by voucher specimens or sequences (which we consider to be necessary

documentation), and taxonomic resolution for many taxa was poor. Observations were often

duplicated from the same locality; and sample sizes were low for most taxa.

154

155 We found only three ciliate species with sufficient sample size, taxonomic clarity, and

156 geographic spread to develop ENMs: *P. gigantea* (N = 368), *S. serrata* (N = 135), and *Z.*

157 *pelagicum* (N = 279). Records for these taxa were collected between 1903 and 2008 (see Fig.

- 158 1); duplicate records falling within the same 1° grid square were eliminated. The area of
- 159 coverage was limited to the North Atlantic (20°E-80°W; 0°-90°N) centred on the best-
- sampled ocean regions worldwide. Occurrence data were visualized in ESRI ARCGIS 9.3.1

161	(ESRI, Redlands, CA, USA), and showed broadly consistent distributional patterns. The few
162	data (<2% for each taxon) that fell outside this region were nonetheless included in
163	development of models to avoid prejudging limits of unknown distributional patterns (see
164	Fig. 1).
165	
166	Environmental data layers were drawn from National Oceanic and Atmospheric
167	Administration's (NOAA) World Ocean Atlas (NOAA 1999), at a native spatial resolution of
168	1°: ~110 km at the Equator. These data layers represent long-term annual means from
169	oceanographic datasets covering 1900-1997. We developed two models: Model 1, based on
170	six annual surface temperature and salinity variables (mean, maximum and minimum, for
171	each), and Model 2, based on the same six variables for surface temperature and salinity, as
172	well as six annual average surface biochemical variables (Supplementary Table 15). The data
173	for each environmental coverage layer were converted into standard normal variates in
174	ArcGIS 9.3.1 prior to analysis.
175	

176 Ecological Niche Modelling

177 ENMs were calibrated for each species using the maximum entropy algorithm Maxent v3.3.3k (Phillips et al. 2006). Maxent is a correlational algorithm that uses presence-only 178 179 species occurrence data to estimate ecological niche parameters (Phillips et al. 2006). Maxent 180 fits a suitability surface for the species of interest to the set of pixels across the study region, 181 maximising the entropy of the probability distribution but constrained to return higher per-182 pixel suitability scores for pixels with environmental variable combinations most like those at 183 which the species has been detected. That is, the resulting suitability surface is a raster map in 184 which each pixel is scored regarding its similarity to climatic and biochemical conditions at sites where the species has been observed. 185

187	From Maxent suitability surfaces, distributions of suitable areas for each species were defined
188	using a minimum training occurrence threshold (Pearson et al. 2007). We defined two
189	thresholds for suitable and unsuitable areas for each species: the least presence threshold
190	(LPT)—equal to the lowest probability at any occurrence location—and a more conservative
191	10 th percentile training presence threshold, which is the highest suitability value that includes
192	90% of the calibration data. LPT is appropriate when there is no error in occurrence data that
193	may be introduced during geo-referencing or identification, whereas the 10 th percentile
194	approach anticipates up to 10% error among occurrences. More complex methods of
195	thresholding have demonstrated better skill in classifying suitable and unsuitable
196	environments (Jímenez-Valverde and Lobo 2007; Liu et al. 2005), but our dataset lacks true
197	absence data, so a simple omission-based technique was preferable (Bean et al. 2012). In
198	addition, under this approach, the map of suitable conditions for a species is defined to be
199	inclusive of all habitable conditions, and as such should include all known populations
200	(Peterson 2014).

201

202 Testing predictive power of ENMs

This study examines whether the occurrences of three ciliate taxa follow a consistent and predictable environmental pattern in the Atlantic Ocean. As such, we tested whether models could predict independent subsets of occurrence data reliably. These tests covered the entire study area, using replicate random subsets of the occurrence data, and spatially stratified subsets of the occurrence data, 50% of localities for model calibration and 50% for testing for both models under default parameters, and choosing logistic output format with suitability values from 0 (unsuitable) to 1 (suitable). To avoid extrapolation in model features, no

- clamping or extrapolation was permitted (Owens et al. 2013); to avoid overly complex
 models, no hinge or threshold features were permitted.
- 212

