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Abstract

Inherent nonlinearities, present in dynamical systems are employed to solve various engineering problems. Nonlinear
dynamics involve responses that are not directly proportional to inputs, allowing for more effective system management.
The beneficial characteristics of nonlinear systems and its growing associated literature have contributed to mitigating
industrial and environmental energy-related challenges. Several recommendations have been provided for increasing the
efficiency of a vibration energy harvesting (VEH) system. In this study, we investigated the occurrence of vibrational
resonance (VR) in a Duffing-type energy harvester with electromagnetic transduction structure. We explored the impact
of system nonlinearities on the occurrence of VR and system performance. We employed both analytical and numerical
approaches to show the impact of the system parameters, especially the nonlinear stiffness parameter on the response
amplitude at low-frequency excitations. Furthermore, the estimated average power absorbed by the VEH system is
selected as the system performance metric, which can be optimised using the system’s parameters of interest. The VEH
system demonstrated an improved performance as a significant amount of energy was harvested based on the nonlinear
parameters of interest. Our investigation points to a new approach for the design and optimization of electromagnetic

energy harvester.
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1. Introduction

Ambient energy harvesting such as vibration, heat, and
acoustic energy harvesting is receiving significant atten-
tion from the research community. This is majorly as
a result of the global drive to reduce carbon emissions
due to its detrimental effect on the ecosystem and the
environment. These ambient energies can be harvested
using several techniques such as acoustic energy harvest-
ing (AEH), thermoelectric energy harvesting (TEH), tri-
boelectric nanogenerator (TENG), and vibration energy
harvesting (VEH) [1, 2]. It should be noted that VEH
encompasses piezoelectric energy harvesting, electromag-
netic energy harvesting, and electrostatic energy harvest-
ing [3, 4]. Generally, vibration energy harvesters are sys-
tems that transform vibration energy into electrical energy
1,2, 5, 6]

Studies on vibration energy harvesting have presented
diverse perspectives regarding the potential conversion of
mechanical oscillations into electrical energy. Linear VEH
systems are designed to harvest maximum energy at their
natural frequencies. However, to extend the frequency
range over which energy can be harvested, nonlinear pa-
rameters (specifically, stiffness nonlinearities) are integrated
into the system. This is implemented either geometri-
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cally [7], structurally [4, 8], or inherently [9, 10]. Mean-
while, in order to maximize the energy harvested, the
VEH system is designed to match the dominant frequency
of the environmental vibration. In general, less energy
is harvested because most mechanical harvesters have a
narrow bandwidth and a complicated resonant frequency-
matching process.

Several studies on improving the performance of a VEH
system employed the traditional single-degree-of-freedom
mechanical system, including its beam-type variants [3].
VEH systems have benefited from the application of non-
linear analytical methods, since most physical systems are
inherently nonlinear. For this reason, it is important to
consider the impact of nonlinear parameters, on the per-
formance of a VEH system. For instance, bistable energy
harvesters extract more energy when its nonlinear charac-
teristics are considered [4, 10, 11, 12]. Also, nonlinearly
damped VEH systems extract the same amount of energy
as its equivalent linearly damped system at maximum ex-
citations, but performs better at excitation levels below
the maximum level [11]. In a study on the influence of
internal resistance on an energy harvester with a damping
system modeled as a nonlinear cubic load, it was shown
that a VEH system’s dynamic range could be extended by
varying the load resistance, thereby improving the output
power absorbed in the process [10].

Nonlinear phenomenology is beneficial in improving the
performance of VEH systems, as recently shown in a Duff-
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ing oscillator with cubic damping in [5]. For instance,
many studies focused on modulating the dynamical sys-
tems’ nonlinearities to improve a Duffing oscillator-based
VEH system design, it was observed that under specific
harmonic forcing the system’s performance was optimized,
for both potentially stable and nonlinear monostable sce-
narios [2, 12, 13]. All VEH systems exhibit some degree of
intrinsic nonlinearity, which may be structural, geomet-
ric or frictional [4, 7, 8]. Diala et al, in [14], showed
the impact of a nonlinear hardening spring with cubic
damping on a VEH system, assuming no restriction on
the maximum throw, using a frequency-based analytical
tool, the Output Frequency Response Function (OFRF),
derived using the Associated Linear Equations (ALEs) of
the system model. In the study, the methodology em-
ployed yielded the best possible parameter values for the
VEH system design to yield the desired output energy.
The performance of a VEH system can be enhanced by
integrating a nonlinear cubic stiffness parameter to the
system, which is capable of widening the bandwidth over
which energy can be harvested as demonstrated in [14, 12].
It has been established in literature that nonlinearity
can be implemented using several geometric arrangements,
to achieve a simultaneous passive vibration suppression
and energy harvesting [7, 15, 16]. For instance, a non-
linear dual-function multi-modal energy harvester and vi-
bration absorber (EHVA) for harvesting energy and sup-
pressing vibration in the low—medium frequency band was
reported in [16]. The design of the multi-modal shapes of
the EHVA, as well as the hysteresis property of nonlin-
ear softening springs were the two primary methods em-
ployed by the authors to extend the operational frequency
of the system. In [17], Wang and Zhu connected a mag-
netic multi-stable device to a pendulum VEH, to increase
its bandwidth, particularly while operating at low frequen-
cies. A theoretical and experimental investigation into the
design of a magnetic spring based on a nonlinear electro-
magnetic converter was carried out in [18]. The magnetic
force acting on the moving magnet was specifically exam-
ined in the study, taking into account two factors; the mag-
nets’ volume and the two fixed magnets’ shapes. Recently,
a magnetic-spring-based electromagnetic energy harvester
with piecewise nonlinear stiffness was numerically investi-
gated in [19]. It was shown that the piecewise nonlinear
stiffness behaviour (magnetic flux), which was created as
a result of the interaction of the moving magnet with the
coil allowed the system to respond over a larger frequency
range and produce more electrical energy. The foregoing
scores the fact that much effort has been directed towards
the development of effective devices that can work well
over a larger bandwidth, through nonlinearities.
Nonlinear dynamical systems are also known to un-
dergo nonlinear resonances, and the resonant behaviours
can be improved through system parameters [20]. For ex-
ample, in [21], the authors reported a double-jump phe-
nomenon when examining the steady-state response of a
particular VEH system in the presence of both internal and

external resonance. The frequency response curve demon-
strates the presence of resonance peaks that shifted to the
left and /or right of the system’s natural frequency. Vari-
ous external factors such as random environmental excita-
tion, which leads to the occurrence of other nonlinear res-
onant behaviours in VEH systems can be used to improve
the performance of energy harvesters [22, 23, 24, 25, 26].
The response of a bistable energy harvester with symmet-
ric potential under random environment excitation was
studied in [27], proving the mean-square voltage can be
raised by intensifying Gaussian white noise. The energy
harvesting capabilities of nonlinear vibrational multistable
energy harvesters was impacted by stochastic bifurcation
phenomena caused by narrow-band stochastic parametric
stimulation [25]. Recently, the occurrence of stochastic res-
onance (SR) in a bistable piezoelectric harvester subjected
to additive Gaussian white noise and harmonic excitation
was reported in [26]. They established that stochastic reso-
nance can be utilised to improve the performance of energy
harvesters.

