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Abstract

Wireless Sensor Network (WSN) is an integrated part of the Internet-of-Things (IoT) used to

monitor the physical or environmental conditions without human intervention. In WSN one of

the major challenges is energy consumption reduction both at the sensor nodes and network

levels. High energy consumption not only causes an increased carbon footprint but also limits

the lifetime (LT) of the network. Network-on-Chip (NoC) based Multiprocessor System-on-

Chips (MPSoCs) are becoming the de-facto computing platform for computationally extensive

real-time applications in IoT due to their high performance and exceptional quality-of-service.

In this thesis a task scheduling problem is investigated using MPSoCs architecture for tasks with

precedence and deadline constraints in order to minimize the processing energy consumption

while guaranteeing the timing constraints. Moreover, energy-aware nodes clustering is also

performed to reduce the transmission energy consumption of the sensor nodes. Three distinct

problems for energy optimization are investigated given as follows:

First, a contention-aware energy-efficient static scheduling using NoC based heterogeneous MP-

SoC is performed for real-time tasks with an individual deadline and precedence constraints.

An offline meta-heuristic based contention-aware energy-efficient task scheduling is developed

that performs task ordering, mapping, and voltage assignment in an integrated manner. Com-

pared to state-of-the-art scheduling our proposed algorithm significantly improves the energy-

efficiency.

Second, an energy-aware scheduling is investigated for a set of tasks with precedence constraints

deploying Voltage Frequency Island (VFI) based heterogeneous NoC-MPSoCs. A novel popu-

lation based algorithm called ARSH-FATI is developed that can dynamically switch between

explorative and exploitative search modes at run-time. ARSH-FATI performance is superior to

the existing task schedulers developed for homogeneous VFI-NoC-MPSoCs.

Third, the transmission energy consumption of the sensor nodes in WSN is reduced by develop-

ing ARSH-FATI based Cluster Head Selection (ARSH-FATI-CHS) algorithm integrated with a

heuristic called Novel Ranked Based Clustering (NRC). In cluster formation parameters such

as residual energy, distance parameters, and workload on CHs are considered to improve LT

of the network. The results prove that ARSH-FATI-CHS outperforms other state-of-the-art

clustering algorithms in terms of LT.
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Chapter 1

Introduction

In this chapter we briefly introduce Internet-of-Things (IoT) and Wireless Sensor Network

(WSN). We further explain the applications of Multiprocessor Systems-on-Chips (MPSoCs) in

IoT and introduce the context of energy-efficiency in WSNs. We also list the objectives and

contributions of this research. The organization of this thesis is presented at the end of this

chapter.

1.1 Internet-of-Things (IoT)

IoT is a technological communication revolution that bridges a plethora of modern digital

devices, users, and smart things to the Internet for numerous applications. Thus, IoT is

transforming the Internet into a more pervasive and immersive model [1, 2]. The literature

demonstrates that the emergence of IoT has initiated Smart City (SC) concept, a paradigm

that particularly concentrates on reconciling and enhancing both ecology and economy of city

modernization [3, 4]. An ultimate goal of the IoT technology for the SC is to optimize and

efficiently control the city systems. More precisely the fundamental aim is to boost the effec-

tiveness of city governance by establishing a communicating link between the human users and

smart technology. IoT is gaining popularity for smart cities in order to develop efficient and

low-cost applications for purposes such as monitoring, control and automation.

1
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Figure 1.1: IoT connecting different devices and users for various applications

In IoT based services, the information is collected from the users and/or smart things via

wearable devices, sensors, and cameras in Figure 1.1, these are represented by red, blue, and

green colours respectively. These digital devices gathering information from a Field-of-View

(FoV) are commonly known as Sensor Nodes (SNs). A process called clustering is performed on

the SNs for achieving better energy efficiency, where several SNs are grouped into one cluster

and one specific sensor node often referred as Cluster Head (CH) is selected. The CH gathers

the data from each node within the cluster and performs further processing to compress the

data and then transmits the aggregated data wirelessly to the Base Station (BS) [5, 6]. The

BS is usually a conventional computer with powerful processing capabilities and provides a

platform where the data can be displayed to the professionals and/or other users through a

user interface [6,7]. The data gathered in BS is transferred, processed, and stored in the cloud

for further post processing to enable visualization and recommendations to be made, as shown

in Figure 1.1 [8, 9]. All the data from different CHs is accumulated in the cloud. The cloud

provides a massive data/information storage and processing infrastructure [10, 11]. The cloud

promises high scalability, reliability, speed, performance, autonomy, and low-cost for the IoT

applications. In simple words cloud delivers computing services, storage, networking, databases,

software, intelligence, and analytics. The cloud is an essential part of the IoT system [12] and

the collected data arrives in big amounts often reaches at real-time. Amazon EC2, Microsoft

Azure, Google App Engine (GAE), Nimbus, IBM Blue Cloud, and 3Tera are some of the
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examples of cloud computing systems [10].

There are three types of cloud (1) private, (2) public, and (3) hybrid explained as follows:

1. Private Cloud: The private cloud is defined as a computing service offered either over

the Internet or a private internal network and to selected users only instead of the general

public. The cloud infrastructure is operated solely for an organization. It may be managed

by the organization or a third party and may exist on premise or off premise. Processes

and data are managed within the same organization. Some of the benefits of a private

cloud service include improved insurance, unlimited bandwidth, and low risk of security

issues [13].

2. Public Cloud: A public cloud is a type of computing in which a service provider makes

resources available to the public via the internet. Resources may include storage capa-

bilities, applications or virtual machines. The cloud infrastructure is available to the

general public and/or a large industry group and is owned by an organization providing

cloud services. It provides services to each user using the same infrastructure. Basically

the users pay for the resources they use. Some benefits of utilizing public cloud service

include simple scalability, high reliability, and cost potency [13,14].

3. Hybrid Cloud:A hybrid cloud is a combination of a private cloud combined with the use

of public cloud services where one or several touch points exist between the environments.

The goal is to combine services and data from a variety of cloud models to create a unified,

automated, and well-managed computing environment. Hybrid clouds are more complex

than the other deployment models, since they involve a composition of two or more clouds

(private, community, or public). By allowing workloads/jobs to move between the public

and private clouds as computing costs and needs change subsequently, hybrid cloud can

give businesses more data deployment options and greater flexibility [13,15].

Italy is one of the first countries to offer large scale smart services [16]. Recently in China, a

boom in IoT based services occurred as listed in Table 1.1 to promote green, low-carbon, harmo-

nious, and a sustainable development for 1.3 billion people [17]. IoT is opening new opportuni-



4

Table 1.1: Smart city services

Urban Function Smart Applications

Reproduction
Public safety, environment, energy, healthcare,
household, and urban management.

Economic
Development

Manufacturing, industry, logistics, and city planning.

Social
Interactions

Public transportation, online shopping, and
general social management.

Culture
Enjoyment

Education, tourism, and outdoor stream media.

ties to develop efficient, reliable, and low-cost applications that aim to enhance Quality-of-Life

(QoL) in the cities [18]. As a result, various Information and Communication Technology (ICT)

companies including Cisco, Samsung, IBM, HP, and Google are launching and promoting IoT

based SC initiatives [19]. These initiatives encompass different domains such as environmental

monitoring, utility monitoring, public transportation scheduling, advanced healthcare, incident

reporting, and surveillance [16,20]. A report on the IoT Market (2011-2018) indicates that the

global market exceeded US$ 1 trillion in 2017 and is anticipated to reach US$ 1,266 billion by

2019 [21].

1.2 Wireless Sensor Network (WSN)

WSN shown in Figure 1.2, is an integrated part of the IoT [22, 23] and provides informa-

tion about the physical world collected by dedicated sensors/cameras to the cloud from the

Base Station (BS). Thus, WSN is a vital resource necessary to implement the vision of IoT

paradigm [24–26]. In simple terms, WSN is an ad hoc network composed of resource-constrained

digital devices known as SNs that are used to collect information from a FoV [27,28]. Advance-

ments in modern technologies have had a significant positive impact on the availability of high-

quality SN for numerous applications with superior technical features, low cost, minimal power

consumption, and small physical size. The technological improvement in SN technology for

multimedia data has enhanced the growth in WSN [29,30]. Multimedia content such as audio

and video streams processing a promising technology utilized by numerous applications [31].
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A typical SN indicated (highlighted by blue colour in Figure 1.2) used in a network contains

four logical component blocks [6] each component is explained as follows:

1. Sensing Unit: Single or multiple sensors and Analogue to Digital Converters (ADC).

The physical information is detected and captured in analogue form which the ADC

converts to a digital format as required for the processing unit.

2. Processing Unit: Responsible for intelligent processing of the data received from the

target area, this is a microprocessor and/or microcontroller with integrated memory.

Digital Signal Processor (DSPr) and Application Specific Instruction-set Processor (ASIP)

could also be component parts of the processing unit.

3. Communication Unit: Short-range transceiver system commonly based on standards

such as IEEE 802.14.3, IEEE 802.15.4 or ZigBeeTM although other protocols e.g. IEEE

802.1 can also be utilised for specialised applications such as Industrial IoT (IIoT).

4. Power Source: Regulated supply for the data collection, processing, and transmission

subsystems. Batteries with limited residual energy are often deployed.

Processing
Unit

Communication 
Unit

Power 
Unit

Processing 
Unit

Communication 
Unit

Power 
Unit

Communication
 Unit
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Figure 1.2: Wireless sensor network structure

The continuously expanding need for computationally extensive real-time applications has in-

fluenced the growth in the usage of Multiprocessor-System-on-Chips (MPSoCs) in modern em-

bedded systems [32]. MPSoCs provide high performance, exceptional Quality-of-Service (QoS),
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and overwhelming reliability [33]. These qualities have contributed to the wide deployment of

MPSoC as SNs for numerous real-time IoT applications. Some of the real-time applications in-

volve multimedia content which is computationally extensive operations [34]. Subsequently, the

number of processors are growing on the MPSoC for example Tilera Tile64 MPSoC contains

64 processors. According to International Technology Roadmap for Semiconductors (ITRS)

there will be hundreds of processors in the MPSoC by 2025 [35] therefore, traditional bus

based communications on chip architecture will become bottle neck due to the poor scalability

and limited band width. NoC based communication has several advantages over hierarchical

(STBus, Advance Microcontroller and Bus Architecture) as well as traditional bus architecture

in terms of scalability, flexibility and performance [35].

The BS is responsible to collect the information from NNs. BS is usually a conventional

computer with powerful processing capabilities i.e. multiprocessors. The BS provides WAN

connectivity and data logging. The base station connects to database replicas across the in-

ternet. Finally, the data is displayed to the professionals and/or other users through a user

interface [6,7]. The BS has an unlimited power supply, while the SNs are mostly battery oper-

ated digital devices with limited residual energy. In modern WSNs edge-computing is deployed

before transferring all the data to BS to reduce load on the BS [36].

1.3 MPSoCs in IoT

The MPSoCs have become a de-facto computing platform and they can be used in various

computationally extensive real-time applications as shown in Figure 1.3. Few examples are

discussed as follows:

1.3.1 Multimedia Surveillance

MPSoCs integrated with video and audio sensors are used for target detection and track-

ing, border protection, public event monitoring [37–39], video/image enhancement [40], person
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Figure 1.3: MPSoCs applications in IoT

tracking [41], people and object identification [42, 43]. These multimedia surveillance appli-

cations involve compression/decompression, encoding/decoding and different conversions tech-

niques which are computationally extensive operations. A few highly complex MPSoCs such

as Xetal-I (128 processors) [34] and Xetal-II (320 processors) [44] are also used for surveillance.

