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Abstract In the field of process mining, it is worth noting that process mining techniques assume that the resulting
event logs can not only continuously record the occurrence of events but also contain all event data. However, like
in IoT systems, data transmission may fail due to weak signal or resource competition, which causes the company’s
information system to be unable to keep a complete event log. Based on a incomplete event log, the process model
obtained by using existing process mining technologies is deviated from actual business process to a certain degree.
In this paper, we propose a method for repairing missing activities based on succession relation of activities from
event logs. We use an activity relation matrix to represent the event log and cluster it. The number of traces in the
cluster is used as a measure of similarity calculation between incomplete traces and cluster results. Parallel activities
in selecting pre-occurrence and post-occurrence activities of missing activities from incomplete traces are consid-
ered. Experimental results on real-life event logs show that our approach performs better than previous method in
repairing missing activities.

Keywords Process mining · Information system · Activity relation matrix · Incomplete event logs

1 Introduction

1.1 Background

Business Process Management (BPM) plays an increasingly important role in today’s enterprises because of its ad-
vantages of cost savings, improvement of work quality and process optimization. The existing methods and tools
in BPM can support the discovery, analysis and improvement of business process [31]. The execution of a business
will be documented by the enterprise, and eventually will be converted into event log format that contains some
attributes such as case id, activity, timestamp, resource, etc. Event logs recorded in modern information system,
as the starting point of process mining, provide the precondition for process model discovery, conformance check
and enhancement [3]. On the one hand, process discovery in the process mining domain is the crucial learning task
whose goal is to automatically discover a process model represented by Petri nets or BPMN in order to analyze
actual business execution process [1]. Based on the analysis of event logs, more and more scholars are working on
different methods to obtain high-quality process models [13, 21, 38, 5, 2]. On the other hand, conformance checking
is associating events in the event log with activities in the process model in order to expect to reveal and diagnose
commonalities and differences between the modeling behaviors and the observed behaviors[24, 25]. Therefore, event
logs should be treated as “first-class citizens”[4].
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1.2 Motivation

However, it is worth noting that process mining techniques like α-algorithm [1], Genetic Miner [27], ILP Miner
[19],Heuristic Miner [33], in most situations, assume that the resulting event logs can not only continuously record
the occurrence of events, but also contain all event data. As we all know, an organization’s business execution pro-
cesses are becoming more complex and flexible to accommodate different business requirements, which will result in
recording massive volumes of data in their own information systems. In this case, there is no guarantee that all data
can be logged in the event logs. For example, event logs from Internet of Things(IoT) devices fails to store all running
data for some reason such as temporary loss of network signal, a fault of a sensor or synchronization problems. To
our knowledge, few researchers have studied the incomplete event log problem in process mining.

If we apply traditional process discovery algorithms to obtain process models from incomplete event logs,the re-
sulting process models are likely to deviate from the actual business process models. For example, in an IoT system
developed by an IT company for elderly people, sensors collect information such as heart rate, location, room tem-
perature, carbon dioxide, and lighting to sent to fog nodes with computing power. Then a series of data processing
task is carried out in the cloud and transmitted to the Web application through the Internet. Stakeholders, family
members, caregivers, health care professionals and emergency services, can monitor the elderly’s behavior in real
time. The entire business process is shown in the figure1.

Fog CloudSensors Client Stakeholders

Fig. 1: data processing architecture distributed with the different locations

In order to represent the process of this business logic succinctly and clearly, we assume that there are ten ac-
tive tasks, that is, task(A) collecting information, tasks(B, C, D, E and F) fog equipment calculation, task (G) cloud
computing, tasks (H, I) application devices data interface, and task (J) stakeholders accepting information. Hypo-
thetically, the company has a complete event log with 8 activity traces denoted by L =[ABCGFIL, ABFCGIKL,
ACBFGIJL, ACBGFIJKL, ABCFDGIKL, ACDBFGIKL, ABCDGFIKL, ABCDGFIJL]. Based on this event log, a process
model(see Figure 2 ) can be discovered from this event log using a fuzzy mining algorithm [16] In this Figure, the
numbers in each box mean the edge cutoff in ProM 6.7 1, which is a fuzzy process mining kit for process model
analysis, to generate the process model shown. However, Data may be lost due to unstable transmission signal of
fog devices. When in the fog device C and D faults occur on the penultimate and last track respectively, the event log
is incomplete. Consequently, we get another process model based on this incomplete log, which is shown in Figure
3. Comparing the two process models, visually we see that two red arcs disappear in Figure 2 and two green arcs
appear in Figure 3. Besides, the corresponding numbers in the other activities except A and J are different. Therefore,
this will have some negative impact on the analysis of the process model for business executives or domain experts.
For example, there is a B to C process in the complete event log, but the process model from incomplete log can not
express this execution process.

