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Abstract: We investigate the Fibonacci pseudoprimes of level k, and we disprove a statement
concerning the relationship between the sets of different levels, and also discuss a counterpart of this
result for the Lucas pseudoprimes of level k. We then use some recent arithmetic properties of the
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of levels k+ and k− and parameter a. For these novel pseudoprime sequences we investigate some
basic properties and calculate numerous associated integer sequences which we have added to the
Online Encyclopedia of Integer Sequences.

Keywords: generalized lucas sequences; legendre symbol; jacobi symbol; pseudoprimality

MSC: 11A51; 11B39; 11B50

1. Introduction

Let a and b be integers. The generalized Lucas sequence {Un(a, b)}n≥0 and its com-
panion, the generalized Pell–Lucas sequence {Vn(a, b)}n≥0, denoted by Un and Vn for
simplicity, are defined by

Un+2 = aUn+1 − bUn, U0 = 0, U1 = 1, n = 0, 1, . . . (1)

Vn+2 = aVn+1 − bVn, V0 = 2, V1 = a, n = 0, 1, . . . . (2)

The general term of these sequences is given by the following Binet-type formulae

Un =
αn − βn

α− β
=

1√
D
(αn − βn), Vn = αn + βn, n = 0, 1, . . . , (3)

where D = a2 − 4b 6= 0 and α = a+
√

D
2 , β = a−

√
D

2 are the roots of the quadratic z2 − az +
b = 0. By Viéte’s relations, one has α + β = a and αβ = b, while α− β =

√
D.

Using bivariate cyclotomic polynomials, the relations (3) can be written [1] (p. 99) in
terms of α and β, as

Un = ∏
d|n,d≥2

Φd(α, β),

where

Φd(α, β) =
n

∏
j=1, gcd(j,n)=1

(α− ζ jβ),

and ζ is a primitive n-th root of unity. It can be checked that Φd(α, β) is an integer for any
d ≥ 2, and this feature can highlight arithmetic properties of the integers Un.
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If ω is an n-th root of −1, the following formula for can be written for Vn as

Vn = ∏
d|n

Φd(α, ωβ),

However, the use of this formula is limited since Φd(α, ωβ) is not always an integer.
The formulae (3) also extend naturally to negative indices. For any integer n ≥ 0

one has

U−n =
1√
D

(
α−n − β−n) = − 1

bn Un, V−n = α−n + β−n =
1
bn Vn.

Clearly, Un and Vn are integers for all n ∈ Z if and only if b = ±1, and for this reason
we shall focus on this case.

For b = −1, if k is a positive real number, then the k-Fibonacci and k-Lucas numbers are
obtained for Fk,n = Un(k,−1) and Lk,n = Vn(k,−1), in which case D = k2 + 4 [2]. Clearly,
for k = 1 we get the Fibonacci and Lucas numbers Fn = Un(1,−1) and Ln = Vn(1,−1) with
D = 5, and for k = 2 the Pell and Pell–Lucas numbers Pn = Un(2,−1) and Qn = Vn(2,−1),
where D = 8.

When b = 1, the sequences Un(a, 1) have interesting combinatorial interpretations,
while the terms Vn(a, 1) can be linked to the number of solutions for certain Diophantine
equations (see [3]) and to important classes of polynomials (see [4] (Chapter 2.2)).

The following results have been recently proved by the authors in [3].

Theorem 1 (Theorem 3.1, [3]). Let p be an odd prime, k a non-negative integer, and r an arbitrary
integer. If b = ±1 and a is an integer such that D = a2 − 4b > 0 is not a perfect square, then the
sequences Un and Vn defined by (1) and (2) satisfy the following relations

(1) 2Ukp+r ≡
(

D
p

)
UkVr + VkUr (mod p);

(2) 2Vkp+r ≡ D
(

D
p

)
UkUr + VkVr (mod p),

where
(

D
p

)
is the Legendre symbol (see, e.g., [5]).

Theorem 2 (Theorem 3.5, [3]). Let p be an odd prime, and let k > 0 and a be integers so that
D = a2 + 4 > 0 is not a perfect square. If Un = Un(a,−1) and Vn = Vn(a,−1), then we have

(1) U
kp−

(
D
p

) ≡ Uk−1 (mod p);

(2) V
kp−

(
D
p

) ≡ (D
p

)
Vk−1 (mod p).

Theorem 3 (Theorem 3.7, [3]). Let p be an odd prime, and let k > 0 and a be integers so that
D = a2 − 4 > 0 is not a perfect square. If Un = Un(a, 1) and Vn = Vn(a, 1), then we have

(1) U
kp−

(
D
p

) ≡ (D
p

)
Uk−1 (mod p);

(2) V
kp−

(
D
p

) ≡ Vk−1 (mod p).

Applying Theorem 1 for k = 1 and r = 0, we obtain the well known relations

Up ≡
(

D
p

)
(mod p); (4)

Vp ≡ a (mod p). (5)
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Taking k = 1 in Theorems 2 and 3, and since U0 = 0 and V0 = 2, one has

U
p−
(

D
p

) ≡ 0 (mod p); (6)

V
p−
(

D
p

) ≡ 2
(

D
p

) 1−b
2

. (7)

Pseudoprimes are those composite numbers that, under certain conditions, behave
similarly to the prime numbers. These have numerous applications in the factorization of
large integers, primality testing, and cryptography. Some important notions of pseudo-
primality are linked to the generalized Lucas sequences {Un(a, b)}n≥0 and {Vn(a, b)}n≥0
given by (1) and (2), based on the relations (4), (5), (6) and (7), which were known even to
Lucas (see [6]).

Definition 1. An odd composite integer n is said to be a generalized Lucas pseudoprime of
parameters a and b if gcd(n, b) = 1 and n divides Un−( D

n )
, where

(
D
n

)
is the Jacobi symbol.

By relation (4), we deduce that U2
p ≡ 1 (mod p). Using this, in our paper [7] we have

defined a weak pseudoprimality notion for generalized Lucas sequences Un(a, b).

Definition 2. A composite integer n for which n | U2
n − 1 is called a weak generalized Lucas

pseudoprime of parameters a and b.

This notion plays a key role in the present paper. Another weak pseudoprimality
concept for generalized Pell–Lucas sequences inspired by (5) is also defined in [7].

Definition 3. A composite integer n is said to be a generalized Bruckman–Lucas pseudoprime
of parameters a and b if n | Vn(a, b)− a.

