
Realtime Execution of Automated Plans using Evolutionary

Robotics

Tommy Thompson & John Levine

Abstract— Applying neural networks to generate robust agent

controllers is now a seasoned practice, with time needed only

to isolate particulars of domain and execution. However we

are often constrained to local problems due to an agents

inability to reason in an abstract manner. While there are

suitable approaches for abstract reasoning and search, there

is often the issues that arise in using offline processes in

real-time situations. In this paper we explore the feasibility

of creating a decentralised architecture that combines these

approaches. The approach in this paper explores utilising a

classical automated planner that interfaces with a library of

neural network actuators through the use of a Prolog rule base.

We explore the validity of solving a variety of goals with and

without additional hostile entities as well as added uncertainty

in the the world. The end results providing a goal-driven agent

that adapts to situations and reacts accordingly.

I. INTRODUCTION

Machine learning applications for intelligent agent formu-
lation is a broad area of research. We have learned how to
generalise vast quantities of raw data and process them in an
intelligent and effective manner. Resulting in software and
hardware that can adapt to and rationally act against sensor
data provided appropriate training mechanisms were applied.
One technique used frequently for this generalisation process
is neuro-evolution; the application of evolutionary compu-
tation to train artificial neural networks (ANNs). ANNs are
ideal for processing low-level real-time data and can generate
effective, robust and computationally cheap solutions to a
myriad of problems. However given the nature of the data
presented and reactive nature of ANNs to stimuli, this often
constrains these agents to dealing with tasks of limited scope.

This is seldom an issue with many applications, however it
does effectively limit the potential capability of these agents.
Research in non-player characters (NPCs) for video games
provide a prime example of this. Neural network control has
became a prominent development tool in a variety of game-
related research ranging from combat NPCs [1], [2] to car
racing and navigation [3], [4]. While we do not wish to
detract from these contributions we seldom see controllers
designed to solve larger problems that require sequences of
individual and varied actions to solve. What becomes clear
is that there is no means of abstract reasoning to occur.
The lack of internal state prevents reasoning and deliberation
regards the agents current state. Thus preventing the chaining
of actions in sequence unless control is exerted outwith the
controller itself.

Tommy Thompson and John Levine are with the Strathclyde Planning
Group, University of Strathclyde, Glasgow, G1 1XH, UK, email: [tommy,
john.levine]@cis.strath.ac.uk).

Perhaps one of the most renowned methods of abstract rea-
soning is the field of automated planning. Using a restricted
model of the world and an explicit description of the state-
action space, search methods are applied to produce a chain
of actions that will traverse from the initial state to a state
representing the desired end-goal conditions. While this is
a highly effective tool, traditional planning methodologies
(typically referred to as classical planning) must search
offline utilising abstract, fully deterministic and observable
models of the world without interaction. Many find that this
feature detracts from the potential of this application should
it be used in real-time environments.

ANNs and planning are perhaps prime candidates to com-
pare and contrast the drawbacks and benefits of reactive to
state-based behaviour, however there is potential in utilising
these together. Planning can assist in overcoming the lack
of internal state within an ANN-driven agent, while said
perceptron can help a plan-driven agent interact with a world
it can only see through abstract models. However this is not
a simple intuition-based decomposition; there are significant
issues that must be addressed ranging from the use of an
offline search process in a real-time environment to gaps in
knowledge that can not be expressed in neither the neural
network nor the planners domain model.

In this paper we explore the feasibility of combining clas-
sical planning, modelling and deliberation with the reactive
control of ANNs in a decentralised agent architecture for
game environments. In order to do so we create a new
testbed environment called BruceWorld that is sufficient for
our needs. What follows is an account of our intent to create
an agent capable of reasoning over long-term goals, devising
plans to solve these goals and executing them through the
use of reactive controllers. Furthermore, we explore means of
coping with holes in the knowledge of both systems and how
this leads to a goal-driven agent that reacts to local stimuli
effectively.

This paper is laid out as follows; in Section II we provide
detail of our testbed simulation BruceWorld and how it
provides sufficient challenge for our agent, followed by an
offering of related research in Section III. We then explore
how we create our decentralised architecture in Section IV.
A series of test-problems and the results of our agent against
them are given in Section V and a discussion of the overall
effectiveness of our controller as well as suggestions for fur-
ther research in Section VI. We then provide our concluding
remarks in Section VII.

