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Abstract

This sequel is concerned with the analysis of robust synchronization for a multi-weighted
complex structure on fractional-order coupled neural networks (MWCFCNNSs) with linear
coupling delays via state feedback controller. Firstly, by means of fractional order com-
parison principle, suitable Lyapunov method, Kronecker product technique, some famous
inequality techniques about fractional order calculus and the basis of interval parameter
method, two improved robust asymptotical synchronization analysis, both algebraic method
and LMI method, respectively are established via state feedback controller. Secondly, when
the parameter uncertainties are ignored, several synchronization criterion are also given to
ensure the global asymptotical synchronization of considered MWCFCNNs. Moreover, two
type of special cases for global asymptotical synchronization MWCFCNNSs with and without
linear coupling delays, respectively are investigated. Ultimately, the accuracy and feasibil-
ity of obtained synchronization criteria are supported by the given two numerical computer
simulations.
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1 Introduction

Nowadays, differential equations and dynamical networks have received great attention from
many researchers as a result of their potential application in different fields which include
biology [1-3], physics [4,5], engineering [6,7], mathematics [8,9], information technology
and so forth [10,11]. Especially, synchronization of complex networks dynamical behaviors
has become a heat research and it plays an immense role to mathematical modeling of the
real world objects like social networks, global economic markets, disease network modeling,
food web, power grid, WWW and so on, and some excellent results have been paid in more
as of late, see e.g [12-17] and references in that. In [18] Lin et al. applied a decomposing
matrix method to analyze the delayed complex networks under asymmetric coupling. Rui
et al. [19] investigated the pinning synchronization of delayed complex networks by Taylor
expansion. In [20], Yi et al. has delivered intermittent control with non-period based expo-
nential synchronization problem of complex networks with time delays under non-linear
coupling.

As is known to every one of, every network in real-world objects can be modeled by
multiple weighted complex network dynamics, for instance, transportation networks, com-
plex biological neural networks, public traffic networks, communication networks and so
on. For example, we are contacting with friends via specific channels together with Gmail,
Whatsapp, Facebook, Instagram, letters, mobile phone and so on, and every way of con-
tact strategy depicts for various coupling. In this circumstance, social media networks can
be modeled by more than one or multiple weights. Therefore, the investigation of complex
dynamical networks with multi weights is necessary and intriguing issues. In recent years,
synchronization analysis has always been a hot research topic in identical network systems,
especially complex networks, neural networks and Boolean control networks [17,21-24],
and many applications have been found in different areas. Nowadays, the investigation of the
synchronization analysis of multi-weighted complex dynamical networks have been received
much attention, for example [25-28]. In [27], Shui-Han et al. presented a finite-time syn-
chronization criteria for multiple weighted complex dynamical with coupling delays and
switching topology by using Dini derivative method and linear feedback control strategy. In
[28], the authors developed the adaptive control strategies to achieve the H, synchronization
for multiple weighted complex dynamical networks via Lyapunov method and some famous
inequality techniques.

Nowadays, the research on fractional-order delayed dynamical systems brought about
numerous fruitful achievements due to the fact a few scholars and researchers were con-
tributed to this area [29-31]. In the application perspective, fractional order calculus is
applied in many fields, for instance epidemic models [32], control theory [33], biological
models [34] and so on. On the other hand, the dynamical investigation of networks models
with time delays have been gained more and more attention, recently, a variety of time delays
have been considered in the study of various networks models [35-38]. In reality, many
real-world systems need to be described with the aid of fractional order models because of
the fact dynamics of fractional-order models are more correct than integer-order models. In
plentiful applications, time delays are inevitable in realistic system designs, for example,
complex networks, neural networks, echo cancelation, local loop equalization, multi path
propagation in mobile communication, array signal processing, congestion analysis and con-
trol in high-speed networks and long transmission line in pneumatic systems. In recent years,
fractional order complex dynamical networks (FOCNNs) with time delays has turned into
a hot research topic because it has been utilized in different areas like metabolic systems,
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communication networks, global economic markets, and so on, and lots of remarkable out-
comes about FOCNNSs have been devoted in recent literature, as an instance [13,39-41]. In
[42], we have to investigate the synchronization in finite time criteria for FOCNNs by hybrid
control approach. In [43], the authors have demonstrated the pinning synchronization criteria
for FOCNNS s by fractional Proportional-Integral control. By utilizing the LaSalle invariance
principle, the issues of outer synchronization criteria for FOCNNs was studied in [44].

Coupled neural networks (CNN), which is an extension of complex networks have attracted
growing attention among numerous fields, together with secure communications, nonlinear
optimization problems, image processing, and parallel computation, and it is the most pow-
erful tool to analyze the passivity [45—47] and synchronization [22,48-50] of coupled neural
networks. For example, the authors in [51] analyzed the pinning control for leader-following
bipartite synchronization of CNN by M-matrix method and reciprocally convex approach. In
[52], Shanrong et al. has deliberated pinning passivity analysis for different dimensional based
CNN by some inequality techniques. The authors in [53] presented the complex structure on
exponential synchronization criteria for delayed CNNs with stochastic perturbations by using
the combination of combining the Lyapunov method with Kirchhoff’s matrix-tree theorem
and impulsive control method. Unfortunately, there are few results targeted on synchroniza-
tion problem of fractional order coupled neural networks (FOCNN5s), see Refs. [54,55]. For
example, by using the well-known fractional order comparison theorem for a single delay,
multi-quasi synchronization of FOCNNs with single weights was studied by novel pinning
impulsive control strategies and also discussed the effect of coupling delays and pinning
control matrix in [54]. In [55], Zhang et al. dealt with the issues of Riemann—Liouville sense
synchronization stability criteria of single weighted complex structure on FOCNNs under
linear coupling delays by applying LMI method and Lyapunov approach. Besides, in the
natural implementation of the network model, the parameter uncertain factors are inevitable
and it leads to breaking the synchronization performance of complex dynamical networks.
Recently, the author have taken the uncertain parameter into the account of FOCNNs and
some sufficient conditions have been established for pinning synchronization and robust
pinning synchronization by using Kronecker product and Lyapunov functions [56].