Historical details and various pseudoprimality tests for generalized Lucas sequences
are given in the papers by Brillhart, Lehmer, and Selfridge [8], and by Baillie and Wagstaff
in [9]. Grantham [10] unified many pseudoprimality notions under the name of Frobenius
pseudoprimes and several examples are listed in Rotkiewics [11]. Various strong concepts
like super-pseudoprimes [12], or extensions of recurrences to more general contexts like
abelian groups have been proposed [13].

Interesting divisibility results for Un and Vn are stated in [9] (Section 2).

Proposition 1. If n is an odd composite number such that gcd(n, 2abD) = 1, then any two of the
following statements imply the other two.

(1) Un ≡
(

D
n

)
(mod n);

(2) Vn ≡ V1 = a (mod n);
(3) Un−( D

n )
≡ U0 = 0 (mod n);

(4) Vn−( D
n )
≡ 2b

1−( D
n )

2 (mod n) (valid whenever gcd(n, D) = 1).

The structure of this paper is as follows. In Section 2 we review the notion of Fibonacci
pseudoprime of level k, and propose a counterpart defined for Lucas sequences. We also
disprove a statement formulated in [14] for Fibonacci numbers, which shows that the
relationship between the pseudoprimes of different levels is not trivial. In Section 3 we
define the generalized Lucas and Pell–Lucas pseudoprimality of level k, which involves
the Jacobi symbol. For these notions we study some new related integer sequences indexed
in the Online Encyclopedia of Integer Sequences (OEIS). Finally, in Section 4 we summarize
the findings and suggest future directions of investigation.
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The numerical simulations in this paper have been performed with specialist Matlab
libraries and Wolfram Alpha (explicit formulae are indicated in OEIS). Sometimes we have
provided more terms than in the OEIS (which has a limit of 260 characters), so that the
readers can check the numerical examples and counterexamples.

2. Fibonacci and Lucas Pseudoprimes of Level k

In this section we present the Fibonacci pseudoprimes of level k and give a coun-
terexample to a result from [14], about the connection between the sets of pseudoprimes
on different levels. We then define the Lucas pseudoprimes of level k, for which we also
explore connections between the pseudoprimes on different levels.

2.1. Fibonacci Pseudoprimes of Level k

For a prime p, the following relations follow from (4) and (6) for a = 1 and b = −1.

Fp ≡
( p

5

)
(mod p); (8)

Fp−( p
5 )
≡ 0 (mod p). (9)

A composite number n is called a Fibonacci pseudoprime if n | Fn−( n
5 )

. The even
Fibonacci pseudoprimes are indexed as A141137 in the OEIS [15], while the odd Fibonacci
pseudoprimes indexed as A081264 start with the terms

323, 377, 1891, 3827, 4181, 5777, 6601, 6721, 8149, 10877, 11663, 13201, 13981, 15251, 17119,

17711, 18407, 19043, 23407, 25877, 27323, 30889, 34561, 34943, 35207, 39203, 40501, . . . .

In [14], the authors introduced the following notion. Let k be a fixed positive integer.
A composite number n is called a Fibonacci pseudoprime of level k if it satisfies

n | Fkn−( n
5 )
− Fk−1.

The set of all the Fibonacci pseudoprimes of level k is denoted by Fk. Notice that for
k = 1 we obtain the classical Fibonacci pseudoprimes. We now state a corrected version of
Proposition 1 in [14], and then discuss why the original version does not hold.

Proposition 2. Let n be a positive integer that is coprime with 10. If n ∈ F1, then n ∈ F2 if and
only if n | F2

n − 1.

Proof. Notice that the conditions in the hypothesis relate to Equations (8) and (9). Clearly,
n ∈ F1 is equivalent to n | Fn−( n

5 )
, while n ∈ F2 is equivalent to n | F2n−( n

5 )
− F1.

For all integers m ≥ r ≥ 0, Catalan’s identity F2
m − Fm+rFm−r = (−1)m−rF2

r , is valid.
Using this identity for m = n−

( n
5
)

and r = n and since gcd (5, n) = 1, one has

F2
n−( n

5 )
+ (−1)(

n
5 )F2n−( n

5 )
= (−1)−(

n
5 )F2

n .

Since
( n

5
)

is odd, this can be rewritten as

F2
n−( n

5 )
+
(

F2
n − 1

)
= F2n−( n

5 )
− F1. (10)

Clearly, if n ∈ F1, then by taking the relation (10) modulo n, one obtains that n | F2
n − 1

is equivalent to n ∈ F2.

https://oeis.org/A141137
https://oeis.org/A081264
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Remark 1. Notice that if n | F2
n − 1 and n ∈ F2, then by (10) it follows that n | F2

n−( n
5 )

. This

may not always indicate that n ∈ F1. However, this assertion holds whenever n is square-free. We
have confirmed that the numbers satisfying both n | F2

n − 1 and n ∈ F2 with n ≤ 39500 are

323, 377, 1891, 3827, 4181, 5777, 6601, 6721, 8149, 10877, 11663, 13201, 13981, 15251,

17119, 17711, 18407, 19043, 23407, 25877, 27323, 30889, 34561, 34943, 35207, 39203,

which are all square-free and satisfy n ∈ F1.

We now recall Proposition 1 in [14], which states that if n ∈ N is coprime with 10, then
n ∈ Fk for all k ≥ 1 if and only if n ∈ F1 and n | F2

n − 1. In particular, if n | Fn−( n
5 )

and

n|Fn −
( n

5
)
, then n ∈ Fk for all k ≥ 1. The following example gives an integer n for which

n ∈ F1 and n | F2
n − 1, (hence in F2), but which is not in F3. This shows that Proposition 1

in [14] does not generally hold.

Example 1. The first composite integer n for which n | Fn−( n
5 )

and n | F2
n − 1 is n = 323. For

this integer one can check that n | F2n−( n
5 )
− F1, but we have F3n−( n

5 )
− F2 ≡ 321 (mod n),

where
( n

5
)
= −1. The calculations involving the large numbers below are implemented with the

vpi (variable precision integer) library in Matlab®. We have

Fn−( n
5 )

= 23041483585524168262220906489642018075101617466780496790573690289968 ≡ 0 (mod n)

F2n−( n
5 )

= 73369952779993091352807862470137544645640492430927104043499069001458

4668246528603476477043108568806527592562210693671820824200536283473 ≡ 1 = F1 (mod n)

F3n−( n
5 )

= 23362861818152996537467507811299195417669439511689710925227862142275

523753399638967783310781704529676533897971172191948004316934631842045065

771638088947558424515687624190113122357319209227560059859345335 ≡ 322 (mod n).