1 http://www.promtools.org/doku.php?id=prom67

http://www.promtools.org/doku.php?id=prom67
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A 1.000

B 0.509

C 0.514

D 0.273

E 0.662

F 0.523 G 0.440

H 0.256

I 0.401

J 1.000

Fig. 2: Process model based on a complete event log.

A 1.000

B 0.510

C 0.440 D 0.290

E 0.591

F 0.551 G 0.447

H 0.251

I 0.401

J 1.000

Fig. 3: Process model based on an incomplete event log.

Let’s take another look at the results of an incomplete event log and complete event log on conformance checking,
respectively. First of all, we use one of the simple complete event log 2 containing eight activities and six different
traces (42 events in total) as input for conformance analysis. Secondly, we turn this complete log into an incomplete
log by randomly deleting any four of the 42 events. To identify which are the most right traces for the conformance,
we finally apply a conformance approach called Replay a Log on Petri Net for Conformance Analysis in ProM Lite 1.2
3, which is a lightweight tool similar to ProM 6.7, and show some results in the table 1. As can be seen from table
1, all values except for the calculation time decrease. Of the four quality measures (fitness, simplicity, precision,
generalization) in process mining, fitness is the most relevant measure of conformance. When conformance analysis
is carried out for the same process model from complete and incomplete log, fitness for the process generated from
the incomplete log is lower, meaning that we must expect the resulting process to be flawed.

Table 1: Results of conformance anlysis from complete and incomplete event
logs

Property Complete Event Log Incomplete Event Log
Trace Fitness 1.0 0.94
Trace Length 7.0 6.33

Max Fitness Cost 12.0 11.33
Max Move-Log Cost 7.0 6.33
Calculation Time(ms) 1.67 1.67

Consider the above two aspects, a complete event log is critical to process mining techniques. In the field of
data mining, there are many methods to repair missing data, such as regression, Bayesian formalization, decision
tree induction, etc. However, due to the complex and flexible nature of the business execution process and the
concurrency, circular and causal relationships between events, the above methods cannot be directly used to repair
missing data from the incomplete event log in process mining. In our previous [35] work, a method, which explores
the context of full traces in the incomplete log with trace profile, was proposed to repair missing activities. However,

2 http://www.processmining.org/event_logs_and_models_used_in_book
3 http://www.promtools.org/doku.php?id=promlite12

http://www.processmining.org/event_logs_and_models_used_in_book
http://www.promtools.org/doku.php?id=promlite12


4 Jie L., Jiuyun X. Ruru Zh. and Stephan Reiff

trace profile the initial relationships among activities are extracted from trace profile, without further analysis of
circular and causal relationships between events, the accuracy of proposed method is one of problems which we are
addressing in this paper.

In this paper, we focus on incomplete event logs and propose a method of repairing missing activities to restore
the most realistic event log. The goal is that after repair all existing process mining techniques can be used with
confidence. Initially, we extract complete traces and incomplete traces from an event log. Dealing with these complete
traces will result in some relational groups and each trace, including incomplete traces, is represented by multiple
relation groups. Unlike our previous representation of the event log, first, we transform a log into a matrix by activity
succession relationships rather than trace profiles. Next the complete traces are divided into different clusters, and
then we assign each incomplete trace to the most similar clustering results. The concurrency relation of activities
is considered when looking for direct pre-occurrence and post-occurrence activities of missing activities. Finally,
the missing activities in incomplete traces are repaired according to the relationship between the activities from the
event log. The accuracy of our approach is better than others and has been empirically evaluated and compared on
different real-life event logs.

The contributions of this paper are as follows:

– A process repair method which is based on the succession relation of events is proposed in this paper, which is
quite different from our previous paper which is based profile clustering.

– Experimental results on real-life event logs show that the accuracy of our approach is better than previous
method in repairing missing activities.

The rest of the paper is structured as follows: Section 2 discusses related work. In Section 3, we provide the basic
concepts used in this paper. Our method for predicting missing activities from incomplete traces is described in
Section 4. Experimental results and comparisons on several real-life event logs with respect to previous method are
provided in Section 5. Section 6 draws conclusions and discusses future work.