In the meantime, it has been discovered that neural network with multi-weights reveals
the more complex structure and unpredictable behaviors than a network with a single weight,
which can substantially increase the applications of a neural network. For instance in [57], the
authors gave some exponential synchronization criteria for integer order CNNs with multi
weights by means of aperiodically pinning intermittent control method. In [58], by using
some inequality scaling skills and Lyapunov—Krasovskii functionals, the author investigated
about the finite time synchronization and finite time passivity criteria for multiple delayed
CNNs with reaction-diffusion terms and coupling delays. Kronecker product technique and
fractional order multiple delayed comparison principle are adopted to deal with the robust
synchronization of single delayed FOCNNSs with uncertain parameters by pinning control in
[56]. Motivated by the above discussion, we try to explore firstly the robust synchronization of
multi-weighted complex structure on fractional order coupled neural networks under linear
coupling delays. However, the handling of multiple-weights complex structure, coupling
delays and uncertain parameters are main challenge in this proposed research fields, there
are no works not yet addressed in the same fields.

The crucial novelty of this work is highlighted in the following aspects:

1. Multi-weights, linear coupling delay term, and parameter uncertainty, are taking into

consideration, robust asymptotical synchronization analysis for a class of FOCNNs with
multiple delays are introduced.
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2. By means of Kronecker product technique and robust analysis scaling skills, a new brand
of novel sufficient conditions with respect to FOCNNs are derived in form of both LMI
and algebraic method, respectively by the state feedback controller.

3. As some special cases of proposed results, we also investigate the asymptotical syn-
chronization for multi-weighted FOCNNs without parameter uncertainties, and some
enhanced synchronization criteria have been derived for the problem of fractional order
complex dynamical networks and fractional order neural network results.

4. Moreover, the present results in this paper are valid for single weighted FOCNNs and
integer order coupled neural networks both single weight and multiple weights, respec-
tively.

5. The conditions of the global asymptotic synchronization are deduced in term of LMI, and
check the feasibility of obtaining results by using the LMI MATLAB control toolbox.

The rest of this proposed work is well organized as follows. In Sect. 2, basic definition
and preliminaries are given including the problem statement will be addressed. A valid state
feedback control scheme is designed and new conditions for robust synchronization are
demonstrated in Sect. 3. Section 4 demonstrates our FOCNNs with multiple weight results
with two computer simulations. At last, Sect. 5 ends with conclusions.

2 Preliminaries and Problem Statement

Notations In this article, N represents the space of natural numbers from 1 to n, R” represents
the space of n-D Euclidean space, respectively, and R"*" stands for a set of all n x n real
matrices. For z(t) = (z1(1), ..., z,(1))T € R*, |z|| € R” is denoted as arbitrary norm,
which is described as:

n

Y lzgIP, p=1,2.

q=1

lzOllp =7

In this part, some basic knowledge of definitions, useful lemma’s and problem statement will
be given.

2.1 Basic Tools

Definition 2.1 [59] The Riemann-Liouville fractional integral order y for a function z on
interval [ty, T'] is defined as

_ 1 4
Dto,};z(t) = W[ (t— )" 20 dy,
0

where y € RT.

Definition 2.2 [59] The Caputo type fractional-order derivative with order y for a function
z on interval [y, T'] is defined as

D ) DTN L ), ity € (n—1,n)
10,1% r (d" (t)) ify =
drm Z s 1y =n.

where y e RT, n e Z+.
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Definition 2.3 [59] The Mittag-Leffler function with two parameter is defined as

400 Zl
Eo@=Y ——
S T(yl+0)

where y, # e RT, z € C.

Lemma 2.4 [60] Let y(t) € R" be continuously derivable function and the positive definite
matrix M € R™", the following inequality holds:

D}y (OMy@) < 2yT (OM{D] ,y(1)}, y € (0, D).

Lemma2.5 [61] Lete € R, Y, A, ®, ¥ be matrices with suitable dimensions. Then the
properties of Kronecker product is given by:

(1). EP)QW =D R (e¥);

2. (P+V)RT=(PRYT)+ (¥ TY);
3). @eW! = (@ ewl),

4). (PRQYV)(TR®A) =(PT R WA).

Lemma 2.6 [62] Consider the fractional order differential inequality with time delays as
follows:

()]

DYH(t) < —CH@)+cH{ — ) +nHE — ), 0 <y <1,
H(x) = h(x), x € [~ = —max{u, ua}, 0.

If all the eigenvalues ofI:I satisfy |arg (A)I > %, and the characteristic equation det(A(s))
has no purely imaginary roots for any ju1, (2 > 0, then the zero solution of system (1) is
Lyapunov asymptotically stable, where

Sit+ni—<8i si2+n2 =382 Sin+Nin — S1n

N a1+ m21 — 821 G2+ M2 — 822 - Gon + M2n — Son
H = . . . ()
Snl + Ml — &t Sn2 002 — 8n2 =+ Snn =+ NMan — San
sV —e Moy —em 2+ - —e Moy — e P + G
—e Moy —e Mmy+ 1 - —e Mgy —e T F2n, 0y
A(s) = : : : . (3
—e Mo —e M+ sV —e Mg — e 200 + Cun

Lemma 2.7 [62] If the characteristic equation i.e.,s” — ce ™ —ne™"2 + ¢, of (1) has no
pure imaginary roots for any (11, py > 0, and ¢ +n — ¢ > 0, then the zero solution of
system (1) is Lyapunov asymptotically stable.

Lemma 2.8 [62] Consider the fractional order differential inequality with multiple time
delays as follows:

“

DVH(t) < —CHM®) +cH(t —pu) +nHE —p2), 0 <y <1,
H(x) =h(x), x € [- = —max{ui, u2},0].
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and the linear fractional order differential inequality with multiple time delays

{DVE(r) < —CE@)+cE(t—pm) +nE(t — ), 0<y <1, )

E(x) = h(x), x € [~ = —max{u1, u2}, 0],

where H(t) and E(t) are continuous and non negative in [0, +00), and ﬁ(t) >0, 1t €
[—max{wi, n2}, 0. If ¢, ¢ andn > 0O, then H(t) < E(t) Yt € [0, +00).