We now discuss why the proof of Proposition 1 in [14] fails, but we mention that the
error in the proof is not trivial as we can notice in the previous numerical example.

Remark 2. The problems appear at the induction step. When applying Catalan’s identity for
m = kn−

( n
5
)

and r = n one obtains the identity

F2
kn−( n

5 )
− F(k+1)n−( n

5 )
F(k−1)n−( n

5 )
= (−1)(k−1)n−( n

5 )F2
n .

Assuming n ∈ Fk and taking this relation modulo n one obtains after some steps

F(k+1)n−( n
5 )

Fk−2 ≡ F2
k−1 + (−1)k (mod n)

FkFk−2 ≡ F2
k−1 + (−1)k (mod n),

from where the authors (incorrectly) claim n | F(k+1)n−( n
5 )
− Fk. In fact, we only have

[
F(k+1)n−( n

5 )
− Fk

]
Fk−2 ≡ 0 (mod n).

This holds when n is coprime with Fk−2, but this cannot be guaranteed in general.

2.2. Lucas Pseudoprimes of Level k

From the relations (5) and (7) applied for a = 1 and b = −1 one obtains

Lp ≡ 1 (mod p); (11)

Lp−( p
5 )
≡ 2

( p
5

)
(mod p). (12)
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A composite integer n satisfying the property n | Ln − 1 is called a Bruckman–Lucas
pseudoprime. The sequence is indexed in the OEIS [15] as A005845, and begins with

705, 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201, 15251, 24465, 29281, 34561, 35785, 51841,

54705, 64079, 64681, 67861, 68251, 75077, 80189, 90061, 96049, 97921, 100065, 100127, . . . .

In 1964 Lehmer [16] proved that Fibonacci pseudoprimes are infinite, while in 1994
Bruckman showed that the Bruckman–Lucas pseudoprimes are odd [17], and also he
proved that these numbers are infinitely many [18].

For a positive integer k we define the Lucas pseudoprimes of level k as the composite
integers n satisfying the relation

n | Lkn−( n
5 )
−
(n

5

)
Lk−1.

The set of all the Lucas pseudoprimes of level k is denoted by Lk.
For k = 1 the integers n ∈ L1 satisfy n | Ln−( n

5 )
− 2
( n

5
)

and define the sequence
A339125 added by us to OEIS, which starts with the terms

9, 49, 121, 169, 289, 361, 529, 841, 961, 1127, 1369, 1681, 1849, 2209, 2809, 3481, 3721,

3751, 4181, 4489, 4901, 4961, 5041, 5329, 5777, 6241, 6721, 6889, 7381, 7921, 9409, . . . .

For k = 2 the integers n ∈ L2 satisfy the relation n | L2n−( n
5 )
−
( n

5
)
, and recover a

sequence we have indexed as A339517, whose first elements are

323, 377, 609, 1891, 3081, 3827, 4181, 5777, 5887, 6601, 6721, 8149, 8841, 10877, 11663, 13201,

13981, 15251, 17119, 17711, 18407, 19043, 23407, 25877, 26011, 27323, 30889, 34561, . . . .

The following result highlights a connection between the Lucas pseudoprimes of
levels 1 and 2 via the positive integers with the property n | F2

n − 1.

Proposition 3. Let n be a positive integer that is coprime with 10. If n ∈ L1, then n ∈ L2 if and
only if n | F2

n − 1.

Proof. One can easily check (see Lemma 2.4 [19]) that for any integers m and r we have

L2
m − Lm+rLm−r = −5(−1)m−rF2

r , L−m = (−1)mLm.

Using this identity for m = n−
( n

5
)

and r = n, we get

L2
n−( n

5 )
− L2n−( n

5 )
L−( n

5 )
= −5(−1)−(

n
5 )F2

n .

As n and 5 are coprime, we have L−( n
5 )

= (−1)−(
n
5 )L( n

5 )
and L( n

5 )
=
( n

5
)
, while

since
( n

5
)
= ±1, it follows that (−1)−(

n
5 ) = −1. Therefore

L2
n−( n

5 )
+
(n

5

)
L2n−( n

5 )
= 5F2

n . (13)

This identity can be further written as(
L2

n−( n
5 )
− 4
)
+
(n

5

)(
L2n−( n

5 )
−
(n

5

))
= 5

(
F2

n − 1
)

. (14)

https://oeis.org/A005845
https://oeis.org/A339125
https://oeis.org/A339125
https://oeis.org/A339517
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Now we take this relation modulo n. Clearly, from n ∈ L1 we Ln−( n
5 )
≡ 2

( n
5
)

(mod n), hence the first bracket vanishes. Notice that if any of the other two brackets in
(14) vanish, then the third vanishes as well, hence n ∈ L2 if and only if n | F2

n − 1.

One could check that if n | F2
n − 1 and n ∈ L2, then it does not follow that n ∈ L1. We

give an example below.

Example 2. From Example 1, we know that for n = 323 we have n | F2
n − 1 and

( n
5
)
= −1. One

can check numerically that n | L2n−( n
5 )
−
( n

5
)

L1, but Ln−( n
5 )
≡ 2 6= 2

( n
5
)
(mod n).

Ln−( n
5 )

= 51522323599677629496737990329528638956583548304378053615581043535682 ≡ 2 (mod n)

L2n−( n
5 )
−
( n

5

)
L1 = 16406020192201422428071742506624502576478112489127183861980740204184

62621569240159920644069904101285065702566167066710438314676532992880 ≡ 0 (mod n).

It can be checked that n = 323 is the smallest odd composite number for which
n | F2

n − 1 and n ∈ L2 but n /∈ L1, but as we will see later, there are (possibly infinitely)
many numbers that satisfy this property.

3. Generalized Lucas Pseudoprimes of Level k

In this section we use Theorems 2 and 3 to extend the notions presented in Section 2
for generalized Lucas and Pell–Lucas sequences. We calculate the terms of the integer
sequences obtained for a few particular parameter values and we formulate some conjec-
tures.

3.1. Jacobi’s Symbol

Let n = pα1
1 pα2

2 · · · p
αk
k be the prime factorization of an odd integer n. The Jacobi

symbol is defined as ( a
n

)
=

(
a
p1

)α1
(

a
p2

)α2

· · ·
(

a
pk

)αk

,

where a is an integer. When n is a prime this recovers the Legendre symbol.
Jacobi’s symbol is completely multiplicative in both the numerator and denominator,

i.e., for m, n, m1, m2, n1, n2 integers, we have

(m1m2

n

)
=
(m1

n

)(m2

n

)
, so

(
m2

n

)
=
(m

n

)2
= 1 or 0;(

m
n1n2

)
=

(
m
n1

)(
m
n2

)
, so

( m
n2

)
=
(m

n

)2
= 1 or 0.