Video surveillance to monitor on-road situation is a prime example of the multimedia applica-

tion in IoT. In this video streaming of on-road situation, the information is collected regarding

vehicles positions, traffic jams and road accident severity. In the video streaming the multime-

dia data content is streamed over the network in an encoded form while the video is displayed

to the end user and/or professional either in a recorded or pre-recorded manner. In IoT based

applications video streams are usually compressed to reduce the video size and achieve better

load balancing in the video communications. The MPEG-encoder is executed numerous times

for the whole video stream [45].
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1.3.2 Healthcare and Automated Assistance

Multiprocessor systems are widely adopted by remote medical centres for various advanced

healthcare related applications such as patient monitoring [46], drug administration, diagnostics

[47,48], human gait analysis [49], care assistance, and motoring [50]. These servces using MPSoC

help to reduce the frequency of patient’s visit to the hospitals while enhancing the Quality-of-

Life (QoL). STMicroelectronics MPSoC is one of the popular multiprocessor platform that is

widely adopted in advanced healthcare [46].

1.3.3 Environment Monitoring

MPSoCs are also used in applications such as animal and bird tracking as well as condition

monitoring for irrigation, livestock, crops, and air pollution [44, 51]. Monitoring systems are

vital in time-critical applications, such as wild fire containment, flood detection, and disaster

management [52, 53]. High-performance computing platforms provided by MPSoC produce

smart technology to monitor and detect natural and anthropogenic emergencies.

1.3.4 Industrial Applications

MPSoCs are deployed to extract and analyze information regarding civil structures e.g. nuclear

power plants, pipelines, and large bridges especially during and after earthquakes, high winds,

or environmental changes [54]. In industry MPSoCs are used for automation and manufacturing

process control for example, Xilinx Zynq® UltraScaleTM are deployed in robots for operations

such as supervision, control, and automation that increase repeatability while reducing human

efforts while maintaining continuous operation [55,56].

Among the applications of MPSoCs in IoT, the most popular is surveillance where video ana-

lytics is performed for different purposes. Video analytics also called Video Content Analysis

(VCA), it involves different techniques to monitor, extract and analyze the information from

video streams [57]. Closed-circuit television (CCTV) cameras are the main contributors of com-
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puterized video analysis. In video analytics a key challenge is the size of the video data. In one

second of high-definition video there is approximately equal to 2000 pages of text. Video analyt-

ics in IoT is widely used in the recent years for surveillance and automated security. Automated

surveillance systems are cost effective, cheaper, and remain focused as compared to labor-based

surveillance systems. Video analytics can be used for human recognition, face recognition, ob-

ject detection, recognizing suspicious activities, and detecting breach of restricted zones [58]. In

terms of the IoT architecture two known approaches can be adopted for performing video ana-

lytics, namely (1) server-based architecture and (2) edge-based architecture. Each architecture

is explained as follows: [59].

Server-based Architecture: In this approach, captured video using cameras is transmitted to

the centralized and dedicated server where video analytics is performed. The generated video is

usually compressed to reduce the frame rates or the image resolution due to limited bandwidth

availability. In this configuration the compressing may result the loss of information which can

adversely affect analysis overall accuracy. However, the server-based approach facilitates easier

maintenance.

Edge-based Architecture: In this configuration, analytics are applied at the SN level or

‘edge’ of the system. In other words video analytics is performed on the raw data gathered from

the camera in the SNs. In this approach the entire content/data of the video stream remains

available for the video analysis. Therefore, no loss of information occurs and enables efficient

and effective content analysis. However, edge-based systems are more costly to maintain and

posses lower processing power capability compared to server-based systems.

Briefly, server-based approach is easier to be implemented and maintained while edge-based

system is costly though the entire video stream is available for performing video analytics on

gathered data.
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1.4 Challenges

One of the major technological challenges for IoT is energy consumption optimization at the SN

and network level. High energy consumption of embedded systems at SN level not only reduces

the lifetime of the network but also results in an increased carbon footprint. Approximately

4.7% of global electrical energy is consumed by Information and Communication Technology

(ICT) and results in the releases of 2.0% of overall atmosphere carbon footprint [60]. Energy

savings and green computing are therefore highly important. Moreover, SN mostly operates on

embedded battery sources with limited residual energy, replacement of the batteries is usually

challenging, difficult, and expensive. Consequently, there is high demand for energy-efficient

techniques for reducing the energy consumption [61,62].

1.4.1 Research Approach

In this thesis we perform task scheduling to reduce the processing energy consumption con-

sidering NoC-MPSoC and VFI-NoC-MPSoC architectures. Then we implement clustering to

minimize the transmission energy consumption.

Scheduling used for real-time applications is an effective energy management mechanism when

combined with Dynamic Voltage and Frequency Scaling (DVFS). This reduces the processing

energy consumption of the MPSoC computing architectures. Task scheduling is a process

of properly allocating an application containing a set of tasks on the processors such that

specific obligations are fulfilled e.g. energy consumption optimization and/or execution time

reduction. Proper task mapping and scheduling approach can drastically influence an embedded

system’s performance and reliability [63]. DVFS is a useful technique whereby the processor

supply voltage and clock frequency are dynamically reduced as a means to reduce overall

power consumption without negatively impacting performance and deadline completion [64,65].

Modern MPSoCs includes DVFS-enabled processors. As an example, the Samsung Mongoose

M2 has 4, DVFS-enabled homogeneous processors with an operating frequency range of 2.3 GHz

to 2.8 GHz. Reducing the supply voltage can significantly decrease the energy consumption in
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MPSoCs because voltage has a quadratic law relationship with energy consumption [66]. The

DVFS not only reduces dynamic power, PD but also minimizes static power, PS, since it is also

dependent on Vdd. Thus DVFS is an efficient technique to reduce the total power ( dynamic

and static power) consumption.

Though DVFS is an effective technique to reduce the energy consumption of the tasks scheduled

on MPSoCs however, there are other parameters that may affect the overall energy-efficiency.

For example, task ordering plays significant role for achieving higher energy savings. If tasks

with longer deadline are blocked by tasks with shorter deadline then DVFS may not have enough

slack available to reduce the energy consumption. Similarly, in heterogeneous MPSoCs there are

not only processors with different voltage scaling capabilities but also they contain processors

with distinctive energy performance profiles. Therefore, mapping the tasks on heterogeneous

influences the capability of DVFS to minimize the total energy consumption. If the tasks are not

prioritized to be mapped on high energy-efficient processor such that the deadline is not missed

then the overall energy-efficiency may be adversely affected. Moreover, energy consumption

is also affected by the communication overhead due to the energy consumed on NoC links

and router for inter-processor communications. Thus, our motivation for reducing the energy

consumption of the MPSoC computing platform is to consider energy performance profiles of

the processors, communication overhead, task ordering, and voltage scaling.

The total energy consumption of a network is the combination of sensing, processing and

communication energy dissipation given as follows:

Enetwork = Esensing + Eprocessing + Ecommunication (1.1)

The sensing energy consumption reduction is performed at the fabrication level which is not

within the scope of our thesis. However, the communication/transmission energy can be reduced

by formulating it as a scheduling problem. The communication unit often consumes higher

energy compared to the sensing and processing units [67,68]. Therefore, it is also important to

minimize the communication energy consumption apart from reducing the processing energy.



The transmission energy of the communication unit for l, bits is given as follows:

ETX(l, d) =


l × Eelec + l × efs × d2 d ≤ do

l × Eelec + l × emp × d4 d ≥ do

(1.2)

where Eelec is the energy consumed per bit for running the transmitter circuit, efs and emp are

the amplification energy for free space model and multi-path model respectively while do shows

the threshold transmission distance.

Equation 1.2 shows that the transmission energy of the communication unit increases signifi-

cantly when it transmits the data to the BS beyond its threshold transmission distance. Clus-

tering is an effective technique deployed to increase the energy-efficiency of the network [69].

Clustering not only provides data aggregation, scalability, and bandwidth conservation but also

prolongs the network Lifetime (LT) by decreasing the communication energy consumption of

the SNs. In clustering process, the SNs are partitioned into groups called clusters. Where each

cluster has its own leader known as CH. The CH collects the data within the cluster from its

member SNs and transmits it to the BS.

Though, clustering increases energy-efficiency of the the network however there are other pa-

rameters such as residual energy and workload on the CHs which must be observed. For

instance if a CH with lower residual energy is selected then its energy would be depleted after

few rounds. Subsequently it would adversely affect overall LT of the network. Similarly un-

supervised workload on the CHs significantly can reduce the energy-efficiency of the network.

Moreover higher the distance of a CH from BS can result an increased transmission energy con-

sumption and subsequently may reduce the LT of the network. Therefore, we consider different

distance parameters, residual energy, and workload on the CHs during our clustering approach

in order to achieve maximum energy savings.

Briefly, in order to increase the energy-efficiency both task scheduling and clustering are the

important mechanisms to be applied at the SN and network level respectively. Scheduling

and clustering reduce the processing and transmission energy consumptions respectively which

significantly increases the energy savings of the network while reducing the carbon footprint.
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1.5 Aim and Objectives

This thesis aims to increase the lifetime of an MPSoC based wireless network by reducing the

processing and transmission energy consumptions by performing proper task scheduling and

nodes clustering respectively. In order to accomplish this aim, the following research objectives

have been formalized.

1. To design an energy-efficient and contention-aware task scheduling algorithms deploying

heterogeneous NoC-MPSoC computing architectures for real-time tasks with deadline and

precedence constraints.

2. To design energy and contention-aware scheduling algorithms for a set of real-time tasks

with precedence and deadline constraints targeting Voltage Frequency Island (VFI) based

heterogeneous NoC-MPSoCs system.

3. To design algorithms for energy-efficient cluster heads selection in WSN to increase the

overall LT of the network while efficiently reducing the transmission energy consumption

of the sensor nodes distributed over a field.

1.6 Contributions

Contributions and innovations of this thesis are summarized as follows:

1. Contribution of Chapter 5: In this chapter, we investigate contention-aware and

energy-efficient static scheduling using heterogeneous NoC-MPSoC for real-time tasks

with an individual deadline and precedence constraints. Unlike other schedulers task or-

dering, mapping, and voltage assignment are performed in an integrated manner to mini-

mize the processing energy while explicitly reduce contention between the communications

and communication energy. Furthermore, both dynamic voltage and frequency scaling

and dynamic power management are used for energy consumption optimization. The de-

veloped Contention-aware Integrated Task Mapping and Voltage Assignment (CITM-VA)
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static scheduler performs tasks ordering using Earliest Latest Finish Time First (ELFTF)

strategy that assigns priorities to the tasks having shorter Latest Finish Time (LFT) over

the tasks with longer LFT. It remaps every task to a processor and/or discrete voltage

level that reduces processing energy consumption. Similarly, the communication energy

is minimized by assigning discrete voltage levels to the NoC links. Further, total en-

ergy efficiency is achieved by putting the processor into a low-power state when feasible.

Moreover, this algorithm resolves the contention between communications that traverse

the same link by allocating links to communications with higher priority. The results

obtained through extensive simulations of real benchmarks demonstrate that CITM-VA

outperforms state-of-the-art scheduling algorithms and achieves an average ∼ 30% to-

tal energy improvement. Additionally, it maintains high Quality-of-Service (QoS) and

robustness for real-time applications.

2. Contribution of Chapter 6: In this chapter, we study energy-efficient and contention-

aware static scheduling for tasks with precedence and deadline constraints on hetero-

geneous VFI based NoC-MPSoCs (VFI-NoC-HMPSoC) with DVFS-enabled processors.

Unlike the existing population-based optimization algorithms, we proposed a novel pop-

ulation based algorithm called ARSH-FATI that can dynamically switch between ex-

plorative and exploitative search modes at run-time. Our static scheduler ARHS-FATI

collectively performs task mapping, task ordering, and voltage scaling. Consequently, its

performance is superior to the existing state-of-the-art approach proposed for homoge-

neous VFI based NoC-MPSoCs. We also developed a communication contention-aware

Earliest Edge Consistent Deadline First (EECDF) task ordering algorithm and gradient

descent inspired voltage scaling algorithm called Energy Gradient Decent (EGD). We

introduced a notion of Energy Gradient (EG) that guides EGD in its search for islands

voltage settings and minimize the total energy consumption. Conducted the experiments

on 8 real benchmarks adopted from Embedded Systems Synthesis Benchmarks (E3S).