Lemma 2.9 [63] For any vectors €1, € € R", one constant u > 0 and any positive definite
matrix 0 < M € R"™", the following relationship holds:

28{82 < /,LSITMsl —|—/L_152TM_182.

Lemma 2.10 [64] If y(¢) is the continuously derivable function, the following relationship
true almost everywhere:

D' |y®)| =sgn(y()D"y(®), 0 <y < 1.

2.2 Problem Statement

Consider the following multi-weighted complex structure on fractional-order coupled neural
networks (MWCFCNNG5s) with linear coupling delay and uncertain parameter described by:

D774 (1) = —Pzi(t) + Qg(zx (1)) + Rh(zx(t — 11))
N N
+ ) Vi) + Y e ViAz(t)
=1 =1
N N
+o Zax Vi Axzi (1) + Z,Bl Wi Tizi(t — wa)
=1 =1
N
+ Zﬁszlezzl(t — n2)
=1

N
oo Y BW ezt — ), 6)
I=1
where k = 1,2,..., N, N is the total number of nodes in the networks, z;(f) =
T
<Zk1(t), veos Zkn (t)) stands for the state of the k-th neuron attime ¢; P = diag{p1, ..., pn}

with p; > 0, (i € N) signifies the weight of self feedback connection; QO = (gki)nxn and
R = (rk1)nxn are the connection strengths of the /-th neuron on k-th neuron; ;11 > Oand o >

T
0 stands for the positive and constant delays; g(zx(¢)) = (g1 (k1 (8),s vy 8n(Zkn (t))) and

T
h(zg(t — n1)) = (h](Zkl(t — 1))y ooy By (Zpn (8 — m))) represents the activation func-

tion of the neurons at time ¢ and ¢ — 1, respectively; 0 < a;, 0 < B;, (j =1,2,...,x)
denotes the coupling strengths of the jth coupling form; A; = diag{Aji,..., Ajz} > 0
and Y; = diag{Yj1,...,T;y} >0, (j = 1,2,...,x) are inner linking strengths of the

jth coupling form, respectively; V/ = (ijl)NxN and W/ = (ijZ)NxN are the coupling

configuration matrix of the jth coupling form, in which ijl and Wk/l are described by the
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following form:

Vie == Vi k=12, N, j=1,2,..x

Vk]l (k#1) >0, if node k and [ are linked of the jth coupling form
Vi (k#1)=0, otherwise,

Wh==2L W k=12, N, j=12,....x

Wlél (k#1) >0, if node k and [ are linked of the jth coupling form
W/, (k #1) =0, otherwise.

In practical systems, many uncertain factors occur and it also affects the synchro-
nization performance of complex dynamical networks. In this work, the parameters
q i Bj, 0, .R, Aj, Yj, V/, W/ change in some given precision, which is interval-
ized as following ranges:

oy = {0<g.

S =aj, j=12,...,x, Votjeoq};

pri={o<p, <Bi =By j=12..x VB ehl
Py ={P diag(py) : P§P§P,0<gk§pk§ﬁk,k=172w--"vVP€P1};
0/ ={0=@nn:0=0=0 0<q, Squ=du. k=12....n

:1,2,...,nVQ€Q1}§

RI::{R:(rkl)nxn:BSRSF,0<Lkl§l”kl§7kl’k:172*""n
1=1,2,...,nVReR,];

Ag 2:{ J—dzag()») Aj <A <AJ’0<AJ5)‘1{5XI{’j:1’2""’x’
k=1,2,...n,VAJ-GA1];

T,:={T/=diag(v;f):IjEij?j70<Uk<vlff“k’f—l 2000 %y
k:1,2,...n,VTjeT1}§

V= {V-" = (Vwen VI <V <V 0 <V < Vi <V k#1,
J=12 o k=02, N =12, N, Ve v

Wy = {Wj = (W/;iz)NxN W < w/ <W, 0<E}£1 = ijl SWIQ’ k#L,
j=1,2....x, k=1,2,...,N, I=1,2,...,N, Wf'eWI}; (7

LetZ(r) = % Z,ivzl 2 (t). Then, one gets

D'i(t) = Z DYz (t)

2

= Z [ — P2i(0) + Qg (2 () + Rh(z(t — 1))

2
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N N
+ ) ViAiu® + ) eaViAz ()
=1 =1
N N N

+- 4 Zaka);Ale(t) + 2,31 W,}lle,(t — u2) + Zﬁszszzz(f — K2)

=1 =1 =1

N
Foo Y BWa ezt — Mz)]
1=1

() + — Z 08 (k) + Z Rh(zx(t — 1))

k 1 k=l

||
2‘"0
Mz

~
Il
—_

_|._
Z| -
M=
e
/R

Vl;)Alzz(t)

-\
Il
=
I

N N
sz[)Azzl O+ o+ e ( 3 V,g;)szl )

1 =1 k=1

_|_
Z| =
M=
Q
Py
M=

N
Il
—_

_|._
M=
=
—~
MZ ~

W, ,)lez(l — §2)

N
Il
~
Il

1
N

W) ozt = ) + - +Zﬁx(ZWk1) Tzt = o)
=1

Mz
||M2

Il
-

N

Rh(zi(t — 1))
k=1

P2

r& 1Y
= Ng k<r>+ﬁk§Qg(Zk(r>)+ﬁ

Ttshould be noted that - 4 _ % e (212, V) A s = 5o T 1ﬂ,(zk W)

(®)

Y jz(t—p2) = 0 by mean of Definition V/ and W/, thatis 5, Vkl S W, =0, )=

1,2,....,x, l=1,2,...,N.

