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Performance boost of an electromagnetic energy harvester using vibrational resonance
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linearities, present in dynamical systems are employed to solve various engineering problems. N
olve responses that are not directly proportional to inputs, allowing for more effective system mana
l characteristics of nonlinear systems and its growing associated literature have contributed to m

d environmental energy-related challenges. Several recommendations have been provided for increa
a vibration energy harvesting (VEH) system. In this study, we investigated the occurrence of vib
R) in a Duffing-type energy harvester with electromagnetic transduction structure. We explored th
linearities on the occurrence of VR and system performance. We employed both analytical and n

o show the impact of the system parameters, especially the nonlinear stiffness parameter on the
low-frequency excitations. Furthermore, the estimated average power absorbed by the VEH s
e system performance metric, which can be optimised using the system’s parameters of interest. T
nstrated an improved performance as a significant amount of energy was harvested based on the n
f interest. Our investigation points to a new approach for the design and optimization of electrom
ster.

onlinear systems, Bi-harmonics, Vibrational resonance, Vibration Energy Harvester, Average pow

tion

nergy harvesting such as vibration, heat, and
gy harvesting is receiving significant atten-
e research community. This is majorly as
he global drive to reduce carbon emissions
etrimental effect on the ecosystem and the

These ambient energies can be harvested
techniques such as acoustic energy harvest-
hermoelectric energy harvesting (TEH), tri-
nogenerator (TENG), and vibration energy
EH) [1, 2]. It should be noted that VEH
piezoelectric energy harvesting, electromag-
harvesting, and electrostatic energy harvest-
nerally, vibration energy harvesters are sys-
nsform vibration energy into electrical energy

vibration energy harvesting have presented
ectives regarding the potential conversion of
scillations into electrical energy. Linear VEH
esigned to harvest maximum energy at their
encies. However, to extend the frequency
hich energy can be harvested, nonlinear pa-
cifically, stiffness nonlinearities) are integrated
em. This is implemented either geometri-
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cally [7], structurally [4, 8], or inherently [9, 10]
while, in order to maximize the energy harves
VEH system is designed to match the dominant fr
of the environmental vibration. In general, les
is harvested because most mechanical harvester
narrow bandwidth and a complicated resonant fr
matching process.

Several studies on improving the performance o
system employed the traditional single-degree-of
mechanical system, including its beam-type vari
VEH systems have benefited from the application
linear analytical methods, since most physical sys
inherently nonlinear. For this reason, it is impo
consider the impact of nonlinear parameters, on
formance of a VEH system. For instance, bistabl
harvesters extract more energy when its nonlinea
teristics are considered [4, 10, 11, 12]. Also, no
damped VEH systems extract the same amount o
as its equivalent linearly damped system at maxi
citations, but performs better at excitation leve
the maximum level [11]. In a study on the infl
internal resistance on an energy harvester with a
system modeled as a nonlinear cubic load, it wa
that a VEH system’s dynamic range could be exte
varying the load resistance, thereby improving th
power absorbed in the process [10].

Nonlinear phenomenology is beneficial in impro
performance of VEH systems, as recently shown in

tted to Elsevier November
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arities to improve a Duffing oscillator-based
design, it was observed that under specific
ing the system’s performance was optimized,
ntially stable and nonlinear monostable sce-
13]. All VEH systems exhibit some degree of
linearity, which may be structural, geomet-
nal [4, 7, 8]. Diala et al., in [14], showed
f a nonlinear hardening spring with cubic
a VEH system, assuming no restriction on

throw, using a frequency-based analytical
put Frequency Response Function (OFRF),
the Associated Linear Equations (ALEs) of
odel. In the study, the methodology em-

d the best possible parameter values for the
design to yield the desired output energy.

ance of a VEH system can be enhanced by
nonlinear cubic stiffness parameter to the

h is capable of widening the bandwidth over
can be harvested as demonstrated in [14, 12].
n established in literature that nonlinearity
ented using several geometric arrangements,
simultaneous passive vibration suppression
arvesting [7, 15, 16]. For instance, a non-
nction multi-modal energy harvester and vi-
ber (EHVA) for harvesting energy and sup-
ation in the low–medium frequency band was
6]. The design of the multi-modal shapes of
s well as the hysteresis property of nonlin-
springs were the two primary methods em-
authors to extend the operational frequency
. In [17], Wang and Zhu connected a mag-
able device to a pendulum VEH, to increase
, particularly while operating at low frequen-

etical and experimental investigation into the
agnetic spring based on a nonlinear electro-
verter was carried out in [18]. The magnetic
n the moving magnet was specifically exam-

udy, taking into account two factors; the mag-
and the two fixed magnets’ shapes. Recently,
ring-based electromagnetic energy harvester
e nonlinear stiffness was numerically investi-
. It was shown that the piecewise nonlinear
viour (magnetic flux), which was created as
e interaction of the moving magnet with the
he system to respond over a larger frequency
oduce more electrical energy. The foregoing
t that much effort has been directed towards
ent of effective devices that can work well
bandwidth, through nonlinearities.
dynamical systems are also known to un-
ar resonances, and the resonant behaviours
ved through system parameters [20]. For ex-
], the authors reported a double-jump phe-
en examining the steady-state response of a
H system in the presence of both internal and

left and /or right of the system’s natural frequen
ous external factors such as random environmenta
tion, which leads to the occurrence of other nonli
onant behaviours in VEH systems can be used to
the performance of energy harvesters [22, 23, 24,
The response of a bistable energy harvester with
ric potential under random environment excita
studied in [27], proving the mean-square voltage
raised by intensifying Gaussian white noise. Th
harvesting capabilities of nonlinear vibrational mu
energy harvesters was impacted by stochastic bif
phenomena caused by narrow-band stochastic pa
stimulation [25]. Recently, the occurrence of stoch
onance (SR) in a bistable piezoelectric harvester s
to additive Gaussian white noise and harmonic ex
was reported in [26]. They established that stocha
nance can be utilised to improve the performance o
harvesters.