Vibrational resonance (VR) [28, 29, 30|, which is an
example of nonlinear resonance similar to stochastic res-
onance, generally occurs when a high-frequency harmonic
signal plays the role of noise in SR. VR typically occurs
in dual-frequency-driven nonlinear systems with distinct
frequencies 28, 31, 32]. In VR, a nonlinear system driven
by a low-frequency (w) signal is typically excited by a sec-
ond, higher-frequency () harmonic forcing, known as the
fast-signal, with Q > w. The system’s response ampli-
tude, at the slow oscillation frequency is calculated as a
function of the fast signal’s amplitude, and the result-
ing curve resembles the well-known signal-to-noise ratio
curves found in stochastic resonance (SR) [33, 29, 30].
VR has been adopted for a wide range of real-world appli-
cations in engineering, as well as pure and applied sciences.
Most recently, in [34], VR was utilised to study the mo-
tion of air particles in the cavity of a Helmholtz resonator
(HR), excited by a dual-frequency acoustic wave. The low-
frequency (LF) signal in the acoustic field was amplitude-
modulated by an additive high-frequency (HF) perturba-
tion, which enhanced the detection of the LF through VR
phenomena. The results provided insights to the design
of improved acoustic resonators, an efficient passive sound
controller that finds application in different engineering
designs, especially in simultaneous noise attenuation and
acoustic energy harvesting. Also, the electrical response
of a double-well Duffing oscillator coupled to a circuit
through piezoceramic elements, driven by a bi-harmonic
forcing function was enhanced through the phenomenon of
vibrational resonance [1]. In a subsequent study, the same
authors demonstrated that more electrical energy could be
gained by increasing the oscillations and that the amplifi-
cation effects could be precisely regulated [35].

Generally, there are several challenges with the opera-
tion of VEH systems in an environment with higher har-
monics. To capture all the active spectrum and multiple
frequency shifts for vibration scenarios with higher fre-
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Figure 1: The SDOF vibration energy harvester with nonlinearly
damper.

quencies found in motors, engineering structures, infras-
tructural assets with truss, tunnels and rail bridges [36],
which limits the performance of VEH system to a spe-
cific application, there is a compelling need for further in-
vestigation of the nonlinear responses of a weakly driven
VEHs to the effects of high-frequency components. We
under take such investigation here, and explore the non-
linear features of the energy harvester to maximise the sys-
tem’s performance. In this study, we investigate the VR
phenomenon in a dual-frequency driven nonlinear system
modeling an electromagnetic energy harvester, where to
the best of our knowledge, the influence of a high-frequency
excitation on a weakly-driven harvester has not been re-
ported [30]. The rest of this paper is organised as follows:
Section 2 describes the VEH system model. The behaviour
of the VEH system is investigated analytically and numer-
ically using the VR method in Section 3. The dynamical
response of the system is discussed in Section 4. Numerical
simulation of the average power generated by the vibration
energy harvester is presented in Section 5, while the paper
is concluded in Section 6.

2. Model Description

The model under consideration is a vibration-based en-
ergy harvester with a single degree of freedom (SDOF),
presented in Fig. 1. It has an isolated mass m, and base
displacement of y(¢). The system consists a parallel combi-
nation of nonlinear stiffness and damping components sep-
arating the mass from the base. The damper has linear and
nonlinear damping coefficients ¢; and cg, respectively, and
the stiffness has linear and nonlinear coefficients k1 and ks,
respectively. The SDOF VEH system model shown in Fig.
1 is described by a nonlinear differential equation (NDE)
of motion given by

mi 4+ c12 + e3> + k12 + k32® = my, (1)

>0k, < 0

<0, A:‘{v 0

0k, >0

Figure 2: The potential structure of the modeled SDOF energy har-
vester computed from Eq. (7) for different sign combinations of k1
and k3

where x(t) denotes the mass’s absolute displacement and
m is the isolated constant mass m. The relative displace-
ment between the spring mass and the base-support is de-
noted by z(t) = z(t) — y(t). The base displacement is
assumed to be harmonic with amplitude Y and frequency
w, and its expressed in the absence of a phase difference
as

y = Y sin(wt). (2)

In order to enhance the VEH’s performance using VR,
the base displacement y(t) is assumed to be an additive
biharmonic forcing comprising an imposed high-frequency
forcing with frequency 2 and a weak low-frequency signal
with frequency w, so that Eq. (2) becomes

y = Y (sin(wt) + gsin(Qt)), (3)

and Eq. (1) becomes

m: 4+ 15+ 32 4+ kiz 4 ks3z2® = Ymw? sin(wt)
+  gYmQ?sin(Qt) (4)
Ymw?sin(wt) is the slow forcing and gYmQ?sin(Qt) is

the fast periodic excitations with a high frequency. By
re-scaling the variables in Eq. (4) using

C1 C3 kl kS
a = —, ﬁ:—’ 1=, Y2 =),
m m m m
f = Yuw? F=gYQ? (5)

with a constant-unity mass (m = 1), the non-dimensional
equation of motion, Eq. (4), can be written in the form

4 ai+ B2+ y12 + 922 = fsin(wt) + Fsin(Qt).  (6)



The VEH system’s potential V'(z) is given by

%22 + %z‘l. (7)
The system’s potential, Eq. (7) possesses three equilib-
rium points (P 23(2*,y*)). These points depend on the
signs and values of v; and 72, which are determined by
the two stiffness parameters k1 and ks, respectively. The
potential shape of a typical Duffing oscillator can be rep-
resented in four different ways depending on the signs of
the stiffness coefficients k1 and k3 [20].

The four potential structures are shown in Fig. 2.
If the two stiffness parameters have same signs, the sys-
tem exhibits a single-hump ( for k1 < 0, k3 < 0) and a
single-well ( for k1 > 0, k3 > 0) potential shapes. These
yield identical trivial equilibrium points which are zero and
imaginary values, P;(0,0) and Ps 3(=+i \/%, 0). The single-
hump potential structure for k1 < ks < 0 is of no physical
consequence [20]. This is because the associated equilib-
rium point, P;(0,0) is highly unstable, and P, and P; are
imaginary points. The equilibrium point P; (0,0) obtained
for the positive stiffness parameters (k1, k3 > 0) is stable
and significant. The three cases of the system’s poten-
tial with at least one of the parameters greater than zero,
particularly, k1 > 0, have evolved into a traditional cen-
tral paradigm for explaining nonlinear events. These fa-
cilitate resonance analysis, especially nonlinear resonance
behaviours [20, 37, 38]. With k1 and k3 having differ-
ent signs (e.g. k1 < 0 and k3 > 0), the system exhibits
a double-well-single-hump potential structure. It exhibits
real equilibrium points Pl(0,0),PQ’g(:t\/%, 0). Also, the
potential is single-well-double-hump for k1 > 0 and k3 < 0.