978-1-4244-4815-9/09/$25.00 ©2009 IEEE 333

II. BruceWorld

BruceWorld is a testbed environment designed specifically
to assess the validity of our research in this paper. The
original concept being to present a domain suitable for
neural network controllers but can also be reasoned about
in an abstract manner. BruceWorld is a java developed
game that operates in discrete time-steps occurring every 15
milliseconds. Confined to the interior of an office building
and inspired in part by the movie Die Hard, each BruceWorld
instance (such as the example shown in Figure 1) consists of
a series of rooms, all connected either by corridors, doorways
or by ventilation ducts. If a door in a doorway is closed it
will typically require a switch nearby to be hit in order for
it to be opened.

In a given problem instance there are two other types
of agent that may interact with our Bruce agent, known as
terrorist and hostage. Terrorist agents are hostile to Bruce and
will seek to eliminate him once he enters their immediate
vicinity. Meanwhile hostages may be somewhere within the
building and need to be rescued. Each problem instance
is potentially filled with enemy agents whose goal is to
eliminate any moving targets in the vicinity. Hostages will
be found in varying areas of the world and will often need to
be rescued by Bruce. Hostages are typically very cooperative
when in Bruce’s vicinity, however should the agent be injured
or be in a state of panic their range of capabilities is
drastically reduced. Unless these issues are addressed they
are often unable to act, forcing Bruce to interface with
them in different ways, ranging from patching up wounds
with aidkits found throughout the world to carrying them
throughout the level.

To further impede Bruce and his attempts to achieve his
goals, small explosives will occassionally be littered around
the world that may require defusing if they pose a significant
threat.

Bruce can be charged with goals such as navigation
through a series of corridors, air vents and doorways, retrieval
of resources such as aidkits, rescuing of hostages or defusing
of bombs. Note that no terrorist goals are ever imposed upon
Bruce, this is a deliberate design decision as unlike hostages,
terrorists cannot be seen in the plan model at initialisation
(since they cannot be effectively modelled in a planning
domain). Bruce can only ‘see’ hostile agents once he had
entered the same location as them.

Each agent is capable of basic movement throughout the
environment; forwards, backwards, turn left or right and is
capable of activating one or more of these actions at each
discrete time-step of the simulation. Movement is fixed to a
predefined distance (2 pixels) or angle (4 deg) per update.
Once any navigation action is committed, there is a minimum
delay of 1 cycle before that same action can be committed
again. Each agent will start with a maximum health of 100
points, and will suffer a loss of 25 points for each collision
with the environment or if hit by incoming fire. Terrorists and
Bruce can potentially wield knives or guns and use them
against opponents. While knives only operate close range,

Fig. 1. A screenshot from the BruceWorld game. The game in progress
challenges Bruce to rescue the hostage from behind the locked door.
However there is an enemy terrorist in the next room, and clutter in the
rooms that the agent must navigate around.

guns may be fired at a distance in the direction they are
facing. Should any rounds be fired there is a 50 cycle delay
before another round can be fired

III. RESEARCH BACKGROUND & RELATED WORK

The concept of a layered architecture that incorporates
deliberation with reactive control is far from a novel concept.
With a range of systems that have emerged typically within
engineering disciplines. The approach we report on in Sec-
tion IV, specifically the implementation of classical planning
with reactive control is relatively unique in the field of
computational intelligence and games. CI in games is a useful
domain for experimentation as we bypass many low-level
issues of execution through the abstractions and assumptions
created by game engines. Thus opening up oppurtunities
for automated planning systems that are often avoided in
engineering problems. A disappointing fact given that many
of these problems result in restricted, problem specific im-
plementations. So far as related research is concerned, we
find our interests coincide with work conducted in execution
monitoring of robot missions. Rover agents utilised for planet
navigation and observation typically utilise a neo-classical or
HTN plan-based control system. Given the large investments
in creating and launching rover agents, a substantial amount
of research is focussed on compensating for issues that
occur in realtime execution. Research ranges from stronger
understanding of the plan actuators to expressing greater
control over the process from the plan level.

Understanding of actuators is sought to provide tighter and
more cohesive performance. A fine example of this is found
in [5], where the authors seek to learn performance models
of plan actuators for a football playing agent. The goal being
to improve the efficiency of the agents navigation as it moves
towards the ball, turns to face the goal and dribble the ball

334 2009 IEEE Symposium on Computational Intelligence and Games

into the net. While it is possible to achieve this, often the
behaviour looks disjoined since it is an n-step plan performed
in sequence. Utilising performance models and subgoal re-
finement results in improved performance, with the execution
appearing more cohesive. A second example is found in [6],
where the authors attempt to learn behaviours as structured
stochastic processes through the use of dynamic bayesian
networks. Knowledge of behaviour capabilities allows for
better understanding of the agents functionality.