Our static scheduling algorithm, ARSH-FATI outperformed state-of-the-art heuristics

and achieved an average energy-efficiency of ∼ 24% and ∼ 30% over CA-TMES-Search

and CA-TMES-Quick respectively.
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3. Contribution of Chapter 7: Wireless Sensor Network (WSN) consists of a large num-

ber of sensor nodes distributed over a certain target area. The WSN plays a vital role in

surveillance, advanced healthcare, and commercialized industrial automation. Enhancing

energy-efficiency of the WSN is a prime concern because higher energy consumption re-

stricts LT of the network. Clustering is a powerful technique widely adopted to increase

LT of the network and reduce the transmission energy consumption. In this chapter

we develop a novel ARSH-FATI based Cluster Head Selection (ARSH-FATI-CHS) algo-

rithm integrated with a heuristic called Novel Ranked based Clustering (NRC) in order

to reduce the communication energy consumption of the sensor nodes while efficiently

enhancing LT of the network. Unlike other population based algorithms ARSH-FATI-

CHS dynamically switches between exploration and exploitation of the search process

during run-time to achieve higher performance trade-off and maximally increase network

LT. ARSH-FATI-CHS considers the residual energy, communication distance parameters,

and workload during CHs selection. We simulate our proposed ARSH-FATI-CHS and

generate various results to determine the performance of the WSN in terms of network

LT. We compare our results with state-of-the-art Particle Swarm Optimization (PSO)

based clustering and we prove that our developed ARSH-FATI-CHS energy-efficient sen-

sor nodes clustering approach improves the network LT by ∼ 25%. ARSH-FATI-CHS also

outperforms LEACH and PSO-C while achieving an average LT improvements of ∼ 60%

and ∼ 40% respectively.

1.7 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 discusses the background. Chapter 3

examines existing algorithms for task scheduling and nodes clustering. Chapter 4 presents our

research methodology. Chapter 5 focuses on the development of contention-aware and energy-

efficient scheduler for real-time tasks with precedence and deadline constraints on NoC-MPSoC

system. Chapter 6 presents static algorithms for scheduling real-time tasks with precedence

and deadline constraints on VFI based heterogeneous NoC-MPSoC architecture. Chapter 7
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investigates the problem of energy-aware CHs selection in WSN for improving overall LT of the

network. Finally, Chapter 8 concludes the thesis and discusses future research direction.



Chapter 2

Background Study

In this chapter we present an overview of the MPSoCs considering different architectures and

explain task mapping and scheduling in the viewpoint of energy-efficiency. We further discuss

various energy management techniques applied at the SN level. Moreover we also explain

SNs clustering process utilized to reduce the communication energy dissipation of the sensor

network.

2.1 Sensor Nodes Architectures

In this section we discuss different architectures used in SNs for WSNs considering the energy-

efficiency and performance requirements [70].

Recent advances in micro-electro-mechanical systems (MEMS) technology, wireless communi-

cations, and digital electronics have enabled the development of high performance, low-cost,

low-power, multi-functional SNs that are small in size and communicate untethered in short

distances. They are the endpoints of the WSN and each SN comprises of sensor, processing unit

and a communication unit [6, 67]: Different architectures used as SNs in WSNs are discussed

as follows:

Microcontroller: A microcontroller consisting of antenna (for wireless communication), pro-

17
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cessor, memory, sensor, and DC battery has been widely used as SN in the WSNs. Atmel

ATMega 128L, MSP430, and Mica2 are the popular examples used as SNs. Though the energy-

efficiency of these microcontroller based SNs was phenomenal however, the processing capability

was limited and there was a latency issue because of the slower response. Thus, new archi-

tectures have been developed to overcome the limitations of microcontrollers and one of the

known example is Digital Signal Processors (DSPr).

Digital Signal Processors: Some applications in WSNs may require to perform digital filter-

ing, Fourier analysis, and encoding. Microcontrollers are generally not optimized for such opera-

tions therefore, DSPr are used to perform these data extensive mathematical operations. Specif-

ically DSPr optimizes handles and optimizes digital signal processing related tasks. Though

DSP is a suitable solution for many applications but there are limitations such as lower speed

and bandwidth. However DSPr can be an integrated part of the MPSoCs though some studies

suggested ASIC (Application Specific Integrated Circuit).

ASIC: ASIC is an electronic circuit that integrates all components on a single chip required

for performing a special tasks. ASIC has high performance, decreased circuit’s congestion,

and low power consumption. These qualities make them ideal for being deployed in WSNs.

Though ASIC provide an energy-efficient and robust computing platform for data extensive

applications in WSNs however, time-to-market, price, lack of scalability and flexibility are the

disadvantages of ASIC. Thus Field Programmable Gate Arrays (FPGAs) have replaced ASICs

as an alternative.

FPGA: It is an integrated circuit that is designed to be configured by the customers or designers

after manufacturing. FPGAs have higher adaptability and flexibility compared to ASIC. The

FPGA architectures are re-configurable but complex to design though, they are useful for

complex applications in WSNs. Xilinx Virtex-4 is an example of FPGA based architecture used

in WSNs for video processing related applications (compression, decoding, image processing).

FPGAs have gained drastic acceptance in WSNs to fulfill the requirements such as performance

and flexibility.

Multiprocessor System-on-Chips (MPSoCs): Multiprocessor systems are beneficial for
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developing high performance and energy-efficient systems such as green computing. MPSoC is

set of independent and interconnected processors integrated on a silicon chip. These processors

cooperate and communicate with each other to execute applications [71,72]. MPSoC is a single

chip system that integrates all or most of the functions of an electronic system including I/O

units with analog and mixed-signal components, memory, instruction-set processors, buses, spe-

cialized logic, and digital signal processing functions [73,74]. MPSoC has set a new direction to

the field of the embedded system. Modern MPSoC architectures also integrate Graphics Pro-

cessor Unit (GPU), USB controller, Ethernet and/or wireless radios (3G, 4G, WiFi, 4G LTE),

power management circuits, and multi-core functions [75–77]. MPSoCs have been pioneered

by CPU manufacturing companies such as Xilinx, Tilera, IBM, Motorola, Intel, Samsung, and

Apple [78, 79].

MPSoC systems can broadly be categorized into three types as illustrated in Figure 2.1 based

on their architecture, communication infrastructure, and number of processors deployed within

each island of the MPSoC system. Each category of the MPSoC systems is explained with

suitable examples given as follows:
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Figure 2.1: MPSoC systems categorization

2.1.1 Architecture

In terms of the types of the processors used, MPSoCs can be divided into two general groups

of homogeneous MPSoCs and heterogeneous MPSoCs. Each group of MPSoCs is explained as

follows:
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2.1.1.1 Homogeneous MPSoCs

Homogeneous MPSoCs are symmetric multiprocessing systems where identical processing el-

ements with the same Instruction Set Architecture (ISA) are used [80]. Therefore, in homo-

geneous MPSoC, a single thread task will have the same power consumption and complete

in the same time irrespective of which processor is utilised. Examples of commercial homo-

geneous MPSoC include Samsung Mongoose M2 with 4, Cortex-A53 processors and EZchip

TILE-Mx100TM with one hundred Cortex-A53 processors. Homogeneous MPSoCs are suitable

computing platforms for applications where communication to computation ratio is higher [81].

Homogeneous MPSoCs can be further classified into two categories based on memory organi-

zation. Memory can be either shared shown in Figure 2.2(a) or distributed mirrored in Figure

2.2(b).

Memory

On-Chip Interconnect

PE PE PE

On-Chip Interconnect

PE PE PE

M M M

(a) (b)

Figure 2.2: Homogeneous MPSoCs (a) shared memory (b) distributed memory

2.1.1.2 Heterogeneous MPSoCs

Heterogeneous MPSoC include multiple types of different processing elements. Heterogeneous

MPSoCs can either be functional asymmetric or performance asymmetric.

1. Functional Asymmetric: They contain a set of architecturally different processing

units, as a consequence with different ISA. Example architecture can include Specific

Instruction-set Processor (ASIP), Field Programmable Gate Array (FPGA) fabric tiles,

and dedicated microcontroller [82]. Figure 2.3 shows a generic functional asymmetric

heterogeneous MPSoC consisting of architecturally different processing units i.e. general-

purpose processor(CPU), video accelerator, and audio accelerator [83].



21

Power 

Management

Interconnection

Video

Accelerator

Audio

Accelerator

Memory

CPU

USB

UART

GPIO

Wifi

Bridge
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2. Performance Asymmetric: The other type of heterogeneous MPSoCs is performance

asymmetric where ISA remains the same but performance and power consumption of the

processing units are different. In other words, some processing units may have higher

performance capabilities but lower energy-efficiency compared to others [84]. Samsung

Exynos 5 Octa (big.LITTLE) also known as Exynos 5410 used in Samsung Galaxy S4 is an

example of performance asymmetric heterogeneous MPSoC. It has 4 Cortex-A15 proces-

sors and 4 Cortex-A9 processors. The Cortex-A15 processors offer about 50% higher per-

formance compared to Cortex-A9 [85]. Concisely, Cortex-A9 processor is energy-efficient

but low performance while Cortex-A15 is low energy-efficient but high performance pro-

cessor. Thus energy performance profile of the processors is different in heterogeneous

MPSoCs.

Heterogeneous MPSoCs are widely adopted for various processing extensive applications due to

their superior performance and lower energy consumption compared to homogeneous MPSoCs

[86, 87]. Examples of heterogeneous MPSoC include, Samsung Exynos 9810 used in Samsung

Galaxy S9+, S9++, and Note 9+. Few other heterogeneous MPSoCs are listed in Table 2.1

and Table 2.2.

Table 2.1: MPSoCs architectures used in smart-phones

Model Type Architecture

Samsung Exynos 9810 Heterogeneous 4 Mongoose 3 big cores and 4 Cortex-A55 little cores
Apple A11 Bionic Heterogeneous 2 ARMv8-A monsoon and 4 ARMv8-A Mistral
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Table 2.2: Heterogeneous MPSoCs for IoT based applications

MPSoC Model Architecture

Xilinx Zynq®

UltraScale+TM MPSoCs

1. Quadcore ARM Cortex-A53
2. Dualcore ARM Cortex-R5
3. Dynamic power management unit
4. ARM MaliTM-400MP graphics processor

Renesas R-Car H3
nona-core

1. Quadcore ARM Cortex-A53
2. Quadcore ARM Cortex-A57
3. Dualcore ARM Cortex-R7
4. Integrated power VR GX6650

Xilinx Zynq®

UltraScale+TM RFSoCs

1. Quad-core ARM Cortex-A53
2. Dual-core Cortex-R5
3. Dynamic power management unit

2.1.2 Interconnect

The second broad categorization of MPSoC is based on the interconnect, the communication

infrastructure used for inter-processor communication [88]. Subcategories are (1) Bus based

MPSoC and (2) NoC based MPSoC. The type of inter-processor communication network plays

a vital role in achieving energy-efficiency and avoiding communication congestion/contention.

Loss of data in the communication network reduces the overall system performance and energy-

efficiency [89].

2.1.2.1 Bus

The bus-based architecture is probably the oldest on-chip interconnect in the computer in-

dustry and it is used in many MPSoCs [90]. The bus provides a communication mechanism

which interconnects different components (processing units, memory, I/O units) of the MPSoC

architecture. The bus interconnect shown in Figure 2.4 is an easier approach to integrating a

small number of components due to its simple protocol design and silicon cost. However, it

offers limited bandwidth and increased delays when used for a large number of components.