213 For prediction across the study area, 10 bootstrap replicate runs with a maximum of 10,000 214 iterations were conducted using a random seed with 70% of occurrence points. For spatial 215 stratification challenges, occurrence data were split spatially into quadrants above and below 216 the median longitude and latitude of the occurrence data. From this spatial stratification, we 217 developed the following three pairs of quadrants: west versus east of the median longitude, 218 north versus south of the median latitude, and on-diagonal (upper left-hand and lower right-219 hand quadrants) versus off-diagonal (lower left-hand and upper right-hand quadrants). In 220 each case, we developed both reciprocal predictions, testing the ability of ENMs to anticipate 221 the spatial distribution of occurrence data in areas for which no sampling is available. Models were evaluated by applying partial receiver operating characteristic (ROC) statistics to the 222 223 50% subset of occurrences withheld from model development for testing. Area under the 224 curve (AUC) ratios were calculated using the Partial ROC function available in CONABIO's NicheToolBox (http://shiny.conabio.gob.mx:3838/nichetoolb2/). Final models were 225 226 developed using 50% of available data. 227 228 One concern in comparisons of models based on different sets of environmental data is that

increased model complexity may lead to overfitting (Peterson et al. 2007; Radosavljevic and

Anderson 2014). A recent tendency, as a consequence, has been to use the Akaike

information criterion (AIC) as a means of comparing model likelihood values while

penalizing complex (and ostensibly overfit) models (Warren and Seifert 2011). Specifically,

we calculated the sample-size-corrected AICc statistic using ENMTools version 1.3.3

(Warren et al. 2010), and chose as the "best" model the one that had the lowest AICc values.

235	Results based on AIC	without the sam	ple-size correction) and the alternative Ba	vesian

236 information criterion (BIC) metric were similar, and so are not presented.

237

238 Niche difference and range restriction

239 To assess whether niches differed among taxa (which would imply range limits), we

evaluated differences in niches occupied by each taxon using background similarity tests

241 (Warren et al. 2008) available in the ENMTools R package version 0.1

242 (https://github.com/danlwarren/ENMTools). This test considers similarity between predicted

243 geographic distributions among species, using two statistics, Schoener's D and a modified

Hellinger's *I* metric, to quantify similarity. This test evaluates whether ENMs generated from

two species are more different than expected when occurrences are drawn from the same

underlying distribution across the region accessible to each species. The test allows

specification of an area of analysis ("the background"), which we equate with the area

accessible to a species over relevant time periods (Barve et al. 2011; Soberón and Peterson

249 2005). Numbers of points sampled from the background were set at observed sample sizes. In

each test, 100 replicate analyses were performed to estimate probabilities associated with null

251 hypotheses of niche similarity. The hypothesis that species were no more like each other than

if points had randomly been drawn from the study area was rejected if observed similarity

253 between models fell below the 5^{th} of the null distribution.

254

255 **RESULTS**

256 The area under the curve (AUC) ratios for the independent *Parafavella gigantea* testing data

were 1.77 and 1.79 for Model 1 and Model 2, respectively (P < 0.05; Table 1). The 10%

threshold for both models predicted a broad potential distribution across the cold temperate

zone of the North Atlantic north to about 79 / 81° N (Model 1 / Model 2) in the eastern

260	Atlantic, and about 67° N (both models) off the Greenland coast (Fig. 2) and the Labrador
261	Sea. The southerly limit was at about 48° / 47° N in the eastern Atlantic, and 36° / 38° N off
262	the US coast. Both models showed a more northerly prediction in the eastern Atlantic than in
263	the western Atlantic, owing to the ameliorating effect of the Gulf Stream / North Atlantic
264	Drift / Norwegian Current. Locality points with a borderline prediction for both models were
265	principally from the poorly represented southeastern quadrant of the study area, the
266	Greenland Sea in the northeast, and Labrador Sea and Hudson Bay in the northwest. The 10 th
267	percentile training presence fractional area predicted was about 22% of the study area for
268	each model, whereas that predicted under least presence threshold (LPT) was about 43 / 44%
269	of the study area.

The area under the curve ratios for the independent Schmidingerella serrata testing data were 271 272 1.83 and 1.81 for Model 1 and Model 2, respectively (Table 1). Both models predicted a 273 broad distribution in the North Atlantic from about $74^{\circ} / 71^{\circ}$ N in the eastern Atlantic, around 274 65° N off the Greenland coast, and 52° N off the Canadian coast (Fig. 2). The southern predicted limit extended from about 45° / 46° N in the European coast, curving slightly to the 275 276 north in the mid-Atlantic, and about 36° N off the US coast. Most "borderline" points were either in the Labrador Sea and the northwest Atlantic or the southeast part of the distribution, 277 278 including the Mediterranean. The least presence threshold prediction was similar between the 279 two models, covering about 30% and 28% of the study area, respectively. The proportion of the study area predicted by the 10th percentile area was 18.3% by Model 1, compared to 280 18.9% in Model 2. 281

282

The area under the curve ratios for the independent *Z. pelagicum* testing data were 1.76 and 1.75 for Model 1 and Model 2, respectively (Table 1). Both predicted (at the 10th percentile