Moving into different territory, research found in [7]
and [8] seek improved monitoring and control from a plan-
ning perspective. In [7] we are introduced to lxTeT; a partial-
order-causal-link (POCL) temporal planner that is based
on CSPs for inclusion within a distributed robot control
architecture. When executed the lxTeT operates as a temporal
executive, maintaining control over continued operation of
actions and as a procedural executive expands and refines
the actions into commands at a functional level. While in [8]
introduces a planning system dubbed Kirk, decomposing
task-level commands expressed in Reactive Model-Based
Programming Language (RMPL) into Qualitative-State plans
(QSPs) through the use of Temporal Planning Networks.

Finally, research found in [9] and [10] reports on their
advances in rover test bed systems. The authors comment
that in complex, critical systems almost every component
provides a potential point of failure; a by-product of the size
and complexity of the systems required in order to approach
this task. Providing error proof code that compensates for
flaws is difficult due to the sheer size of the systems and the
number of known (and unknown) cases that can arise. The
importance of this research is three key observations that tie
strongly to our interests in this paper:

• Often assumptions made by control software prove to
be false during execution.

• Software may be attacked by a hostile agent, seeking to
interrupt its execution or may simply be reacting to its
presence.

• Continued changes to software often introduces com-
patibility issues between components.

In order to compensate for these failures, software must
be able to recognise and diagnose failures, isolating the
component where failure has occurred and find an alternative
means of execution. However to achieve this we require
numerous models to successfully monitor the execution.
Ranging from models of component relationships, to models
of intended behaviour and known errors. Ultimately, an agent
or system must be able to sense it’s own state and reason over
that information. We strongly agree with these concepts and
as shown in Section IV attempt to adhere to these values
when designing our agent architecture.

IV. AGENT DESIGN

In this section we provide a description of the agent
architecture utilise for the BruceWorld domain. We also
provide an insight into the execution behaviour of our agent.
Our architecture is programmed in Java and built from
three specific components; the Plan Manager (PM), Rule
Controller (RC) and the Controller Library (CL). The system
navigates through these components in the order which
we have provided them above and is shown in Figure 2.
Throughout the following subsections we will explain each
individual components design and form of execution.

A. Plan Manager

The PM is responsible for all interactions with the plan-
ning model as well as dictating the overall flow of execution
for the agent. At the beginning of any instance, given a
specified goal, the system must generate a plan of action for
the agent to execute. This is carried out utilising the JavaFF
planner; a object-oriented implementation of Fast-Forward
(FF), a forward chaining heuristic state space planner [11].

Using the provided domain file representing the Bruce-
World game, the plan manager requires a representation of
the specific problem instance. To achieve this, each object
within the game is queried to generate PDDL (Planning
Domain Definition Language) predicates that will provide
information as to the current state of that object. It is
important to note at this juncture that it is not required for
every object in the environment to provide information, on
the condition it is not goal critical. For example, enemy
agents (such as the one in location 2 of Figure 1) cannot
be expressed in the plan-model, hence we do not query
them for information. This in fact results in a real problem
for execution which is resolved via the Rule Controller,
described in the following subsection.

Once planning is completed we take two pieces of infor-
mation; the grounded initial state of the problem and the
sequence of actions that compose the plan. Given that these
are stored using the JavaFF classes, this allows for quick and
clean querying and manipulation when necessary.

When execution begins, the PM is then responsible for
ensuring consistency between the plan model and the Bruce-
World instance. We take the first action in the plan queue
for execution and quickly assess whether the current state
of the plan model accurately represents the BruceWorld
instance. By querying the BruceWorld objects in the instance,
we formulate a similar grounded state and compare them.
If the plan-model is accurate then we commit the current
action in the plan for execution and move control to the
Rule Controller. Should there be inaccuracies between the
plan-model and what exists within the instance (bearing in
mind we only consider objects that can be observed by the
planner), then the plan-model is re-generated and a re-plan
is committed. Resulting in a new current state and queue of
actions to execute, forcing the deliberation process to start
again from the beginning.

2009 IEEE Symposium on Computational Intelligence and Games 335

�����������	�
���
�������

���	������

���������	����	�
���
���	�
���	����

��������	�
������		����	�

����	����	����	�	��
���

���������

��������	

��������
 ���������

��������� ��������

�������� �����

����������		�

�������

���	��

���	��
�	�����������

������������		���

Fig. 2. This diagram shows the components of our architecture as well as
the flow of execution. The executive will query the Plan Manager for the
next action provided there is no need to force a re-plan. Once an action is
found, the Rule Controller ascertains whether there is any external threat to
the agent. Once the Rule Controller has made a decision on what action to
take, a request is sent to the Controller Library. Resulting in a Subsumption
Neural Architecture (Figure 3) or hardcoded script being sent to the agent
for execution.