Matrix bus interconnect offers a solution for bandwidth as it offers multiple communication

paths. Figure 2.5. demonstrates an example of 3 master and 5 slave Advanced Microcontroller
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Figure 2.4: Bus communication architecture

Bus Architecture (AMBA) bus matrix communication subsystem architecture for dual ARM

processor-based MPSoC. A bus matrix (crossbar switch) has several parallel wires (busses)

which offer a suitable backbone to support concurrent data streams. The input stage handles

interrupted bursts if receiving slaves are unable to accept them immediately. Decode generates

a signal for proper slave selection. The component arbiter collects requests from all masters

and allows only one module to have access to the slave at a time [91]. The evolution of

bus interconnect is a progression started from AMBA, Advanced System Bus (ASB) to High-

Performance Bus (AHB) then AMBA AHB-Lite and finally AMBA AXI (Advanced Extensible

Bus). AXI4 is the latest example of MPSoC interconnect [92].
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Figure 2.5: Bus matrix communication architecture

2.1.2.2 NoC

NoC is a a typical example of network based communication subsystem on a chip. NoC technol-

ogy applies the method of computer networking and improves the communication mechanism

compared to conventional crossbar communication architectures. NoC increases the scalabil-

ity, flexibility, and power-efficiency of MPSoC. Figure 2.6 shows a typical 2D-mesh NoC that

consists NR = 3 rows and NC = 3 columns i.e. a total of 9 routers. Each router in a NoC
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has five ports associated with buffers, four ports are used to communicate with the neighbour

routers and one dedicated for the purpose of communicating with the processing unit. NoC

architecture basically consist of three major components explained as follows.
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Figure 2.6: A typical 2D-mesh NoC architecture

Communication links: A communication link is used to connect two routers and a router

with a processor. It contains one or more channels while each channel consists a set of wires.

The links can be half duplex or full duplex and have a bandwidth, bw.

Router: NoC router consists a set of global output and input ports which are connected to

other routers. A switching matrix connects input ports to output ports and the processor

associated with the router. The buffers used in routers are to host the incoming data when

immediate transfer to next processor and/or Intellectual Property (IP) is not possible because

of the congestion.

Network Interface: It provides physical connections and logical connection between the

processor and network.

In NoC communication is performed by transmitting message from the source processor to the

associated router through network interface and the message is stored in the buffer temporarily

for servicing. The router performs routing decision based on its policy regarding the path

to be used for message delivery. The communication message is delivered to another router

and this process continues until the communication message reaches to its destination i.e. the

required processor. The communication latency depends on parameters such as message data

size, network bandwidth, and buffer size [93]. Two major policies are used in NoC to deliver a
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communication message (1) switching and (2) routing.

Switching: Switching determines when and how a data is transmitted in the NoC. The switch-

ing mechanism can be divided into two subcategories i.e. circuit switching and packet switching.

A routing algorithm is used in the circuit switching to determine the communication path and

thus the a single communication message follows the same route [93]. In packet switching a

communication message is often subdivided into several small fixed size packets called flits.

Separate routing decisions are made for each packet or flit [94]. Some of the known packet

switching strategies are (1) store-and-forward, (2) virtual cut-through, and (3) wormhole.

1. Store-and-forward: In store-and-forward strategy of data communication a complete

message is stored by the router before sending it to the next router. Buffers of sufficient

size are required in this mechanism to hold the whole packet otherwise it may cause the

packet stalled.

2. Wormhole (WH): In the network when a flit traverses, the WH immediately deter-

mines its next hop, forwards it and then the subsequent flits worm their way through the

network. The disadvantage of this strategy is that in case of contention occurrence, a

stalling packet may blocks all the communication links [33, 95].

3. Virtual cut-through (VCT): In VCT routing the buffer size is large and the entire

packet is sent to the next router. Thus, VCT has lower latency, higher link utilization, and

lesser packet blocking probability. Though WH switching is simple and possesses higher

efficiency of flow control over VCT but in case of congestion occurrence, the stalling

packet can block all the links and result a low link utilization [96].

Routing: A routing algorithm determines the path of a communication message from source

processor to the destination processor. Routing schemes can be either deterministic or adaptive.

1. Deterministic: In deterministic approach the packet always follows the same path be-

tween source and destination. XY is the most popular and deterministic routing technique
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used in NoC. In XY routing the packets are traversed in the X-direction first and then in

the Y-direction to reach the target router.

2. Adaptive: Adaptive routing scheme dynamically performs link load evaluation and ap-

plies a dynamic load balancing strategy. In other words, this scheme may use different

path between source and destination if there is congestion on the original path.

There are also some other networks that are deployed as a interconnect for the inter-processors

communications on chip. They are explained as follows:

Torus: Torus is the modified version of the basic mesh network. In this network the left sides

of all the rows are connected to their right sides and the top of the columns are connected to

the bottom of the columns. Torus performs better than mesh-network in terms of hop count

but the wire length of mesh-network is significantly smaller than torus [97].

Star: In star network a central router in the middle of the star is responsible for inter-processor

communications and the processors are on spikes of the network. There is always a higher chance

of congestion occurrence as all the communication messages are going through the central router

to reach the destination [98].

Polygon (Hexagon): It is basically a circular network in which the communication messages

travel in loop from one router to another. One of the popular example for polygon network is

hexagon topology. Hexagon network consist of six routers connected to five other routers while

one link is associated for the computational resource [99].

Tree: It uses a tree structure in which the nodes show the routers while leaves represent the

computational resources. The routers that are above the leaf are called leaf’s ancestors while

the leaves below the ancestor are its children. In a fat tree topology for each node there are

replicated ancestors thus many alternative routes are available between the nodes [99].
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2.1.2.3 Bus based MPSoCs

Bus based MPSoCs use a bus as the medium of communication between processors and other

components. Fig. 2.7 shows the architecture of Xilinx Zynq Ultrascale+MPSoC widely used for

IoT applications. It deploys ARM AMBA-AXI4 bus to interconnect Quad-core ARM Cortex-

A53, Dual-core ARM Cortex-R5 real-time processors, and other controls/peripherals [100,101].

ARM AMBA-AXI4 bus also establishes communication between a memory-mapped master

device and a single or multiple memory-mapped slave devices [101]. The peripherals are inter-

connected on a chip via the Security Policy Engine (SPE) to ensure security. Tightly Coupled

Memory (TCM) segregates the untrusted applications. Traditional bus communication archi-

tectures support only limited bandwidths and are not scalable for high-performance designs

leading to the development of NoC based MPSoC. NoC based communication has several ad-

vantages over hierarchical methods (STBus, Advance Micro-controller and Bus Architecture)

as well as traditional bus architecture in terms of scalability, flexibility, power-efficiency, and

performance [102,103].
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Figure 2.7: Xilinx Zynq Ultrascale+MPSoC using ARM AMBA-AXI4

2.1.2.4 NoC based MPSoCs

In NoC based MPSoC, the various modules such as processors (tiles), IP blocks, and mem-

ory elements exchange the data through a network. In NoC data or messages can be relayed
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from source to destination module over many links depending upon the routing decision at the

switches [82, 104, 105]. NoC based MPSoCs can either be homogeneous or heterogeneous de-

pending upon the nature of the processors used [82]. A generic NoC based MPSoC is illustrated

in Figure 2.8.
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Figure 2.8: A typical representation of NoC based MPSoC architecture

Samsung Exynos 7 Octa (7420) with 2.1 GHz Quad-Core Cortex®-A57 and 1.5GHz Quad-Core

Cortex®-A53, HiSilicon Kirin 960 with 4× Cortex-A73, 4× Cortex-A53 are examples of NoC

based MPSoC. The Tilera TILEPro64TM is an example that uses 64 identical processing units

and iMesh NoC to interconnect tiles with each other and to the external resources. The iMesh

NoC comprises of six 2D mesh-networks to support multi-hop routing. Various other NoC

based MPSoCs by the Tilera corporation are listed in Table 2.3 [106,107].

Table 2.3: Different DVFS-enabled NoC based MPSoCs from TileraTM

MPSoC Model Network Topology Max: CPU Clock Rate

Tile64 TM Mesh 600-900 MHz
TilePro64 TM Mesh 600-866 MHz
TilePro36 TM iMesh 500 MHz
Tile-Gx TM iMesh 1.2 GHz
Tile-Gx36 TM iMesh 1.2 GHz
Tile-Gx16 TM iMesh 1.2 GHz
Tile-Gx TM iMesh 1-1.2 GHz

2.1.2.5 Voltage Frequency Islands based MPSoCs

More recently, Voltage Frequency Island (VFI), Globally Asynchronous Locally Synchronous

(GALS) model is introduced to NoC interconnect, where the tiles are partitioned into islands
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while each island is optimized with its own threshold voltage, operating frequency, and supply

voltage. MPSoC systems implemented with GALS have a reduced number of voltage level

converter and mixed-clock/mixed-voltage FIFO requirements [95,108,109]. However, the power

consumption and complexity of the VFI based MPSoC systems increase when the number of

VFIs are increased. Figure 2.9 shows a generalized VFI based NoC-MPSoC. It consists of four

VFIs represented by different colours (yellow, green, violet, and blue) and six tiles per VFI.

Each VFI contains an independent voltage supply and a local clock. Inter-VFI communication

is established through mixed-voltage FIFO, mixed frequency clocks, and voltage converters.

Moreover, each tile in every VFI has a local memory, network interface, and a processor [110].

It is worthy of note that state-of-the-art commercially available multiprocessor systems e.g.

Intel Itanium i7 and IBM Power 7 series use VFI based MPSoC architectures [111,112].
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Figure 2.9: A generic representation of VFI based NoC-MPSoC architecture

2.2 Task Scheduling

Task scheduling is a process of properly allocating a set of tasks on the processors such that

specific obligations are fulfilled e.g. power consumption optimization and/or execution time

reduction. Scheduling real-time applications on a multi-processor system can be considered as

solving two problems, 1) task mapping and (2) task ordering.
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1. Task mapping: It specifies where each task is executed on the multiprocessor computing

system.

2. Task ordering: This specifies the order and time in which each task or communication

message would be executed on processors.

Task scheduling can be broadly divided into two categories (1) Preemptive Scheduling (2)

Non-preemptive Scheduling [113].

Preemptive Scheduling: In this type of scheduling task execution can be interrupted and

the unfinished portion of the task is re-allocated to a different processor. Preemptive scheduling

is more complex than non-preemptive scheduling. Preemptive scheduling need individual task

stacks leading to high memory utilization. Interrupting a task while transferring it to another

processor on the MPSoC leads to a significant processing overhead and communication delays.

Non-preemptive Scheduling: This scheduling allows a task to execute until its completion

on a single processor. Non-preemptive schedulers share a common stack thus results in vastly

reduced memory requirements. Non-preemptive schedulers are far easier to be implemented

compared to preemptive schedulers. Moreover, they exhibit lower run-time overheads. They

guarantee an exclusive access to the resources and eliminate the need for complex resource.

There are different approaches for determining the task priorities for example Longest Pro-

cessing Time (LPT) which sorts the tasks by their processing time and assigns the tasks to

the processors with the earliest finish time. [114]. Highest Level First with Estimated Time

(HLFET) schedules a task from set of nodes to a processor in multiprocessor system that al-

lows earliest start time [115]. Dynamic Heterogeneous Earliest Finish Time (dHEFT) scheduler

detects the processor in MPSoC that finishes a task at the earliest possible time [116], Earliest

Edge Consistent Deadline First (EECDF) is a list scheduler that prioritizes nodes with shorter

edge consistent deadline (ECD) over nodes with longer ECD [117]. Earliest Time First (ETF)

computes the earliest start times of all ready tasks and selects the task node with the smallest

start time [118]. Earliest Completion Time (ECT) priorities a task having lowest earliest start

time and execution time over other task nodes. List schedulers for instance DLS (Dynamic
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Level Scheduling) [119] are dynamic priority based i.e. after mapping each task the priority is

recomputed for unscheduled tasks.

Task can be defined as a sequential program triggered for execution when a particular event

occurs. There are several task models explained as below:

Independent Task Model: Independent task model T = {T1, T2, T3 . . . Tn} is a collection of

tasks with no inter-task data dependencies i.e tasks are not related by precedence relations.