The Jacobi symbol also satisfies the quadratic reciprocity law. This states that if m and
n are odd positive coprime integers, then the following identity holds

(m
n

)( n
m

)
= (−1)

m−1
2 · n−1

2 =

{
1 if n ≡ 1 (mod 4) or m ≡ 1 (mod 4),
−1 if n ≡ m ≡ 3 (mod 4).

3.2. Results for b = −1

We shortly denote Un = Un(a,−1) and Vn = Vn(a,−1). If p is prime number and
a is an odd integer, then by the law of quadratic reciprocity for the Jacobi symbol with
D = a2 + 4 one has (

D
p

)(
p
D

)
= (−1)

p−1
2 ·

D−1
2 = 1. (15)
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This implies
(

D
p

)
=
( p

D
)
, hence the results in Theorem 2 can be written as

(1) Ukp−( p
D )
≡ Uk−1 (mod p);

(2) Vkp−( p
D )
≡
( p

D
)
Vk−1 (mod p).

We now investigate similar relations modulo a composite number n, where
( n

D
)

is the
Jacobi symbol, which is well-defined for any odd composite integers n and D. These allow
us to define new concepts of pseudoprimality.

Definition 4. Let a, k, and n be non-negative integers, where a is odd. We say that the composite
number n is a

(1) generalized Lucas pseudoprime of level k− and parameter a if

n | Ukn−( n
D )
−Uk−1.

The set of all such numbers is denoted by U−k (a).
(2) generalized Pell–Lucas pseudoprime of level k− and parameter a if

n | Vkn−( n
D )
−
( n

D

)
Vk−1.

The set of all such numbers is denoted by V−k (a).

In [19] we proved connections between the sets of generalized Lucas and Pell–Lucas
pseudoprimes of levels 1− and 2−, which are linked through the property n | U2

n − 1
(see Definition 2). Integers having this property were called weak generalized Lucas
pseudoprimes of parameters a and b and present interest in their own right. Some of their
properties, associated integer sequences and conjectures have been discussed in [7].

Theorem 4. Let a, n > 0 be odd integers with gcd(D, n) = 1. The following statements hold

(1) Reference [19] (Theorem 4.3). If n ∈ U−1 (a), then n ∈ U−2 (a) if and only if n | U2
n − 1.

(2) Reference [19] (Theorem 4.6). If n ∈ V−1 (a) and gcd(a, n) = 1, then n ∈ V−2 (a) if and only
if n | U2

n − 1.

We now present the integer sequences U−k (a), V−k (a) calculated for the values a =
1, 3, 5, 7 and k = 1, 2, 3. Most of these were added by the authors to OEIS [15]. For these
values we show that the reciprocal statements in Theorem 4 do not hold, and also, the
results cannot be extended directly to superior levels.

To begin with, we provide some details on weak generalized Lucas pseudoprimes.

Remark 3. For b = −1, the odd integers n satisfying the property n | U2
n − 1 recover the weak

Fibonacci pseudoprimes indexed as A337231 for a = 1, A337234 for a = 3, A337237 for a = 5,
and A338081 for a = 7. The reader can use these to check the numerical examples.

Remark 4. As seen in Example 2, even when n | U2
n − 1, and n ∈ U−2 (a) (or n ∈ V−2 (a)), it does

not mean that n ∈ U−1 (a) (or n ∈ V−1 (a)). For Un we have the following examples:

• a = 1: None found for n ≤ 50000 (see also, Remark 1);
• a = 3: 9, 63, 99, 153, 1071, 1881, 1953, 9999, 13833, 16191;
• a = 5: None found for n ≤ 15000;
• a = 7: 49, 147, 245, 637, 833, 1127, 1225, 2499, 3185, 3479, 4753, 5537, 15925.

For Vn we have

• a = 1: 323, 377, 1891, 3827, 6601, 8149, 11663, 13981, 17119, 17711, 18407, 19043;
• a = 3: 1763, 3599, 5559, 6681, 12095, 12403, 12685, 14279, 15051, 19043;
• a = 5: 15, 45, 91, 135, 143, 1547, 1573, 1935, 2015, 6543, 8099, 10403, 10905;
• a = 7: 35, 65, 175, 391, 455, 575, 1247, 1295, 1763, 1775, 2275, 2407, 3367, 4199, 4579.

https://oeis.org/A337231
https://oeis.org/A337234
https://oeis.org/A337237
https://oeis.org/A338081
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Also the connections between the levels 2− and 3− are non-trivial.

Remark 5. As seen in Example 1, even when n | U2
n − 1, if n ∈ U−1 (a) (hence n ∈ U−2 (a)), it

does not mean that n ∈ U−3 (a). The following values have been found:

• a = 1: 323, 377, 1891, 3827, 6601, 8149, 11663, 13981, 17119, 17711, 18407, 19043;
• a = 3: 1763, 3599, 5559, 6681, 12095, 12403, 12685, 14279, 15051, 19043;
• a = 5: 15, 45, 91, 135, 143, 1547, 1573, 1935, 2015, 6543, 8099, 10403, 10905;
• a = 7: 35, 65, 175, 391, 455, 575, 1247, 1295, 1763, 1775, 2275, 2407, 3367, 4199, 4579.

The following n with n | U2
n − 1 and n ∈ V−1 (a), n ∈ V−2 (a), but n /∈ V−3 (a) were found:

• a = 1: None found for n ≤ 50000;
• a = 3: None found for n ≤ 20000;
• a = 5: 18901, 19601, 19951;
• a = 7: None found for n ≤ 17000.

The numerical results in Remarks 4 and 5 suggest the following conjecture.

Conjecture 1. If n | U2
n − 1, then n ∈ U−1 (a) \ U−3 (a) if and only if n ∈ V−2 (a) \ V−1 (a).

Example 3. If b = −1, a = 1, D = 5, we obtain the classical Fibonacci and Lucas numbers.