285 training presence fractional area) a broad distribution in the North Cold Temperate Atlantic 286 from about $72^{\circ} / 71^{\circ}$ N in the eastern Atlantic, respectively, to around 52° N off the Canadian 287 coast (Fig. 2). The southern predicted limit included much of the North Temperate Atlantic, 288 to about 36° N for both models off the US coast, almost all the Mediterranean, and even some Tropical areas (to 18° / 15° N in the southeast Atlantic). Model 1's least presence threshold 289 290 prediction was broader than that of Model 2 (66.7% / 61.4% of the study area, respectively). By contrast, the 10th percentile prediction was rather small for each, and, again, more 291 restricted for Model 2: 30.0% / 24.5% of the study area. In each case, it was restricted to a 292 293 central band (most of the North Temperate Atlantic). All 10 replicates of spatial stratification 294 tests for each taxon and for both models showed significant ability to predict test points (P <295 0.05; see Table 1 and Supplementary Material). 296

297 All tests comparing niches of the three species rejected the null hypothesis of niche similarity 298 between pairs of species when compared to a null distribution generated from the background 299 region (P < 0.05; Figure 3, Supplementary Material Table 13). Parafavella gigantea was 300 predicted to range in the cold temperate zone of the North Atlantic, extending to the Arctic 301 Ocean, whereas the predicted distribution of Z. pelagicum was more southerly, extending to 302 the Caribbean and the Equator; the predicted distribution of S. serrata was intermediate. The 303 sample-size corrected Akaike information criterion (AICc) statistics, in all three cases, 304 indicated that the simpler models based only on six annual surface temperature and salinity 305 variables (i.e., Model 1) were preferable to the more complex models that included six 306 biochemical variables as well (Model 2), as differentials in AICc were >90 in all three cases 307 (Supplementary Material Table 14).

308

309	Because all major areas of the predicted-suitable area for each of the three species appeared
310	to be inhabitedat least as far as limited sampling permitted us to conclude (e.g., in parts of
311	the North Sea)we conclude that these species likely have quite-excellent dispersal abilities.
312	
313	DISCUSSION
314	Documentation of spatial patterns of microbial species remains undefined and contentious,
315	owing to the complicated nature of detecting them over wide areas. Evidence for
316	cosmopolitan distributions has been demonstrated for several protistan lineages (Cermeño
317	and Falkowski 2009; Richards et al. 2005). However, many microbial species have broad but
318	restricted distributional patterns (Bass et al. 2009; Bass et al. 2007; Foissner 2006); see Bass
319	and Boenigk (2011) for a comprehensive review. This pattern of moderate endemicity is also
320	seen in prokaryotic microbes (Noguez et al. 2005; Tamames et al. 2010). Some species are
321	even endemic to discrete geographic areas and ecosystems (Foissner 2006). It is unclear to
322	what extent microbial biogeography is obscured by poor understanding of species limits.
323	Only one study (Aguilar et al. 2014) explored the spatial distribution of a single
324	morphospecies of amoeba, Badhamia melanospora, using molecular genotyping and ENMs.
325	The authors detected two geographically-structured groups of ribotypes for <i>B. melanospora</i> ,
326	each of which showed limited distributions, and concluded that this species is not
327	cosmopolitan. Thus, it may be the case that morphospecies mask microbial diversity and
328	biogeographic patterns (Gentekaki and Lynn 2010; Katz et al. 2011).
329	
330	Our ecological niche models for three ciliophoran species clearly detected an environmental
331	signal unique to each, such that each species occupies a distinct fundamental ecological
332	niche. The area identified as suitable for each species varied greatly on broad spatial scales,

ranging from about 18% of the study area for *S. serrata* to 25-30% for *Z. pelagicum* (10%)

threshold). None of the species is likely to be ubiquitous across the entire study area and they
showed statistically significant differences in their environmental characteristics. Our models
demonstrated that the distribution of each species is constrained by environment, particularly
maximum and minimum temperatures.

338

339 Our locality data were drawn from specimens from the North Atlantic Ocean, the region for 340 which sampling is most dense and complete, although we are conscious that these species' 341 ranges may extend more broadly. Our models were consistently able to predict non-North 342 Atlantic locality data, with the following exception: S. serrata beyond the study area are 343 found off the coast of Ecuador and Peru, the North Pacific, and the eastern Mediterranean. 344 Although the latter two sets of points were well predicted by our models, the Ecuador-Peru 345 points were in an area with higher temperature and salinity than those used to train our S. 346 serrata model, and thus fell outside the ecological niche estimated in our models. Still, the S. 347 serrata models showed a good fit for the North Atlantic locality data, and provide a 348 parsimonious prediction. The non-Atlantic S. serrata points may form part of the natural 349 distribution of the species, or represent recent, perhaps human-mediated, invasion. For 350 instance, the points from the Ecuador-Peru coast might be explained by natural dispersal and 351 colonization by the species following the opening of the Panama Canal (similar to the 352 Lesseps immigrant Indo-Pacific species that entered the Mediterranean via the Suez Canal), 353 or direct transport in a ship's ballast water (Foissner 2011). However, we know of no 354 evidence that can clarify which is the case. 355