B. Rule Controller

The RC is responsible for reactive deliberation that the PM
is incapable of. The RC incorporates two rule bases; a threat
rule base and a controller rule base. Threat rules highlight
whether particular features of the environment or other agents
represent a potential threat to our executing agent. While the
controller rules provide an association with particular action
commands (either dictated by the PM or the RC) to desired
behaviours that can be retrieved from the Controller Library.

To allow for ease of access and fast query times with the
rule base, the rules are encoded in Prolog and interfaced to
our Java source code using the JPL interface provided in
releases of SWI-Prolog.

This component is activated when we have received a
executable action from the PM. At this point classification
takes place across all relevant entities. The agent queries
the environment for information about hostile or potentially
dangerous objects within a limited range of the agent. In
the case of BruceWorld, threats such as bombs or terrorists
are only visible if they are in the same room as the agent.
Once information about a specific object is gathered, it is put
through a phase of classification by fuzzifying the gathered
data. Once we have classified items of interest, we formulate
a Prolog query and generate the appropriate threat-level for
that entity courtesy of the threat rule knowledge base.

Once all potentially hostile entities (if any) are classified,
we then run our controller rules to devise what specific
behaviour we wish for our agent to execute. The first priority
is assessing whether any of the threat-classified entities pose
a sufficient threat for our agent to deal with it. If this be the
case, our rule base will provide the desired behaviour that

will deal with this threat. The next phase is to assess whether
any supplementary actions are required; this is an important
component of execution that helps resolve issues that arise
from using the state-based representation of the plan-model
against a two-dimensional game world. A good example of
this is a ‘defuse-bomb’ action in our planning model. Given
that the plan-model has no understanding of the physical
dimensions of a room, we simply require the agent be in the
same room as the bomb to defuse. However in the real world
this is not the case; the agent must be physically next to a
bomb in order to be close enough to defuse it. Hence there is
a series of rules that dictate supplementary or bridge actions
that are required before the desired action is executed. If
any bridge actions are required, then this request is sent to
the CL for retrieval. However if neither threat actions nor
bridge actions be requested, the controller rules will provide
the desired behaviour based on the current plan-action that
we wish to execute and will be sent to the CL for retrieval.

C. Controller Library

The CL provides an interface to a variety of robust con-
trollers, providing behaviours that will achieve tasks decided
by the RC. There are two forms of actuator that can be
retrieved from the CL; hardcoded control and pre-trained
behaviors.

Control scripts are provided for instances where the de-
sired action typically results in simple modification of an
entity’s state and does not require any intelligent behaviour.
For example, agent interactions with hostages (such as heal-
ing and slapping) are hardcoded given that these actions only
result in changes to the state of the hostage and have neither
extra effects nor interactions with the physical environment.

Meanwhile the pre-trained behaviours provide a range
of control to complete desired actions of the executive.
Stored on disk is a collection of chromosome libraries, where
each chromosome encodes weights of an Artificial Neural
Network (ANN) phenotype. Each library provides a different
form of control and is explained below.

• Visit Waypoint: Pre-trained to permit an agent to move
across an environment to a specified (x,y) coordinate.

• Destroy Target: Given an assigned target, the controller
will maneuver and fire a loaded gun to eliminate the
target as efficiently as possible.

• Grab Item: Pre-trained to navigate an environment to
pick-up a specified item. This controller operates similar
to the Visit Waypoint control, however it also has a
separate ‘grab’ command to retrieve items.

• Detect Obstacles: A supplementary controller that per-
mits an agent to react to nearby obstacles and maneuver
around them.

• Dodge Shells: A supplementary controller that permits
an agent to react to oncoming enemy fire.

When a controller request is sent to the library interface,
the resulting controller is a Subsumption Neural Architecture

336 2009 IEEE Symposium on Computational Intelligence and Games

Fig. 3. An example Subsumption Neural Architecture (SNA), where three
individual controllers are placed atop one another to dictate a hierarchy
of execution. Note that agents utilise a subset of all available inputs and
activate a subset of the outputs.

(SNA) that will feature one or more of the controllers
stated above. The SNA controllers (shown in Figure 3) were
devised in our previous research found in [12] and are
inspired by the seminal works by Brooks in [13], [14]. Each
controller is composed of a series of ANNs existing in a
hierarchy of precedence. Should any layer of the architecture
express desire to control a particular output, it will block or
‘subsume’ all layers beneath it from committing output. This
allows for more intelligent, reactive control and provides a
‘plug ‘n’ play’ approach to behaviour formulation. Allowing
us to create unique behaviours through simple combinations.
Please see [12] for further information on the controller
construction and training methodology.