2 Related Work

Process mining builds an important bridge between data mining and business process modeling and analysis. The
purpose of process mining is to extract useful information from event logs, so that actual business processes can
be discovered, and improved. Aalst et al.[1] proposed an α algorithm to mine a simple event log. It is one of the
first algorithms to deal with concurrent processes in process mining. The disadvantage of the α algorithm is that
it fails to deal with noise and loop structures in an event log. The authors of [8, 34] extended the α algorithm to
mine short loop processes and non-free-choice constructs. In addition, Medeiros et al. [27] introduced a framework
for a genetic process mining method, which includes four main steps: initialization, selection, reproduction and
termination. Genetic Miner can handle noise of log information and be easily adapted and extended. Some areas
have borrowed the idea of genetic mining for achieving better quality assurance like the garment industry [20] and
business process monitoring [11]. At the same time, genetic process mining is not very effective in the face of large
event logs. It can take a lot of time for finding a good fitness function. Effendi et al. [12] presented a process model
discovery technique by considering the overlapping rules which makes fitness without losing too much precision.

For well-structured business processes and small event logs, most process discovery algorithms can generate
simple and expressive process models. As a matter of fact, an event log will record huge amounts of data due to the
complexity of the business process. Based on large event logs, resulting process models can be ‘spaghetti-like’ and
difficult to understand. Therefore, Greco et al. [14] presented the idea of trace clustering to split a complex event
log into several simple sub-logs and discovery sub-process models. The key to trace clustering is the approach to
convert data flow into a numerical representation. If a set of numerical representations cannot well represent the
running relationship of events in the trace, the similarity between traces in the clustering results may be very low,
which ultimately affects the quality of the process model. Researchers explored more methods to improve the result
of trace clustering and discover accurate and simple business process models from event logs [9, 17, 10, 30, 32].

Split miner [6], based on a directly-follows graph, can identify combinations of split gateways that capture the
concurrency, conflict, and causal relation between events to discovery accurate and simple business process models
from event logs. In the face of some more complex event logs, the split miner method may get a bad process model.
If an event log includes some low-level events, process models discovered by process mining techniques cannot be
easily understood. Therefore, Mannhardt et al. [26] presented a Guided Process Discovery method (GPD) to find
relation between low-level events and high-level activities based on domain knowledge. GPD can discovery a high-
level process model from the abstracted event log created through alignment between activity patterns and low-level
event log. In the paper, the GPD approach has been shown to be successfully applied to big event logs form complex
and flexible business processes. And yet, if multiple optimal alignments appear in event groups, GPD just chooses
one of them and does not give a better selection strategy. Besides, a large and complex event log with a large amount
of data is more likely to miss some data [7]. In this case, they did not indicate whether the activity patterns analyzed
by GPD deviated from the actual one.

Existing process discovery techniques including α algorithm [1], ILP Miner[19], Heuristic Miner[33], etc. can sat-
isfactorily discover process models from both simple and complex event logs under different constraints. They are
all based on the assumption that the event logs are complete. Vast quantities of data is recorded in the enterprise
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information system every day and it is impossible to guarantee that the data can be recorded correctly and without
omission. Leemans et al.[22] introduced a new algorithm to discovery block-structured process models from incom-
plete event logs. They improved Inductive Miner [21] to deal with incomplete logs: the divide-and-conquer step is
preserved, whereas the activity partition substituted by an optimization problem from probabilistic behavioral rela-
tions. The so-called incomplete log defined in the paper is that one cannot assume to have seen all possible process
executions.

Conformance checking can be used to improve compliance with business processes, organizations, and infor-
mation systems in process mining. It has the ability to identify the difference between the process model and the
process execution recorded in the event log. And by analyzing these deviations, one can develop work efficiency or
change management system [1]. In [28], Rozinat et al. introduced an incremental approach to check the conformance
of a process model and an event log based on monitoring real behavior and define multiple metrics to allow for
the quantification of conformance. However, they use only an activity perspective (i.e. control-flow) on the business
process and do not consider the dependencies of events or even the loss of activity in the event log.

A new method in which all perspectives were taken into account was reported in [23] to align log traces and
process models for conformance checking. Sometimes, the result of alignment is not optimal so that deviations
cannot be comprehensively interpreted. Based on a customizable cost function, Mannhardt et al. [25] presented
a balanced multi-perspective technique for business process conformance checking. Unlike other approaches that
take control-flow as a priority perspective, they balance the deviations about all perspectives from event logs to
circumvent misleading results.