356 Additional documented populations for the other two ciliates comprised occurrences that

357 were highly consistent with our predictions. *Parafavella gigantea* has been detected in the

358 North Pacific and along the Russian northern coastal areas, consistent with our North Atlantic

359 prediction. The *P. gigantea* models showed a good fit for the North Atlantic locality data, in 360 that they recovered the areas where the species has been detected, without predicting an area too broad to be credible; however, the North Pacific was not included in the model 361 predictions. Additional locality data for *P. gigantea* compiled in a recent study (Dolan et al. 362 2017) comprised 38 additional locality points for the species, and all were anticipated in our 363 364 least presence threshold model (significant P < 0.05). Few locality points for Z. pelagicum 365 were available from outside the North Atlantic (N=6), all from the North Pacific. An 366 exhaustive literature search for additional records revealed no additional locality data for Z. 367 *pelagicum*. Our model does not provide a prediction for the North Pacific distributions of 368 these three species. However, climatic and biochemical characteristics of the North pacific 369 are broadly similar to those of the North Atlantic, and we anticipate that these locality points 370 would be predicted by broader analyses.

371

372 The S. serrata populations occurring between the Galapagos and the Peruvian coast occupy a 373 tropical niche, quite distinct from the cold temperate distribution of populations detected in 374 the North Atlantic. The true environmental tolerances of this species may indeed be broader 375 than the model we have developed here. If so, our ENM requires locality data from areas with 376 higher temperature and salinity to reflect this ecological tolerance, and our model would thus 377 fail to represent the full fundamental ecological niche. Alternately, the tropical Pacific 378 population may have ecological tolerances distinct from those of the North Atlantic 379 population, and may even represent a distinct species within the morphospecies, suggesting a 380 need for investigation of the ecophysical constraints and genetic distinctiveness of the two 381 populations. Multiple phylogeographic studies on diverse protists, but not ciliate groups 382 (Aguilar et al. 2014; Bass et al. 2007; Evans et al. 2009), have shown distinct geographic 383 ribotypes in morphological species. To the best of our knowledge, no studies have assessed

384 phylogeographic patterns in any of the taxa investigated here. This study demonstrates that

three common, morphologically conspicuous and widespread morphospecies occupy distinct

386 geographic distributions and ecological niches in the North Atlantic.

387

388 Our occurrence data were collected over a relatively long time period, just over a century 389 (1903-2008). Global climate change and short-term regional climatic phenomena, including 390 the North Atlantic Oscillation, the Atlantic Multidecadal Oscillation, and the El Niño-391 Southern Oscillation, may have significant effects on distributions of the three ciliate species 392 analyzed. The environmental data layers used as input to our models were averaged over 393 much of the twentieth century, which overlaps well with the temporal provenance of the 394 occurrence data. These considerations may introduce minor biases, nonetheless, owing to a 395 rise in global mean surface temperature of about 0.1°C toward the end of the century (Hansen 396 et al. 2010). More generally, the environmental signature for a given pixel was assigned an 397 average value in our analyses, rather than the values for the year in which the sample was 398 collected. Such models with finer temporal resolution can and should be developed to resolve 399 this issue, considering the appropriate environmental regime over the period of specimen 400 collection. We aim to take this "next step" when we can develop both the relevant data layers 401 and occurrence data that are sufficiently rich and dense to permit such analyses. For now, 402 however, our models provide a first estimate of environmental envelopes for these three 403 ciliate species, with the caveat that predictions may involve a slight northern bias that is 404 unlikely to affect the argument regarding the ubiquity hypothesis versus moderate 405 endemicity.

406

407 Predictions across the study area based on different environmental data sets were similar for408 each species. In all models, minimum and maximum temperature contributed the most to the

409	prediction, although the percent contribution of these two temperature coverages was reduced
410	by the introduction of additional data layers for the Model 2 series. The additional coverages
411	of phosphate and silicate content were most important for <i>P. gigantea</i> and <i>S. serrata</i> , whereas
412	oxygen saturation and silicate content were most important for Z. pelagicum. In contrast, the
413	salinity layers and the apparent oxygen usage layer were relatively unimportant in all models.
414	Model 2 provided finer resolution for each taxon, predicting less of the study area and
415	omitting fewer of the independent evaluation points at the least presence threshold,
416	suggesting a better model. However, the model complexity evaluation indicated clearly that
417	the increased detail of Model 2 for each species did not outweigh the negative effects of
418	increasing model complexity and dimensionality, such that Model 1 was preferable for each
419	species. A clear link exists between the biogeography of each of the species and climatic
420	conditions, so distributions of the species will likely change with climate change. This
421	possibility merits further investigation, considering the current scientific focus on
422	anthropogenic global climate change, and other short-term regional climatic phenomena. This
423	study is a first reference point for the distribution of each species, and can serve as a
424	benchmark against which to compare future distributional patterns.
425	
426	CONCLUSIONS