In the task model, n shows the total number of tasks. Each task Ti has an execution time,

t. Within the independent task model each task Ti contains all the necessary data required

to execute on a processor [120–122]. Independent tasks can be executed on the processors in

any order by the scheduler. Scheduling independent task is often used to allocate the tasks

on available distributed processors such that the overall makespan is reduced. Specifically,

scheduler priorities some tasks over others to minimize the finishing time of the last task

Tn [123]. Different applications running concurrently such as video streaming, target tracking,

and image enhancement can be modelled as independent tasks [124].

Dependent Task Model: The dependent or interacting task model is mostly represented by

a Directed Acyclic Graph (DAG) shown in Figure 2.10. This popular representation of a real-

time application comprises characteristics such as inter-task communication data size, tasks

deadlines, and task dependencies. A DAG can be mathematically represented as G(V,E, τ)

where, V = {v1, v2, v3 . . . , vn} shows the tasks in an application/workload, E ⊆ V × V denotes

data dependencies between the tasks while τ shows edge weights. The edge weight is basically

the data transferred (represented by the numbers on each edge) in units of bits between two

nodes vi and vj [125–127]. Conditional Task Graph (CTG) is another-type-of dependent task

model. In the CTG, an edge is called a conditional edge if it is associated with a condition

representing that the following task is executed only if the condition holds. An edge is an

unconditional edge if no condition is associated with it [35].

There are some typical parameters which are considered during the scheduling process when a

real-time application is represented by a task model.
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Figure 2.10: Directed acyclic graph

Release Time: As there is a set of task to represent an application so this parameter represents

the time at which a task is ready to be executed.

Deadline: This parameter shows the maximum time by which a task should have completed

its execution.

Worst-Case Execution Time: It shows the estimated maximum execution time needed to

complete a task using maximum available frequency.

Proper task scheduling approach can drastically influence an embedded system energy-efficiency,

performance, and reliability [63]. Task scheduling on MPSoCs is NP-hard problem [125,128]. It

means that task scheduling problem is intractable and there is no algorithm that can determine

an optimal solution for it within polynomial time. Therefore, various scheduling algorithms

are proposed by the researchers to determine the near optimal solution using Non-Linear Pro-

gramming (NLP) [129], Mixed Integer Linear Programming (MILP) [130], and Integer Linear

Programming (ILP) [131]. Numerous other search-based approaches are also investigated using

Differential Evolution (DE) [132], randomization [133], Simulated Annealing (SA) [32], Particle

Swarm Optimization (PSO) [134], and Genetic Algorithm (GA) [33, 135]. These algorithms

are categorized in Figure 2.11. Dependent task scheduling can be divided into two other types

dynamic and static explained as follows:

1. Static Scheduler: It assigns task priorities before the embedded system runs. Static or

Offline scheduling simplifies optimization complexity, although this technique is inefficient

regarding resources utilization [136]. It is easy to be implemented and guarantees to meet

the tasks deadline [137].
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Figure 2.11: Task scheduling algorithms

2. Dynamic Scheduler: It executes the tasks on the processor in real-time. The dynamic

scheduler considers the available resources and can rearrange the tasks list during run-

time [136, 138]. The disadvantage of dynamic scheduling is the runtime overhead and

there is no guarantee that all the tasks to be executed can meet their deadline [137].

Static scheduling can be categorized into (1) list-based scheduling (2) clustering-based schedul-

ing (3) duplication-based scheduling, and (4) guided random search-based scheduling. Each of

the type is explained as follows [128]:

List-based Scheduling: In this type of scheduling a heuristic prioritizes all the tasks and

maintains a task list with their priorities. The tasks are scheduled on the processor based on

priority assigned to the tasks and their readiness.

Clustering-based Scheduling: In this static scheduling the tasks are grouped into clusters

and each cluster is mapped on the same processor. The tasks are then ordered based on their

respective processors.

Duplication-based Scheduling: This scheduling is basically used for reducing the inter-

processor communications for energy consumption reduction. It redundantly allocates some of

the tasks on more than one processor to minimize the communication overhead.

Guided Random Search-based Scheduling: In this scheduler, algorithm iteratively im-

proves the scheduling result until a stopping criteria is satisfied. It adopts the knowledge gained

from previous steps and generates new improved solutions according to random features.
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2.2.1 System Level Energy Management Techniques

In this section, we present an overview of the system level power management techniques widely

adopted for reducing the energy consumption of multiprocessor system.

Energy is basically “the capacity to do work”. Mathematically, Energy = Power × Time,

where power is the rate of consumption of energy. The unit of power is watt represented by

w and time unit is second denoted by s. The unit of energy is joule denoted by J. Generally

the residual energy of the batteries are rated in milliamp-hours (mAh). Theoretically 1000

mAh battery can support a processor for 100 hours when it is consuming 10 mA. Where “A”

represents ampere which is the unit of current. [139].

There are many motivations behind reducing the energy consumption of the multiprocessor

systems using scheduling. First, the battery life, embedded systems used in WSN are mostly

battery powered with limited residual energy. Large amount of energy is consumed by digital

chips in the embedded systems. Furthermore, applications are data extensive these days and

a lot of processing is required. Second, if a chip consumes high amount of energy then there

is a possibility that it can become very hot which consequently may cause system’s failure.

Moreover, excessive heating causes to increase the production costs of Integrated Circuits (IC)

because a special ceramic packaging is required for cooling purposes. Thirdly, reducing the

energy consumption of an embedded systems minimizes the carbon footprint and subsequently,

results in to achieve green computing objectives. Due to these factors researchers are motivated

to perform task scheduling combined with energy management techniques explained below.

Dynamic Voltage and Frequency Scaling (DVFS): MPSoCs are CMOS devices, the

overall power consumption in CMOS circuits is due to dynamic and static power dissipation.

Dynamic power dissipation occurs due to transistors switching and dominates the total power

consumption in CMOS technology. The dynamic power consumption of each processor execut-

ing a task at a certain discrete voltage and frequency level (Vdd, f) is given as follows [33,130]:

PD = Ceff × V 2
dd × f (2.1)
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where Vdd represents the supply voltage and f denotes the operating frequency while Ceff is the

effective switching capacitance. The cycle length, tcycle of the clock for executing a task assigned

to a processor using a certain speed/voltage level can be represented as tcycle = Ld×K6×Vdd
(Vdd−Vth)α

.

Where K6 denotes technology dependent constant, Ld shows the average logic depth of the

processor’s critical path, while 1.4 ≤ α ≤ 2, and Vth is the threshold voltage which can be

calculated as Vth = (Vth1−K1)× (Vdd−K2)×Vbs, where Vth1 , K1, K2 are technology dependent

constants and Vbs represents body bias voltage.

Equation 2.1 shows that there is a quadratic law relationship between supply voltage and

power consumption. In other words reducing the supply voltage minimizes the power con-

sumption quadratically. Thus DVFS is an effective technique to be combined with scheduling

for enhancing the energy-efficiency of the multiprocessor platform. DVFS is a system level

technique whereby the processor supply voltage and clock frequency are dynamically reduced

as a means to reduce overall power consumption without negatively impacting performance

and deadline completion [64, 65]. Modern MPSoCs includes DVFS-enabled processors. As an

example, the Samsung Mongoose M2 has 4 DVFS-enabled homogeneous processors with an

operating frequency range of 2.3 to 2.8 GHz. Moreover, the DVFS-enabled processors include

Intel Speedstep, Marvells XScale and Transmeta Crusoe.

Dynamic Power Management (DPM): Now, suppose Isubn denotes subthreshold leakage

current while Ij shows the junction current, and Lg represents the total number of CMOS

devices connected in the circuit, then the static power (Ps) can be expressed as follows:

PS = Lg × (Vdd × Isubn + |Vbs|×Ij) (2.2)

where Isubn = K3 × eK4Vdd × eK5Vbs and K3, K4 and K5 represent processor technology specific

parameters (constants). Thus, the total power (P ) consumption of each processor in the MPSoC

can be computed as follows:

P = PD + PS (2.3)
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In CMOS technology the power consumption is due to both dynamic (electronic switching)

and static (electronic leakage) components evident from Equation 2.3. Thus the objective of

DPM is to reduce static power consumption while DVFS is majorly used to minimize dynamic

power consumption [140]. DPM is an effective energy saving technique that can be employed

to reduce the static power consumption without significant loss of performance. The objective

of DPM is to switch the system to low-power mode when idle, returning to full power mode

when required [141]. In other words, the DPM technique switches the processor to an inactive

state for as long as possible, while ensuring that all viable tasks finish within their deadlines.

Table 2.4 shows different power consumption modes of Transmeta Crusoe and PXA-250 pro-

cessors. Power consumption in sleep (low-power) mode is evidently smaller than idle mode,

therefore, a significant amount of energy can be saved using DPM technique to switch an idle

processor into a low-power mode whenever possible. Though some of the power is dissipated on

switching the processor from idle mode into sleep mode. This power consumed is called sleep

overhead power denoted by Psoh.

Table 2.4: Two different processors power consumption modes

Transmeta Crusoe PXA-250

Parameter Value Parameter Value

Pidle 276 mW Pidle 555 mW
Psleep 80.0 µ W Psleep 180 µW
Psoh 385 µ W Psoh 483 µ w

As a motivational example in order to understand the working principle of DVFS and its

impact on power-efficiency we consider 70 nanometer (nm) technology parameters listed in

Table 2.5 [130]. According to the specification, a Transmeta Crusoe processor [142,143] operates

at the five discrete voltage levels of {0.65, 0.7, 0.75, 0.8, 0.85}. The value for body bias voltage is

Vbs = −0.70 V. Given this data we calculate the corresponding frequency, dynamic power PD,

and static power PS for the different supply voltage Vdd levels summarized in Table 2.6. Both

PD and PS considerably reduce with the decrease in the Vdd but the dynamic power reduces

more than static power.

Coarse Grained Software Pipelining: Coarse grained software pipelining also known as
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Table 2.5: The 70 nm processor technology parameter values

Parameter Value Parameter Value

K1 0.063 K2 0.153
K3 5.38× 10−38 K4 1.83
K5 4.19 K6 5.26× 10−12

Ceff 4.30× 10−10 α 2.00
Ij 4.80× 10−10 Lg 4.00× 106

Vbs - 0.70 Vth 0.244

Table 2.6: Transmeta crusoe processor power consumption at different supply voltage levels

Parameters Value

Vdd(V) 0.85 0.80 0.75 0.70 0.65
f(GHz) 2.10 1.81 1.53 1.26 1.01
PD(mW) 655.5 498.9 370.4 266.7 184.9
PS(mW) 462.7 397.6 340.3 290.1 246.0

re-timing is another task level technique used to decrease the wasted slack by regrouping nodes

from different periods [144]. Consequently, the intra-period precedence constraints are trans-

formed into inter-period precedence constraints. Figure 2.12(c) shows the schedule where the

execution of v1 and v2 is delayed by one period. Since v1 executes one period ahead of v3, it

can start executing early as shown in Figure 2.12(c). However, re-timing has a side effect i.e.

it adds a prologue and memory overhead. Re-timing can be applied only to applications such

as streaming, executing repeatedly. Such applications and are known as periodic applications.

Periodic applications are associated with an integer value called the period that defines the

time interval after which the application executes again.

We provide an example to better understand the working principle of the re-timing technique.

Consider a periodic application modelled by a DAG as shown in Fig. 2.12(a). Figure 2.12(b)

shows the schedule for the first three periods. Notice that v2 cannot execute until v1 completes

execution because v2 is dependent on v1. Thus the processor where v2 is scheduled remains

idle (assuming the idle interval is shorter than break even time) during the time interval v1

executes. In other words, the available slack (on the processor where v2 scheduled) is wasted.

The wasted slack is efficiently minimized by using re-timing.
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Figure 2.12: Coarse-grained software pipelining (a) a simple DAG with three task nodes rep-
resenting a workload (b) tasks mapping without re-timing (c) task mapping with re-timing

2.2.2 Other Energy Reduction Techniques

In this section we discuss other energy reduction techniques used at the circuit level of the

processors.