A majority of process mining techniques extract knowledge from complete event logs to discovery process mod-
els and check the conformance between event logs and process models. Zakarija [36] used an example to show how
to select process mining techniques to discover process models when the event log data is incomplete and Zareh-
Farkhady [37] also introduced a two phase approach to directly mine process models form incomplete and noisy
logs, but without considering how to repair missing data form event logs. As mentioned in Section 1, when an in-
complete event log is used to generate process model, the result will deviate from the actual business processes.
In our previous work, we proposed an event log repairing approach based on profile clustering (PROELR). In this
paper, we focus on predicting missing activities from incomplete event logs in process mining using a new method
and compare the accuracy with our previous method. The goal is to restore the incomplete event log to the original
record as perfectly as possible so that it can serve all process mining technology.

3 Preliminaries

This section describes some essential concepts used in the paper. An event log record some event information about
the business execution process. Each event can be described by different attributes. For example, an event might
have a timestamp corresponding to an activity, be executed by a specific person, have associated costs, and so on.

3.1 Event logs and re-represention of traces

An event log consists of a set of cases (traces) that are a specific event sequence. For simplicity, we often use activity
names to represent events. For example, an event log L = [σ3

1 , σ2, σ2
3 ], where σ1 = 〈 a,b,c,d 〉, σ2 = 〈 a,b,b,b,d 〉, and

σ3 = 〈 a,c,b,d,e 〉, contains six traces and 27 events. In this paper, we focus on repairing missing activities in traces
from incomplete log. The event log and trace are defined formally as follows:

Definition 1 (Trace, Event log). Let A be a set of activities. A∗ is a collection of all finite sequences of activties. A trace σ ∈ A∗

is a sequences of activities. An event log L is a multiset of traces.

Definition 2 (Complete trace, Complete event log). A complete trace (cσ) consists of a complete sequence of activities. A
complete event log CL is a multiset of complete traces.

Consider an event log L = [abcd, acbd, abbd, acbde, ab-def], where A is {a, b, c, d, e, f} and complete traces
include cσ1 = 〈a, b, c, d〉, cσ2 = 〈a, c, b, d〉, cσ3 = 〈a, b, b, d〉 and cσ4 = 〈a, c, b, d, e〉. So the CL = [ cσ1, cσ2, cσ3, cσ4 ].

Nowadays, vast quantities of information are generated daily from enterprise information system, which could
result in the loss of some data due to various reasons such as human error and system failure so that business
execution process cannot be fully recorded in the event log. Furthermore, events are not just stored in dedicated log
files (XES, MXML) and may be recorded in database tables, message logs, transaction logs, server logs, and other
data sources. We need to translate these events into a formal event log form as a starting point for process mining.
During this transformation, data loss may also occur.

Definition 3 (Incomplete trace, Incomplete event log ). An incomplete trace iσ = 〈e1, e2, ..., en〉, if and only if, for i ∈
[1,n], ∃ei = NULL. An incomplete event log IL = [σ1, σ2, ...,σm], if and only if, for j ∈ [1,m], ∃σj = iσ.

Consider again this event log L = [abcd, acbd, abbd, acbde, ab-def]. It is defined as an incomplete event log on
account of existing an incomplete tracec iσ = 〈a, b,−, d, e, f 〉.
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Definition 4 (Start activities(Ts), End activities(Te), Single loop activities(Tl). Let L be a complete event log, A be the
set of activities, and σ=〈e1, e2, ei, ..., en〉.

– Ts = {a ∈ A|∃ σ∈L ∧ a=e1}.
– Te = {a ∈ A|∃ σ∈L ∧ a=en}.
– Tl = {a ∈ A|∃ σ∈L ∧ a=ei=ei+1, i ∈ [1,n − 1]}.

A trace represents the order in which activities occur, while does not adequately indicate the dependencies be-
tween activities. For example, we can conclude that succession relations are (a,b), (b,c), (c,d) from cσ1. However, the
CL characterizes the process where a is followed by b and c in parallel. So the pair of activities (b,c) is not succession
but concurrency relation. Based on this point, we need to re-represent the event log through the direct succession
relation between activities. Next, we introduce several kinds of relations based on the event log.

Definition 5 Let L be a complete event log and A be the set of activities.

– Order relation(�L): a �L b is a order relation if and only if ∃σ = 〈e1, e2, ei, ej, ..., en〉, i,j ∈ [1, n] and i < j, σ ∈ L, a,b ∈ A
so that ei = a and ej = b.