426 CONCLUSIONS

This study represents a first effort to describe the spatial and environmental distributions, using ecological niche models, of three species of ciliated protists, a group of microorganisms that are essential to marine carbon cycling and trophic chains, marine biodiversity, and even to the fishing industry (Caron and Countway 2009; Lom and Dyková 1992) but for which geographic distributions are poorly documented. This study thus serves as a first reference for the distribution of each species, and as a benchmark against which to compare potential future distributional patterns. Although future work remains to be done to refine these

- 434 models, particularly to consider climate variability, our findings point clearly to a situation in
- 435 which each of the studied species has a unique environmental signature and geographic
- 436 distribution.
- 437

to periodo and a second second

438 **REFERENCES**

439 Aguilar, M., A. M. Fiore-Donno, C. Lado, and T. Cavalier-Smith. 2014. Using environmental 440 niche models to test the 'everything is everywhere' hypothesis for *Badhamia*. ISME J. 441 8: 737-745. 442 Aguilar, M., and C. Lado. 2012. Ecological niche models reveal the importance of climate 443 variability for the biogeography of protosteloid amoebae. ISME J 6: 1506-1514. 444 Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyerreil, and F. Thingstad. 1983. The 445 ecological role of water-column microbes in the sea. Mar. Ecol.-Prog. Ser. 10: 257-446 263. 447 Barve, N. and others 2011. The crucial role of the accessible area in ecological niche 448 modeling and species distribution modeling. Ecol. Model. 222: 1810-1819. 449 Bass, D., and J. Boenigk. 2011. Everything is everywhere: a twenty-first century 450 de/reconstruction with respect to protists., p. 88-110. In D. Fontaneto [ed.], Biogeography of microscopic organisms: is everything small everywhere? Cambridge 451 452 University Press. Bass, D. and others 2009. A molecular perspective on ecological differentiation and 453 454 biogeography of Cyclotrichiid Ciliates. J. Eukaryot. Microbiol. 56: 559-567. 455 Bass, D., T. A. Richards, L. Matthai, V. Marsh, and T. Cavalier-Smith. 2007. DNA evidence for global dispersal and probable endemicity of protozoa. BMC Evol. Biol. 7: e162. 456 457 Bean, W. T., R. Stafford, and J. S. Brashares. 2012. The effects of small sample size and 458 sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 35: 250-258. 459 460 Beijerinck, M. W. 1913. De infusies en de ontdekking der backteriën. Müller (Reprinted in Verzamelde geschriften van M.W. Beijerinck, vijfde deel, pp. 119–140. Delft, 1921). 461 462 Bentlage, B., A. T. Peterson, N. Barve, and P. Cartwright. 2013. Plumbing the depths: extending ecological niche modelling and species distribution modelling in three 463 464 dimensions. Glob. Ecol. Biogeogr. 22: 952-961. 465 Boenigk, J., K. Pfandl, T. Garstecki, H. Harms, G. Novarino, and A. Chatzinotas. 2006. 466 Evidence for geographic isolation and signs of endemism within a protistan morphospecies. 72: 5159-5164. 467 468 Brun, P. and others 2015. Ecological niches of open ocean phytoplankton taxa. Limnol. 469 Oceanogr. 60: 1020-1038. 470 Caron, D. A., and P. D. Countway. 2009. Hypotheses on the role of the protistan rare 471 biosphere in a changing world. Aquat. Microb. Ecol. 57: 227-238. 472 Cermeño, P., and P. G. Falkowski. 2009. Controls on diatom biogeography in the ocean. 473 Science **325**: 1539-1541. 474 Dolan, J. R. 2016. Planktonic protists: little bugs pose big problems for biodiversity 475 assessments. 38: 1044-1051. 476 Dolan, J. R., R. W. Pierce, and E. J. Yang. 2017. Tintinnid ciliates of the marine 477 microzooplankton in Arctic Seas: a compilation and analysis of species records. Polar 478 Biol. 40: 1247-1260. 479 Evans, K. M., V. A. Chepurnov, H. J. Sluiman, S. J. Thomas, B. M. Spears, and D. G. Mann. 2009. Highly differentiated populations of the freshwater diatom Sellaphora capitata 480 481 suggest limited dispersal and opportunities for allopatric speciation. Protist 160: 386-396. 482 483 Fenchel, T. 2008. The microbial loop-25 years later. J. Exp. Mar. Biol. Ecol. 366: 99-103. 484 Field, C. B., M. J. Behrenfeld, J. T. Randerson, and P. Falkowski. 1998. Primary production 485 of the biosphere: integrating terrestrial and oceanic components. Science **281**: 237-240. 486