In summary, the following conditions define the potential
structure of the system;

V(z) =

i. a single-well with the minimum at z = 0, when k3 >

k1 > 0.

ii. a double-well-single-hump structure with a local max-
imum at z = 0 and two minima at z = + ‘:—;l, for
k1 <0 < ks.

iii. an inverted single-well (single-hump) that has its max-
imum at z = 0 when ky < k3 < 0.

iv. a double-hump-single-well structure with a maximum

ki for ks <

at z = 0 and two minima at z = £+ Thsl”

0< k.

For this study, we consider the response of the VEH
system within the single-well potential condition (k3 > 0
and k; > 0). To explore the impact of the nonlinear stiff-
ness on the system’s dynamics, we observe the influence
of ks on the effective potential of the system as shown in
Fig. 3a. From the figure, increased hardening stiffness,
k3, decreases the potential width, and thus increases the
stability of the system’s particles. This is because the ef-
fect of the perturbation increases the amount of energetic

particles oscillating around the equilibrium point (z = 0),
imposing a high possibility of overcoming the impact of ob-
stacles along their trajectories [39]. In other words, the in-
creased nonlinear stiffness energizes the particles systemat-
ically and minimizes the effect of dynamical barriers on the
system. Therefore, it enhances the performance threshold
of the vibration energy harvester. This implies that the
high periodicity of the system’s oscillations optimizes the
overall performance of the system. Despite the increased
stability condition, the possibility of observing multiple
resonances, in the context of vibrational resonance with
the Duffing oscillator, for the single-well potential condi-
tion is prevented by the monotonic increase in the reso-
nance frequency [20]. However, our focus will be to ex-
plore the dynamical response of the VEH system within
a suitable parameter regime that optimizes the system’s
performance.

3. Resonance Dynamics of the VEH system

8.1. Analytical description

To analytically analyse the occurrence of vibrational
resonance in the biharmonically driven VEH oscillator given
in Eq. (6), we use the method of direct separation of mo-
tions (MDSM) [30, 37, 40].

When used alone or in conjunction with other pertur-
bation techniques, the MDSM is a useful mathematical
tool for examining the effects of a high-frequency excita-
tion in oscillators [41, 42, 43, 44, 45]. The method in-
volves splitting the vibration of the oscillatory system into
a set of integro-differential equations. One of the equations
describes the slow motion of the system whose response
can be modulated by varying the parameters of the high-
frequency field, and the other describes the fast motion.
The response of the VEH system is characterized by the
computation of a response amplitude, @), given as the ratio
of the amplitudes Ay, of the oscillating system to that of
the weak signal, f.

Generally, the mechanical system given by Eq. (6) can
be expressed in the form:

mi = F(2 z,t) + ®(3, 2, t,wt). (8)

The solution z(t) of Eq. (6) or its general form, system
(8) consists of a superposition of only the solutions h(t) of
slow evolution with frequency w and H(t,7), 7 = Qt of
the fast oscillations with frequency 2 when € > w. That
is,

2(t) = h(t) + H(t, Q). (9)

where h(t) is assumed to be periodic with period T = 2%
and H is periodic in the fast time 7 = Qt with period
2m. The goal is to derive a system of two-coupled integro-
differential describing the system’s dynamics in h and H
from the main equation of the system (Eq. (6)). We will
then focus on the equation of the slow component which
gives information on how the parameters of the fast signal



influence the system’s dynamics. Moreover, the average
value of H(t,7), i.e. (H(t, 7)) with respect to fast time 7
is given by

27

H(t,r)dt =0.  (10)

(H(t,7)) =H(t,7)=

2m Jy

Based on Eq. (8) and the assumed solution in Eq. (9), the
two coupled system of integro-differential equations are

mh = F(h,h,t)+ (F(h h, H, H,t))
+ (®(h+ H,h+ H,t,1)), (11)
and
mH = F(hh,t)— (F(h,h, H Ht)) +®(h  (12)
+ H,h+H,t,7) = (®(h+ H h+ H,t,1)),
where

F(h,h,H,H,t)=F(h+ H,h+ H,t)+ F(h,h,t). (13)

Equation (13) is the function of the system’s variables,
from which one can compute the response amplitudes @
of the system. If h and H are the solutions of Eq. (11)
and Eq. (12), respectively, it implies that z = h+ H is the
solution of the general Eq. (8).

The first of the coupled integro-differential equations
(Eq. 11) is obtained by substituting Eq. (9) into Eq. (8),
and averaging both sides of with respect to the fast time
7 in accordance with Eq. (10). The second Equation (Eq.
12) is derived by subtracting the first equation (Eq. 11)
from the general equation of the system (Eq. (8)). In
Equation (12), h and h frozen, that is, constant since the
H component is faster than the slow component h.

Following the acquisition of a solution H = H* (h, h,t,T),

it becomes evident that Eq. (11) can be expressed as
mh = F(h,h,t) + V(h,h,t), (14)
where

V(h,h,t) = (EF(h,h, H* H* t)) + (®(h+ H*, h
+ H*t,7)). (15)

For the fast component H*, one will typically need to look
for an approximate solution in the form of a few harmonics.
It is possible to find a solution by linearising F' and ® with
regard to H (and maybe h) if H is thought to be modest
in relation to h.

The MDSM has been explained in detail in Refs. |20,
46|, and effectively applied for a variety of theoretical VR
analyses [47, 48, 49, 50, 51, 52, 53, 54].

In order to ensure that the potential V' (z) is well-defined
over a specific range of initial conditions of the fast vari-
ables H, we assume that the fast motion H* is asymp-
totically constant throughout our analysis of VR in this
paper. The potential V(z) will vary depending on which
of the several steady rapid motions is taken into consid-
eration. Eq. 14 is the primary equation for the study of

the system’s vibrational mechanics [46]. The slow dynam-
ics equation has an effective potential because of the fast
dynamics.