Gate Sizing: The dynamic power consumption in CMOS circuit is due to effective switched

capacitance Ceff which is dependent on load capacitance given as follows:

Ceff = γCL (2.4)

where γ shows average switching activity and CL represents the load capacitance, where the

load capacitance can be represented as follows:

CL = CI + CW + CO (2.5)

where CI shows the input gate capacitance, CW denotes capacitance of the connecting wire, and

CO represents output gate capacitance. Thus dynamic power can be minimized by reducing

the gate size to decrease the load capacitance. However gate size reduction causes delay and

affects circuits timing response.
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Input Vector Control (IVC): IVC is a well known technique used for reducing the leakage

power. It utilizes transistor stack effect by applying Minimum Leakage Vector (MLV) to the

inputs of the combinational circuit during standby mode. In other words a CMOS gate’s

sub-threshold leakage current depends upon the applied inputs which are also called Input

Vector (IV) to the transistor. Subsequently, the circuit can be forced to operate at low leakage

condition by using the appropriate IV [145]. One of the approach is to determine IV by

enumerating all possible combinations but such method involves exponential time complexity

and becomes intractable for a circuit with many primary inputs. another possible approach is

to find the near optimal solution of the IVC problem by using probabilistic meta-heuristics. As

the leakage power has started to dominate the total power consumption in modern embedded

systems therefore, researchers have developed numerous IVC approaches for intance the schemes

proposed in [145–147].

Power Gating: It is another effective technique to reduce CMOS circuits leakage power by

turning off the supply voltage when blocks are are in idle mode. The power is tuned on once

the block is required. Thus power gating is the process of putting some blocks into off state

when not required and vice versa. Shutting down the blocks can be accomplished either by

software or hardware. Often a dedicated power management controller is used to shut down

the blocks [148]. Some techniques integrate power gating with clock gating to reduce both

the static power and dynamic power respectively. Clock gating is a widely adopted technique

in synchronous circuits to add up more logic to the circuit in order to prune the clock tree.

Pruning basically disables portions of the circuitry such that the flip-flops switch states because

switching states causes more power consumption [149].

Multi-threshold Design: Multi-threshold CMOS circuits combine low-threshold and high-

threshold transistors on a single chip. Low-threshold transistors are used to provide higher

performance while high-threshold transistors generates lower leakage current. The circuit paths

in CMOS which require high speeds are built by using low-threshold transistor and the rest

of the paths are designed by deploying high-threshold transistors. Multi-threshold circuits are

build using different approaches. First, initially an entire circuit is built using low-threshold

transistors if circuit path delay is comparatively lower than the required clock period the some
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lower-threshold transistors are replaced high-threshold transistors on the path. Second, building

the complete circuit such that it consists of high-threshold transistors and then estimate if

the circuit can’t operate effectively at the required clock speed then replace high-threshold

transistors on the circuit path with low-threshold transistors. Third, method is to replace

groups of cells by low-threshold or high-threshold transistors at once [150].

Apart from the aforementioned techniques which are deployed at the system and circuit level on

SNs to reduce the processing energy consumption there is an effective and powerful mechanism

called clustering to reduce the transmission energy consumption. It is applied at the network

level to increase the energy-efficiency of the sensor network. Clustering in WSN not only

provides data aggregation, scalability, bandwidth conservation but also prolongs the network

LT by decreasing the communication energy consumption reduction of the SNs. In clustering

process, the SNs are partitioned into groups called clusters. Where each cluster has its own

leader known as CH. The CH collects the data within the cluster from its member SNs and

transmits it to the BS. The information from the BS is transmitted to the Cloud for further

processing and visualization purposes as demonstrated in Figure 2.13 [69]. Like scheduling, the

CH selection is also a well known NP-hard problem [151]. Subsequently, various searching based

heuristics for clustering have been developed using GA [152], ACO [153], PSO [151], DE [154],

SA [155]. Among these heuristics PSO is widely utilized for clustering purpose in WSN to

enhance the energy-efficiency. Low Energy Adaptive Clustering Hierarchy (LEACH) [156] is

one of the earliest and very popular clustering heuristic that reduces the transmission energy

dissipation of SNs in wireless networks. LEACH randomly selects CHs, so that the energy

dissipation in communicating with the BS is spread over all SNs in the sensor network.

The existing clustering algorithms in WSN fall into these groups, (1) homogeneous and hetero-

geneous network, (2) centralized or distributed algorithms, (3) static and dynamic clustering,

and (4) uniform and nonuniform clustering [157].

1. Homogeneous and Heterogeneous Network: The nature and capability of the SNs

used in the network influence the CHs selection. For example if a homogeneous network

is used where all the SNs have the same processing capability then the CHs are selected
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based on parameters such as residual energy and distance from the BS while any node can

become a CH. In heterogeneous network which consists of SNs with different processing

capabilities, often a SN with higher processing capability is selected as CH.

2. Centralized or Distributed Algorithms: The BS or CH is mainly responsible for

cluster formation and network partitioning in the centralized approach. On the other

hand in distributed approach cluster formation and CH selection are performed by the

SNs themselves. Mostly distributed algorithms approach is used in the homogeneous

environment. Hybrid techniques are also deployed where the advantages of both the

distributed and centralized algorithms are utilized.

3. Static and Dynamic Clustering: In static clustering the cluster formation and CHs

selection are performed once and they remain fixed for a long time. Dynamic clustering

efficiently group the SNs into clusters dynamically i.e. there is no fixed cluster. Dynamic

clustering is used in an environment where where the SNs are mobile that is changing

their positions.

4. Uniform and Nonuniform Clustering: In uniform clustering the SNs are evenly

distributed among the clusters to achieve energy-efficiency. However, this approach is

effective where SNs are static. The SNs in non-uniform clustering are not distributed

uniformly among the clusters. Non-uniform clustering is satiable approach for dynamic
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SNs where the nodes change their position.

There are some terms that are frequently used when algorithms are developed to perform

energy-aware clustering.

Intracluster Communication: It represents the communication of SNs with its selected CH

within a cluster. Mostly SNs directly communicate with their CH depending upon the distance

between them. In large scale networks, multi-hop communications are performed.

Network Lifetime (LT): LT of a network is the number of rounds until the first SN death.

Some other literature define network life time as the number of rounds when all the SNs dissipate

their residual energy.

Hop Count: Hop count is basically the number of steps/hopes a communication message

takes from source to its destination, or the number of nodes it traverses. Increase in the hope

count increases the latency and affects the overall performance of the network.

Scalability: The number of SNs distributed over the target area may be ranging from hundreds

to thousands. Routing scheme must be able to support this huge number of SNs. Moreover,

sensor network clustering algorithms should be scalable enough to respond to events in the

environment [158].

Coverage: Coverage is one of important evaluation metric for WSN. It is always advantageous

to distribute SNs over a larger physical area. It is worth noticing that network coverage different

than the range of the wireless communication links being used. Multi hop communication

extends the network coverage beyond the range of radio technology [139].

Quality-of-Service (QoS): In some time-critical applications, data is supposed to be delivered

within a particular period of time the moment when it is sensed, otherwise it will be useless.

However, in most of the applications, energy savings is directly related to LT of the network

and considered the most important parameter than QoS [139].

Data Aggregation: It is the combination of data gathered from different sources using cer-

tain aggregation function e.g. minima, maxima, duplicate suppression, and average etc. This
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technique is deployed to achieve energy-efficiency. Other signal processing based techniques are

also used for data aggregation [139].

2.3 Summary

Summarizing this chapter, MPSoCs are widely adopted in WSN for numerous computational

extensive applications due to their ability of high performance and QoS. The energy con-

sumption reduction plays a significant role in modern embedded systems to reduce the carbon

footprint and enhance LT of the network. It is important to minimize the energy consumption

both at the SN and network level. At SN level DVFS and DPM are two effective techniques

that can be intelligently combined with scheduling to increase the energy-efficiency. Proper

static scheduling can decrease both the processing energy and the energy due to inter-processor

communications traversing the NoC links. Similarly, clustering is another simple but effective

technique at the network level to minimize the transmission energy of the distributed SNs.



Chapter 3

Literature Review

Energy-efficiency plays a vital role in WSN to enhance the its LT therefore, different algorithms

for energy-aware scheduling and energy-efficient sensor nodes clustering have been investigated

in the literature. In this chapter we discuss these heuristics for scheduling and clustering.

3.1 Scheduling using NoC-MPSoCs

Motivated by the fact that MPSoCs are high-performance green computing platform several

studies have investigated the static task scheduling problem. These investigations are categor-

ically explained as follows:

3.1.1 Computational Energy Reduction

Computational extensive applications can consume significant energy of the power source and

therefore, efficient task scheduling is required increase the overall energy-efficiency.

Srinivasan and Chatha [159] developed a SA based energy optimization scheduling approach

called (LPPWU)sa for MPSoC with DVFS-enabled homogeneous processors using bus-based

interconnect for inter-processor communications. The (LPPWU)sa reduced an overall run time

44
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and combined both DVFS and DPM for achieving maximum energy savings. However, this

approach first only combines DVFS with the scheduling and then separately deploys DPM in

the final step to minimize the overall energy consumption.

Tosun [160] mapped periodic independent tasks on heterogeneous MPSoC architecture to re-

duce the computational energy consumption. A heuristic is developed by using the Earliest

Deadline First (EDF) strategy for task mapping while the voltage levels are assigned using

DVFS technique. This investigation assumes independent task model while fail to perform

experiments on dependent tasks.

Chen et al. [130] formulated the energy optimization problem as MILP using homogeneous NoC-

MPSoC architecture for dependent real-time tasks represented by DAG. A Non-preemptive

schedule is generated and discrete voltage level is assigned to each task for energy consumption

reduction. However, this study does not explicitly consider communication energy overhead i.e.

inter-processor communications and heterogeneous MPSoC architecture for achieving higher

energy-efficiency.

An ILP based meta-heuristic called Shuffled Frog Leaping Algorithm (SFLA) is proposed by

Zhang et al. [134] to map real-time tasks on bus-based interconnect MPSoC system that consists

of heterogeneous processors with different energy performance profiles. The study focuses only

on real-time applications represented by independent periodic tasks while does not consider

tasks with precedence constraints and deadline constraints.

Tariq and Wu [161] investigated the problem of energy-aware scheduling of tasks with condi-

tional precedence constraints on shared-memory homogeneous MPSoC. Their objective was to

minimize the total computational energy. In their approach they first map the tasks on pro-

cessors and then separately perform voltage scaling. They proposed an NLP based algorithm

that assigns optimal continuous voltage level to each task given in the initial schedule. The

major drawback of this approach is that the processors are assumed to operate at any voltage

value between minimum and maximum of the voltage and frequency levels. It is not a practical

scenario as the processors in MPSoCs only operate at discrete voltage and frequency levels.
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3.1.2 Inter-processor Communication Energy Reduction

Other researchers studied the communication-aware task mapping and scheduling on MPSoCs

using heuristics and mathematical programming. Some of the popular approaches are explained

as follows:

Shin and Kim [162] considered NoC with voltage scalable links and proposed a GA based

approach to reduce the communication energy by finding the optimal voltage levels for com-

munications on the NoC links. Chou and Marculescu [163] improved contention of the NoC for

tasks represented by a Directed Acyclic Graph (DAG). Mapping problem is formulated as an

ILP for improving congestion and providing best-effort communication in the network. How-

ever, these studies have not explicitly considered the reduction of the computational energy

consumed by the processors of the MPSoCs architecture.

Carvalho et al. [88] scheduled the dynamic workload on heterogeneous NoC-MPSoC architec-

ture using Nearest Neighbour Heuristic (NNH) algorithm. The authors mainly focused on

improving the NoC energy-efficiency by reducing average link occupation and minimized the

link congestion using Path Load (PL) algorithm. Though, this scheduling approaches reduced

the communication overhead but could not consider the energy performance profiles of the

processor for attaining higher energy-efficiency.