• The set U−1 (1) recovers the odd Fibonacci pseudoprimes A081264 in [15].
• The set U−2 (1) gives A340118 and its first elements are

323, 377, 609, 1891, 3081, 3827, 4181, 5777, 5887, 6601, 6721, 8149, 10877, 11663, 13201,

13601, 13981, 15251, 17119, 17711, 18407, 19043, 23407, 25877, 27323, 28441, 28623,

30889, 32509, 34561, 34943, 35207, 39203, 40501, . . . .

• The set U−3 (1) is A340235 and its first elements are

9, 27, 161, 341, 901, 1107, 1281, 1853, 2241, 2529, 4181, 5473, 5611, 5777, 6119, 6721,

7587, 8307, 9729, 10877, 11041, 12209, 13201, 13277, 14981, 15251, 16771, 17567, . . . .

• The set V−1 (1) recovers A339125, seen in Section 2.2.
• The set V−2 (1) is A339517, seen in Section 2.2.
• The sequence V−3 (1) is given by A339724 and starts with the elements

9, 21, 161, 341, 901, 1281, 1853, 3201, 4181, 5473, 5611, 5777, 6119, 6721, 9729, 10877,

11041, 12209, 12441, 13201, 14981, 15251, 16771, 17941, 20591, 20769, 20801, . . . .

Example 4. b = −1, a = 3, D = 13.

• The set U−1 (3) recovers pseudoprimes indexed as A327653 in [15], starting with

119, 649, 1189, 1763, 3599, 4187, 5559, 6681, 12095, 12403, 12685, 12871, 12970, 14041,

14279, 15051, 16109, 19043, 22847, 23479, 24769, 26795, 28421, 30743, 30889, . . . .

• The set U−2 (3) gives A340119 and its first elements are

9, 27, 63, 81, 99, 119, 153, 243, 567, 649, 729, 759, 891, 903, 1071, 1189, 1377, 1431, 1539,

1763, 1881, 1953, 2133, 2187, 3599, 3897, 4187, 4585, 5103, 5313, 5559, 5589, 5819,

6561, 6681, 6831, 6993, 8019, 8127, 8829, 8855, 9639, 9999, 10611, 11135, . . . .

https://oeis.org/A081264
https://oeis.org/A340118
https://oeis.org/A340235
https://oeis.org/A339125
https://oeis.org/A339517
https://oeis.org/A339724
https://oeis.org/A327653
https://oeis.org/A340119
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• The set U−3 (3) is indexed as A340236 and its first elements are

9, 119, 121, 187, 327, 345, 649, 705, 1003, 1089, 1121, 1189, 1881, 2091, 2299, 3553, 4187,

5461, 5565, 5841, 6165, 6485, 7107, 7139, 7145, 7467, 7991, 8321, 8449, 11041, . . . .

• The set V−1 (3) recovers A339126, and starts with

9, 25, 49, 119, 121, 289, 361, 529, 649, 833, 841, 961, 1089, 1189, 1369, 1681, 1849, 1881,

2023, 2209, 2299, 2809, 3025, 3481, 3721, 4187, 4489, 5041, 5329, 6241, 6889, 7139, . . . .

• The set V−2 (3) giving A339518, has the first elements

15, 75, 105, 119, 165, 255, 375, 649, 1189, 1635, 1763, 1785, 1875, 2233, 2625, 3599, 3815,

4125, 4187, 5475, 5559, 5887, 6375, 6601, 6681, 7905, 8175, 9265, 9375, 9471, 11175, . . . .

• The set V−3 (3) is given by A339725 and starts with the elements

9, 27, 119, 133, 145, 165, 205, 261, 341, 393, 649, 693, 705, 901, 945, 1121, 1173, 1189,

1353, 1431, 1485, 1881, 2133, 2805, 3201, 3605, 3745, 4187, 5173, 5461, 5841, 5945, . . . .

Example 5. b = −1, a = 5, D = 29.

• The set U−1 (5) recovers the entry A340095 in [15], starting with

9, 15, 27, 45, 91, 121, 135, 143, 1547, 1573, 1935, 2015, 6543, 6721, 8099, 10403, 10877,

10905, 13319, 13741, 13747, 14399, 14705, 16109, 16471, 18901, 19043, 19109, . . . .

• The set U−2 (5) gives A340120 and its first elements are

9, 15, 25, 27, 45, 75, 91, 121, 125, 135, 143, 147, 175, 225, 275, 325, 375, 441, 483, 625,

675, 735, 755, 1125, 1323, 1547, 1573, 1875, 1935, 2015, 2205, 2275, 2485, . . . .

• The set U−3 (5) is indexed as A340237 and its first elements are

9, 27, 33, 35, 65, 81, 99, 121, 221, 243, 297, 363, 513, 585, 627, 705, 729, 891, 1089, 1539,

1541, 1881, 2145, 2187, 2299, 2673, 3267, 3605, 4181, 4573, 4579, 5265, 5633, 6721, . . . .

• The set V−1 (5) recovers A339127, and starts with

9, 25, 27, 49, 81, 121, 169, 175, 225, 243, 289, 325, 361, 529, 637, 729, 961, 1225, 1331,

1369, 1539, 1681, 1849, 2025, 2209, 2809, 3025, 3481, 3721, 4225, 4489, 5041, 5329, . . . .

• The set V−2 (5) giving A339519, has the first elements

9, 15, 27, 39, 45, 91, 117, 121, 135, 143, 195, 287, 351, 507, 585, 741, 1521, 1547, 1573,

1755, 1935, 2015, 2067, 2535, 2601, 3157, 3227, 3445, 3505, 3519, 3731, 4563, . . . .

• The set V−3 (5) is given by A339726 and starts with the elements

9, 25, 27, 33, 35, 45, 65, 81, 99, 117, 121, 161, 175, 221, 225, 297, 325, 363, 585, 645, 705,

825, 891, 1089, 1281, 1539, 1541, 1881, 2025, 2133, 2145, 2181, 2299, 2325, 2925, . . . .

Example 6. b = −1, a = 7, D = 53.

https://oeis.org/A340236
https://oeis.org/A339126
https://oeis.org/A339518
https://oeis.org/A339725
https://oeis.org/A340095
https://oeis.org/A340120
https://oeis.org/A340237
https://oeis.org/A339127
https://oeis.org/A339519
https://oeis.org/A339726
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• The set U−1 (7) recovers the entry A340096 in [15], starting with

25, 35, 51, 65, 91, 175, 325, 391, 455, 575, 1247, 1295, 1633, 1763, 1775, 1921, 2275,

2407, 2599, 2651, 3367, 4199, 4579, 4623, 5629, 6441, 9959, 10465, 10825, 10877, . . . .