Therefore, to apply MDSM, one can substitute Eq. (9)
into Eq. (6), to have

h + H+alh+H)+B(h+H)?+v(h+ H) (16)
+ yo(h + H)? = fsin(wt) + Fsin(Qt).
Averaging both sides of Eq. (16) over the period of fast
time [0, 27| gives
b+ H+h(o+38H2) + aH +3Hh? + Bh® + BH3
+ h(71 + 3’72ﬁ) + ’Ylﬁ + 3’ygﬁh2 + ’}/th + ’Ygﬁ
= fsin(wt) + F'sin(Qt). (17)

By applying the mean value in Eq. (10) in Eq. (17), Eq.
(17) becomes

b+ B+ 38H2) + B3 + BH3 + h(y1 + 372 H?)
4+ yoh3 + BH3 = fsin(wt). (18)
Eq. (18) is the first of the set of coupled equations we
set out to obtain. It is the integro-differential equation for
the slow variable h. The equation of the fast oscillatory

motion is obtained by subtracting Eq. (18) from Eq. (16),
to obtain

H + 38h(H?— H?) + aH + 3Hh? + 3(H? — H)
+ BH? +~1H + 3yh(H? — H?) + 3y, Hh?
+  y(H? — H3) = Fsin(Qt). (19)

Using the inertial approximation by assuming H > H >
H, we can write the approximate form of Eq. (19) as

H = Fsin(Qt), (20)
so that
_F .
H = el sin(Q), (21)

Using Eq. (21), the mean values in Eq. (18) are obtained
as

— F? -  F? —_  3F%

H2 = H2 = — HY = —
202’ 2047 808’

H3 = 0, H=H3=H>=H"...=0. (22)

By substituting Eq. (22) into Eq. (18), we obtain

. . F? . 2
h + h(a+3ﬁﬁ)+ﬁh3+h(71 +372ﬁ)
+  yoh® = fsin(wt). (23)

Eq. (23) can be written as
h+ by + Bh® 4+ Xoh + yoh® = fsin(wt), (24)



150
100 -
—
N
=N
50
0
4
150
100
=
<
=~
50
0
-2

Figure 3: (a) Potential plots of the VEH system, V(z) against dis-
placement, z with varying values of the nonlinear stiffness parameter,
ks when k1 = 5. (b) The effective potential plots, V' (h) against h,
for different values of g, magnitude of the fast oscillation with other
parameters fixed at k1 =5, k3 =5, w = 1.0, Q = 20w.

where
F2
A= et 3o
F2
Ay = —, 2
2 71 + 372 294 ( 5)

Thus, the effective potential of the system is given by
A
V(h) = Zh + %h‘*. (26)

Figure 3 presents the effective potential V' (h) as a func-
tion of the slow motion component, A and Fig. 3b shows
the effect of increasing g on the system’s potential. The
hardened stiffness parameter, k3, and the amplitude of the
fast oscillation, g, influence the dynamics of the VEH sys-
tem. The width of the effective potential changes with
increasing high-frequency (HF) amplitude, g. It implies
that, via their cooperation, the system’s performance can
be controlled, which can improve the amount of vibration
energy to be harvested.

The system’s vibration is defined in terms of the devi-
ation of the slow motion, A from the equilibrium point hA*
by substituting I' = h — h* in Eq. (24). Then

(T — h*) + M@ - h*) + 8T - h*)5 + Ao (I = h¥)
+ 7T —h*)3 = fsin(wt). (27)
When the amplitude of the harmonic base displacement

Y « 1, and the oscillation takes place around the equilib-
rium point ( 2* = 0), then Eq. (27) becomes

D+ M+ BT = h%)% 4 Aol + 4o(T — h*)3 = fsin(wt). (28)

By neglecting the nonlinear term, we obtain a linear oscil-
lator of the form

'+ MI 4+ XL = fsin(wt), (29)

where w, = 1/A2. Eq. (29) have a steady-state solution;
I' = Apsin(wt). Therefore, the response amplitude Ajp
can be written as

f
V(w2 ~w?)? + 22

y_ )\1(,0
A _ 1
@ -t <<w2 —wz>>

Finally, we can calculate the analytical response ampli-
tude, @ from

Af =

(30)

_ AL 1
OF T @i oy

8.2. Numerical simulations

To validate the analytically computed response ampli-
tude @, we numerically integrate the nonlinear VEH os-
cillator (Eq. (6)) using the parameters settings in Fig. 3.
This is achieved by first re-writing Eq. (6) as a set of cou-
pled first-order Ordinary Differential Equations (ODEs) of
the form

dz

bt 2
7 Z (32)
% = —az— B — vz — 723 + fsin(wt) + Fsin(Qt).

Eq. (32) was integrated using the Fourth-Order Runge-
Kutta scheme with a fixed step size At = 0.001, and the
following parameters were set throughout the VR analy-
sis; k1 = 5.0, ¢; = 0.20, Y = 0.05 and Q = 20w, and the
initial condition [0, 1] was used. The response amplitude
Q@ is computed from the Fourier spectrum of the time se-
ries of the output signal using the Fourier sine and cosine
components Bg and B¢ in the form

0= /B%+ B2
/ (33)

B
0 = —tan71 (Bz) 5



where,

) nT
Bs= — z(t) sinwt dt,
nT 0
o T (34)
Be = —/ z(t) coswt dt.
nT 0
0.8
— Numerical T = %” is the period of oscillation of the low-frequency
e Analytical input signal with n = [1,2,3,...] number of complete os-

cillations. To validate the analysis in Section 3, the analyt-
ically computed response amplitude Q) obtained using Eq.
(31) is compared with the numerical @ obtained directly
from Eq. (33).
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4. Results and Discussions

4.1. Occurrence of Vibrational Resonance

0.2

We now discuss the occurrence of vibrational resonance
in the nonlinear VEH system. From in Eq. (31), the
system’s response amplitude is given by @ = ﬁ, where

S = (w? —w?)? + M\w?. In the linearized equation (Eq.
(29)), the effective dissipation term A; is a function of both
the linear and nonlinear damping terms. We note that the
highest power delivered by the system for any particular
vibration energy harvester depends on the proper selection
of load resistance regarding the effective dissipation [2, 12,
35]. Additionally, the occurrence of VR in any dynamical
system suggests several control parameters and ascertains
the availability of optimization variables [41, 55, 58|.

To understand the effect of both the nonlinear damping
and nonlinear stiffness on the resonance behaviour of the
VEH system, we set W = w, —w. Thus S = W? — \w?
suggests () is maximum when S is minimum. This im-
plies Q peaks at W = 0 (w, = w), where w, = /Ay and
Ao =1 + 372%. Since ) > w, resonance is expected to

0.8

0.6

S04t

occur. Hence, w? =1 + 372(¥). This shows that w, is
dependent on the values of k1, ks and m through v, and
2. Otherwise, if the oscillation amplitude is assumed to

be small (e.g., Y < land g >Y), then, w, = /71 + 129>
This suggests three possible resonance cases.