We provide multiple instances of each controller, hence
when a request is made to the CL the desired controllers will
be selected at random to be placed in the SNA. This provides
variety in execution since the behaviour will not necessarily
be the same in each instance. Each controller is pre-trained
and ready to use straight away, given the time available
for development and testing we borrowed resulting chromo-
somes from our experiments in the EvoTanks domain [1],
[12] to test our architecture. While there are differences in
the environments, our results in Section V show that these
were still sufficient for our testing purposes.

When a controller is requested for action, the interface also
requires a focus entity that is the reason for the desired con-

trol. For example, for navigation we require the destination
entity, or the target entity for a destroy target control. The
interface pre-loads our SNA with all required information
to allow for immediate execution. Hence in the instance of
navigation, a pre-computed series of navigation points are
provided for the agent to move towards.

V. TESTING & RESULTS

In this section, we provide an account of running our
architecture against a variety of problems. We provide a brief
introduction to the test problems and the recorded data from
each run. The resulting data is then discussed at length in
Section VI.

For this paper we provide problems that cover a range of
agent functionality. In terms of challenge, all are solvable
when no extra information is added to the problem. When
enemy agents are added then there is a possibility that
the agent can fail to solve a problem. We provide a brief
description of each problem instance below:

• Problem 1: Navigate through a sequence of locations
and corridors to reach a destination location.

• Problem 2: A hostage is trapped in a nearby location
with an armed bomb. Agent must defuse the bomb and
escort the hostage back to the starting position.

• Problem 3: A hostage is trapped inside a nearby room
blocked off by a locked door. The agent must unlock
the door and allow the hostage to escape.

• Problem 4: This is similar to problem 3 except there
are two hostages trapped in separate rooms. Agent must
rescue and escort both hostages to the goal location.

• Problem 5: Our agent must escort two hostages to a
nearby location. However one hostage is unconscious
and the other is an uneasy mental state.

We focus many of our problem instances on hostage
retrieval, since potential uncertainty will have an impact on
overall performance. We assess each problem instance 10
times in the standard mode (i.e. no modifications to the
problem) and a further 10 times with the hostile entities
and uncertainty added to the model. The purpose of this
is to assess how well our agent performs when faced with
elements that may impede progress, or contradict the plan-
model and force the agent to rethink the plan of action.

Results of running our problem instances standalone and
with threat and uncertainty can be found in Table I and II
respectively. The data provided shows that an agent will often
solve a problem instance and will continue to complete most
instances when faced with added adversity and uncertainty.
Note that there is a significantly larger number of actions
committed on average in each instance when we have threat
and uncertainty options active. This in turn results in the

2009 IEEE Symposium on Computational Intelligence and Games 337

TABLE I
STATISTICS FROM 10 RUNS OF EACH OF OUR PROBLEM INSTANCES WITH NO MODIFICATIONS. WE PROVIDE RELEVANT STATISTICS REGARDS

CONTROLLER PERFORMANCE, AS WELL AS THE NUMBER OF TIMES THE SYSTEM INTERACTS WITH JAVAFF AND THE PROLOG RULE BASE. THE

AVERAGE TIME TAKEN TO INTERFACE WITH THESE COMPONENTS BEING AN IMPORTANT POINT TO CONSIDER.

Instance Completed Initial Plan Length Avg. No. Actions Avg. Plan Runs (Avg. Time) Avg. Prolog Runs (Avg. Time)
Problem 1 10 5 5 1 (85.7ms) 5 (<1ms)
Problem 2 10 3 3.78 1 (182.6ms) 3.78 (<1ms)
Problem 3 9 6 6.78 1 (212.78ms) 6.78 (1.44ms)
Problem 4 10 8 8 1 (209.3ms) 8 (<1ms)
Problem 5 10 5 6 1 (177ms) 7.11 (<1ms)

TABLE II
STATISTICS FROM 10 RUNS OF EACH OF OUR PROBLEM INSTANCES WHEN RUNNING ON WITH THREATS AND UNCERTAINTY. THIS HAS A

CONSIDERABLE IMPACT ON THE NUMBER ACTIONS THAT ARE COMMITTED, AS WELL AS THE NUMBER OF INTERACTIONS (AND THE AVERAGE TIME

TAKEN) WITH JAVAFF AND THE PROLOG RULE BASE.