– Concurrency relation(‖L): a ‖L b is a concurrency relation if and only if ∃σ = 〈e1, e2, ei, ..., en〉, σ̄ = 〈e1, e2, ej, ..., em〉, i ∈
[1, n-1], j ∈ [1, m-1], σ, σ̄ ∈ L, a,b ∈ A so that ei = a, ei+1 = b and ej = b, ej+1 = a.

– Transitive relation(⇒L): a⇒L c is a transitive relation if and only if ∃ a,b,c ∈ A so that a �L b and b �L c.

Definition 6 (Re-representation of trace(ρ)). Let tuple ρ = (T,→σ) be a new representation for the trace σ, where:

– T = (Ts,Te,Tl), and
– →σ is the succession relation, i.e.→σ = (�σ \ ‖L)\ ⇒σ .

Based on the above definitions of special relations, a trace can be re-expressed. Let us consider the complete trace
cσ1 from complete log CL. First, we compute the order relation �L from all traces and get concurrency relation set
{(b,c)}, and note that (b,c) is equivalent to (c,b). Activities in concurrency relation are called parallel activities. In
the first step we have got the order relation set of cσ1, namely �cσ1{(a,b), (a,c), (a,d), (b,c),(b,d), (c,d)}. Second, we
remove the concurrency relation {(b,c)} from the �cσ1 . Thrid, the transitive relation a ⇒cσ1 d also is removed from
�cσ1 . Finally, the cσ1 = 〈a, b, c, d〉 is re-represented as the succession relation set →cσ1= {a →L b,a →L c, b →L

d, c →L d}. Similarly, we obtain →cσ2= {a →L b,a →L c, b →L d, c →L d}, →cσ3= {a →L b, b →L b, b →L d},
→cσ4= {a →L b,a →L c, b →L d, c →L d, d →L e}. The set of succession relation is used in trace clustering and
predicting missing activities.

3.2 Traces clustering

Greco et al.[14] first proposed an approach based on the traces clustering to handle complex and large event logs
from flexible environments to discover accurate and expressive sub-models. Using the idea of traces clustering, we
first cluster the complete event log so that similar traces are clustered in the same cluster, and then calculate the
distance between the incomplete trace and each clustering result. Song et al.[29] introduced log profiles to partition
event logs. However, each row in the activity profile defines the number of times each activity in trace and does not
take into account the relation between activities.

In this paper, we construct an activity relation profile, where each row corresponds to the succession relation
vector of one trace. A trace is transformed into a succession relation vector by setting corresponding relation to 1 if
it exists in the trace and 0 otherwise.

Based on activity relation profile, we can apply any clustering algorithm to separate complex event logs. Four
clustering algorithms including K-means, Quality Threshold, Agglomerative Hierarchical Clustering, and Self-Organizing
Maps(SOM) are introduced and the conclusion is drawn that SOM algorithm performs better than others in[29].

It is well known that SOM is one of Artificial Neural Network algorithms and can conduct unsupervised learning
classification for high dimensional data to produce a low-dimensional representation [18]. SOM is called a natural
method of dimension reduction and with this property it can be employed for dividing the log on the basic of
activity relation matrix. The purpose of using traces clustering in our paper is to find the most similar traces set for
the incomplete trace, in which the missing activity rather than in the entire traces is predicted.

3.3 Similarity calculation

By using the SOM algorithm, we can get several sets of different clustering results that are represented by C con-
taining some similar traces. We define the average succession relation vector for each cluster C in order to calculate
similarity between incomplete trace and clusters as the follow formula.

V =

∑ |C |
i=1 vi

|C |
(1)
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Notice that |C | denotes the number of traces in the cluster and vi is a succession relation vector in a trace from
the cluster result.

In this paper, we choose Euclidean distance to calculate similarity between incomplete traces and clusters, which
is defined as follow:

ED(Iσ,V) =

√√√ n∑
j=1

|Iσj − V j |
2 (2)

Iσ represents the active relation vector of the incomplete trace iσ. It is crucial that we not only consider the
distance measure but also the number of traces in the cluster for calculating similarity in our approach. In a case
where any two ED are close, the final similarity of a missing trace and cluster result C is related to the number of
elements in the cluster, namely, the more the value is, the more similar it is. We therefore use the following formula
to determine similarity: FS = α ∗ ED + β ∗ |C |, where α(resp. β) is set to 0.4(resp. 0.6) [35]. This formula is guided by
a distance threshold(dt). If the difference between any two ED is less than set threshold manually, we will calculate
FS to determine which cluster the current iσ is assigned to. Otherwise, we only use the Euclidean distance to decide
the similarity.