02}

0 | ) 3 4 5 Case I: Single-well condition, for k1 > 0, ks > 0, when
w kl 2 kg (35)
(b) Case II: Single-well-double-hump condition, for ky > 0, k3 <
0, when

Figure 4: (a) Response plot Q as a function of the weak low-
frequency, w with ¢ = 0.1. The continuous curve represents the k1> ks (36)
numerical response plots, while the analytically calculated response

amplitude @ from Eq. 31 is plotted with broken lines and markers,Case III: Double-well condition, for k1 < 0, k3 > 0, when
for ¢; = 0.20, k1 = 5.0, k3 = 50, ¢c3 = 0.2,Y = 0.05 and Q = 20w

and m = 1.0. (b) The dependence of @ on w for six different values ki1 < ks (37)
of g (9 = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6), with other parameters ) 9 )

of the VEH system fixed at ¢; = 0.20, k1 = 5.0, Y = 0.05, k3 = Here, the effective resonant frequency, w;, describes
50, cg = 0.2 and 2 = 20w. the potential structure of the system in relation to its res-

onant condition. These conditions correspond to three ba-
sic realizable potential shapes of any physical system with
similar potential functions. Moreover, the forth condition
(k1 < ks < 0) is unrealistic because w? is always greater



than zero. Eq. (26) enables us to analyze its occurrence
with possibilities of multiple resonance peaks depending
on the chosen parameter regime. The appearance of res-
onance peaks can be controlled by either modulating pa-
rameters of the fast periodic force (g or Q) or the potential
parameters (k; and k3). From Eq. (35), Eq. (36), and Eq.
(37), it can be seen that the system behaviour depends
on the choice of k3, which influences the resultant perfor-
mance of the system at resonance.

The dependence of the response amplitude, @, on the
excitation low-frequency is shown in Fig. 4a for two re-
ponse curves, obtained from the analytically computed re-
sponse amplitude using Eq. (31) (red broken line with
marker), and the numerically computed using Eq. (33)
(blue continuous line). The analytical and numerical re-
sponse curves are in good agreement. The deviation be-
tween the numerically and analytically computed response
curves can be attributed to approximations in the deriva-
tion of the expression for the analytical (). From the tra-
ditional theory of VR, one can examine the resonance be-
haviour of a dynamical system by changing the parameter
w, g or . Therefore, the dependence of 2 on w for six
different values of g (¢ = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6),
with other parameters of the VEH system fixed at ¢; =
0.20,¢3 =0.2, k1 = 5.0, Y =0.05, k3 =50, and Q2 = 20w
is shown in Fig. 4b. It can be observed from the figure
that increasing g reduces the response amplitude. This is
because the resonant frequency is independent of w, and
the mechanism of resonance is the minimization of the
function, S = (w? — w?)? + Aw?, which remains constant
even when w is changed. The dependence of the system’s
response @ on low-frequency (LF) parameter, w can also
be controlled by the nonlinear parameters of the system,
as shown in Fig. 5.

To gain further insight into the contributions of non-
linearities on the response of the VEH system, we present
the dependence of response amplitude, (), on the low-
frequency, w for four values of the cubic stiffness, ks =
[5, 50, 110, 220] with k; = 5.0, ¢ =0.10, ¢; = 0.2, ¢3 =
0.2,Y = 0.05, and 2 = 20w in Fig. 5a. The cubic stiff-
ness parameter, k3 tuned the resonance state of the sys-
tem with an obvious reduction in response amplitude @,
as the nonlinear stiffness parameter, k3 is increased from
0 to 220. Also, increasing ks shifts the peak points of
the response curve to the right and increases the band-
width, which can aid system performance. This observa-
tion is consistent with Literature, and nonlinear harden-
ing spring (i.e., k3 > 0) increases the resonant frequency
of a vibration isolation system by shifting the peak mag-
nitude to the right [14, 12]. Consequently, this suggests
the harvesting of energy over an extended bandwidth by
the VEH system. On the other hand, Fig. 5b depicts
the variation of @ with w for four different values of the
cubic damping parameter, ¢3 = [0.0,0.2, 0.3, 0.6], with
c1 =02, ¢g=01 Y =0.05 k = 50, k3 = 50 and
Q = 20w. Increasing cs, the cubic damping parameter
suppresses the response amplitude, () and lowers the sys-

tem’s resonant frequency.

The resonance state of the VEH system is highly de-
pendent on the imposed nonlinearities. Consider the sys-
tem’s response at resonance, the response amplitude, @
becomes maximum whenever the resonant frequency, w,
matches with the vibration frequency, w of the external
excitation (w? = w?). Therefore, from Eq. 31, @ depends
on the damping terms through A\;. Thus, a further increase
in the value of ¢z leads to the condition, w, > w, and the
resonance peaks disappear. The effect of damping on the
dynamical response of a system has been well-studied, and
similar effects were reported [20, 33].

4.2. Controlling VR with VEH system’s parameters

We only considered the first resonance condition (k1 >
0 and k3 > 0) for the occurrence of the VR phenomenon in
this paper. Firstly, we examined the effect of modulating
the system’s parameters on the VR phenomenon. Fig. 6a
and Fig. 6b show the variation of the response amplitude
Q@ on the high-frequency signal amplitude ¢ for different
values of the linear damping and the linear stiffness pa-
rameters, respectively. Both figures exhibit two resonant
peaks for the parameter values considered. In Fig. 6a,
response plots for six different values of the linear damp-
ing ¢; =1[0.2, 0.3, 0.4, 0.5, 0.6, 0.7], were superimposed.
There is a marked decrease in the system’s response as ¢y
increases. As observed, the effect of the linear damping,
on the response amplitude, @, of the VEH system, is to
reduce @ as g varies. Fig. 6b shows the dependence of
Q@ on g for k; = [2.5, 3.0, 3.5, 4.0, 4.5, 5.0], with ks =
50, c1 = 0.2, c3 =0.2, Y =0.05 w = 0.3 and Q = 20w.
Increasing the strength of the linear stiffness, k1, decreases
the response amplitude @ of the system and shifts the re-
sponse peaks to the left. Increase in magnitudes of both
the linear damping and the linear stiffness parameters, ¢,
and k1, respectively, lowers the value of Q). In addition, ad-
justing ¢y shifts the response curves to the right, contrary
to the effects of modulating k1. The effect of the nonlinear
damping on the dynamical response of the VEH system is
considered in Fig. 7. In Fig. 7a, three distinct VR peaks
were observed with c3 = 0.0, in the range 0 < g < 3, with
their magnitudes increasing as g varies within the range.
On activating the nonlinear damping, c¢3 = 0.2, the VR
peaks reduced and their magnitudes decrease monotoni-
cally with increasing g. The peaks are reduced to single
resonance curves in Fig. 7b, Fig. 7c and Fig. 7d, when
c3 = 0.30, c3 = 0.40 and c3 = 0.60, respectively. Due to
the high value of c3, the disappearance of the multiple VR
curves are pronounced in Fig. 7c and Fig. 7d, showing the
possibility of suppressing VR, when the nonlinear damp-
ing is further increased. Consequently, when c3 surpasses
specific critical levels, resonance vanishes, and the system
harvests no significant energy.