Vibrational resonance (VR) [28, 29, 30], whi
example of nonlinear resonance similar to stocha
onance, generally occurs when a high-frequency h
signal plays the role of noise in SR. VR typicall
in dual-frequency-driven nonlinear systems with
frequencies [28, 31, 32]. In VR, a nonlinear system
by a low-frequency (ω) signal is typically excited
ond, higher-frequency (Ω) harmonic forcing, know
fast-signal, with Ω ≫ ω. The system’s respons
tude, at the slow oscillation frequency is calcula
function of the fast signal’s amplitude, and th
ing curve resembles the well-known signal-to-no
curves found in stochastic resonance (SR) [33,
VR has been adopted for a wide range of real-wor
cations in engineering, as well as pure and applied
Most recently, in [34], VR was utilised to study
tion of air particles in the cavity of a Helmholtz r
(HR), excited by a dual-frequency acoustic wave.
frequency (LF) signal in the acoustic field was am
modulated by an additive high-frequency (HF) p
tion, which enhanced the detection of the LF thro
phenomena. The results provided insights to th
of improved acoustic resonators, an efficient passi
controller that finds application in different eng
designs, especially in simultaneous noise attenua
acoustic energy harvesting. Also, the electrical
of a double-well Duffing oscillator coupled to
through piezoceramic elements, driven by a bi-h
forcing function was enhanced through the phenom
vibrational resonance [1]. In a subsequent study, t
authors demonstrated that more electrical energy
gained by increasing the oscillations and that the
cation effects could be precisely regulated [35].

Generally, there are several challenges with th
tion of VEH systems in an environment with hig
monics. To capture all the active spectrum and
frequency shifts for vibration scenarios with hig

2
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SDOF vibration energy harvester with nonlinearly

d in motors, engineering structures, infras-
ets with truss, tunnels and rail bridges [36],
the performance of VEH system to a spe-

ion, there is a compelling need for further in-
f the nonlinear responses of a weakly driven
effects of high-frequency components. We

uch investigation here, and explore the non-
s of the energy harvester to maximise the sys-
ance. In this study, we investigate the VR
in a dual-frequency driven nonlinear system
electromagnetic energy harvester, where to
r knowledge, the influence of a high-frequency
a weakly-driven harvester has not been re-
he rest of this paper is organised as follows:

cribes the VEH system model. The behaviour
ystem is investigated analytically and numer-
he VR method in Section 3. The dynamical
e system is discussed in Section 4. Numerical
the average power generated by the vibration
ster is presented in Section 5, while the paper
in Section 6.

escription

l under consideration is a vibration-based en-
r with a single degree of freedom (SDOF),
Fig. 1. It has an isolated mass m, and base
of y(t). The system consists a parallel combi-
linear stiffness and damping components sep-
ass from the base. The damper has linear and
ping coefficients c1 and c3, respectively, and

as linear and nonlinear coefficients k1 and k3,
The SDOF VEH system model shown in Fig.
by a nonlinear differential equation (NDE)

en by

c1ż + c3ż
3 + k1z + k3z

3 = mÿ, (1)

Figure 2: The potential structure of the modeled SDOF e
vester computed from Eq. (7) for different sign combinat
and k3

where x(t) denotes the mass’s absolute displacem
m is the isolated constant mass m. The relative
ment between the spring mass and the base-suppo
noted by z(t) = x(t) − y(t). The base displac
assumed to be harmonic with amplitude Y and fr
ω, and its expressed in the absence of a phase d
as

y = Y sin(ωt).

In order to enhance the VEH’s performance u
the base displacement y(t) is assumed to be an
biharmonic forcing comprising an imposed high-fr
forcing with frequency Ω and a weak low-frequen
with frequency ω, so that Eq. (2) becomes

y = Y (sin(ωt) + g sin(Ωt)),

and Eq. (1) becomes

mz̈ + c1ż + c3ż
3 + k1z + k3z

3 = Y mω2 sin

+ gY mΩ2 sin(Ωt)

Y mω2 sin(ωt) is the slow forcing and gY mΩ2 si
the fast periodic excitations with a high freque
re-scaling the variables in Eq. (4) using

α =
c1
m
, β =

c3
m
, γ1 =

k1
m

, γ2 =
k

m

f = Y ω2, F = gY Ω2,

with a constant-unity mass (m = 1), the non-dim
equation of motion, Eq. (4), can be written in th

z̈ + αż + βż3 + γ1z + γ2z
3 = f sin(ωt) + F sin(Ω

3
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V (z) =
1

2
z2 +

2

4
z4. (7)

potential, Eq. (7) possesses three equilib-
(P1,2,3(z

∗, y∗)). These points depend on the
lues of γ1 and γ2, which are determined by
ess parameters k1 and k3, respectively. The
pe of a typical Duffing oscillator can be rep-
ur different ways depending on the signs of
oefficients k1 and k3 [20].
potential structures are shown in Fig. 2.

iffness parameters have same signs, the sys-
a single-hump ( for k1 < 0, k3 < 0) and a
for k1 > 0, k3 > 0) potential shapes. These
l trivial equilibrium points which are zero and
lues, P1(0, 0) and P2,3(±i

√
k1

k3
, 0). The single-

ial structure for k1 ≤ k3 < 0 is of no physical
[20]. This is because the associated equilib-
1(0, 0) is highly unstable, and P2 and P3 are
ints. The equilibrium point P1(0, 0) obtained
ve stiffness parameters (k1, k3 > 0) is stable
nt. The three cases of the system’s poten-
east one of the parameters greater than zero,
k1 > 0, have evolved into a traditional cen-

for explaining nonlinear events. These fa-
ance analysis, especially nonlinear resonance
0, 37, 38]. With k1 and k3 having differ-
. k1 < 0 and k3 > 0), the system exhibits
-single-hump potential structure. It exhibits
um points P1(0, 0), P2,3(±

√
k1

k3
, 0). Also, the

ngle-well-double-hump for k1 > 0 and k3 < 0.
the following conditions define the potential
he system;