For the system (6), we design the following linear feedback controller:

N
8 (1) = _Fk<Zk(t) - %sz(t)), k=1,2,...,N

k=1
Then, we have

N
DY zi(t) = =Pz (t) + 0g(2x () + Rh(zx(t — ) + Y o1 Vi Az (1)
=1
N
+ ZankzlAza(l)
=1

N N
oot Y a4 Y BIWE Tz — o)

=1 =1
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N

+ ) BaWiTazi(t — pa)
=1
N 1 N
o Y BWETan = ) = Fe(a0 =+ Y a®). (10)
=1 k=1

The error vector y (t) = zx(t) — % Z,ivzl Zx(t) is given by:

N
DY y(t) = —Py(1) + Qg(ax(®)) — Z (2(0)) + Rh(zxlt — 121))
- _
~ Z_: Rh(zk (1t — 1))
x N N
+) Z 0 ,yz(r)+2ﬂ,ZWk, Yyt = p2) — Fiye(t)
j=1 =1 j=1 =1

x N
= —Py(t) + QF(w () + RA(yi(t — 120) + > _aj Y Vi Ay (t)

x N
+ D B Y Wit — o) — Fiyi(0). (1)

j=1 =1
where (1) = 0g(z () — & Xz g(z®). h(y(t — 1)) = h(z(t — n1)) —

% Zli\]:l Rh(zk(r — p)).-

Remark 2.11 To the best of author’s knowledge, many real-world objects can be depicted
by multiple coupling strengths of complex dynamical behaviors. Unfortunately, there are no
results paid to be investigated on fractional-order complex dynamical behaviors, especially

neural networks systems. Consequently, it’s far very necessary and important to further
investigate the synchronization analysis of FOCNNs with multiple weights.

In this article, the following definition and assumption condition will be needed.

Definition 2.12 The complex structure on MWCFCNNs with linear coupling delay under
uncertainty (11) is asymptotically synchronized if

lim sz(t)—«sz(t)H —0, k=1,2,. (12)

Assumption [A;]: The non linear activation function gi(-), hy(-) satisfies the Lipschitz
continuous if there exists a constants ¥, > 0, ¢ > 0 such that

s hk=1,2,....n, x1, x2 €R,

gk (x) — 8O < v xi

|hi ) — he(x2)| < e Lk=12,....n x1. 2 €R,

where ‘(-)| is the absolute value.
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3 Main Results

For the sake of convenience, we define

gu = max{lg, |, [qul}, [=1,2,....n, k=1,2,...,n
fk[ :max{|£kl|,|7k1|}, I=1,2,....n, k=1,2,...,n
Yo Vie Vi (k#D =V,

I=1,#k

j=12...,x, k=12 N I=12_.N

=
I

N
Wk]k = Z W'l/k» W;ﬁz (k#l):WIJdv

I=1,1#k

j=12,...,x, k=1,2,...,N, [=1,2,...,N.

Theorem 3.1 Under Assumption [A1], the MWCFCNNs (6) is robust asymptotically syn-
chronized under the controller (9) if the following condition holds:

n

max {(1);2?1[, i= 1,2,...,n}

=1

+max[2,3] (

\Mz
\_/
Pt

Il

-
i
=

Il

©

s

n

< min {Fk +p, = Vi Y Qi
1=1

X

N
=Y @d (V) k=120, i=1,2,...,n}sin<%>.
=1

Proof For error system (11), we consider the following Lyapunov functional:

N
H(t) =Y @l (13)

k=1

Then, applying the Caputo-fractional derivative for Lyapunov functional (13), and by means
of Lemma 2.10, Assumption [.41], one has

N
DH(1) = D”[Z ||yk(r>||]
k=1
N n
= DV[ZZI)’M(I)I]

k=1 i=1
N

Z ngn ki () DY yi ()
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I
Mz

sgn yx () DY yy (1)

»
Il
LR

Mz

sgn yk(m[ — Pye() + Qg (D)
1

k
N

+RA(yi(t — ) + Yo Y VEA wi()

j=1 1=l

x N
+ Zﬁj Z WXyt — pa) — Fkyk(t)]

j=1 I=1
N n N n N n n
<= Pl O =YY Felya 1+ Y D> lgirllg (ki ()]
k=1i=1 k=1i=1 k=1i=1 I=1
n N N )
+ ZZZmznhz i (t = )| + Za, Zx{[ZZW,g,Hywn]
k=1i=1[=1 = =1 k=1 I=1

+ Zﬂ, Z Z[ZDW{,HW —m>|]

= i=1 k=1 I=1

IA
B

N n N n
- ZZgimd(rn =D Y R Ol+ YYD Guvnlyu o)l

k=1 i=1 k=1i=1 k=1i=1 I=1

N
+ZZanAykmr—mn+Za,2x[ YoV yw)q

k=1i=11=1 i=1 k=11=1

n N N
+zﬁjzvz[zz 'yha—m)q
j=1 i=1 k=1 [=1

_ZZ[Fk+p _w,zq,, Za 7 (i )}mi(m

=

=
k=1i=1 =
N n n
+> [d)z rzz]lykz(t—m)l
k=1i=1 =1
N n X " N )
) [ZE,»U{( W,’k)]|yk,~<t—m)|
k=1i=1 " j=1 =1
N
< zzz ykz(t)l+S‘ZZU’M(I_M1)|+7IZZ|)’kz(f—M2)|
=1i=1 k=1i=1 k=1 i=1
= —cH(z>+gH(r — ) +nH(t = pa) (14)

where

n
¢ = min[Fk +p, = Vi Y di

=1
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X

N

308 —Z&,-X{( f/lf{),k:1,2,...,N,i:1,2,...,n]>0,
=1 I=1
n
309 g=max{¢i2fﬁ,i=1,2,...,n}>0,
=1
x N )
0 n=max{ Y BT (D oWh) k=12 N i=12 ) >0,
=1 I=1

sn Consider the following linear fractional order system with multiple time delays

DYE(t) = —CE@) + E( — 1) + nE@1 — p2)

{E(x) = h(0, x €[4, 0]

(15)

313 and assume E(¢) > 0 (E(t) € ]R). A Laplace transform of (15) is

sa sVE(s) —s?"VE0)