487	Filker, S., R. Sommaruga, I. Vila, and T. Stoeck. 2016. Microbial eukaryote plankton
488	communities of high-mountain lakes from three continents exhibit strong
489	biogeographic patterns. Mol. Ecol. 25: 2286-2301.
490	Finlay, B. J., J. O. Corliss, G. Esteban, and T. Fenchel. 1996. Biodiversity at the microbial
491	level: the number of free-living ciliates in the biosphere. Q. Rev. Biol. 71: 221-237.
492	Foissner, W. 1999. Protist diversity: estimates of the near-imponderable. Protist 150: 363-
493	368.
494	2006. Biogeography and dispersal of micro-organisms: a review emphasizing protists.
495	Acta Protozool. 45: 111-136.
496	2011. Dispersal of protists: the role of cysts and human introductions, p. $61 - 87$. In D.
497	Fontaneto [ed.], Biogeography of microscopic organisms: is everything small
498	everywhere? Cambridge University Press.
499	Foissner, W., A. Chao, and L. A. Katz. 2008. Diversity and geographic distribution of ciliates
500	(Protista: Ciliophora). Biodivers. Conserv. 17: 345-363.
501	Gao, F. and others 2016. The all-data-based evolutionary hypothesis of ciliated protists with a
502	revised classification of the phylum Ciliophora (Eukaryota, Alveolata). Sci. Rep. 6:
503	e24874.
504	Gentekaki, E., and D. H. Lynn. 2010. Evidence for cryptic speciation in <i>Carchesium</i>
505	<i>polypinum</i> Linnaeus, 1758 (Ciliophora: Peritrichia) inferred from mitochondrial,
505	nuclear, and morphological markers. J. Eukaryot. Microbiol. 57: 508-519.
	Hansen, J., R. Ruedy, M. Sato, and K. Lo. 2010. Global surface temperature change. Rev.
507	
508	Geophys. 48: RG4004.
509	Jímenez-Valverde, A., and J. M. Lobo. 2007. Threshold criteria for conversion of probability
510	of species presence to either-or presence-absence. Acta OecolInt. J. Ecol. 31: 361-
511	369.
512	Katz, L. A., J. DeBerardinis, M. S. Hall, A. M. Kovner, M. Dunthorn, and S. V. Muse. 2011.
513	Heterogeneous rates of molecular evolution among cryptic species of the ciliate
514	morphospecies Chilodonella uncinata. J. Mol. Evol. 73: 266-272.
515	Langer, M. R., A. E. Weinmann, S. Lotters, J. M. Bernhard, and D. Rodder. 2013. Climate-
516	driven range extension of Amphistegina (Protista, Foraminiferida): models of current
517	and predicted future ranges. PLoS ONE 8: e54443.
518	Laval, M. 1968. Zoothamnium pelagicum du Plessis. Cilié péritricheplanctonique:
519	morphologie, croissance et comportament. Protistologica 4: 333-363.
520	Liu, C. R., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of
521	occurrence in the prediction of species distributions. Ecography 28: 385-393.
522	Logares, R., J. F. Mangot, and R. Massana. 2015. Rarity in aquatic microbes: placing protists
523	on the map. Res Microbiol 166 : 831-841.
524	Lom, J., and I. Dyková. 1992. Protozoan parasites of fishes, p. 315. Developments in
525	aquaculture and fisheries science. Elsevier Science.
525 526	NOAA. 1999. World Ocean Atlas 1998.
527	Noguez, A. M., H. T. Arita, A. E. Escalante, L. J. Forney, F. García-Oliva, and V. Souza.
528	2005. Microbial macroecology: highly structured prokaryotic soil assemblages in a
529	tropical deciduous forest. Glob. Ecol. Biogeogr. 14: 241-248.
530	Owens, H. L. and others 2013. Constraints on interpretation of ecological niche models by
531	limited environmental ranges on calibration areas. Ecol. Model. 263: 10-18.
532	Pearson, R. G., C. J. Raxworthy, M. Nakamura, and A. T. Peterson. 2007. Predicting species
533	distributions from small numbers of occurrence records: a test case using cryptic
534	geckos in Madagascar. J. Biogeogr. 34: 102-117.
535	Peterson, A. and others 2011. Ecological niches and geographic distributions. Princeton
536	University Press.