Instance Completed Initial Plan Length Avg. No. Actions Avg. Plan Runs (Avg. Time) Avg. Prolog Runs (Avg. Time)
Problem 1 8 5 9.86 3.29 (100ms) 21 (1.14ms)
Problem 2 10 3 10.89 3.11 (30ms) 24.9 (<1ms)
Problem 3 8 6 12 3.14 (83ms) 15.4(2ms)
Problem 4 8 8 13.8 3.75(62ms) 14.75(1.13ms)
Problem 5 8 5 14.86 3.86 (47.4ms) 18.71 (<1ms)

PM interacting with the JavaFF planner to force re-plans, as
well as the RC utilising the Prolog knowledge base more
regularly.

In Table II we see more instances of the agents failing
to complete the designated task. In all cases observed,
failure arose as a result of the evolved controller being
unable to complete the desired task. The one instance in
Table I arose due to the agent being trapped in an area
surrounded by obstacles that were too close to it. Resulting
in a cyclic attempt to reach the destination, this repeated
until the permitted time to complete the action timed out.
The other instances in Table II were the result of the agent
fighting against an enemy agent. The terrorist agent simply
overpowered our player.

Interesting observations can be found in the runtimes for
the JavaFF planner and the JPL Prolog interface. When we
only require the planner in the initialisation of the problem
the overhead to achieve this is significant. While a couple
of hundred milliseconds is irrelevant on a human level, this
is a significant amount of processing time. Especially when
we consider how few CPU cycles game developers wish
to commit to AI processes per second. However we would
hope that any developers who utilise this approach would
make attempts to optimise the processing performance of
the system, an endeavour we have not attempted. However
if we observe the planning times in Table II, we note
that the average time to plan is significantly reduced. We
observed during testing that keeping the planner in memory
drastically reduces the time taken to re-plan. Furthermore, if
we observe the JPL interface times, regardless of the number
of interactions with the Prolog rule base, the average time
taken is incredibly fast. With best performance running at
less than 1 millisecond per query on average.

Agent behaviours appear focussed and consistent between

instances; with agents moving from one action to the next
and maintaining an overall direction. Agents reacted well
to nearby hostile elements, ranging from attacking enemy
terrorists when in the same room as them to disarming nearby
bombs once observed. We were also interested in observing
instances where threats such as bombs were noted as non-
threatening (a combination of the remaining fuse, blast yield
and radius) and were ignored as the agent continued its
path of action. Agents would quickly recognise an inaccurate
game-state and force a re-plan when required. Once our
agents generated a new plan, these would continue without
complications and complete the task. As noted previously, all
failures occurred from our evolved controllers being unable
to complete their task. No failures ever occurred at the
planning level.

An interesting observation made during the threat and
uncertainty tests for problem-5, was that the planner on rare
occassions gave inaccurate plans to the agent, where the
resulting state does not reflect the goal state. The agent would
execute the plan as described, however during execution, the
system would reach a point where the game state did not
reflect the state the planner believed would arise. The system
then replans and generates a new plan that completes the task.
While we are very pleased to see our agent compensate, we
have still to devise why the planner generated an erroneous
plan.

VI. DISCUSSION

Our analysis of our agents performance suggest that we
can rely on our system to solve the problems we have
expressed for it. Our architecture permits the creation of what
we consider to be reactive yet goal driven agents. Our agent
can commit state-based reasoning to devise plans of action to
achieve goals and react to changes in the environment. These

338 2009 IEEE Symposium on Computational Intelligence and Games

changes can occur at a planning level, where the system
can note issues with its understanding of the world at an
abstract level and attempt to get back on track through re-
planning. Changes can also occur beneath a planning level of
observability, however we accomodate for this by utilising a
series of rules to suggest a course of action should changes
arise. In a sense it provides a reactive step that will interrupt
the current plan and resolve any potential conflicts before
continuing the course of action. Finally, in order to deal with
grounded issues relating to the agents interaction with the
environment, we provide a variety of ANN controllers that
can be placed within a layered subsumption architecture that
provide robust and competent controllers as actuators for the
described plan actions.

We have taken onboard points highlighted in [9] and
incorporated measures for these within our architecture. We
briefly recap this below:

• Often assumptions made by control software prove to
be false during execution. - Our Plan Manager retains
copies of the current plan as well as the current state
based on the progression of said plan. We enforce that
the planning domain reflects the game world, since
when the executive requires a new controller to execute,
the system must retrieve a representation of the game
state in PDDL to compare against. If any inaccuracies
exist, then the a new problem instance is formulated
based on the game state, and a plan is devised using
the originally assigned goals.

• Software may be attacked by a hostile agent, seeking
to interrupt its execution or may simply be reacting to
its presence. - We have embraced this concept rather
literally by having hostile entities exist within our sam-
ple domain. The Rule Controller allows for flexibility
in dealing with any hostile agents that exist. Rules can
be generated that allow for a range of different actions
to occur in different situations. In terms of performance
we can observe from Tables I and II that interfacing
with the Prolog rule base is very fast. At best taking
less than one millisecond to find the desired solution.