315

317

318
319

320

321

+00

+o00
—CE(s) + g/ e SE(t —M1)dt+nf e SE(t — o) dt
0 0

+00
—CE(s) + g[/ €7S(K+”1)E(K)dlcj|

I
+00
+77|:/ e—S(K-th)E(K)dK]
-2
0 0
—CE(s) + ce "M / e *“E(k)dk + ne "2 / e “E)dk
- -2

+o00 +o0
+ce M f e “E(k)dK +ne "2 / e “E(k)dk
0 0

—CE(s) +ce M E(s) +ne M E(s)

0
+ce M / e “E()d«
—1

0
+ne_s“2/ e “E()dxk, (16)
12

32 where E(s) is Laplace transform of E (7). An equivalence of (16) is

323 AS)E(s) =di(s) 17)
34 where
325 A(s) = (87 + ¢ — ge M —pe*12)
326 di(s) = s" VE(0) + ce M /0 e “E(k)dk +ne "2 /0 e “E)d«k
—u —12

37 Now, we will prove that there is no pure imaginary roots for characteristic equation of

w
]
@

30 My, w2 > 0, thatis

330

@ Springer
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where o is a real number. If
T (T oo
o <0, S:Qi=|Q|[COS — | —isin| = ], while if
2 2
b4 e
0 >0, s:gi=|Q|[cos<5>+i51n(§>]. (18)

Substitute them into det(A(s)) = 0, one has
Yy .. o
|Q|V[cos <7> +zs1n< )]—i—;‘—g cos (QMI) —ts1n(Q;,L1)]
— 1| cos (lebz) — i sin (Qm)] (19)

Separating real and imaginary parts of (19), one has

T
lo]” cos (%) +¢ —gncos (QMI) — 7cos (Qm) =0 (20)
T
lo|” sin(:l:%) + ¢ sin (Q;L1> + 1 sin <Q/,L2) =0. (21)

From (20) and (21), it can get

and

lo|? +2§|Q|VCOS< 5 ) +¢2 - 2§COSQ(M1 Mz) - <§2 o+ 772) =0.

When (¢ +1)? < ¢ sinz(:l: ZE), because ¢, 1 > 0, one has
lo|? + 220" cos(B) + ¢* — 2¢ncos o1 — pa) = (5% + 1%)

2
= |0|* +2¢lol” cos (7/2 ) +¢ +2§77<1 —COSQ(IM - Mz)) - <§ +'7>

2
> [|Q| + ¢ cos <%)] +2¢n[1 —cos o(u1 — p2)]
> 0.

Based from condition of Theorem 3.1, we have ¢ + 1 < ¢ sin(%) which implies the
characteristic equation d et(A(s)) = 0 has no purely imaginary roots for any 11, @2 > 0,
which means the zero solution of system (15) is globally asymptotically stable. Then, by
virtue of Lemma 2.8, we have 0 < H(¢) < E(t), and based on above discussion, we can get
Z,ivzl lye ()]l = Oand ||yr(t)|| = 0ast — +oo. Therefore we declare that, MWCFCNN5s
(6) achieves robust asymptotically synchronization under the controller (9). O

The following kinds of MWCFCNNS are also very interesting issues. One without dif-
ficulty derives the following asymptotic synchronization criteria on MWCFCNNs (22) and
MWCFCNNSs (23) from the proof of Theorem 3.1 and based on the comparison result in
Theorem 1 of Ref [65].

Case I: If W/ =0 (j = 1,2...,x), let u; = p, MWCFCNNSs (6) is turned into the
following expression:

Dz (t) = —Pzi(t) + 0g(zx (1)) + Rh(zx(t — )
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N N

361 + Z(lekllAlzl(t)+Zf¥2sz[AQZZ(I)
=1 =1

N
- +o Y VA @) (22)
=1

363

sa  Corollary 3.2 Under Assumption [A;], the MWCFCNNs (22) is robust asymptotically syn-
s chronized under the controller (9) if the following condition holds:

n X

n N
v max |6 Y A =12l < min [ Fe4p - v Y d _Zajxg(zm)

=1 =1 j=1 =1

. k:1,2,...,N,i:l,2,...,n}sin<%>.

e Case2: IfV/ =0 (j =1,2...,x = 0), MWCFCNNs (6) is turned into the following
360 expression:

N
370 D7 z;(1) = —Pzi(t) + Qg (2 (1)) 4+ Rh(zx(t — 1)) + Zﬁkal;Tm(t — 2)
=1
N N
+ > BWETazi(t — ) 4+ Y B W Tzt — ), (23)

=1 =1

372

sz Corollary 3.3 Under Assumption [A;], the MWCFCNNSs (23) is robust asymptotically syn-
s chronized under the controller (9) if the following condition holds:

n
375 max{¢,~Zf1i, i:l,2,...,n}

=1

n
- <min{Fk+£i—wichli, k=1,2,...,N, i:l,z,...,n}sm<—>.
=1

s Theorem 3.4 Suppose that the Assumption [A1] hold. If ¢ > 0, ¢ > 0, n > 0 be known
379 constants and ¢ +1n < ¢, then MWCFCNNS (6) is robust asymptotically synchronized under
0 the controller (9), if there exists a positive diagonal matrix M € R™*" such that following
1 condition holds,

2 1. 1N®<—M£—?M+(Sq+8r+27:1 @85—#2721 BjSlJ;,)MZ-i-‘-IJ-l—Z);:] ajfs){ln-i-
383 {M)—(2F®M)<0,

e 2. INQ (P —cM) <O,

s 3. IN®<Z§:1EI»5,£IH—7]M) <0,
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where 8, = ;> 15131’ ro= e Dl lrkl’ 8 = Z] IZk 121 lel’
S = Z, Ll L W i = Z, - Mkﬂsu = D1 2k IUk’\Ij =
diagl{y?, ..., ¥}, ® = diag{$?,....¢2} and F = diag{Fy, ..., Fy).
Proof For error system (11), we take the following Lyapunov functional:

N

H(t) =Yyl OMyc(t) = y" (0)(Iy ® M)y(1) (24)
k=1

Then, applying the Caputo-fractional derivative for Lyapunov functional (24) and by utilizing
Lemma 2.4, we have