Maqsood et al. [164] mapped the tasks on NoC-MPSoCs using Communication-aware Pack-

ing based Nearest Neighbour (CPNN) algorithm. The reduction in communication energy

was attained by migrating the tasks from the processors with a light load to other appropriate

processors that can actively accommodate those tasks as a consequence the inter-processor com-

munication workload is reduced. The work based on CPNN is further improved by Chatterjee

et al. [165] and performed communication-aware energy-efficient dynamic task scheduling on

homogeneous NoC-MPSoC for real-time applications. However, task migration causes power-

overhead that can significantly reduce the over all energy-efficiency.

Wang et al. [166] minimized the inter-processor communication overhead and improved mem-

ory utilization using traditional bus-based interconnect infrastructure for homogeneous MP-
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SoC platform. First, intra-data dependencies are transformed into inter-data dependencies

in the DAG. Second, Heuristic Memory-Aware Task Scheduling (HMATS) is developed for

task scheduling . Since the scheduling heuristic algorithm focus only on traditional bus based

communication, therefore cannot be extended to NoC based multiprocessor systems.

Singh et al. [167] proposed a Contention-aware and Energy Efficient, Duplication based Mixed

Integer Programming (CEEDMIP) formulation for scheduling tasks on heterogeneous NoC-

MPSoC architecture. This approach duplicates some tasks on the processor to reduce the

inter-processor communication energy and avoid traffic congestion. The study fails to minimize

processing energy consumption. Furthermore, duplication of tasks adversely affects overall

systems energy savings.

3.1.3 Total Energy Savings

Wang et al. [168] deployed homogeneous MPSoC architecture for real-time streaming appli-

cations and integrated task level coarse-grained software pipelining with DPM and DVFS to

reduce the total energy consumption. A two-phase energy optimization algorithm is developed

where in the first phase DAG is transformed into independent task model using re-timing. In

the second phase GA based algorithm called GeneS is used to find a feasible schedule and

DVFS and DPM are used to reduce computation and inter-processor communication energy

consumption. Though, processing and communication energies are minimized but fails to con-

sider NoC based communication. Furthermore, in this study all processors are assumed to be

homogeneous.

Tariq et al. [35] used NoC based heterogeneous MPSoC and minimized the total energy con-

sumption of tasks having conditional precedence constraints. They proposed an Iterative Of-

fline Energy-aware Task and Communication Scheduling (IOETCS) Algorithm that collectively

performs scheduling and voltage scaling. They developed an NLP based algorithm assigning

each task and communication optimal voltage and frequency levels within a continuous voltage

and frequency range provided an initial schedule by Earliest Successor-Tree-Consistent Dead-

line First (ESTDF) algorithm. The optimal continuous voltage and frequency levels are then



48

mapped to valid discrete voltage and frequency levels using either an ILP or Heuristic based

algorithms. However, in their approach DPM with DVFS has not been integrated moreover, no

energy dissipation occurs has been assumed during the idle time slots which is not a practical

scenario.

Gosh et al. [169] presented a unified approach for task mapping problem on heterogeneous NoC-

MPSoC. The tasks are mapped such that links congestion does not occur and tasks are executed

on optimal speed levels using MILP. Huang et al. [32] used an extended ILP formulation for

optimizing both the communication and processing energy on heterogeneous NoC-MPSoC ar-

chitectures. Moreover, task scheduling is accelerated using Simulated Annealing with Timing

Adjustment (SA-TA) heuristic algorithm. The SA-TA algorithm basically optimises the energy

consumption by reaching near to the global optimum under even tight timing constraints. How-

ever, links voltage scaling and energy performance profiles of the processors are not considered.

Unlike the aforementioned studies we consider a NoC based heterogeneous MPSoC architecture

with distributed memory for real-time dependent tasks represented by a DAG. Moreover, we re-

duce both the computational and communication energy consumptions and efficiently integrate

DVFS and DPM within our developed CITM-VA meta-heuristic while explicitly considering

NoC links contention and energy performance profiles of the processor during task mapping.

3.2 Scheduling using VFI-NoC-MPSoC

Task mapping and scheduling on multiprocessor architectures is an NP-hard problem and dif-

ferent heuristics have been proposed based on mathematical formulation such as ILP, NLP, LP,

and MILP. Similarly, search based heuristic algorithms using selection, crossover, mutation,

and elitism are also widely deployed. The popular examples of these search based algorithms

are ACO, GA, and PSO. Among these algorithms, GA is widely adopted for task mapping

and scheduling [33,170]. These evolutionary algorithms belong to stochastic generate and test

algorithms which are based on (1) exploration of the search space and (2) exploitation of the

promising information already found. Exploration primarily describes the ability of an algo-
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rithm to discover the unseen regions while exploitation demonstrates the capability to proceed

in the desired direction for improvement. For example in GAs, mutation and crossover are

hypothetically considered to perform exploration and exploitation respectively [171,172]. How-

ever, there is strong criticism that crossover does not possess a competitive advantage over

mutation [172]. Nevertheless, these search based algorithms fail to efficiently exploit the avail-

able chunk of information i.e. schemata. Moreover, exploration and exploitation are the two

opposing forces and a well-found balance between them determines the success of a search based

algorithm. The task scheduling algorithms developed in literature using VFI-NoC-MPSoCs are

broadly categorized below.

3.2.1 Independent Task Scheduling

As a matter of fact multiprocessor systems are reliable and high-performance computing plat-

forms for edge devices and edge computing in WSN. Thus, several researchers have investigated

task mapping and scheduling. One of the earliest work in scheduling includes a scheme devel-

oped by Olafsson [173] in order to efficiently distribute the tasks i.e. workload on heterogeneous

multiprocessor system. Aydin et al. [174] provided energy-efficient scheduling algorithm for in-

dependent real-time on multiprocessors system and deployed Earliest Deadline First (EDF) for

task ordering. Other energy management studies used DVFS technique for energy optimization.

For example, Zhang et al. [134] presented a meta-heuristic scheduling algorithm called Shuf-

fled Frog Leaping Algorithm (SFLA) by integrating the gains of PSO and Memetic algorithms

while compared the energy-efficiency of SFLA with GA. Kumar and Vidyarth [135] integrated

task mapping and voltage assignment in a single optimization loop of GA. They used DVFS

technique to assign voltages to the tasks such that the dynamic energy consumption is reduced

with an acceptable performance trade-off. Wang et al. performed preemptive periodic indepen-

dent tasks scheduling using Discrete Event System (DES) supervisory control [175]. Liu and

Qi mapped the tasks using Weighted Earliest Finish Time (WEFT) algorithm and executed

the tasks with lowest possible earliest completion time [176]. These investigations reduced en-

ergy consumption of the independent tasks running on MPSoC architectures without explicitly
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considering the precedence constraints.

3.2.2 Single-processor Per VFI

Huang et al. [32] used an extended ILP formulation for energy optimization on heterogeneous

NoC based MPSoC systems and developed a heuristic called Simulated Annealing with Timing

Adjustment (SA-TA). SA-TA optimizes energy consumption by reaching near to the global

optimum under timing constraints. Gammoudi et al. scheduled real-time periodic tasks on

homogeneous NoC based MPSoC in order to meet deadline, energy and communication con-

straints using a heuristics manipulated by deterministic strategy [177]. Ali et al. performed

integrated task mapping, scheduling, and voltage assignment on NoC based heterogeneous

MPSoC (HMPSoC) systems using a heuristic called EIMSVS for reducing processing and com-

munication energies [178]. Ishak et al. investigated a non-preemptive scheduling for tasks with

precedence constraints and individual deadlines. They used NLP and ILP to assign optimal

voltages to the tasks and communications on NoC links [87]. A similar ILP based approach

is followed by Tariq et al. [35] using Iterative Offline Energy-aware Task and Communication

Scheduling (IOETCS) algorithm for total energy consumption reduction. Ali et al. developed

an energy-efficient task scheduling approach using Contention-aware Integrated Task Mapping

and Voltage Assignment (CITM-VA) meta-heuristic. CITM-VA integrated DVFS and DPM

to achieve maximum energy savings by reducing both static and dynamic power consumptions

while considering the contention at NoC links [33]. Ding et al. presented a Hybrid Heuristic

Genetic Algorithm with Adaptive Parameter (HGAAP) for task mapping on heterogeneous

multiprocessors [179]. However, these studies consider MPSoC systems for tasks with prece-

dence constraints but perform mapping and scheduling on single processor per VFI.

3.2.3 VFI based MPSoC

Ninomiya et al. [180] developed a task scheduling scheme for VFI based MPSoC architecture

using SA based algorithm for energy consumption reduction and generated a schedule for
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set of tasks under deadline constraints. Pagani et al. [181] presented a scheduling scheme

called Single Frequency Approximation (SFA) to map the tasks and assign optimal voltage and

frequency levels to each VFI. Liu and Guo [182] developed a Voltage Island Largest Capacity

First (VILCF) algorithm for mapping the tasks on active VFI first in order to fully utilize

it before activating other inactive VFIs. Shin et al. [183] studied communication-aware VFI

partitioning approach and developed a task mapping, voltage assignment algorithm for reducing

inter-VFI communications. These investigations in [180–183] deploy bus-based VFI-MPSoC

systems for independent tasks mapping and scheduling. Some other researchers considered NoC

based VFI-MPSoC systems for instance, Jang and Pan [184] performed energy-aware scheduling

for dependent tasks by reducing VFI’s power overheads. Digalwar et al. [185] presented a

scheduling algorithm in order to optimize the total energy consumption for periodic tasks with

hard deadline. Han et al. [95] developed a contention-aware static mapping and scheduling

scheme for a set of tasks with precedence constraints in order to minimize the make-span

and inter-VFI communications. They developed a contention and energy-aware task mapping

and edge scheduling (CATMES) heuristics to assign tasks to processors while scheduling the

edges on NoC. Two approaches CA-TMES-Quick and CA-TMES-Search were developed to

select the processor for a task where it can start earliest among all processor. CA-TMES-

Quick first performs task assignment and then determines routes for the communications that

are sent to this task. CA-TMES-Search calculates start time for each task while considering

communication contention. The processor offering earliest start time for a task is selected by

CA-TMES-Search. Specifically, CA-TMES-Search relatively performs better than CA-TMES-

Quick because it coordinates the task mapping in an exhaustive way therefore, make-span

significantly reduces.

Though these state-of-the-art studies [95,180,183–185] addressed the energy-efficiency on VFI

based NoC-MPSoC systems but none of them performed investigation on heterogeneous com-

puting platform while considering processor energy performance profiles for achieving higher

energy savings. Specifically, to the best of our knowledge none of the prior work focused

on contention-aware and energy-efficient task scheduling on VFI-NoC-HMPSoC using DVFS

technique for dependent tasks with precedence and deadline constraints.
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3.3 Sensor Nodes Clustering

One of the most popular and widely used sensor nodes clustering algorithm is Low-Energy

Adaptive Clustering Hierarchy (LEACH) [156]. LEACH is a probabilistic approach that ran-

domly selects CH in each round. Though, LEACH attains a significant energy consumption

reduction while prolonging network LT compared to Static Clustering and Minimum Trans-

mission Energy (MTE) algorithm however, some disadvantages are associated with it. For

example, LEACH can select a SN with least residual energy as a CH subsequently, which ad-

versely affects the network life. Numerous other clustering algorithms have been developed by

the researchers to improve the efficiency of LEACH. For instance Power-Efficient GAthering in

Sensor Information Systems (PEGASIS) [186] that is a chain based approach. PEGASIS orga-

nizes SNs into a chain while each SN communicates only with neighbour SNs. Each SN in the

chain takes turns in every round to transmit data to the BS. PEGASIS saves more energy when

compared to LEACH but it is not suitable for large sized networks due to its instability and

high delays. Loscri et al. [187] presented a two-level hierarchical approach called TL-LEACH.