-well with the minimum at z = 0, when k3 ≥

e-well-single-hump structure with a local max-
t z = 0 and two minima at z = ±

√
|k1|
k3

, for
< k3.

rted single-well (single-hump) that has its max-
t z = 0 when k1 ≤ k3 < 0.

e-hump-single-well structure with a maximum
0 and two minima at z = ±

√
k1

|k3| , for k3 <

tudy, we consider the response of the VEH
n the single-well potential condition (k3 > 0
To explore the impact of the nonlinear stiff-
ystem’s dynamics, we observe the influence
effective potential of the system as shown in
om the figure, increased hardening stiffness,
the potential width, and thus increases the
e system’s particles. This is because the ef-
rturbation increases the amount of energetic

stacles along their trajectories [39]. In other word
creased nonlinear stiffness energizes the particles s
ically and minimizes the effect of dynamical barrie
system. Therefore, it enhances the performance t
of the vibration energy harvester. This implies
high periodicity of the system’s oscillations optim
overall performance of the system. Despite the i
stability condition, the possibility of observing
resonances, in the context of vibrational resona
the Duffing oscillator, for the single-well potenti
tion is prevented by the monotonic increase in t
nance frequency [20]. However, our focus will b
plore the dynamical response of the VEH system
a suitable parameter regime that optimizes the
performance.

3. Resonance Dynamics of the VEH system

3.1. Analytical description
To analytically analyse the occurrence of vib

resonance in the biharmonically driven VEH oscilla
in Eq. (6), we use the method of direct separatio
tions (MDSM) [30, 37, 40].

When used alone or in conjunction with othe
bation techniques, the MDSM is a useful math
tool for examining the effects of a high-frequenc
tion in oscillators [41, 42, 43, 44, 45]. The me
volves splitting the vibration of the oscillatory sys
a set of integro-differential equations. One of the e
describes the slow motion of the system whose
can be modulated by varying the parameters of t
frequency field, and the other describes the fast
The response of the VEH system is characterize
computation of a response amplitude, Q, given as
of the amplitudes AL of the oscillating system to
the weak signal, f .

Generally, the mechanical system given by Eq
be expressed in the form:

mz̈ = F (ż, z, t) + Φ(ż, z, t, ωt).

The solution z(t) of Eq. (6) or its general form
(8) consists of a superposition of only the solution
slow evolution with frequency ω and H(t, τ), τ
the fast oscillations with frequency Ω when Ω ≫
is,

z(t) = h(t) +H(t,Ωt).

where h(t) is assumed to be periodic with period
and H is periodic in the fast time τ = Ωt wit
2π. The goal is to derive a system of two-coupled
differential describing the system’s dynamics in h
from the main equation of the system (Eq. (6)).
then focus on the equation of the slow compone
gives information on how the parameters of the fa

4
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influence the system’s dynamics. Moreover, the average
value of H(t, τ), i.e. ⟨H(t, τ)⟩ with respect to fast time τ
is given by

⟨H(t, τ)⟩

Based on Eq.
two coupled

mḧ

and

mḦ =

+

where

F̂ (ḣ, h, Ḣ,H

Equation (13
from which o
of the system
and Eq. (12)
solution of th

The first
(Eq. 11) is ob
and averagin
τ in accordan
12) is derive
from the gen
Equation (12
H componen

Following
it becomes ev

m

where

V (ḣ, h, t)

For the fast c
for an approx
It is possible
regard to H
in relation to

The MDS
46], and effec
analyses [47

In order t
over a specifi
ables H, we
totically cons
paper. The p
of the severa
eration. Eq.

the system’s vibrational mechanics [46]. The slow dynam-
ics equation has an effective potential because of the fast

Eq. (9)

H) (16)

d of fast

βḢ3

+ γ2H3

(17)

17), Eq.

2H2)

(18)

tions we
ation for
cillatory
q. (16),

− Ḣ)

h2

(19)

≫ Ḣ ≫
) as

(20)

(21)
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F 4

Ω8
,

(22)
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2

4
)
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(24)
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= H(t, τ) =
1

2π

∫ 2π

0

H(t, τ)dt = 0. (10)

(8) and the assumed solution in Eq. (9), the
system of integro-differential equations are

= F (ḣ, h, t) + ⟨F̂ (ḣ, h, Ḣ,H, t)⟩
+ ⟨Φ(ḧ+ Ḣ, h+H, t, τ)⟩, (11)

F̂ (ḣ, h, t)− ⟨F̂ (ḣ, h, Ḣ,H, t)⟩+Φ(ḧ (12)
Ḣ, h+H, t, τ)− ⟨Φ(ḧ+ Ḣ, h+H, t, τ)⟩,

, t) = F (ḣ+ Ḣ, h+H, t) + F (ḧ, h, t). (13)

) is the function of the system’s variables,
ne can compute the response amplitudes Q
. If h and H are the solutions of Eq. (11)

, respectively, it implies that z = h+H is the
e general Eq. (8).
of the coupled integro-differential equations
tained by substituting Eq. (9) into Eq. (8),

g both sides of with respect to the fast time
ce with Eq. (10). The second Equation (Eq.

d by subtracting the first equation (Eq. 11)
eral equation of the system (Eq. (8)). In
), ḣ and h frozen, that is, constant since the
t is faster than the slow component h.
the acquisition of a solution H = H∗(ḣ, h, t, τ),
ident that Eq. (11) can be expressed as

ḧ = F (ḣ, h, t) + V (ḣ, h, t), (14)

= ⟨F̂ (ḣ, h, Ḣ∗, H∗, t)⟩+ ⟨Φ(ḧ+ Ḣ∗, h

+ H∗, t, τ)⟩. (15)

omponent H∗, one will typically need to look
imate solution in the form of a few harmonics.
to find a solution by linearising F and Φ with
(and maybe ḣ) if H is thought to be modest
h.
M has been explained in detail in Refs. [20,
tively applied for a variety of theoretical VR
, 48, 49, 50, 51, 52, 53, 54].
o ensure that the potential V (z) is well-defined
c range of initial conditions of the fast vari-
assume that the fast motion H∗ is asymp-
tant throughout our analysis of VR in this
otential V (z) will vary depending on which
l steady rapid motions is taken into consid-
14 is the primary equation for the study of

dynamics.
Therefore, to apply MDSM, one can substitute

into Eq. (6), to have

ḧ + Ḧ + α(ḣ+ Ḣ) + β(ḣ+ Ḣ)3 + γ1(h+

+ γ2(h+H)3 = f sin(ωt) + F sin(Ωt).