537	Peterson, A. T. 2014. Mapping disease transmission risk: enriching models using
538	biogeography and ecology. Johns Hopkins University Press.
539	Peterson, A. T., M. Papeş, and M. Eaton. 2007. Transferability and model evaluation in
540	ecological niche modeling: a comparison of GARP and Maxent. Ecography 30: 550-
541	560.
542	Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of
543	species geographic distributions. Ecol. Model. 190: 231-259.
544	Radosavljevic, A., and R. P. Anderson. 2014. Making better Maxent models of species
545	distributions: complexity, overfitting and evaluation. J. Biogeogr. 41: 629-643.
546	Richards, T. A., A. A. Vepritskiy, D. E. Gouliamova, and S. A. Nierzwicki-Bauer. 2005. The
547	molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals
548	diverse, distinctive and globally dispersed lineages. Environ. Microbiol. 7: 1413-
549	1425.
550	Saupe, E. E., J. R. Hendricks, A. T. Peterson, and B. S. Lieberman. 2014. Climate change and
551	marine molluscs of the western North Atlantic: future prospects and perils. J.
552	Biogeogr. 41: 1352-1366.
553	Segovia, B. T. and others 2017. Common and rare taxa of planktonic ciliates: influence of
554	flood events and biogeographic patterns in neotropical floodplains. Microb. Ecol. 74:
555	522-533.
556	Soberón, J., and A. T. Peterson. 2005. Interpretation of models of fundamental ecological
557	niches and species' distributional areas. Biodiversity Informatics 2: 1-10.
558	Tamames, J., J. J. Abellán, M. Pignatelli, A. Camacho, and A. Moya. 2010. Environmental
559	distribution of prokaryotic taxa. BMC Microbiol. 10: article 85.
560	Warren, D. L., R. E. Glor, and M. Turelli. 2008. Environmental niche equivalency versus
561	conservatism: quantitative approaches to niche evolution. Evolution 62: 2868-2883.
562	Warren, D. L., R. E. Glor, and M. Turelli. 2010. ENMTools: a toolbox for comparative
563	studies of environmental niche models. Ecography 33: 607-611.
564	Warren, D. L., and S. N. Seifert. 2011. Ecological niche modeling in Maxent: the importance
565	of model complexity and the performance of model selection criteria. Ecol. Appl. 21:
566	335-342.
567	Wiley, E. O., K. M. McNyset, A. T. Peterson, C. R. Robins, and A. M. Stewart. 2003. Niche
568	modeling and geographic range predictions in the marine environment using a
569	machine-learning algorithm. Oceanography 16: 120–127.
570	

571 ACKNOWLEDGEMENTS

572 We dedicate this paper to Dr. John Clamp, who was an integral part of the research and 573 writing of this paper. Dr. Clamp passed while this manuscript under review. He was a 574 professor at North Carolina Central University for more than 30 years, devoting his 575 outstanding research to evolutionary biology, and particularly the study of ciliated protists. 576 He was a larger-than-life character and will be greatly missed as friend and mentor. This 577 work was supported by the Ministerio de Economía y Competitividad, Española (MINECO, 578 grant number CGL2013-40851-P/BOS) to MMC, and travel support from the Research 579 Coordination Network for Biodiversity of Ciliates (National Science Foundation grant 580 number DEB 1136580) from the U.S. National Science Foundation to JC. RAJW was 581 supported by the Crafoord Foundation, Sweden (grant numbers 20160971 and 20170671), 4.6 582 while completing this manuscript.

583

584 SUPPLEMENTARY MATERIAL

585 This document provides a summary for all data management and spatial stratification

586 procedures followed in developing predictive models for three ciliate species; also provided

587 are heuristic estimate of relative contributions of the environmental variables, maps of all 36

588 spatial stratification predictions, results of the tests to determine range restriction using

589 ENMTools background similarity, and a summary environmental layers used for model

590 development.

591

592 DATA ACCESSIBILITY

593 Primary occurrence data are fully and openly accessible via the Global Biodiversity

594 Information Facility (GBIF; http://www.gbif.org/) and Ocean Biogeographic Information

595 System (OBIS; http://www.iobis.org/). Environmental coverages were drawn from National

- 596 Oceanic and Atmospheric Administration's (NOAA) World Ocean Atlas (NOAA 1999). Full
- results are available in Supplementary Material.

to Review Only

599 FIGURE LEGENDS

- **Figure 1**. Global map showing distribution records of *Parafavella gigantea* (A; *N* = 4495),
- 601 Schmidingerella serrata (B; N = 1536), and Zoothamnium pelagicum (C; N = 1738)] based
- on data drawn from the Ocean Biogeographic Information System (OBIS;
- 603 <u>http://www.iobis.org</u>), and Global Biodiversity Information Facility (GBIF;
- 604 <u>http://www.gbif.org/</u>), both accessed 10.12.2015. The sample sizes that we used for model
- development were greatly reduced as we included only the locality data from vouchered
- reference material, and removed all duplicate records of a species at any given site.