N
DYH(1) <2yl (OM{D yx(1)}
k=1

N
= ZZykT(t)M{ — Pyr(t) + 0g (e () + RA(y(t — p1))
k=1
X N )
+ ) o Y VA i)
j=1 1=l
X N )
+ Z,Bj Z WXyt — o) = Fkyk(l)}
j=1 1=l

N N N
=2 W OMPy@) =2) Y @OMFy (1) +2) "yl ()M Qg (3 (1))

k=1 k=1 k=1
N _ x N N )
+2) v (OMRh(yi(t — 1)) +2Za,-<22 ij;ykT(l)MAjyz(t))
k=1 j=1 k=1 I=1
X N N )
+22ﬁ,<ZZW,{,yZ(r>Mnyl<r —m)). (25)
j=1 k=1 I=1

Based on Assumption [A1], one gets

2Zyk (M Qg (k@) Zyk (HMQQ Myk(t)+Zyk (D)W yi (1)

k=1 k=1 k=1
< yT(z)<IN ® (6,M* + \IJ))y(t). (26)
Similarly,
N ~
23 WL OMRA(y( = ) = 37 0(Iv @ M) (1)
k=1
7= (Ivee)ya—uy @D
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From Lemma 2.9, we can get

x N N X
2Zaj(zz ijlykT(t)MAjYI(l‘)) =2 a;y" (1)(V/ @ M)(Iy ® A )y (1)
j=1

k=1 I=1 j=1

<> ap T O[(v @ M)V @ M) ]y@)
j=1

+ 3wy O (Iv ® Aj) (Iv @A) |y (o)
j=1

=Y ey T O(VIVIT @ M)y
=

+ > iy ) (In @ A%y ()
j=1

<Y @iy (v ® M?)y (1)

j=1

+ Y @y Oy . (28)
j=1

Similarly,

X N N X
23 B (D Wil oMYt = u2)) = DBy O(Iv @ M)y ()

j=1 k=1 1=1 j=l

+ Y BiiyT (¢ — 2yt — 12).(29)
j=1

Combining (25)—(29), we have

DYH(®) = ¥ (0)(In ® (=MP =PM)y (1) +y" () Iy ® (G +8)M* + %)) y()

37 = ) (Iy @ )yt — ) + 3" 0 (Iv ® Y T8 M?) y()
j=1

370 (v @ Y @0 1)y + 30 (Iv @ Y B8, M2) y()

j=1 j=1
37 =) (In ® Y Bjdiha )yt — u2) = yT (1) (2F & M)y (o)
j=1
< yT(t)[— RFeM)+Iyv® (—MB—?M

X X
+ (88 + D T8] + D Bsy ) M2+ W
=1 =1
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+ ) w81, + ;“M)]y(t) - CyT(t)[IN ® M]y(®
j=1

37— un)[In ® (@ = M) [yt = 1)

+oy'(t - m)[lzv ® Myt — 1)

+y" - uz)[lzv ® (Zﬁjﬁiln - nM)]y(t — 12)

j=1
0y (¢ = ) Iy @ Myt = o). (30)

According to the conditions 1 — 3 of Theorem 3.4, we can obtain
DYH() < ¢y O ® My + 63" (¢ = ) [ In @ M]y(t — )

+ 1y = )| Iy @ M]y(t = p2)
=—CH@)+cH@ — 1) +nH(E — p2) (31
Then, similar to the proof of Theorem 3.1, we can obtain H(f) — 0 as t — +oo.
. N T N n 2
ie.d Vi OMyp(t) = Dot 2o m;yi;(t) — 0ast — +o0. Hence, we conclude

that MWCFCNNS (6) realizes robust asymptotically synchronization under the state feed-
back controller (9). The proof is ended. ]

Corollary 3.5 Suppose that the Assumption [Aj] hold. If ¢ > 0, ¢ > 0 be known constants
and ¢ < ¢, then MWCFCNN s (22) is robust asymptotically synchronized under the controller
(9), if there exists a positive diagonal matrix M € R™ " such that following condition holds,

Loy @ (= MP = PM + (8, +8 + X5 @00 )M> + W + 35_, @8] 1, + M) -
(2F® M) <0,
2. INQ@ (D —cM) <0,

where 8y, 6, 65, 8){, @, W and F are already defined in Theorem 3.4.

Corollary 3.6 Suppose that the Assumption [A1] hold. If £ > 0, ¢, n > 0 be known
constants and ¢ +n < , then MWCFCNNs (23) is robust asymptotically synchronized
under the controller (9), if there exists a positive diagonal matrix M € R"™" such that
following condition holds,

1. 1N®<—M£—FM+(aq+5r+zjzlﬁjsfw)M2+w+2M)—(2F®M) <0,
2. INQ®(®—cM) <0,

3. Iy ® (ijlﬁjw,, - nM) <0,

where 8y, 6, 8{,.,, 8,{, @, W and F are already defined in Theorenl 3.4. -
For j = 1,2,...x,whengj =a; =ozj,éj =Ej =B, P=P=P,Q0=0=0,

R=R= R, A; = A, =AY =7, =7,V —_v = Vi, wi W = Wi, ie.,
MWCFCNNSs (6) is without uncertainty parameter, then we have the following interesting
results.
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sss  Theorem 3.7 Under Assumption [A;], the MWCFCNNs (6) is asymptotically synchronized
47 under the controller (9) if the following condition holds:

n
458 max=¢i2|rl,~|, i=1,2,...,n}

=1

X N
w0 +maX{ZﬂjTl.]<Z|W/k|), k=1,2,...,N, i= l,2,...,n}
j=1 I=1

n
460 <min[Fk+Pi _1/fi2|q1i|
=1

X N
—Zajxl!(ZW,g), k=1.2,....N, i= 1,2,...,n}sin<%).
j=1

=1

42 Corollary 3.8 Under Assumption [A;], the MWCFCNNs (22) is asymptotically synchronized
a3 under the controller (9) if the following condition holds:

n n X N
maX{d)i > il i = 1,2,...,n} < min{Fk +pi=vi Y |l — Zajx{(2|\/,’k|>,
=1 =1 j=1 =1

w5 k:l,z,...,N,i:],z,...,n}sin(%)

a6 Corollary 3.9 Under Assumption [A;], the MWCFCNNs (23) is asymptotically synchronized
w7 under the controller (9) if the following condition holds:

n
468 max{¢iZ|r1,~|, i:1,2,...,n}
=1

X N

w n max{25jrg(2|w/k|), k=1,2....N,i= 1,2,...,n}
=1 I=1

470 < min [Fk + pi

n
o —9 Y lquls k=1.2,...N, i=1,2,...,n]sin(%>.