Averaging both sides of Eq. (16) over the perio
time [0, 2π

Ω ] gives

ḧ + Ḧ + ḣ(α+ 3βḢ2) + αḢ + 3Ḣh2 + βḣ3 +

+ h(γ1 + 3γ2H2) + γ1H + 3γ2Hh2 + γ2h
3

= f sin(ωt) + F sin(Ωt).

By applying the mean value in Eq. (10) in Eq. (
(17) becomes

ḧ + ḣ(α+ 3βḢ2) + βḣ3 + βḢ3 + h(γ1 + 3γ

+ γ2h
3 + βH3 = f sin(ωt).

Eq. (18) is the first of the set of coupled equa
set out to obtain. It is the integro-differential equ
the slow variable h. The equation of the fast os
motion is obtained by subtracting Eq. (18) from E
to obtain

Ḧ + 3βḣ(Ḣ2 − Ḣ2) + αḢ + 3Ḣḣ2 + 3(Ḣ3

+ βḢ3 + γ1H + 3γ2h(H
2 −H2) + 3γ2H

+ γ2(H
3 −H3) = F sin(Ωt).

Using the inertial approximation by assuming Ḧ
H, we can write the approximate form of Eq. (19

Ḧ = F sin(Ωt),

so that

H =
−F

Ω2
sin(Ωt),

Using Eq. (21), the mean values in Eq. (18) are
as

Ḣ2 =
F 2

2Ω2
, H2 =

F 2

2Ω4
, H4 =

3

8

Ḣ3 = 0, H = H3 = H5 = H7... = 0.

By substituting Eq. (22) into Eq. (18), we ob

ḧ + ḣ(α+ 3β
F 2

2Ω2
) + βḣ3 + h(γ1 + 3γ2

F

2Ω

+ γ2h
3 = f sin(ωt).

Eq. (23) can be written as

ḧ+ ḣλ1 + βḣ3 + λ2h+ γ2h
3 = f sin(ωt),

5



Journal Pre-proof

Figure 3: (a) P
placement, z wi
k3 when k1 =
for different val
parameters fixe

where

Thus, the eff

Figure 3 p
tion of the sl
the effect of
hardened stiff
fast oscillatio
tem. The w
increasing hi
that, via thei
be controlled
energy to be

The system’s vibration is defined in terms of the devi-
ation of the slow motion, h from the equilibrium point h∗
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solution;
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Fig. 3.
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(a)

(b)

otential plots of the VEH system, V (z) against dis-
th varying values of the nonlinear stiffness parameter,
5. (b) The effective potential plots, V (h) against h,
ues of g, magnitude of the fast oscillation with other
d at k1 = 5, k3 = 5, ω = 1.0, Ω = 20ω.

λ1 = α+ 3β
F 2

2Ω2
,

λ2 = γ1 + 3γ2
F 2

2Ω4
. (25)

ective potential of the system is given by

V (h) =
λ2

2
h2 +

γ2
4
h4. (26)

resents the effective potential V (h) as a func-
ow motion component, h and Fig. 3b shows
increasing g on the system’s potential. The
ness parameter, k3, and the amplitude of the
n, g, influence the dynamics of the VEH sys-
idth of the effective potential changes with
gh-frequency (HF) amplitude, g. It implies
r cooperation, the system’s performance can
, which can improve the amount of vibration
harvested.

by substituting Γ = h− h∗ in Eq. (24). Then

(Γ̈− ḧ∗) + λ1(Γ̇− ḣ∗) + β(Γ̇− ḣ∗)3 + λ2(Γ

+ γ2(Γ− h∗)3 = f sin(ωt).

When the amplitude of the harmonic base displ
Y ≪ 1, and the oscillation takes place around the
rium point ( h∗ = 0), then Eq. (27) becomes

Γ̈ + λ1Γ̇ + β(Γ̇− ḣ∗)3 + λ2Γ + γ2(Γ− h∗)3 = f si

By neglecting the nonlinear term, we obtain a line
lator of the form

Γ̈ + λ1Γ̇ + λ2Γ = f sin(ωt),

where ωr =
√
λ2. Eq. (29) have a steady-state

Γ = AL sin(ωt). Therefore, the response ampli
can be written as

AL =
f√

(ω2
r − ω2)2 + λ2

1ω
2

θ = − tan−1

(
λ1ω

(ω2 − ω2
r)

)





Finally, we can calculate the analytical respons
tude, Q from

Q =
AL

f
=

1√
(ω2

r − ω2)2 + λ2
1ω

2
.

3.2. Numerical simulations
To validate the analytically computed respons

tude Q, we numerically integrate the nonlinear
cillator (Eq. (6)) using the parameters settings in
This is achieved by first re-writing Eq. (6) as a se
pled first-order Ordinary Differential Equations (O
the form

dz

dt
= ż

dż

dt
= −αż − βż3 − γz − γ2z

3 + f sin(ωt) + F

Eq. (32) was integrated using the Fourth-Order
Kutta scheme with a fixed step size ∆t = 0.001,
following parameters were set throughout the V
sis; k1 = 5.0, c1 = 0.20, Y = 0.05 and Ω = 20ω,
initial condition [0, 1] was used. The response am
Q is computed from the Fourier spectrum of the
ries of the output signal using the Fourier sine an
components BS and BC in the form

Q =

√
B2

S +B2
C

f

θ = −tan−1

(
BS

BC

)
,





6
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(a)

(b)

Response plot Q as a function of the weak low-
ith g = 0.1. The continuous curve represents the
nse plots, while the analytically calculated response

om Eq. 31 is plotted with broken lines and markers,
k1 = 5.0, k3 = 50, c3 = 0.2, Y = 0.05 and Ω = 20ω
b) The dependence of Q on ω for six different values
0.2, 0.3, 0.4, 0.5 and 0.6), with other parameters
tem fixed at c1 = 0.20, k1 = 5.0, Y = 0.05, k3 =
d Ω = 20ω.