Next, we examined the effect of nonlinear stiffness, ks,
on the response amplitude of the VEH system in Fig. 8a-
d. Increasing k3 enhances the system’s response ), with



14 ‘ :

i ---k?— 0.0
I .
127 [ g = 30
I
" -...ke— 110
1 " |‘ —k, = 130
ry e k= 220
0.8 " 1
L,
& AN
A \i
1

0.6

0.8 ‘

0.6

C04r

027

(b)

Figure 5: The dependence of response amplitude, Q on the weak
oscillation frequency, w for: (a) five different values of the nonlinear
stiffness, ka(ks = 0, 50, 110, 150 and 220) with ki = 5.0, g =
0.10, ¢3 =0.2,Y = 0.05,and = 20w; (b) for four different values
of the nonlinear damping, c3(ecs = 0.0, 0.20, 0.30, and 0.60) with
c1 =02, g=0.1, Y =0.05, k3 =50, and Q2 = 20w.
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Figure 6: (a) Dependence of @ on the amplitude of the fast oscil-
lation g, with varying linear damping ¢; when other parameters of
the VEH system are fixed at k1 = 5.0, k3 = 50, ¢3 = 0.2,Y =
0.05 w = 0.3 and 2 = 20w; (b) The dependence of Q on g for
k1 = 2.5, 3.0, 3.5, 4.0,4.5 and 5.0 with k3 = 50, ¢; = 0.2, ¢3 =
0.2, Y =0.05 w = 0.3 and Q2 = 20w.
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Figure 8: Response plot @ against g the amplitude of the fast oscil-
lation with, (a) nonlinear stiffness parameter k3 = 0.0 and k3 = 35,
(b) ks =50, (c) ks = 110 and (d) ks = 150, while other parameters
of the system are ¢; = 0.20, k&1 = 5, ¥ = 0.05, ¢c3 = 0.2, w =
0.3 and Q = 20w.

10

0.35 ! 0.35 J
() w @ w=03
0.3 0.3
30.25 S 0.25
02 0.2
0.15 0.15
0 | 2 3 4 5 o 1 2 3 4 5
g g

Figure 9: Dependence of Q on g for different values of weak frequency
(a) w =0.25, (b) w = 0.27, (¢) w = 0.30 and (d) w = 0.32 with other
parameters of the VEH system fixed at ¢; = 0.20, k&1 = 5, ¥ =
0.05, c¢3 = 0.20, k3 = 70 and Q = 20w.

the emergence of more VR curves, highlighting the co-
operation of amplitude of the fast excitation g and the
hardened stiffness, k3. Consequently, multiple resonance
peaks were created. The occurrence of VR in the first fig-
ure (Fig. 8a) without activating the nonlinear stiffness,
ks = 0, appears impossible, for the considered range of
g (g € [0,5]). However, the increased value of k3 in Fig.
8a, when k = 35, ascertained the occurrence of VR. With
ks = 50, in Fig. 8b, two significant VR peaks were ob-
served. Moreover, the emergence of multiple VR peaks in
Fig. 8c and Fig. 8d, with k3 = 110 and k3 = 150, re-
spectively, appeared in the range 0 < g < 3. We fixed
the values of other parameters of the VEH system and
adjusted the excitation frequency, w, to examine its sig-
nificant impact on the system’s dynamics. Figures 9a-d
show the dependence of @ on g for four different values
of the excitation (w = [0.25,0.27, 0.30, 0.32]), with ¢; =
0.20, k1 =5, Y =0.05, ¢5 =0.20, k3 = 50 and 2 = 20w.
The figures demonstrate that varying w has an influence
on the system’s dynamics, similar to cs; they reduce the
system’s response amplitude and ultimately cause VR to
disappear [30]. In Fig. 9, multiple resonance peaks, which
decrease, both in magnitude and numbers, as w increase
from 0.27 to 0.32, were observed. Therefore, increasing
frequency, w will reduces the response amplitude @ due to
wy # w, implying no resonance. A similar effect has been
reported in the literature. The majority of earlier findings
established that when either the frequency or the damping
rises above certain critical values, the response amplitude
Q@ of dynamical systems decreases and may even vanish
entirely [33, 30].
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Figure 10: Three-dimensional plot showing the dependence of @ on
(a) the hardening stiffness, k3, with varying LF component w, when
other parameters of the VEH system are fixed at k; = 5.0, k3
50, ¢3 = 0.2, Y = 0.05,9 = 0.1, and © = 20w; (b) the nonlinear
damping parameter, c3, with varying LF component w, when other
parameters of the VEH system are fixed at k1 = 5.0, k3 =50, Y =
0.05, g = 0.1 and Q = 20w.
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To illuminate broader feature of the response in the
considered parameter regime, we explored three-dimensional
(3D) plots, shown in Fig. 10 and Fig. 1la. The depen-
dence of @ on the hardening stiffness, k3, with varying LF
component w is shown in Fig. 10a, when other parame-
ters of the system are fixed at, ¢; = 0.20, k; = 5.0, ¢3 =
0.2, Y =0.05, g = 0.1 and 2 = 20w. It is evident from
the figure (Fig.10a) that a single resonance appears for the
considered values of the hardening stiffness (ks € [0, 250]),
forming a ridge-shaped elevation with the peak in red.
Figure 10b, presents the dependence of the system’s re-
sponse on the nonlinear damping parameter, cs, with vary-
ing LF component w, when other parameters are fixed at,
ki1 = 5.0, k3 = 50, Y = 0.05, ¢ = 0.1 and Q = 20w.
The red-coloured hill corresponds to high response ampli-
tude @) values, which stretch along c3 values. This is more
pronounced for lower values of the nonlinear damping, cs.
Both plots, Fig. 10a and Fig. 10b, confirmed the evidence
for just a single resonance curve, which amplitude can be
controlled by the modulation of the nonlinear parameters,
ks and c3, respectively. Moreover, the 3D-plots in Fig.
10a and Fig. 10b, are in agreement with Fig. 5a and Fig.
5b, respectively. Interestingly, the figures confirmed our
prediction of resonance conditions (i.e. Eq. (35)).

To corroborate our results and discussions on VR oc-
currence, and validate that the system’s performance can
be optimized using VR approach, the dependence of @ on
g and w is shown in Fig. 11a. Figure 11a shows 3D-plot of
the dependence of the system’s response amplitude, @ on
the amplitude of the fast oscillation, g and the LF com-
ponent, w, when other parameters of the VEH system are
fixed at k1 = 5.0, k3 =50, ¢c3 = 0.2, Y =0.05 and 2 =
20w. The hill-shaped figure represents the VR curve, with
its peak in red.