607

Figure 2. Predictions of suitable areas across the study area for each of three species, based

on models calibrated using two environmental coverage sets.

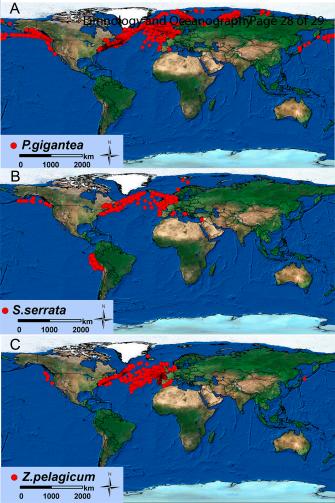
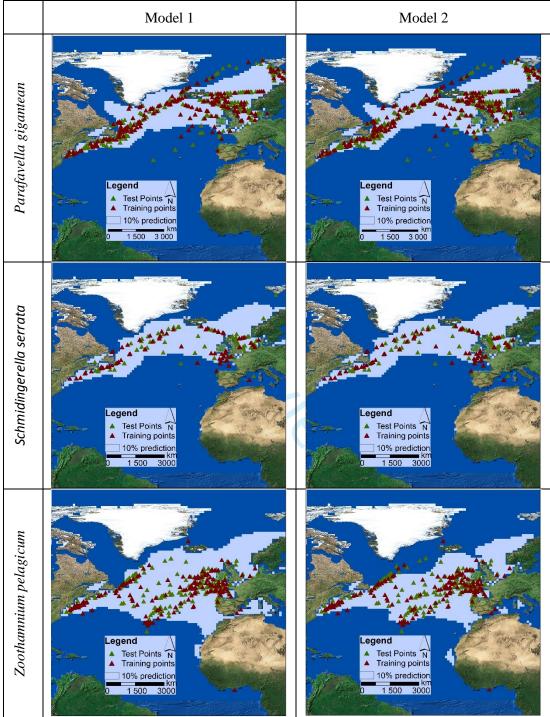

610

Figure 3. Model 1 background similarity tests comparing the niche occupied by each taxon using the background similarity tests available in the ENMTools R package version 0.1. Schoener's *D* and a modified Hellinger's *I* metric, are used to quantify the similarity of two probability distributions. In each case, the niche occupied by each taxon is more different than expected from the study region. Model 2 background similarity tests are shown in Supplementary Material Figure 14.


618 619 620 621	TABLESTable 1. Summary table of ecological niche modelling results for both models of tspecies of ciliates . Results of spatial stratification models are shown in SupplementaryMaterial.				
		N training	Testing	Fractional	Fractional
		/ testing	AUC	predicted	predicted area
	Species	points ¹	ratio ²	area LPT ³	10% PT ⁴
	All				
	P. gigantea 1	184 / 184	1.77	0.430	0.221
	P. gigantea 2	184 / 184	1.79	0.442	0.220
	S. serrata 1	68 / 67	1.83	0.304	0.183
	S. serrata 2	68 / 67	1.81	0.283	0.189
	Z. pelagicum 1	140 / 139	1.76	0.667	0.299
	Z. pelagicum 2	140 / 139	1.75	0.614	0.245

¹ *N*, number of points used for model training / testing. ²Training/ testing AUC data, area under the curve of the receiver operating characteristic calculated using NicheToolBox (<u>http://shiny.conabio.gob.mx:3838/nichetoolb2/</u>). ³LPT, Least Prediction Threshold.

⁴10% PT, predictive threshold that excludes the 10% most outlying points.

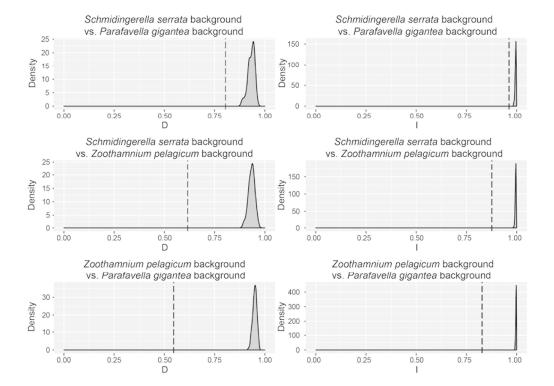


Figure 3. Model 1 background similarity tests comparing the niche occupied by each taxon using the background similarity tests available in the ENMTools R package version 0.1. Schoener's D and a modified Hellinger's I metric, are used to quantify the similarity of two probability distributions. In each case, the niche occupied by each taxon is more different than expected from the study region. Model 2 background similarity tests are shown in Supplementary Material Figure 14.