BS =
nT 0

z(t) sinωt dt,

BC =
2

nT

∫ nT

0

z(t) cosωt dt.




T = 2π
ω is the period of oscillation of the low-fr

input signal with n = [1, 2, 3, . . .] number of com
cillations. To validate the analysis in Section 3, th
ically computed response amplitude Q obtained u
(31) is compared with the numerical Q obtained
from Eq. (33).

4. Results and Discussions

4.1. Occurrence of Vibrational Resonance
We now discuss the occurrence of vibrational r

in the nonlinear VEH system. From in Eq. (
system’s response amplitude is given by Q = 1√

S

S = (ω2
r − ω2)2 + λ2

1ω
2. In the linearized equat

(29)), the effective dissipation term λ1 is a function
the linear and nonlinear damping terms. We note
highest power delivered by the system for any p
vibration energy harvester depends on the proper
of load resistance regarding the effective dissipatio
35]. Additionally, the occurrence of VR in any dy
system suggests several control parameters and a
the availability of optimization variables [41, 55,

To understand the effect of both the nonlinear
and nonlinear stiffness on the resonance behaviou
VEH system, we set W = ωr − ω. Thus S = W 2

suggests Q is maximum when S is minimum. T
plies Q peaks at W = 0 (ωr = ω), where ωr =

√

λ2 = γ1 + 3γ2
F 2

2Ω4 . Since Ω ≫ ω, resonance is exp
occur. Hence, ω2

r = γ1 +3γ2(
Y 2g2

2 ). This shows t
dependent on the values of k1, k3 and m through
γ2. Otherwise, if the oscillation amplitude is ass
be small (e.g., Y ≪ 1 and g ≥ Y ), then, ωr =

√
γ1

This suggests three possible resonance cases.

Case I: Single-well condition, for k1 > 0, k3 > 0, w

k1 ≥ k3

Case II: Single-well-double-hump condition, for k1 >
0, when

k1 ≫ k3

Case III: Double-well condition, for k1 < 0, k3 > 0, w

k1 < k3

Here, the effective resonant frequency, ω2
r , d

the potential structure of the system in relation t
onant condition. These conditions correspond to t
sic realizable potential shapes of any physical syst
similar potential functions. Moreover, the forth c
(k1 ≤ k3 < 0) is unrealistic because ω2

r is alway

7
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parameter regime. The appearance of res-
can be controlled by either modulating pa-
e fast periodic force (g or Ω) or the potential
1 and k3). From Eq. (35), Eq. (36), and Eq.

be seen that the system behaviour depends
of k3, which influences the resultant perfor-
system at resonance.

ndence of the response amplitude, Q, on the
-frequency is shown in Fig. 4a for two re-
obtained from the analytically computed re-
tude using Eq. (31) (red broken line with
the numerically computed using Eq. (33)

ous line). The analytical and numerical re-
s are in good agreement. The deviation be-

erically and analytically computed response
attributed to approximations in the deriva-

pression for the analytical Q. From the tra-
ry of VR, one can examine the resonance be-
ynamical system by changing the parameter
herefore, the dependence of Q on ω for six
es of g (g = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6),
arameters of the VEH system fixed at c1 =
, k1 = 5.0, Y = 0.05, k3 = 50, and Ω = 20ω
ig. 4b. It can be observed from the figure
g g reduces the response amplitude. This is

resonant frequency is independent of ω, and
m of resonance is the minimization of the
(ω2

r − ω2)2 + λ2
1ω

2, which remains constant
is changed. The dependence of the system’s
n low-frequency (LF) parameter, ω can also
by the nonlinear parameters of the system,
ig. 5.

urther insight into the contributions of non-
the response of the VEH system, we present
ce of response amplitude, Q, on the low-
for four values of the cubic stiffness, k3 =
220] with k1 = 5.0, g = 0.10, c1 = 0.2, c3 =
, and Ω = 20ω in Fig. 5a. The cubic stiff-
er, k3 tuned the resonance state of the sys-
obvious reduction in response amplitude Q,
ear stiffness parameter, k3 is increased from
lso, increasing k3 shifts the peak points of
curve to the right and increases the band-
can aid system performance. This observa-
tent with Literature, and nonlinear harden-
e., k3 > 0) increases the resonant frequency
isolation system by shifting the peak mag-
right [14, 12]. Consequently, this suggests

g of energy over an extended bandwidth by
tem. On the other hand, Fig. 5b depicts
of Q with ω for four different values of the
g parameter, c3 = [0.0, 0.2, 0.3, 0.6], with
= 0.1, Y = 0.05, k1 = 5.0, k3 = 50 and
ncreasing c3, the cubic damping parameter
e response amplitude, Q and lowers the sys-

pendent on the imposed nonlinearities. Consider
tem’s response at resonance, the response ampl
becomes maximum whenever the resonant frequ
matches with the vibration frequency, ω of the
excitation (ω2

r = ω2). Therefore, from Eq. 31, Q
on the damping terms through λ1. Thus, a further
in the value of c3 leads to the condition, ωr > ω,
resonance peaks disappear. The effect of dampin
dynamical response of a system has been well-stud
similar effects were reported [20, 33].