=1

a2 Theorem 3.10 Suppose that the Assumption [A1] hold. If &1 > 0, ¢1 > 0, n1 > 0 be
a3 known constants and ¢1 + n1 < &1, then MWCFCNN s (6) is asymptotically synchronized
w4 under the controller (9), if there exists a positive diagonal matrix M € R"™" and constants
as & (j=1,2,...,x) such that following condition holds,

oo 1 IN®A-QF@M)+ Y5 ;v @ MA) + 5 &8 (W @ M) (W @
o MM) <0,

a7 2. INQ (P —cM) <0,

o 3. 1N®(Z§=15jﬁj1,,—mM) <0,

s where A= —2MP+MQQTM+MRRTM + ¢ M+ W, F, ¥ and ® are already defined
481 1in Theorem 3.4.
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Proof For error system (12), we choose the same Lyapunov functional in (22), then one has

N

DYH(t) <2yl ()M{D? y (1)}
k=1

N
= 2ZykT(t)M{ — Pyc(®) + Q& (ye(0) + Rh(y(t — 1))
k=1

X N )
+ Y i Y VEA i)

j=I =1
X N )
+ Zﬂj Z WXyt — p2) — Fkyk(t)}
j=1 =1
< —yT(t)[IN ® (ZMP)]y(t) + yT(z)[IN ® (MQQ" M + MRR™ M + \I/)]y(z)

37 = p[ v @ @y — ) +2 ) a0V @ MA; ]y
j=1

+2) " B [ © MY, |yt — ua) —yT0[2F @ M)y, (32)
j=1
It is easy to compute

2 T [ W1 @00, 30 = 36 BT 0wl o (W o 1]
j=1 j=1

+ ) &R (¢ — ) (Iy ® In)y(t — p2). (33)
j=1

Thus,

DYH(t) < yT(z)[(lN ® (—2MP+MQQ" M+ MRR™M + ¢\ M + \11))
+2) a;(V/ @ MA))
j=1

+ Xx:gj—lﬂj(wf ® Mr,-) (Wf' ®TM) - 2F® M)]y(t)
j=1

— sy )[In ® M]y(t)

+yl@- Ml)[lzv ® (P — ClM)]y(f — K1)

+ oyt - m)[lzv ® M]y(t - 1)

+y(t - Mz)[lzv ® (Zéjﬂjln — mM)]y(t — K2)
j=1

+my’ (- ,uz)[IN ® M]y(t — n2).
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According to the conditions 1-3 of Theorem 3.10, we can obtain
DYH(®) = —a1y" O Iy ® M)y () + 61y" (¢ = )| Iy ® M]y(t = )

+my’ - Mz)[lzv ® M]y(t — p2)
=—0H@)+ g H({ —p) +mH(E — u2). (34

Then, similar to the proof of Theorem 3.1, the MWCFCNNSs error system (11) will be asymp-
totically stable, i.e., the MWCFCNNSs system (6) is globally synchronized via controller (9).
The proof is completed. O

Corollary 3.11 Suppose that the Assumption [A1] hold. If {1 > 0, ¢1 > 0 > 0 be known
constants and ¢1 < {1, then MWCFCNNs (22) is asymptotically synchronized under the
controller (9), if there exists a positive diagonal matrix M € R" " such that following
condition holds,

LIN®A—-QF®M)+Y 5 a;(2V/ @ MA;) <0,
2. IN®(® - M) <0,

where A = —2MP +MQQT"M +MRRTM + M + W, F, U and ® are already defined
in Theorem 3.4.

Corollary 3.12 Suppose that the Assumption [A] hold. If &y > 0, ¢; > 0, n > 0 be
known constants and ¢1 + m1 < 1, then MWCFCNNS (23) is asymptotically synchronized
under the controller (9), if there exists a positive diagonal matrix M € R"*" and constants
& (j=1,2,...,x) such that following condition holds,

LIv®A-2F®@M+ Y}, E;lﬂj(Wj ®MTJ)(Wj ®T/M> <0,
2. In® (@ —-g1M) <0,
3. In® (ch‘:] Sjﬂjln - T]]M) <0,

where A = —2MP + MQQTM + MRRT M + ZlM + W, F, ¥ and ® are already defined
in Theorem 3.4.

Remark 3.13 If weights of FOCNNSs is assumed to be single weight, then the model (6)
which turns into FOCNNSs with single weight. Then the proposed results are also holds to
guarantee the asymptotical synchronization criteria for FOCNNs with and without parameter
uncertainties, these results not yet considered in the existing works. When y = 1, one obtains
the integer order case.

4 Numerical Simulations

In this section, two numerical simulations are given to demonstrate the accuracy of the
required synchronization results in this paper.