4 Our Approach

We already observed that it is difficult to guarantee completeness of the data recorded in the real-life event logs
from modern complex information systems due to reasons such as system failure and human error. If an event
log including missing data is used for process discovery and conformance checking, there will be some deviation
between the results and actual business model. Therefore, ensuring that the event log is complete is critical for
process mining.

Our approach for repairing missing activities in event logs consists of the following steps: 1) pre-process an event
log to get a complete and incomplete event log respectively; 2) cluster the complete event log; 3) match missing
traces from incomplete event log to clusters; 4) repair missing activities in the incomplete traces; and 5) mine process
models and analyse conformance with complete event log. The framework of repairing missing activities is shown
in Figure 4. Our approach has two main steps: one is the representation of event logs, and the other is the selection
of pre-occurrence and post-occurrence of the missing activity, which are covered in detail in the following sections.

Event 
Log

Complete 
Event 
Log

Incomplete

Event 
Log

Sub 
Log

Sub 
Log

...

Cluster Match Repaire

Process 
Discovery

Conformance 
Checking

Fig. 4: The framework for repairing missing activities.

4.1 Transforming An Event Log into A Succession Relation Matrix

Given an event log, we first split it into a complete event log and an incomplete event log. Then, the event log needs to
be converted to a matrix for clustering and matching operations. Unlike the previous log representation, our method
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uses the activity succession relation to represent the log. From Definition 6, we can re-represent each trace from the
event log. For example, the event log L = [abcd, acbd, abbd, acbde] is transformed into a activity relation profile
as shown in Table 2. The following processes of clustering and matching are similar to our previous method. The
event log is clustered into several different sub-logs by using SOM algorithm based on activity succession relation
matrix. Incomplete traces are matched to the most similar sub-logs. As discussed in Section3.3, determining the
similarity calculation between the incomplete trace and the cluster is crucial, because if the incomplete trace cannot
be accurately assigned to the most similar clustering result, it may lead to the prediction of the erroneous missing
activity.

Table 2: Activity succession relation matrix from the event log CL.

Trace Succession relation
a→L b a→L c b →L d c →L d d →L e b →L b

cσ1 1 1 1 1 0 0
cσ2 1 1 1 1 0 0
cσ3 1 0 1 0 0 1
cσ4 1 1 1 1 1 0

4.2 Selecting Direct Pre-occurrence and Post-occurrence activities of missing activities in Incomplete Traces

After determine which cluster is most similar to the incomplete trace, we start to repair the missing activity in
the incomplete trace according to the succession relation between the activities in the traces of the cluster. When
we choose the pre-occurrence and post-occurrence activities of missing activity from missing trace, there are three
situations:

1. If the pre-occurrence and post-occurrence activities directly are both not parallel activities, they will be chosen as
pre-occurrence and post-occurrence activities directly of missing activity in an incomplete trace.

2. If the pre-occurrence activity directly is a parallel activity, then select another pre-occurrence activity in front of
it until this activity is not a parallel activity.

3. If the post-occurrence activity directly is a parallel activity, then select another post-occurrence activity behind it
until this activity is not a parallel activity.

For the incomplete trace iσ = 〈a, b,−, d, e, f 〉, since parallel activities include b and c in the event log L, the pre-
occurrence and post-occurrence activities are a and d respectively. We define a variable(P) to hold the pre-occurrence
and post-occurrence activities of the missing activity which are parallel activities for the event log. If activities in the
predicted candidate activity set exist in P, we will remove them.

The main consideration based on the predecessor and successor activities method is to count the most frequent
activities from the candidate activities as missing activities in our previous method(PROELR) [35]. However, the
method based on the succession relation between activities(SRBA) considers the direct dependencies of activities in
the event log. Analogously, we also first compute the direct pre-occurrence activity(a) and post-occurrence activity(d)
of missing activity in the incomplete trace. Secondly, and in contrast to the approach in which a· and ·d of all traces
are calculated in a cluster, this approach allows for the direct succession relations between activities and generates
a collection of candidate activities. Algorithm1 describes the specific solving steps. Finally, an activity from the
candidate activity set could be selected as the missing activity.