4.2. Controlling VR with VEH system’s paramet
We only considered the first resonance conditi

0 and k3 > 0) for the occurrence of the VR phenom
this paper. Firstly, we examined the effect of mo
the system’s parameters on the VR phenomenon.
and Fig. 6b show the variation of the response am
Q on the high-frequency signal amplitude g for
values of the linear damping and the linear stiff
rameters, respectively. Both figures exhibit two
peaks for the parameter values considered. In F
response plots for six different values of the linea
ing c1 = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7], were superi
There is a marked decrease in the system’s respo
increases. As observed, the effect of the linear d
on the response amplitude, Q, of the VEH syste
reduce Q as g varies. Fig. 6b shows the depen
Q on g for k1 = [2.5, 3.0, 3.5, 4.0, 4.5, 5.0], w
50, c1 = 0.2, c3 = 0.2, Y = 0.05 ω = 0.3 and Ω
Increasing the strength of the linear stiffness, k1, d
the response amplitude Q of the system and shift
sponse peaks to the left. Increase in magnitudes
the linear damping and the linear stiffness param
and k1, respectively, lowers the value of Q. In addi
justing c1 shifts the response curves to the right,
to the effects of modulating k1. The effect of the n
damping on the dynamical response of the VEH s
considered in Fig. 7. In Fig. 7a, three distinct V
were observed with c3 = 0.0, in the range 0 < g <
their magnitudes increasing as g varies within th
On activating the nonlinear damping, c3 = 0.2,
peaks reduced and their magnitudes decrease m
cally with increasing g. The peaks are reduced
resonance curves in Fig. 7b, Fig. 7c and Fig. 7
c3 = 0.30, c3 = 0.40 and c3 = 0.60, respectively
the high value of c3, the disappearance of the mul
curves are pronounced in Fig. 7c and Fig. 7d, sho
possibility of suppressing VR, when the nonlinea
ing is further increased. Consequently, when c3 s
specific critical levels, resonance vanishes, and th
harvests no significant energy.

Next, we examined the effect of nonlinear stiff
on the response amplitude of the VEH system in
d. Increasing k3 enhances the system’s response

8
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(a)

(b)

dependence of response amplitude, Q on the weak
ency, ω for: (a) five different values of the nonlinear
= 0, 50, 110, 150 and 220) with k1 = 5.0, g =
Y = 0.05, and Ω = 20ω; (b) for four different values
r damping, c3(c3 = 0.0, 0.20, 0.30, and 0.60) with
.1, Y = 0.05, k3 = 50, and Ω = 20ω.

(a)

(b)

Figure 6: (a) Dependence of Q on the amplitude of the
lation g, with varying linear damping c1 when other para
the VEH system are fixed at k1 = 5.0, k3 = 50, c3 =
0.05 ω = 0.3 and Ω = 20ω; (b) The dependence of Q
k1 = 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 with k3 = 50, c1 =
0.2, Y = 0.05 ω = 0.3 and Ω = 20ω.
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endence of Q on g for (a) c3 = 0.0 and 0.20, (b)
3 = 0.40 and (d) c3 = 0.60 with other parameters of

fixed at c1 = 0.20, k1 = 5, Y = 0.05, k3 = 50, ω =
ω.

onse plot Q against g the amplitude of the fast oscil-
nonlinear stiffness parameter k3 = 0.0 and k3 = 35,

) k3 = 110 and (d) k3 = 150, while other parameters
are c1 = 0.20, k1 = 5, Y = 0.05, c3 = 0.2, ω =
ω.

Figure 9: Dependence of Q on g for different values of weak
(a) ω = 0.25, (b) ω = 0.27, (c) ω = 0.30 and (d) ω = 0.32 w
parameters of the VEH system fixed at c1 = 0.20, k1 =
0.05, c3 = 0.20, k3 = 70 and Ω = 20ω.

the emergence of more VR curves, highlighting
operation of amplitude of the fast excitation g
hardened stiffness, k3. Consequently, multiple r
peaks were created. The occurrence of VR in the
ure (Fig. 8a) without activating the nonlinear
k3 = 0, appears impossible, for the considered
g (g ∈ [0, 5]). However, the increased value of k
8a, when k = 35, ascertained the occurrence of V
k3 = 50, in Fig. 8b, two significant VR peaks
served. Moreover, the emergence of multiple VR
Fig. 8c and Fig. 8d, with k3 = 110 and k3 =
spectively, appeared in the range 0 < g ≤ 3. W
the values of other parameters of the VEH sys
adjusted the excitation frequency, ω, to examine
nificant impact on the system’s dynamics. Figu
show the dependence of Q on g for four differen
of the excitation (ω = [0.25, 0.27, 0.30, 0.32]), w
0.20, k1 = 5, Y = 0.05, c3 = 0.20, k3 = 50 and Ω
The figures demonstrate that varying ω has an
on the system’s dynamics, similar to c3; they re
system’s response amplitude and ultimately caus
disappear [30]. In Fig. 9, multiple resonance peak
decrease, both in magnitude and numbers, as ω
from 0.27 to 0.32, were observed. Therefore, in
frequency, ω will reduces the response amplitude
ωr ̸= ω, implying no resonance. A similar effect
reported in the literature. The majority of earlier
established that when either the frequency or the
rises above certain critical values, the response am
Q of dynamical systems decreases and may eve
entirely [33, 30].
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(a)

(b)

ee-dimensional plot showing the dependence of Q on
ng stiffness, k3, with varying LF component ω, when
rs of the VEH system are fixed at k1 = 5.0, k3 =
Y = 0.05, g = 0.1, and Ω = 20ω; (b) the nonlinear
eter, c3, with varying LF component ω, when other
he VEH system are fixed at k1 = 5.0, k3 = 50, Y =
nd Ω = 20ω.