Example 4.1 Consider a multi-weighted complex structure on fractional-order coupled neural
networks with linear coupling delay and parameter uncertainty described by

DT (t) = =Pz (1) + Qg (2 (1)) + Rh(zi(t — 0.1))
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4 4
+ Y Vi) + Y e ViAz()
=1 =1
4 4

+ Y AWzt —02) + Y Wi Toz(t — 0.2)

=1 =1

4
R (a0 -3 Y am),
I=1

(35)

where k = 1,2, 3,4, gr(tr) = tanh(t), hi(7) = sinh(r) k =1,2), F, = 0.1k, k =
1,2,3,4. The parameters in P, Q, R, «j, B, V/, W/ (j = 1,2) in (35) change in some

given precision, which is intervalized as below:
ay = {0.005j <a; <0055, j=1,2, Va; e a,];
Bri={0.004) < B <004). j =12, ¥ € pi};

8 8

P:={P=d' tP<P<P, ——— 4+004<pp < —
! faglpe) : B = P =P roa PO = = G0

k=12, vpeP,};

— 1 1
= = nxn - =< =< s 0.02 < =
01 = {0 = @un: Q0 =0 5 H02 S gu = 5

k + 31
k:l,2,l:1,2,VQeQ1};
o I
R;:{R: "R<R<R, —— +004<ry<——+04,
I (rk)nxn : R < R < k+2l+ _rkz_k+21+
k:1,2,l:l,2,VReR,};

+0.2

Ly

+ 0.4,

j J .
A= {Aj =diagGd) A < Ay = K, m+003 Ms g ron =12

k=12, VA el

Y, = {T — diag]): T, £, < Tj, —1— 140,05 < T<#+05 i=1,2,

=i = Tkt
k=1.2v7; e );

% :={vf= Vs Vi < Vi<V 001 < V/ 0.1, k £1,
! Viaxa 1 V2= V= 21<+21Jr "’_2k+21+ s
j=1.2, k=1,23,4, [ =1,2,3,4, erv,];
W::{Wf:Wf Wi<W <W. L 4003<W < 103 k£l
! (Widaxa : WES W < k+l+ W= T >

J=1,2 k=1,2,3,4, [ =1,2,3,4, Wf'ew,};

The activation function satisfies with Assumption [A;] with ¢y =2, Y, =1 (k = 1,2). By

employing Theorem 3.1, one can obtains
n
6.12 = min [Fk +p, =i Y i
I=1
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

step

Fig.1 zp1(t), zk2(t), k=1,2,3,4

3 T
E—RTT
—_— iz, 0,
lizg0l,
25} —_— iz, Ol

1.5

0.5

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fig.2 |lzx ()2, k=1,2,3,4

X N
562 =Y @A (D V) k=12 N i =12 ) =0,
Jj=1 =1
n
563 2.76:max[¢i2fli, i = 1,2,...,11] >0,
=1
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3 T
e 2, (1)
25 ===z 1
25
2L 2,0 |
—231(1)
1.5 == =70

1
< 05

0

s 2, (1)
- - - z4z(t)
—251(1)

- - - zsz(t)

0.8 1
step

Fig.3 zx1 (1), zx2(t), k=1,2,3,4

x N
187 = max { Y B0 (Do Wh). k=12 N i=1.2..n} > 0.
i=1 =1

Therefore, it follows from that the system (35) realize robust asymptotical synchronization

from Theorem 3.1. The computer simulations are depicted in Figs. 1 and 2

Example 4.2 For the MWCFCNNSs with linear coupling delay:

D*P2i(1) = —=Pzx(1) + Qg (2 (1)) + Rh(zi(t — 0.05))

5 5
+ ) VA + Y e ViAz()
=1 =1
5 5

+ > BIW N1zt = 0.05) + Y B2 Wi ozt — 0.05)

=1

4
— Fiak() — % > am)
=1

=1

where k = 1,2,3,4,5, gk(t) = hi(r) = tanh(r) (k = 1,2), F, =0.1, k =1,2,3,4,5,

a1 = 0.6, ap = 0.5, B1 = 0.7, B2 = 0.5, the matrices are chosen as respectively

70 12-03 07058
P=[o7]’ Qz[—l 1.2] R=[O.6—1]’ A‘=[

10 05 0 0.1 0
Az:[m] Tl:[o 0.5] Tz:[o 0.1]'

0 0.8]
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3 T
IIz, I,
llz, 01,
llz Il
25¢ leq Ol [
Izl
2 .
1.5 E
1 .
0.5} E
0 L L —
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Fig.4 |z (D2, k=1,2,3,4
576 The topology structure of (36) is defined by
055 0 02 0.1 025 —05 0 01 0 04 7
0 —0905 0 04 0 —-0704 0 03
577 vi=| 02 05 —-1.102 02 |, v =] 01 04 -1 03 02
01 0 02 —05 02 0 0 03-08 05
| 025 04 02 02 —1.05 04 03 02 05 —1.4 |
22 0 0.7 07 0.8 0504 0 01 O
0 —13 03 03 07 04 —09 02 0 03
578 wl=107 03 =12 0 02 |, W?=| 0 02 —04 0 02
07 03 0 —12 02 0.1 0 0 —-03 02
| 0.8 07 02 02 —1.9 0 03 02 02 -0.7 |

s7o  The activation function satisfies with Assumption [A{] with ¢ = 1, Y =5 (k = 1, 2).
sso  Letus choose &1 =4, & =3.5,¢ =1, ¢ = 0.5, n = 0.2. By means of MATLAB toolbox
ss1  to solve the conditions of LMIs in Theorem 3.10 and the feasible solution is given by

p_[133450 0
e - 0 8.5568]|"

ss3  Therefore the MWCFCNNSs (36) is globally synchronized according to Theorem 3.10. The
sss  computer simulations are presented in Figs. 3 and 4, which confirms the validity of proposed
ses - results.

sss 5 Conclusions

ss7  This sequel mainly deals with the robust asymptotical synchronization for coupling delayed
sss  FOCNNs with multi weights. On the one hand, by a key role of fractional order comparison
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principle, robust analysis skills, Lyapunov method, and Kronecker product technique, several
robust asymptotical synchronization and synchronization results are established by the linear
feedback controller. On the other hand, two kinds of special cases of multi-weighted complex
structure on FOCNNss with and without linear coupling delays are concerned. Then based on
proposed models, several synchronization results, both algebraic method and LMI method,
respectively are demonstrated. Finally, we provide three computer simulations to illustrate
the correctness of the proposed main results. The proposed approach herein is possible for
the investigation and application of some other fractional order memristor neural networks
including adaptive synchronization of fractional-order Cohen-Grossberg memristor based
coupled neural networks and pinning synchronization of fractional-order memristor based
coupled complex neural networks. This will occur in the near future.
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