The number of activities in the candidate activity set can be 0 and more than 1. For the former, we randomly
select a trace from the cluster and then determine the missing activity. We chose the most frequent succession ac-
tivity to determine the missing activity for the latter. In our experiment, however, the probability of these two cases
happening is small.

Let’s introduce the example event log L and look at Algorithm 1 again. Because we figured out that X = a, Y = d
and P = {b} (line 2), the candidate activity set xy = {b, c} (line 4-10). Afterwards, we remove activity b from the
candidate activity set. So the activity c is considered a missing activity in the incomplete trace. The missing activities
in the trace are completed by our method. This allows process mining techniques to use event logs as their inputs
with ‘greater confidence’.

5 Experimental Result Evaluation

To illustrate the effectiveness of the proposed approach for several real-life event logs(Lfull4,Hospital Billing5,BPI
Challenge 20126,and Conformance Checking Challenge 2019(CCC19)7) and compare the PROELR and SRBA algo-
rithms.

4 http://www.processmining.org/event_logs_and_models_used_in_book
5 https://data.4tu.nl/repository/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
6 https://data.4tu.nl/repository/uuid:3926db30-f712-4394-aebc-75976070e91f
7 https://data.4tu.nl/repository/uuid:c923af09-ce93-44c3-ace0-c5508cf103ad

http://www.processmining.org/event_logs_and_models_used_in_book
https://data.4tu.nl/repository/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://data.4tu.nl/repository/uuid:3926db30-f712-4394-aebc-75976070e91f
https://data.4tu.nl/repository/uuid:c923af09-ce93-44c3-ace0-c5508cf103ad
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Algorithm 1: Based on the succession relation between activities in the log
Input: Candidate clustering results of missing traces
Output: Candidate activity set xy

1 C: The most similar clustering result of iσ selected;
2 X ,Y : The direct pre-occurrence and post-occurrence activities of the missing activity in iσ found;
3 →σ : The set of all direct succession relations from C to be computed;
4 if X is not NULL and Y is not NULL then
5 xy ← compute the direct successor of X and direct predecessor of Y from→σ ;
6 if len(xy)==2 and X in xy and Y in xy then
7 if X ,Y not in Tl then
8 xy ← xy\X\Y ;

9 else if len(xy)>2 then
10 xy ← xy\X\Y\Ts\Te ;

11 else if X is NULL and Y is not NULL) then
12 xy ← and direct predecessor of Y from→σ ;
13 if len(xy) ==0 and s in Tl and s != Y then
14 xy ← add(s) ;

15 else
16 xy ← xy\Y ; y ← set();
17 if s in Tl and s in xy then
18 y ← add(s) ;

19 if len(y) != 0 then
20 xy.clear(); xy ← y;

21 else
22 xy ← and direct successor of X from→σ ;
23 if len(xy) ==0 and s in Tl and s != X then
24 xy ← add(s) ;

25 else
26 xy ← xy\X; x ← set();
27 if s in Tl and s in xy then
28 x ← add(s) ;

29 if len(x) != 0 then
30 xy.clear(); xy ← x;

With these event log sources, some comparing experiments conducted are as followings. First, the complete event
logs are adopted from all of above data sources, and deleting one of activities from the complete event traces are to
get produces the corresponding incomplete event log traces. Next, we describe in detail the calculation of the repair
missing activities on the real-life event log Lfull. The event log described in Table3 contains 1391 traces and 7539
events.

Table 3: Some basic information about the Lfull event log
Traces 1391 Events 7539

Activities 8 Start Activities(Ts ) a
End Activities(Te ) g,h Single loop Activities(Tl ) None
Order relation(�L ) 1391 Concurrency relation(‖L ) (b,d),(c,d)

Direct successor activities 16 Succession relation(→L ) 38

Since the event log is complete, an incomplete log is obtained from the complete event log by randomly deleting
one of events for our experiment. We select 50 traces from the 1391 traces and delete one of the activities in each trace,
both of which are randomly chosen, which resulted in an incomplete log containing the missing 50 activities. First,
we re-represent the traces by Definition 4, 5 and 6 from the complete log including 1341 complete traces and then we
get a succession relation matrix(1341*38). Second, by using the SOM algorithm, we obtain seven different clustering
results shown in Figure 5(a). Third, calculate the most similar clustering results for each incomplete trace according
to the introduction in Section 3.3. For example, the incomplete trace id 16 is most similar to the first clustering result
in our experiment. Finally, we repair the missing activity in each incomplete trace based on SRBA and compared
the 50 activities that were previously deleted to conclude that 44 activities were predicted to succeed, that is, the
accuracy was 0.86. Similarly, the prediction rate obtained by PROELR method is 0.84. For these two methods, we
conduct 10 trials respectively and obtain the prediction accuracy of each time and average value as shown in Figure
5 (b). Intuitively, we can see that the SRBA performs better than the PROELR method for the Lfull event log. When
the missing activities is repaired, we add complete traces to the corresponding sub-logs. The process models are then
obtained using process discovery techniques. Figure 6 shows two of the seven process models with seven sub-logs
for the Lfull event log by α+-algorithm [15].
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Fig. 5: The result of clustering and the comparison of the accuracy of the two methods.