The enhancement regime is more pronounced when
g < 0.5. The blue plains are indication of no enhancement.
It is clear from the figure (Fig.11a) that lower values of g is
required to enhance the system’s performance. To broadly
examine the features of the system’s response and the sig-
nificance of nonlinearities on the system, we present the
dependence of the response amplitude @ on the nonlinear
damping parameter c3 with and without the activation of
the fast oscillation in Figl1lb. The plots confirmed the op-
timization of the systems performance with a low value of g
and the nonlinear damping range 0 < ¢z < 0.6, which sup-
ports maximum energy conversion. The figure shows the
maximum response amplitude (), occurs at c3 = 0.2 for
both cases; g = 0.00 and g = 0.10. These values (g = 0.1
and c3 = 0.20) were used for further analyses and for the
estimation of the average power harvested by the system.

5. Average Power absorbed by the system

In this section, we analyzed the effect of nonlinearities
on the resultant energy harvested by the nonlinear vibra-
tion energy harvester described in Eq. 6. The occurrence
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Figure 11: Three-dimensional plot showing the dependence of @ on
the amplitude of the fast oscillation, g, with varying LF component
w. Other parameters of the system were fixed at, ¢; = 0.20, k; =
5.0, c3 =0.2, Y =0.05, k3 = 50 and Q = 20w. (b) The dependence
of the system’s response @ on the nonlinear damping parameter c3,
with and without the activation of the fast oscillation, when other pa-
rameters are fixed at k1 = 5.0, k3 =5, Y =0.05, w =0.3 and 2 =
20w.
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of resonance generally describes any response amplifica-
tion of a system where improvement occurs through the
adjustment of any system parameter, not necessarily fre-
quency [30, 49, 58]. Also, under resonance conditions the
system must have acquires considerable energy resulting
in an amplified response. So we related our previous dis-
cussion on the analysis of VR to the amount of energy
harvested by the VEH system. We showed the possibility
of optimizing the system’s performance. We estimated the
amount of energy harvested numerically, and established
that the parameter values maximize the system response in
average electrical power. In any event, the instantaneous
power absorbed by electromagnetic damper is dependent
on the instantaneous damping force and relative displace-
ment of the damper [12, 14, 56].

Next, we analyse the resultant average power generated
by expressing P, as

1 (T
Po== / (c323)2dt, (38)
T Jo
such that for the low frequency harmonic oscillation with
displacement z(t) = Zsin(wt), where Z is the amplitude
of the solution to Eq. (1). Consequently, the magnitude
of the average power generated by the system can then be
obtained as defined in [14] from
3

P,, = §03w4Z4.

(39)

It should be noted from Fig. 1 that energy is lost from
the system through c¢;, while from Eq. (39), the cubic
damping c3 gainfully contributes to the total amount of
energy harvested by the system (Eq. 39). More so, the
system’s dynamics, particularly the response amplitude is
dependent on the harmonic excitation frequency, w, and
the nonlinear parameters ( ¢3 and k3). Hence, the impact
of the nonlinear parameters on the amount of harvested
energy is substantial. In Fig. 12a, the variation of av-
erage power, P,, with oscillation frequency, w is shown
for different values of the amplitude of the fast vibration,
g =10.1,0.2,0.3,0.4], with other parameters of the system
fixed at k3 = 50, Y = 0.05, ¢; = 0.20, ¢c3 = 0.20, k1 =
5.0 and 2 = 20w. Increasing g from g decreases the av-
erage power, P,,. The effect of modulating cubic stiffness
on the average power absorbed, is described in Fig. 12b.
The system can absorb more energy as ks increases. The
impact of hardening stiffness, k3, on the the average power
is clear, it extends the operational bandwidth of the VEH
system by increasing the resonance frequency, and improve
the amount of energy harvested. Therefore, the system’s
adequate performance depends on the appropriate choice
of k3, as obviously shown in Fig. 12b.

It is worth mentioning that the power is absorbed at
resonance (w, = w). With a fixed value of the LF compo-
nent (w = 0.30), it is expected that P,, increases with in-
creasing g or cs, due to its direct dependence on c3 and Z
from Eq. (39). To analyse the effect of ¢3 on P,,, Fig.
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Figure 12: (a) The variation of average power P,, with oscil-

lation frequency, w for different values of;, (a) the amplitude of

the fast vibration, g = [0.10,0.20,0.30,0.4], with other parame-
ters of the system fixed at k3 = 50, ¥ = 0.05, ¢; = 0.20, ¢c3 =
0.20, k1 = 5.0 and 2 = 20w; (b) the nonlinear stiffness, k3 =
[0, 50,110, 150, 220], with other parameters fixed at ki1 = 5.0, g =
0.10, ¢3 = 0.2,Y = 0.05,and 2 = 20w
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Figure 13: (a) The variation of average power P,, with frequency, w
for different values of nonlinear damping, ¢z (c3 = [0.0,0.2, 0.4, 0.6]),
with other parameters fixed at k1 = 5.0,k3 = 50, g = 0.10, c3 =
0.2,Y = 0.05,and Q = 20w. (b) Dependence of the average power,
P,y on the amplitude of the fast oscillation g, for different values of
nonlinear damping, c3 (c3 = [0.0,0.2,0.4,0.6]), with other parame-

ters fixed at k1 = 5.0, w = 0.3, ¢c3 = 0.2,k3 = 50,Y = 0.05,and Q2 =
20w.
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Figure 14: Three-dimensional plot showing the dependence of the
average power, Py, on (a) the nonlinear damping parameter, c3, with Figure 15: Three-dimensional plot showing the dependence of the
varying LF component w, when other parameters of the VEH system average power, Py, on the amplitude of the fast oscillation g, with

are fixed at, k1 = 5.0, k3 = 50, Y = 0.05, g = 0.1 and Q = 20w; varying LF component w, when other parameters of the VEH system
(b) the hardening stiffness, k3, with varying LF component w. Other are fixed at k; = 5.0, ks = 50, c3 = 0.2,Y = 0.05 and Q = 20w.
parameters of the system were fixed at, ¢; = 0.20, k1 = 5.0, c3 = (b) A two-parameter space plot of Fig. 15a.

0.2, Y =0.05, g =0.1 and Q = 20w.
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13a depicts the variation of average power, P,, with fre-
quency, w for different values of the cubic damping c3. It
is worth noting that the effect of increasing c3 on P,,, as
shown in the figure, is similar to the significant impact
of g on the absorbed power in Fig. 12a. Dependence of
the average power, P,, on the amplitude of the fast os-
cillation g, for different values of the nonlinear damping,
3 (e3 =10.0,0.2,0.4,0.6]), with other parameters fixed at
k1 = 5.0, w=0.3, c3 =0.2,Y = 0.05,and Q = 20w, is
shown in Fig. 13b. Despite the low magnitude, P,, in-
creases with increasing c3 and g. This is as expected from
Eq. (39), with fixed value of w. On the other hand, with
varying values of w, it is essential to consider the response
behaviour and the amount of energy generated by the VEH
system, with respect to the natural resonant frequency of
the system. This is because the resonant frequency, funda-
mentally defines the dynamical behaviour of the system,
especially at resonance. Recently, it was reported that the
behaviour of a dynamical system is a function of its natural
frequency, particularly, the response dynamics [57, 58|.