• The set U−2 (7) gives A340121 and its first elements are

25, 35, 39, 49, 51, 65, 91, 147, 175, 245, 301, 325, 343, 391, 455, 507, 575, 605, 637, 663,

741, 833, 897, 903, 935, 1127, 1205, 1225, 1247, 1295, 1505, 1595, 1633, 1715, 1763, . . . .

• The set U−3 (7) is indexed as A340238 and its first elements are

9, 25, 27, 51, 91, 105, 153, 185, 225, 289, 325, 425, 459, 481, 513, 747, 867, 897, 925,

945, 1001, 1189, 1299, 1469, 1633, 1785, 1921, 2241, 2245, 2599, 2601, 2651, 2769, . . . .

• The set V−1 (7) recovers A339128, and starts with

9, 25, 49, 51, 91, 121, 125, 153, 169, 289, 325, 361, 441, 529, 625, 637, 833, 841, 867, 961,

1183, 1225, 1369, 1633, 1681, 1849, 1921, 2209, 2599, 2601, 2651, 3481, 3721, 4225, . . . .

• The set V−2 (7) giving A339520, has the first elements

25, 35, 51, 65, 75, 91, 105, 175, 203, 325, 391, 455, 575, 645, 861, 1247, 1275, 1295,

1633, 1763, 1775, 1785, 1875, 1921, 2275, 2407, 2415, 2599, 2625, 2651, 3045, 3367, . . . .

• The set V−3 (7) is given by A339727 and starts with the elements

9, 25, 49, 51, 69, 91, 105, 143, 145, 153, 185, 221, 225, 325, 339, 391, 425, 441, 481,

637, 645, 705, 805, 833, 897, 925, 1001, 1173, 1189, 1207, 1225, 1281, 1299, 1365, . . . .

In 1964, E. Lehmer [16] proved that the sequence U−1 (1) is infinite.

Conjecture 2. If a and k are positive integers with a odd, then U−k (a) and V−k (a) are infinite.

3.3. Results for b = 1

We shortly denote Un = Un(a, 1) and Vn = Vn(a, 1). If p is prime and a odd, then we
have D = a2 − 4, and by the law of quadratic reciprocity for the Jacobi symbol (15) we get(

D
p

)
=
( p

D
)
, hence the results in Theorem 3 can be rewritten as

(1) Ukp−( p
D )
≡
( p

D
)
Uk−1 (mod p);

(2) Vkp−( p
D )
≡ Vk−1 (mod p).

We investigate similar relations modulo a composite number n, where
( n

D
)

is the
Jacobi symbol, which is well-defined for any odd composite integers n and D, which allow
us to naturally define new pseudoprimality notions.

Definition 5. Let a, k and n be non-negative integers, with a odd. We say that the composite
number n is a

(1) generalized Lucas pseudoprime of level k+ and parameter a if

n | Ukn−( n
D )
−
( n

D

)
Uk−1.

The set of all such numbers is denoted by U+
k (a).

https://oeis.org/A340096
https://oeis.org/A340121
https://oeis.org/A340238
https://oeis.org/A339128
https://oeis.org/A339520
https://oeis.org/A339727
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(2) generalized Pell–Lucas pseudoprime of level k+ and parameter a if

n | Vkn−( n
D )
−Vk−1.

The set of all such numbers is denoted by V+k (a).

In [19] we have proved connections between the sets of generalized Lucas and Pell–
Lucas pseudoprimes of levels 1+ and 2+, linked through the property n | U2

n − 1 (similarly
to Theorem 4).

Theorem 5. Let a, n > 0 be odd integers with gcd(D, n) = 1. We have:

(1) Reference [19] (Theorem 4.9). If n ∈ U+
1 (a), then n ∈ U+

2 (a) if and only if n | U2
n − 1.

(2) Reference [19] (Theorem 4.12). If n ∈ V+1 (a) and gcd(a, n) = 1, then n ∈ V+2 (a) if and
only if n | U2

n − 1.

We now present the integer sequences U+
k (a), V+k (a) calculated for the values a =

3, 5, 7 and k = 1, 2, 3. Most of these have been added by the authors to OEIS [15]. For these
values we show that the reciprocal statements in Theorem 5 do not hold, and also, the
results cannot be extended directly to superior levels.

We first provide some details on weak generalized Lucas pseudoprimes.

Remark 6. For b = 1, the odd integers n satisfying the property n | U2
n − 1 recover the sequences

A338007 for a = 3, A338009 for a = 5, and A338011 for a = 7. The reader can use these links to
check the numerical examples given below.

We now show that the reciprocals of Theorem 5 do not hold.

Remark 7. (1) If n | U2
n − 1 with n ∈ U+

2 (a), does not imply n ∈ U+
1 (a). A counterexample

is given by Un = Un(3, 1) (bisection of Fibonacci numbers), where D = 5. For n = 9 we have
Un = 2584,

( n
5
)
= 1, n | U2n−( n

5 )
−U1 and n | U2

n − 1, but Un−( n
5 )
≡ 6 6= 0 (mod n).

Un−( n
5 )

= 987 ≡ 6 (mod n);

U2n−( n
5 )
−U1 = 5702886 ≡ 0 (mod n);

U2
n − 1 = 6677055 ≡ 0 (mod n).

(2) When n | U2
n − 1 with n ∈ V+2 (a), it does not imply n ∈ V+1 (a). A counterexample is

given by Vn = Vn(3, 1) = L2n (bisection of Lucas numbers), where D = 5. For n = 21 we get
Vn = 599074578, one has

( n
5
)
= 1 and

Vn−( n
5 )

= 228826125 ≡ 5 6= 2 (mod n);

V2n−( n
5 )
−V1 = 137083915467899400 ≡ 0 (mod n);

U2
n − 1 = 71778070001175615 ≡ 0 (mod n).

For the calculations we have used the vpi (variable precision integer) library in Matlab.

For each value a = 3, 5, 7 there might be infinitely many such integers n.

Remark 8. As seen in Example 2, even when n | U2
n − 1, and n ∈ U+

2 (a) (or n ∈ V+2 (a)), it does
not mean that n ∈ U+

1 (a) (or n ∈ V+1 (a)). For Un we have:

• a = 3: 9, 63, 423, 2871, 2961, 8001;
• a = 5: 25, 275, 425, 575, 775, 6325, 6575, 9775, 13175, 17825;
• a = 7: 49, 1127, 2303

https://oeis.org/A338007
https://oeis.org/A338007
https://oeis.org/A338009
https://oeis.org/A338011
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For Vn we have

• a = 3: 21, 329, 451, 861, 1081, 1819, 2033, 2211, 3653, 4089, 5671, 8557, 11309,
13861, 14701, 17513, 17941, 19951, 20473;

• a = 5: 115, 253, 391, 713, 715, 779, 935, 1705, 2627, 2893, 2929, 3281, 4141, 5191,
5671, 7739, 8695, 11815, 12121, 17963;

• a = 7: 1771, 7471, 7931, 15449.