(a) Process model 1 (b) Process model 2

Fig. 6: The process models for two different sub-logs.

Next, we generate seven incomplete logs of different sizes by removing 10, 20, 30, 100, 150, 200, and 300 activities
respectively from the log Lfull. We just delete one of the activities in a trace selected randomly. For each incom-
plete log we perform 10 experiments and get the results as shown in the Figure 7(a)(resp.,Figure 7(b)) using the
SRBA(resp.,PROELR) approach. Although the results of each experiment are different, they all fluctuate within a
range. For example, most of the accuracy of repair exist between 0.85 and 0.9 shown Figure 7(a). By comparing the
average accuracy of these two methods, it can be concluded that the SRBA method performs better than PROELR
for the Lfull event log as a whole from Figure 7(c).
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Fig. 7: Results for the event log of Lfull containing 10, 20, 30, 100, 150, 200, and 300 missing activities respectively.

In order to prove the ability of our approach to repair missing activities in incomplete traces, we altered two
complex event logs, namely, Hospital Billing and BPI Challenge 2012. Before the experiment, we first pre-processed
the Hospital Billing log and remove all traces including only two activities. The results are shown in Figure 8, where
missing activities are randomly selected. Polylines of different shapes in Figure 8 indicate the number of remove
activities from event log and the abscissa is the order of experiments. It can be seen from Figure 8 that the accuracy
of repair each time remains around 0.8. The mean of accuracy iu shown in Table 4. The accuracy of our method is
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about 0.17 higher than the PROELR method for the Hospital Billing log and about 0.34 for the BPI Challenge 2012
log.
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Fig. 8: Accuracy of repair activities based on SRBA in different incomplete event logs.

We also selected the CCC19 log, as the input for consistency checking, to verify the accuracy of our method.
The event log of the Conformance Checking Challenge will focus on a medical training process. To compare the
performance of PROELR and SRBA algorithm, we generated several different incomplete logs with the same way in
which conducted 10 experiments. The mean of accuracy as shown in Table 4. From the results, we can see that the
proposed SRBA method boosted overall the accuracy of PROELR.

Table 4: The accuracy of different method for repairing missing activities on three real-life event logs.
Hospital Billing Log BPI Challenge 2012 Log Conformance Checking Challenge 2019 Log

Number
Method PROELR SRBA Number

Method PROELR SRBA Number
Method PROELR SRBA

20 0.645 0.825 20 0.450 0.805 3 0.467 0.835
30 0.623 0.817 50 0.449 0.816 5 0.500 0.860
50 0.634 0.794 80 0.446 0.770 6 0.433 0.833
100 0.644 0.816 100 0.441 0.800 7 0.471 0.785
150 0.650 0.805 150 0.463 0.790 8 0.538 0.763
200 0.635 0.811 200 0.432 0.772 10 0.440 0.780
300 0.668 0.825 300 0.438 0.760 - - -
500 0.616 0.838 - - - - - -

6 Conclusion and Future Work

In this paper, our goal is to provide more reliable and complete event logs for process mining techniques. We propose
an approach to repair missing activities in incomplete event logs based on the succession relationships between
activities in process mining. First, complete traces and incomplete traces are converted into matrix by extracting
succession relations. Second, we use the SOM method to separate complete traces into different clustering results.
And each incomplete trace is assigned to the most similar clustering result by computing the distance measure
and the number of traces. Finally, missing activities in incomplete traces are repaired according to the relations of
activities from complete traces in clustering results. Evaluation results on several real-life event logs demonstrate
that our approach is better than the previous PROELR approach.

Our method currently focuses on a missing activity in each trace. One avenue of our future work is to predict
more than one missing activity. Besides, we may also consider other attributes such as resource or timestamp to
together determine missing activities based on the succession relations of activities.
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