• Continued changes to software often introduces compat-
ibility issues between components. - Each of our compo-
nents exist isolated from one another. This ensures that
any modifications that occur within the Plan Manager
and Rule Controller do not have an impact on other
parts of the system. Given that the interactions with
the current plan and state are carried out via the Plan
Manager. Then we could substitute different planners
to assess performance. We can also make modifications
to our prolog rule base with relative ease as it has no
impact on the other components. Lastly the Controller
Library provides an ideal means to manage a range of
different controllers. The controller factory functionality
allows us to store different types of controllers that may

vary in topology and design, however is concealed by
the factory method.

In summary, this architecture permits state-based reason-
ing to be merged with reactive control. Utilising individual,
decoupled components that are easy to customise and tailor
to suit the preference of the designer.

However this is not to say that our approach does not
suffer from drawbacks, notably the heavy reliance on expert
knowledge at both the planning level and the rule level. We
require for the designer to have a strong understanding of all
relationships between components within the environment.
The designer must also make clear cut decisions as to the
controller and threat rules, while these can be changed, in
large problem instances it may take significant trial and error
for a designer to tailor these to suit. The controllers utilised
for the system must also be designed to suit the problem.
We incorporated controllers from our EvoTanks domain, and
while their performance was admirable in most instances
it was clear that they are not trained to deal specifically
with these problems. Hence time must be taken to create
and train these agent controllers. The benefit being that once
they are created they can be used at a later date provided
no extra training or modification is required. However a
significant amount of training data may need to be amassed
prior to developement. There is also the added necessity to
have the environment engine be able to represent in PDDL
formulations, however we consider this a minor drawback as
it is not a significant undertaking to incorporate this into a
simulator or engine.

A. Future Work
We have presented our preliminary research in creating our

goal-driven reactive agents. However there is a significant
amount of further work that we wish to explore. We will
now provide a brief insight into potential future work that
we wish to carry out.

At present we assign goals to our agents, and while this is
suitable for our purposes we would be interested in having
these goals be assigned automatically. Research in real-time
goal formulation courtesy of motivations instilled within an
agent show promise as shown in [15] and [16]. This could
help forge agents that can formulate their own goals such as
acquiring resources, navigating through locations and solving
nearby problems based on their needs and motivations.

Another idea is to incorporate a more intelligent means of
planning into the agent architecture. While we have shown
that using a relatively simple planner can be effective, it
is not without flaws. At present JavaFF will struggle with
large problem instances that may require mutliple agents to
interact together using limited resources. This is more of
a reflection of the current state of the automated planning
community than an individual platform. Our immediate goals
are to remedy the runtime of the planning module as well
as allow for more expansive problems to be solved. An
important issue we wish to address is the lack of knowledge
of the hostile entities at the planning level, while we can

2009 IEEE Symposium on Computational Intelligence and Games 339

express bombs in the planning model we do not necessarily
assign goals to disarm them, this is carried out at the
rule level. While we can continue to rely on this, utilising
the motivations concept suggested previously may assist in
speeding up this process. Furthermore, we can not model
enemy agents and their behaviours into a planning model. An
interesting research area would be to explore the potential of
creating a planning system that can incorporate enemy goals
and their predicted actions based on the goals our agent
wishes to achieve. If we have enemy agents who wish to
interrupt our flow of execution to a desired goal, then we
could possibly predict and counteract them.

At present our controller does not consider the possibility
that one approach to solving a problem can fail. If this does
occur then it simply declares this particular run of execution
as a fail and terminates. We would be interested in having a
variety of means to solving particular problems at all levels of
the decision process. This could range from having different
trained controllers to complete a task (albeit in different
ways), to a collection of different actions in the planning
domain model that can achieve the same goal condition
(though the number of actions required to achieve this may
differ).

The plans that our problem instances create are at present
not large enough to cause immediate concern. However in
future it may be desirable for us to create very large problem
instances. If this be the case then we may only wish to plan so
far ahead into the future given the uncertainty of a dynamic,
multi-agent environment. This form of ‘horizon’ planning is
an area we would wish to explore in the future.

Finally, rules incorporated into the Rule Controller are
at present hand-coded and require expert knowledge of the
domain. While this is perhaps preferable for some designers,
there is the consideration that when dealing with larger
problem instances we will be unable to provide rules that
cover all possibilities. Further work in this area could explore
attempting to learn rules that cover a variety of different
scenarios. The use of random or evolved instance generation
could help to create test cases that are beyond those that a
human would initially conceive of. Thus possibly exploiting
holes in the behaviour that the rule controller does not
consider.