From the response curves, Fig. 5b and Fig. 7, increas-
ing the nonlinear damping, c3, reduces the resonant fre-
quency (frequency of interest) and the response amplitude,
respectively, which as well, decreases the average power ab-
sorbed by of the VEH system (Fig. 13a). This therefore
suggests a range of values for c3, for which the performance
of the nonlinear energy harvester can be optimised. Con-
sequently, we presents a three-dimensional plot showing
the dependence of the average power, P,, on the nonlin-
ear damping parameter, cs, with varying LF component
w, when other parameters of the VEH system are fixed at,
k1 = 5.0, ks =50, Y = 0.05, ¢ = 0.1 and Q2 = 20w, in
Fig. 14a. To illuminate broader features of the nonlinear
damping on the average power absorbed by the system, we
explore the figure in a two-parameter space, showing the
dependence of P,, on the parameters, w and c3. The av-
erage power absorbed increases with lightness/brightness
(see the colour bar), and the peak is white. Clearly, P,, is
maximum at a low value of the nonlinear damping, in the
range, 0 < ¢z < 0.2. In Fig. 14b, we presents a 3D-plot
of the dependence of P,, on the hardening stiffness, ks,
with varying LF component w. Other parameters of the
system were fixed at, ¢; = 0.20, k1 = 5.0, c3 =0.2, Y =
0.05, g = 0.1 and 2 = 20w. It is evident from the figure
(Fig. 14b) that P,, increases with increasing hardening
stiffness, ks.

To corroborate our results and discussions on VR oc-
currence, and validate that the average power the system
absorbs depends on the imposed nonlinearities, we present
three-dimensional plot of the dependence of P,, on g and
w in Fig. 15. From the figure, particularly, in Fig. 15a,
it was observed that the system can harvest appreciable
amount of energy. Moreover, it is clear from Fig. 15b,
that the performance of the VEH system can only be opti-
mised with lower values of g (¢ < 0.1). It is worth mention-
ing that practical VEH systems are typically constrained
in their relative displacement, Z, imposing optimization
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Figure 16: Dependence of the maximum average power P on
the effective resonant frequency w;, showing the effect of varying the
nonlinear stiffness parameter k3 on w, when other parameters are
fixed at ¢; = 0.20, k1 = 5.0, c3 =0.2, Y =0.05, ¢ =0.10 and Q2 =
20w.

challenges. The fact that the system’s response, (), which
is proportional to Z, is dependent on g for VR occurrence,
shows that our results and discussions are substantial for
the optimization of the VEH system.

To assess the impact of the nonlinear stiffness parame-
ter and the resonant frequency, particularly on the amount
of energy harvested by system (6), we examined the change
in the effective resonant frequency and quantify the aver-
age power harvested by system. This is shown in Fig. 16.
It can be seen from Fig. 12b that P,, increases with in-
creasing k3. More so, the optimal value of the average
power (P%*) harvested by the VEH system is observed
at different excitation frequency. This implies that the en-
ergy conversion that takes place whenever w, = w can be
controlled with k3 as shown in Fig. 16. Therefore, with the
appropriate choice of the nonlinear stiffness parameter k3,
the system’s performance can be improved. For instance,
the corresponding optimal values (w,, PJ"**) to the curves

in Fig. 12b are (2.2361,0.0225), (2.2365,0.1159), (2.2370, 0.2958),
(2.2373,0.4293), (2.2379, 0.6877) for ks = [0.0, 50, 110, 150, 220],

respectively. The optimization values of the system’s pa-
rameters are summarised in Table 1.

6. Conclusion

In this study, the effect of nonlinear parameters, on the
energy harvested by a nonlinear VEH system, was investi-
gated. We examined the influence of the nonlinear damp-
ing and stiffness parameters on the system’s resonance
state for the single-well potential structure. We quanti-



Table 1: Summarised optimal values of the system’s parameters while
other parameters are fixed at m = 1.0,¢c; = 0.20,Y = 0.05,9 =
0.10 w = 0.3 and © = 20w.

Parameter Range Optimal value | Pl%*
cs 0 < c3 <0.60 0.20 0.1146
ks 5.0 < ks <220 220 0.6877

fied the possible amount of energy harvested in terms of
average power absorbed by the vibratory system using a
dual-periodic forcing mode of vibrations (one with high-
frequency, €2, and the other with low-frequency, w). VR
was characterized by the analytical and numerical compu-
tation of response amplitude. To demonstrate the concor-
dance between our theoretical and numerical results, the
response curves for the variation and response amplitude,
Q@ with relevant system parameters were compared.

Our research demonstrated that the VEH system pro-
duced more energy when the nonlinear parameters are
tuned. The presence of nonlinear stiffness, k3, extended
the system’s bandwidth. We also identified a permitted
value of the low frequency forcing w, for which the sys-
tem’s average power gain can be enhanced with low val-
ues of k3. Therefore, P, is optimized with c3. Also, we
demonstrated that the nonlinear VEH may harvest signif-
icant power at resonance, through the collaboration of w
and k3, in the appropriate choice of the nonlinear damp-
ing, cz. The calculated average power absorbed, P,,, and
the system’s response, @, for various system parameter
values produced the regimes for enhanced energy harvest-
ing. In most mechanical and electromechanical systems,
vibrational energy requires matching the system’s resonant
frequency to the oscillation frequency, hence, we demon-
strated that the system’s resonance frequency is a crucial
factor in characterizing the response of the VEH system
and identifying the proper parameter selection to improve
the system’s efficiency.

Our findings would benefit a VEH design with severe
nonlinearities and enclosure-based physical limitations. In
terms of application, we propose an electromagnetic damper
made of permanent magnets, wire coils, and artificially
constructed 3D-printed structures, or an electromechani-
cal device with a nonlinear electrical load be used to achieve
the nonlinear damping characteristic of a VEH system.
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Highlights

Vibrational resonance (VR) is reported in a Duffing-type energy harvester

with electromagnetic transduction structure.
The oscillator is a vibration-based energy harvester with a single degree of

freedom, driven by a dual-frequency force.
The stiffness parameter determined the potential structure and resonance

dynamics of the system.
The average power absorbed was used as the system’s performance metric.
An enhanced vibration energy harvesting system was demonstrated with

nonlinearities.
The results highlight a new approach for the design and optimisation of

electromagnetic energy harvesters.
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