(3D) plots, shown in Fig. 10 and Fig. 11a. Th
dence of Q on the hardening stiffness, k3, with va
component ω is shown in Fig. 10a, when other
ters of the system are fixed at, c1 = 0.20, k1 = 5
0.2, Y = 0.05, g = 0.1 and Ω = 20ω. It is evid
the figure (Fig.10a) that a single resonance appear
considered values of the hardening stiffness (k3 ∈
forming a ridge-shaped elevation with the peak
Figure 10b, presents the dependence of the syst
sponse on the nonlinear damping parameter, c3, w
ing LF component ω, when other parameters are
k1 = 5.0, k3 = 50, Y = 0.05, g = 0.1 and Ω
The red-coloured hill corresponds to high respons
tude Q values, which stretch along c3 values. Thi
pronounced for lower values of the nonlinear dam
Both plots, Fig. 10a and Fig. 10b, confirmed the
for just a single resonance curve, which amplitud
controlled by the modulation of the nonlinear par
k3 and c3, respectively. Moreover, the 3D-plots
10a and Fig. 10b, are in agreement with Fig. 5a
5b, respectively. Interestingly, the figures confir
prediction of resonance conditions (i.e. Eq. (35))

To corroborate our results and discussions on
currence, and validate that the system’s perform
be optimized using VR approach, the dependence
g and ω is shown in Fig. 11a. Figure 11a shows 3D
the dependence of the system’s response amplitu
the amplitude of the fast oscillation, g and the
ponent, ω, when other parameters of the VEH sy
fixed at k1 = 5.0, k3 = 50, c3 = 0.2, Y = 0.05
20ω. The hill-shaped figure represents the VR cur
its peak in red.

The enhancement regime is more pronounc
g < 0.5. The blue plains are indication of no enhan
It is clear from the figure (Fig.11a) that lower valu
required to enhance the system’s performance. To
examine the features of the system’s response and
nificance of nonlinearities on the system, we pre
dependence of the response amplitude Q on the n
damping parameter c3 with and without the acti
the fast oscillation in Fig11b. The plots confirmed
timization of the systems performance with a low v
and the nonlinear damping range 0 < c3 < 0.6, wh
ports maximum energy conversion. The figure sh
maximum response amplitude Qmax occurs at c3
both cases; g = 0.00 and g = 0.10. These values
and c3 = 0.20) were used for further analyses and
estimation of the average power harvested by the

5. Average Power absorbed by the system

In this section, we analyzed the effect of nonli
on the resultant energy harvested by the nonline
tion energy harvester described in Eq. 6. The oc
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(a)

(b)

ee-dimensional plot showing the dependence of Q on
f the fast oscillation, g, with varying LF component
eters of the system were fixed at, c1 = 0.20, k1 =
= 0.05, k3 = 50 and Ω = 20ω. (b) The dependence

response Q on the nonlinear damping parameter c3,
t the activation of the fast oscillation, when other pa-
ed at k1 = 5.0, k3 = 5, Y = 0.05, ω = 0.3 and Ω =

adjustment of any system parameter, not necess
quency [30, 49, 58]. Also, under resonance condi
system must have acquires considerable energy
in an amplified response. So we related our prev
cussion on the analysis of VR to the amount o
harvested by the VEH system. We showed the po
of optimizing the system’s performance. We estim
amount of energy harvested numerically, and est
that the parameter values maximize the system res
average electrical power. In any event, the instan
power absorbed by electromagnetic damper is de
on the instantaneous damping force and relative
ment of the damper [12, 14, 56].

Next, we analyse the resultant average power g
by expressing Pav as

Pav =
1

T

∫ T

0

(c3ż
3)żdt,

such that for the low frequency harmonic oscillat
displacement z(t) = Z sin(ωt), where Z is the am
of the solution to Eq. (1). Consequently, the m
of the average power generated by the system can
obtained as defined in [14] from

Pav =
3

8
c3ω

4Z4.

It should be noted from Fig. 1 that energy is l
the system through c1, while from Eq. (39), t
damping c3 gainfully contributes to the total am
energy harvested by the system (Eq. 39). More
system’s dynamics, particularly the response amp
dependent on the harmonic excitation frequency
the nonlinear parameters ( c3 and k3). Hence, th
of the nonlinear parameters on the amount of h
energy is substantial. In Fig. 12a, the variatio
erage power, Pav with oscillation frequency, ω
for different values of the amplitude of the fast v
g = [0.1, 0.2, 0.3, 0.4], with other parameters of th
fixed at k3 = 50, Y = 0.05, c1 = 0.20, c3 = 0.2
5.0 and Ω = 20ω. Increasing g from g decreases
erage power, Pav. The effect of modulating cubic
on the average power absorbed, is described in F
The system can absorb more energy as k3 increa
impact of hardening stiffness, k3, on the the avera
is clear, it extends the operational bandwidth of t
system by increasing the resonance frequency, and
the amount of energy harvested. Therefore, the
adequate performance depends on the appropria
of k3, as obviously shown in Fig. 12b.

It is worth mentioning that the power is abs
resonance (ωr = ω). With a fixed value of the LF
nent (ω = 0.30), it is expected that Pav increases
creasing g or c3, due to its direct dependence on c
from Eq. (39). To analyse the effect of c3 on P
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Figure 12: (a
lation frequenc
the fast vibrat
ters of the syst
0.20, k1 = 5.0
[0, 50, 110, 150,
0.10, c3 = 0.2,

quency, ω
, 0.4, 0.6]),
.10, c3 =
ge power,
t values of
r parame-
, and Ω =
Jo

ur
na

l P
re

-p
ro

of
(a)

(b)

) The variation of average power Pav with oscil-
y, ω for different values of; (a) the amplitude of
ion, g = [0.10, 0.20, 0.30, 0.4], with other parame-
em fixed at k3 = 50, Y = 0.05, c1 = 0.20, c3 =
and Ω = 20ω; (b) the nonlinear stiffness, k3 =

220], with other parameters fixed at k1 = 5.0, g =
Y = 0.05, and Ω = 20ω

(a)

(b)

Figure 13: (a) The variation of average power Pav with fre
for different values of nonlinear damping, c3 (c3 = [0.0, 0.2
with other parameters fixed at k1 = 5.0, k3 = 50, g = 0
0.2, Y = 0.05, and Ω = 20ω. (b) Dependence of the avera
Pav on the amplitude of the fast oscillation g, for differen
nonlinear damping, c3 (c3 = [0.0, 0.2, 0.4, 0.6]), with othe
ters fixed at k1 = 5.0, ω = 0.3, c3 = 0.2, k3 = 50, Y = 0.05
20ω.
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Figure 14: Thr
average power,
varying LF com
are fixed at, k
(b) the hardeni
parameters of t
0.2, Y = 0.05,

nce of the
n g, with
H system
Ω = 20ω.
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(a)

(b)

ee-dimensional plot showing the dependence of the
Pav on (a) the nonlinear damping parameter, c3, with
ponent ω, when other parameters of the VEH system
1 = 5.0, k3 = 50, Y = 0.05, g = 0.1 and Ω = 20ω;
ng stiffness, k3, with varying LF component ω. Other
he system were fixed at, c1 = 0.20, k1 = 5.0, c3 =
g = 0.1 and Ω = 20ω.