We show that for Un one cannot make the jump from levels 1+ and 2+ to level 3+,
even under the extra condition n | U2

n − 1.

Example 7. When b = 1 and a = 3 we have D = 5. The first composite integer n for which
n | Un−( n

5 )
and n | U2

n − 1 is n = 21. For this integer one can check that n | U2n−( n
5 )
−U1, but

we have U3n−( n
5 )
−U2 ≡ 15 (mod n), where

( n
5
)
= 1. The calculations with large integers are

implemented with the vpi library in Matlab®. We have

Un−( n
5 )

= 102334155 ≡ 0 (mod n);

U2n−( n
5 )

= 61305790721611591 ≡
(n

5

)
U1 = 1 (mod n);

U3n−( n
5 )

= 36726740705505779255899443 ≡ 18 6=
(n

5

)
U2 = 3 (mod n);

U2
n − 1 = 71778070001175615 ≡ 0 (mod n).

We now find multiple such integers for Un, as in Remark 5.

Remark 9. Below we present some integers n which satisfy the properties n | U2
n − 1 and n ∈

U+
1 (a) ∩ U+

2 (a), but n /∈ U+
3 (a).

• a = 3: 21, 329, 451, 861, 1081, 1819, 2033, 2211, 3653, 4089, 5671, 8557, 11309,
13861, 14701, 17513, 17941, 19951, 20473;

• a = 5: 115, 253, 391, 713, 715, 779, 935, 1705, 2627, 2893, 2929, 3281, 4141, 5191,
5671, 7739, 11815, 12121, 17963;

• a = 7: 1771, 7471, 7931, 15449.

We conjecture that these sequences exist and are infinite for all odd integers a.

By Theorem 5 we have that whenever n | U2
n − 1 we have V+1 (a) ⊆ V+2 (a). The

following property for Vn is suggested by numerical simulations for a = 3, 5, 7 and n ≤
17000, but we do not currently have a proof.

Conjecture 3. If a, n ≥ 3 are odd integers such that n is composite and n | U2
n − 1, then we have

V+2 (a) ⊆ V+3 (a).

Example 8. b = 1, a = 3, D = 5 (bisection of Fibonacci and Lucas numbers).

• The set U+
1 (3) recovers the entry A340097 in [15], starting with

21, 323, 329, 377, 451, 861, 1081, 1819, 1891, 2033, 2211, 3653, 3827, 4089, 4181, 5671,

5777, 6601, 6721, 8149, 8557, 10877, 11309, 11663, 13201, 13861, 13981, . . . .

• The set U+
2 (3) recovers A340122 and its first elements are

9, 21, 27, 63, 81, 189, 243, 323, 329, 351, 377, 423, 451, 567, 729, 783, 861, 891, 963, 1081,

1701, 1743, 1819, 1891, 1967, 2033, 2187, 2211, 2871, 2889, 2961, 3321, 3653, . . . .

https://oeis.org/A340097
https://oeis.org/A340122
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• The set U+
3 (3) is indexed as A340239 and its first elements are

9, 49, 63, 141, 161, 207, 323, 341, 377, 441, 671, 901, 1007, 1127, 1281, 1449, 1853,

1891, 2071, 2303, 2407, 2501, 2743, 2961, 3827, 4181, 4623, 5473, 5611, 5777, 6119, . . . .

• The set V+1 (3) recovers A339129, and starts with

9, 49, 63, 121, 169, 289, 323, 361, 377, 441, 529, 841, 961, 1127, 1369, 1681, 1849, 1891,

2209, 2303, 2809, 2961, 3481, 3721, 3751, 3827, 4181, 4489, 4901, 4961, 5041, 5329, 5491,

5777, 6137, 6241, 6601, 6721, 6889, 7381, 7921, 8149, 9409, 10201, 10609, 10877, 10933,

11449, 11663, 11881, 12769, 13201, 13981, 14027, 15251, 16129, 17119, 17161, . . . .

• The set V+2 (3) giving A339521, has the first elements

21, 203, 323, 329, 377, 451, 609, 861, 1001, 1081, 1183, 1547, 1729, 1819, 1891, 2033,

2211, 2821, 3081, 3549, 3653, 3827, 4089, 4181, 4669, 5671, 5777, 5887, 6601, . . . .

• The set V+3 (3) is given by A339728 and starts with the elements

9, 21, 27, 63, 161, 189, 207, 261, 287, 323, 341, 377, 671, 783, 861, 901, 987, 1007,

1107, 1269, 1281, 1287, 1449, 1853, 1891, 2071, 2241, 2407, 2431, 2501, 2529, 2567,

2743, 2961, 3201, 3827, 4181, 4623, 5029, 5473, 5611, 5777, 5781, 6119, 6601, . . . .

Recall that Un(1,−1) = Fn and Vn(1,−1) = Ln, while Un(3, 1) = F2n (A001906)
and Vn(3, 1) = L2n (A001906) represent the bisection of Fibonacci and Lucas sequences,
respectively. The numerical results suggest the following two conjectures.

Conjecture 4. U−1 (1) ⊂ U+
1 (3). Notice that the terms of U−1 (1) (Fibonacci pseudoprimes)

323, 377, 1891, 3827, 4181, 5777, 6601, 6721, 8149,

can be found amongst the elements of U+
1 (3).

Conjecture 5. V−1 (1) ⊂ V+1 (3). One may notice that the elements of V−1 (1) smaller than 10000
also belong to the set V+1 (3).

Note that for a = 5 and a = 7, the values D = 21 and D = 45 are not prime.

Example 9. b = 1, a = 5, D = 21.

• The set U+
1 (5) recovers the entry A340098 in [15], starting with

115, 253, 391, 527, 551, 713, 715, 779, 935, 1705, 1807, 1919, 2627, 2893, 2929, 3281,

4033, 4141, 5191, 5671, 5777, 5983, 6049, 6479, 7645, 7739, 8695, 9361, 11663, . . . .