VII. CONCLUSION

In this paper we have presented our progress in creating
a reactive agent that incorporates classical planning methods
to state-based reasoning. Given assigned goals, we devise
long-term plans to satisfy those goals through the JavaFF
planner and re-plan accordingly if state models do not
reflect the environment. Goals are then executed courtesy
of pre-evolved neural network controllers combined within
a subsumption framework, providing a robustness to their
execution. To retrieve desired controllers, we provide a rule
system using the JPL interface that provides quick reference
to decipher whether current actions are achievable or they

require additional actions. The rule system also provides a
reactive form of control, allowing for our agent to react to
nearby stimuli that warrant its attention and deal with them
accordingly. Testing in the BruceWorld domain, we find that
our system works well in dealing with hostile entities as
well as uncertainty. This preliminary research leaves many
directions open for future research possibilities.

ACKNOWLEDGMENTS

JavaFF is developed by Andrew and Amanda Coles,
Maria Fox and Derek Long. Sourcecode and executables
are available freely through the GNU GPL via http://
personal.cis.strath.ac.uk/˜ac/JavaFF/.

The authors wish to thank Michelle Galea for her contri-
butions and assistance that proved integral to the progress of
this research.

REFERENCES

[1] T. Thompson, J. Levine, and G. Hayes, “EvoTanks: Co-Evolutionary
Development of Game-Playing Agents,” Computational Intelligence
and Games, 2007. CIG 2007. IEEE Symposium on, pp. 328–333, 2007.

[2] G. Parker, M. Parker, and S. Johnson, “Evolving autonomous agent
control in the Xpilot environment,” in Proceedings of the 2005 IEEE
Congress on Evolutionary Computation (CEC 2005), 2005.

[3] J. Togelius and S. Lucas, “Evolving controllers for simulated car
racing,” Arxiv preprint cs.NE/0611006, 2006.

[4] S. Lucas, “Evolving a neural network location evaluator to play ms.
pac-man,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games, 2005, pp. 203–210.

[5] F. Stulp and M. Beetz, “Optimized execution of action chains using
learned performance models of abstract actions,” in INTERNATIONAL
JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, vol. 19.
LAWRENCE ERLBAUM ASSOCIATES LTD, 2005, p. 1272.

[6] G. Infantes, F. Ingrand, and M. Ghallab, “Learning behaviors models
for robot execution control,” in ICAPS, 2006, pp. 394–397.

[7] M. Gallien, F. Ingrand, and S. Lemai, “Robot actions planning and
execution control for autonomous exploration rovers,” WS7, p. 33,
2008.

[8] R. Effinger, A. Hofmann, and B. Williams, “Progress Towards Task-
Level Collaboration between Astronauts and their Robotic Assistants,”
in ’i-SAIRAS 2005’ - The 8th International Symposium on Artificial
Intelligence, Robotics and Automation in Space, ser. ESA Special
Publication, vol. 603, Aug. 2005.

[9] P. Robertson, R. T. Effinger, and B. C. Williams, “Autonomous robust
execution of complex robotic missions,” in IAS, 2006, pp. 595–604.

[10] P. Robertson and B. Williams, “Automatic recovery from software
failure,” Communications of the ACM, vol. 49, no. 3, 2006.

[11] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan
generation through heuristic search,” ”Journal of Artificial Intelligence
Research”, vol. 14, pp. 253–302, 2001.

[12] T. Thompson and J. Levine, “Scaling-up Behaviours in EvoTanks:
Applying Subsumption Principles to Artificial Neural Networks,”
Computational Intelligence and Games, 2008. CIG 2008. IEEE Sym-
posium on, 2008.

[13] R. Brooks, “A robust layered control system for a mobile robot.” IEEE
J. ROBOTICS AUTOM., vol. 2, no. 1, pp. 14–23, 1986.

[14] ——, “Planning is Just a Way of Avoiding Figuring Out What To
Do Next,” MIT Artificial Intelligence Laboratory Working Paper 303,
1987.

[15] A. M. Coddington, “Integrating motivations with planning,”
Proceedings of the 6th International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS07), pp. 850–852, 2007.
[Online]. Available: http://www.aamas2007.org/

[16] A. Coddington, “Motivations as a meta-level component for
constraining goal generation,” Proceedings of the First International
Workshop on Metareasoning in Agent-Based Systems, pp. 16–30,
2007. [Online]. Available: http://www.aamas2007.org/workshops.html

340 2009 IEEE Symposium on Computational Intelligence and Games