(a)

(b)

Figure 15: Three-dimensional plot showing the depende
average power, Pav on the amplitude of the fast oscillatio
varying LF component ω, when other parameters of the VE
are fixed at k1 = 5.0, k3 = 50, c3 = 0.2, Y = 0.05 and
(b) A two-parameter space plot of Fig. 15a.
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13a depicts the variation of average power, Pav with fre-
quency, ω for different values of the cubic damping c3. It
is worth noti
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the average p
cillation g, fo
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ng that the effect of increasing c3 on Pav, as
figure, is similar to the significant impact

bsorbed power in Fig. 12a. Dependence of
ower, Pav on the amplitude of the fast os-
r different values of the nonlinear damping,
0.2, 0.4, 0.6]), with other parameters fixed at
= 0.3, c3 = 0.2, Y = 0.05, and Ω = 20ω, is
. 13b. Despite the low magnitude, Pav in-
increasing c3 and g. This is as expected from
h fixed value of ω. On the other hand, with
s of ω, it is essential to consider the response
d the amount of energy generated by the VEH
respect to the natural resonant frequency of
his is because the resonant frequency, funda-
nes the dynamical behaviour of the system,
resonance. Recently, it was reported that the
a dynamical system is a function of its natural
rticularly, the response dynamics [57, 58].
response curves, Fig. 5b and Fig. 7, increas-
near damping, c3, reduces the resonant fre-
ency of interest) and the response amplitude,

which as well, decreases the average power ab-
the VEH system (Fig. 13a). This therefore
ge of values for c3, for which the performance

ear energy harvester can be optimised. Con-
presents a three-dimensional plot showing

ce of the average power, Pav on the nonlin-
parameter, c3, with varying LF component
r parameters of the VEH system are fixed at,
= 50, Y = 0.05, g = 0.1 and Ω = 20ω, in
illuminate broader features of the nonlinear
he average power absorbed by the system, we
gure in a two-parameter space, showing the
f Pav on the parameters, ω and c3. The av-
absorbed increases with lightness/brightness
r bar), and the peak is white. Clearly, Pav is
a low value of the nonlinear damping, in the
3 ≤ 0.2. In Fig. 14b, we presents a 3D-plot
dence of Pav on the hardening stiffness, k3,
LF component ω. Other parameters of the
fixed at, c1 = 0.20, k1 = 5.0, c3 = 0.2, Y =
and Ω = 20ω. It is evident from the figure

hat Pav increases with increasing hardening

orate our results and discussions on VR oc-
validate that the average power the system

nds on the imposed nonlinearities, we present
ional plot of the dependence of Pav on g and
. From the figure, particularly, in Fig. 15a,
ed that the system can harvest appreciable
ergy. Moreover, it is clear from Fig. 15b,
rmance of the VEH system can only be opti-

wer values of g (g ≤ 0.1). It is worth mention-
tical VEH systems are typically constrained
ive displacement, Z, imposing optimization

Figure 16: Dependence of the maximum average power
the effective resonant frequency ωr, showing the effect of v
nonlinear stiffness parameter k3 on ωr when other param
fixed at c1 = 0.20, k1 = 5.0, c3 = 0.2, Y = 0.05, g = 0.10
20ω.

challenges. The fact that the system’s response, Q
is proportional to Z, is dependent on g for VR occ
shows that our results and discussions are substa
the optimization of the VEH system.

To assess the impact of the nonlinear stiffness
ter and the resonant frequency, particularly on the
of energy harvested by system (6), we examined th
in the effective resonant frequency and quantify t
age power harvested by system. This is shown in
It can be seen from Fig. 12b that Pav increases
creasing k3. More so, the optimal value of the
power (Pmax

av ) harvested by the VEH system is
at different excitation frequency. This implies tha
ergy conversion that takes place whenever ωr = ω
controlled with k3 as shown in Fig. 16. Therefore,
appropriate choice of the nonlinear stiffness param
the system’s performance can be improved. For
the corresponding optimal values (ωr, P

max
av ) to th

in Fig. 12b are (2.2361, 0.0225), (2.2365, 0.1159), (2
(2.2373, 0.4293), (2.2379, 0.6877) for k3 = [0.0, 50,
respectively. The optimization values of the syst
rameters are summarised in Table 1.

6. Conclusion

In this study, the effect of nonlinear parameter
energy harvested by a nonlinear VEH system, wa
gated. We examined the influence of the nonlinea
ing and stiffness parameters on the system’s r
state for the single-well potential structure. We
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Table 1: Summarised optimal values of the system’s parameters while
other parameters are fixed at m = 1.0, c1 = 0.20, Y = 0.05, g =
0.10 ω = 0.3 an
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ibrational resonance (VR) is reported in a Duffing-type energy harvester

ith electromagnetic transduction structure. 
he oscillator is a vibration-based energy harvester with a single degree of

reedom, driven by a dual-frequency force.
he  stiffness  parameter  determined  the  potential  structure  and  resonance

ynamics of the system.
he average power absorbed was used as the system’s performance metric.
n  enhanced  vibration  energy  harvesting  system  was  demonstrated  with

onlinearities. 
he  results  highlight  a  new approach  for  the  design  and optimisation  of

lectromagnetic energy harvesters. 
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