• The set U+
2 (5) recovers A340123 and its first elements are

25, 115, 125, 253, 275, 391, 425, 505, 527, 551, 575, 625, 713, 715, 775, 779, 935, 1705,

1807, 1919, 2525, 2627, 2875, 2893, 2929, 3125, 3281, 4033, 4141, 5191, 5555, . . . .

• The set U+
3 (5) is indexed as A340240 and its first elements are

55, 407, 527, 529, 551, 559, 965, 1199, 1265, 1633, 1807, 1919, 1961, 3401, 3959, 4033,

4381, 5461, 5777, 5977, 5983, 6049, 6233, 6439, 6479, 7141, 7195, 7645, 7999, . . . .

https://oeis.org/A340239
https://oeis.org/A339129
https://oeis.org/A339521
https://oeis.org/A339728
https://oeis.org/A001906
https://oeis.org/A001906
https://oeis.org/A340098
https://oeis.org/A340123
https://oeis.org/A340240
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• The set V+1 (5) recovers A339130, and starts with

25, 121, 169, 275, 289, 361, 527, 529, 551, 575, 841, 961, 1369, 1681, 1807, 1849, 1919,

2209, 2783, 2809, 3025, 3481, 3721, 4033, 4489, 5041, 5329, 5777, 5983, 6049, 6241,

6479, 6575, 6889, 7267, 7645, 7921, 8959, 8993, 9361, 9409, 9775, . . . .

• The set V+2 (5) giving A339522, has the first elements

95, 115, 145, 253, 391, 527, 551, 713, 715, 779, 935, 1045, 1615, 1705, 1805, 1807,

1919, 2185, 2627, 2755, 2893, 2929, 2945, 3281, 4033, 4141, 4205, . . . .

• The set V+3 (5) is given by A339729 and starts with the elements

25, 55, 85, 115, 155, 187, 253, 275, 341, 407, 527, 551, 559, 575, 851, 925, 1199, 1265,

1633, 1775, 1807, 1919, 1961, 2123, 2507, 2635, 2641, 2725, . . . .

Example 10. b = 1, a = 7, D = 45.

The following sequences of pseudoprimes are obtained.

• The set U+
1 (7) recovers the entry A340099 in [15], starting with

323, 329, 377, 451, 1081, 1771, 1819, 1891, 2033, 3653, 3827, 4181, 5671, 5777, 6601,

6721, 7471, 7931, 8149, 8557, 10877, 11309, 11663, 13201, 13861, 13981, 14701, . . . .

• The set U+
2 (7) recovers A340124 and its first elements are

49, 323, 329, 343, 377, 451, 1081, 1127, 1771, 1819, 1891, 2033, 2303, 2401, 3653, 3827,

4181, 5671, 5777, 6601, 6721, 7471, 7931, 8149, 8557, 9691, 10877, 11309, . . . .

• The set U+
3 (7) is indexed as A340241 and its first elements are

161, 323, 329, 341, 377, 451, 671, 901, 1007, 1079, 1081, 1271, 1819, 1853, 1891, 2033,

2071, 2209, 2407, 2461, 2501, 2743, 3653, 3827, 4181, 4843, 5473, 5611, 5671, . . . .

• The set V+1 (7) recovers A339131, and starts with

49, 121, 169, 289, 323, 329, 361, 377, 451, 529, 841, 961, 1081, 1127, 1369, 1681, 1819,

1849, 1891, 2033, 2209, 2303, 2809, 3481, 3653, 3721, 3751, 3827, 4181, 4489, 4901,

4961, 5041, 5329, 5491, 5671, 5777, 6137, 6241, 6601, 6721, 6889, 7381, 7921, . . . .

• The set V+2 (7) giving A339523, has the first elements

91, 203, 323, 329, 377, 451, 1001, 1081, 1183, 1547, 1729, 1771, 1819, 1891, 1967, 2033,

2093, 2639, 2821, 3197, 3311, 3653, 3731, 3827, 4181, 4669, . . . .

• The set V+3 (7) is given by A339730 and starts with the elements

49, 161, 287, 323, 329, 341, 377, 451, 671, 737, 901, 1007, 1079, 1081, 1127, 1271, 1363,

1541, 1819, 1853, 1891, 1927, 2033, 2071, 2303, 2407, 2431, 2461, 2501, 2567, 2743, . . . .

Conjecture 6. If a and k are positive integers with a odd, then U+
k (a) and V+k (a) are infinite.

https://oeis.org/A339130
https://oeis.org/A339522
https://oeis.org/A339729
https://oeis.org/A340099
https://oeis.org/A340124
https://oeis.org/A340241
https://oeis.org/A339131
https://oeis.org/A339523
https://oeis.org/A339730
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4. Conclusions and Further Work

In this paper we have analyzed the Fibonacci pseudoprimes of level k, and we have
formulated an analogous version of this concept for the Lucas numbers (Section 2.2).

In Section 3 we have generalized these notions for Lucas {Un(a, b)}n≥0, and general-
ized Pell–Lucas sequences {Vn(a, b)}n≥0, obtaining the generalized Lucas and Pell–Lucas
pseudoprimes of levels k− (for b = −1) and k+ (for b = 1) and parameter a. For these
concepts, it was known from [19], that under the supplementary condition n | U2

n − 1, the
pseudoprimes of levels 1− and 2−, and 1+ and 2+, respectively, coincide.

The purpose of this paper has been threefold. First, to calculate the explicit values
of these pseudoprimes for levels k = 1, 2, 3, for b = −1 with a = 1, 3, 5, 7 and for b = 1
with a = 3, 5, 7. This effort led to numerous new additions to OEIS. Second, we have
shown that reciprocal statements for Theorems 4 and 5 do not hold, providing a range of
counterexamples (Remark 4 and Remarks 7 and 8, respectively). Thirdly, we have shown
that the transition from levels 1− and 2− to level 3− (and from levels 1+ and 2+ to 3+,
respectively) cannot be guaranteed in general, even under the supplementary condition
n | U2

n − 1 (Remarks 5 and 7, respectively).
An interesting problem for further investigation is the connection between the gener-

alized Lucas and Pell–Lucas pseudoprimes of levels k− and k+ and parameter a, and the
weak pseudoprimality concepts defined in [7].

Numerous open problems remain to be solved, as seen from Conjectures 1, 2, 3, 4, 5,
or 6. Another interesting direction for further study, suggested by one of the referees, was
to explore whether any odd composite integer could be a pseudoprime of a given level, or
to find the smallest such integer that cannot be a pseudoprime at all. We invite the readers
to join us in trying to solve these problems.
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