TL-LEACH efficiently distributes the energy load among the SNs for large size networks. It

significantly enhances the network LT compared to LEACH but causes an extra overhead for

selecting secondary CHs. Xiangning et al. [188] improved LEACH by considering the residual

energy of the SNs during CH selection process and developed a protocol called Energy-LEACH

(E-LEACH). However, this protocols only minimizes the average distance between CHs and the

non-CH nodes while fails to consider the distance between the BS and CHs. Yassein et al. [189]

developed a Voice-LEACH (V-LEACH) protocol. V-LEACH also selects a voice-CH besides

a CH in the cluster. The voice-CH acts as a CH when there is no residual energy left in the

CH. Though, V-LEACH performs better than LEACH in terms of energy-efficiency however,

extra amount of energy is utilized for selecting the voice-CHs during clustering phase. Al-Baz

et al. [190] improved the performance of LEACH and developed an algorithm called Node

Ranked-LEACH (NR-LEACH). The NR-LEACH selects CH by considering cost and number

of links between the sensor nodes. This enhances the network LT and distributes the energy

load among the sensor nodes. However, this approach is not suitable for large scale networks.
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Other investigations integrated evolutionary algorithms with LEACH in order to improve its

performance. Some of these popular examples include, LEACH-C [191], LEACH-GA [192],

LEACH-C [193], and DE-LEACH [194].

In the analytical study presented by Zungeru et al. [195], it has been discussed that evolu-

tionary meta-heuristic algorithms based sensor nodes clustering provide a significant energy

savings. Since finding m-optimal clusters is NP-hard problem [196] therefore, in the last decade

numerous search based meta-heuristics have been proposed in the literature for efficient CHs

selection. Subsequently, researchers developed meta-heuristic based algorithms for efficiency

cluster formation in WSN to enhance the network LT. Centralized LEACH (LEACH-C) [193]

is among the earliest meta-heuristic based clustering approach where SA is used for solving

the clustering problem. In LEACH-C, initially all sensor nodes transmit their location and

energy information to the BS where SA is applied to determine the clusters. In terms of energy

savings LEACH-C outperforms LEACH [156]. Guru et al. [197] proposed a cluster formation

scheme using PSO using a fitness function that includes the sink distance and intra-cluster

distance. This approach fail to consider the residual energy of the SNs. Latiff et al. presented

an algorithm called PSO-C for energy-efficient clustering in WSN. PSO-C considers an average

intra-cluster distance and total initial energy of all SNs to the total current energy of all CHs.

However, PSO-C assigns non-CH nodes in the cluster formation to the nearest CH which can

potentially decrease the energy-efficiency of the network. Singh et al. [198] presented a PSO

based energy-efficient CH selection algorithm called PSO-Semi Distributed (PSO-SD) and used

a fitness function that considers residual energy, distance, and node density. The disadvantage

of PSO-SD fail to consider cluster formation phase which consequently can reduce the energy

efficiency of the network. Rao et al. developed energy-aware clustering approach using novel

Chemical Reaction Optimization (nCRO) heuristic. The nCRO significantly prolongs the net-

work LT but the main drawback is that the selected CHs directly communicating to the BS,

which is not desirable for large scale network [199]. Kuila and Jana [154] used a novel DE

algorithm for SNs clustering to enhance the network energy-savings. Though, this scheme effi-

ciently prolongs LT of the SNs but does not consider sink distance in the process of clustering

moreover, CHs are selected randomly. Kuila et al. [200] developed a load balancing algorithm
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using DE for better energy-savings. The demerit of this approach includes selecting the CHs

randomly while not considering energy and distance parameters. Gupta and Jana [152] pre-

sented a GA based clustering approach while considering the residual energy of the SNs and

the distance from their corresponding CHs. Zhang et al. [155] clustered the SNs using SA

and GA while CHs are selected on the basis of estimating the average energy of the cluster.

A CH is selected if a SN has higher residual energy than the average energy of the cluster.

Hoang et al. [201] developed Harmony search algorithm based clustering protocol (HSACP)

to decrease the intra-cluster distances between the cluster members and their CHs. However

energy-efficiency can decrease if the workload on CHs is not considered. Rao et al. [69] devel-

oped a PSO based energy-efficient CH selection (PSO-ECHS) algorithm to increase the SNs

LT. The fitness function in PSO-ECHS considers parameters including sink distance, intra-

cluster distance, and residual energy of the SNs. The clustering algorithms in [69,152,155,200]

increased the LT of the network but there are numerous number of parameters involved re-

quired to tune these heuristics for achieving a balance between exploitative and exploitative

search modes in order to attain higher energy-efficiency. Cisse et al. [202] developed an Energy

Aware Neighbor Oriented Clustering (EANOC) to select the CH on the basis of Received Signal

Strength Indicator (RSSI) value. However, sensor nodes consume energy due to propagating

RSSI in multi-directions which consequently affects the overall energy-efficient of the network.

There is abundant literature on energy savings for WSNs and various methods and/or al-

gorithms have been presented in the last few years but there is still much ongoing research

to optimize the energy consumption of the battery-limited wireless networks. Our proposed

CHs selection integrated with clustering technique using a novel meta-heuristic for enhancing

network LT possesses the following advantages over other existing approaches:

1. Unlike, these sensor nodes clustering algorithms in [151, 155, 156, 186, 188, 201], we use a

fitness function that considers the residual energy, distance parameters, and workload on

the selected CHs to prolong the overall LT of the network.

2. The state-of-the-art searching based algorithms in [69, 152, 155, 200] are complex and

require different parameters tuning to attain energy-efficient solution. Our novel meta-
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heuristic ARSH-FATI based Cluster Head Selection (ARSH-FATI-CHS) dynamically switches

between exploitative and exploitative modes at run-time for better and efficient perfor-

mance trade-off.

3. Heuristic based approaches such as [69,202] develop energy-aware sensor nodes clustering

using the signal strength values. However, it may affect the overall network LT. Thus, we

use sensor nodes positions in the clustering process.

4. Dissimilar to the sensor nodes clustering approaches in [186, 190], ARSH-FATI-CHS is

applicable to large-sized networks. Furthermore, ARSH-FATI-CHS does not produce any

power overhead like the clustering approach presented in [187].

In order to compare the the performance of ARSH-FATI-CHS, we select three well known

clustering algorithms such as LEACH [156]. The reason behind selecting LEACH is that it is

one of the classical clustering approach while PSO-C [151] and PSO-ECHS [69] are selected

because these algorithms are the latest meta-heuristics for the same network scenario as we

proposed in this chapter.

Briefly we investigate an efficient and energy-aware sensor nodes clustering approach applicable

to any-sized network based on ARSH-FATI-CHS meta-heuristic which is a population based

algorithm. The ARSH-FATI-CHS is guided by A heuristic called Novel Ranked Based Cluster-

ing (NRC) to enhance the overall network LT. Our developed fitness function considers residual

energy, different distance parameters, and workload on the CHs during cluster formation.

3.4 Summary

We examined energy-aware scheduling and energy-efficient approaches and/or algorithms used

at SN level, particularly targeting MPSoC architectures. We identified challenges to the existing

energy-aware approaches/algorithms. For example (1) inefficiency to address the problem of

communication contention at the NoC links for heterogeneous MPSoC systems, (2) deficiency

to schedule task on processors while considering processors energy performance profiles, (3)
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inadequacy to establish an optimal balance between DPM and DVFS during task scheduling,

(4) ineffective search based algorithms that can dynamically switch between explorative and

exploitative modes at run time. Similarly we examined energy-efficient clustering algorithms

in the literature at network level and identified the research gaps such as (1) inefficiency of the

population based algorithms that require a lot of parameters tuning for achieving higher energy

savings, (2) deficiency of the fitness function considering residual energy, distance parameters,

and workload on the CHs.



Chapter 4

Research Methodology

In this chapter we first present the relevant application model and its extended format, multi-

processor architectures, network and energy models (both for node and cluster levels) deployed

for simulation to produce quantitative results. Then we present our research method adopted

for scheduling and clustering. Finally, we also explain how the data is collected from different

simulation scenarios and discuss how this generated data is analyzed using certain metrics.

4.1 Preliminaries

Before starting to explain our two step research approach that is (1) scheduling and (2) cluster-

ing for reducing the total energy consumption, we explain an extended graph, multiprocessor

computing platforms, and energy models that are used in the simulations.

4.1.1 Extended Graph

In an application demonstrated in Figure 4.1, there are two kinds of events communications and

tasks. In order to schedule communications using traditional DAG based scheduling approaches

we transform a DAG i.e. G into an extended graph Ge shown in Figure 4.2. Given a task to

processor mapping an extended graph Ge is constructed by inserting an additional node vs to

57
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Figure 4.1: Directed acyclic graph

graph G for each edge (vi, vj) whose tail node vi and head node vj are mapped on different

processors. The edge (vi, vj) in extended graph is replaced by two edges (vi, vs) and (vs, vj). The

additional inserted nodes are called communication nodes. The extended graph is represented

by G(V + V ∗, E), where V is a set of the task nodes, V ∗ is a set of the communication nodes,

and E is a set of the edges.
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4.1.2 Multiprocessor Computing Platforms

In this research two different architecture of the multiprocessor systems are used. Each archi-

tecture and its energy model is explained as follows:
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4.1.2.1 Non-VFI based NoC-MPSoC

We consider a NoC-MPSoC consisting k number of heterogeneous tiles as demonstrated in

Figure 4.3(a). Each tile is comprised of local memory, processor (pe) and a network interface.

Therefore, MPSoC contains a set P = {pe1, pe2, . . . , pek} of k DVFS-enabled processors. The

links that provide connection between the router (represented by R) and tile are termed as Local

Links while Global Links interconnecting the routers with each other for communications. Each

processor pei ∈ P can operate at {(Vdd1 , f1), (Vdd2 , f2), . . . , (Vddn , fn)} set of n discrete voltage

and frequency levels. Moreover, each processor supports DPM and can be switched into different

power modes.

1. Communication Interconnect Model: A 2D-mesh topology NoC architecture is as-

sumed for inter-processor communication. It consists Nx rows and Ny columns of the

routers therefore, k number of routers are equal to Nx × Ny. Each router is comprised

of five ports to communicate with neighbor routers and a processor as shown in Figure

4.3(b). Each port has a link and buffer. All links are identical and full duplex with band

width, bw. Similar to the processors the links in NoC can operate at n set of discrete

voltage/frequency levels i.e. {(Vdd1 , f1), (Vdd2 , f2), . . . , (Vddn , fn)}.

We assume a simple and energy-efficient Wormhole (WH) packet switching technique for

NoC communication. WH splits the data packet into small pieces called flits and they

are delivered in a pipelined fashion in the network. Furthermore, we assume widely used

deterministic XY routing scheme. The distance between two processors pei and pej in

2D-mesh is given by the Manhattan distance η(i,j) = |xi− xj|+|yi− yj|, where (xi, yi) are

the coordinates of processor pei and (xj, yj) are the coordinates of processor pej in the

mesh.

2. Energy Model: We consider the energy consumption due to processors, routers, and

network links in our energy model. The dynamic power Pdi dissipated in executing a task

vi on a pej is given by the following equation [161,203]:

Pdi = CeffiV
2
ddj
fj (4.1)
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where, Vddj , fj, and Ceffi denote supply voltage, operating frequency, and effective load

switching capacitance respectively. This mathematical relation shows that decrease in

dynamic power occurs when the supplied voltage is reduced thus, Equation 4.1 serves as

the baseline for DVFS.

The total power (PTi) dissipated in executing a task on pej is the sum of dynamic power,

static power and inherent power, Pon required to keep the processor on i.e. idle power

when no task is running on the processor. At Vddj and fj, the PTi is calculated as

follows [161]:

PTi = Pdi + Lg(VddjK3e
K4Vddj eK5Vbs + |Vbs|Ijn) + Pon (4.2)

where K3, K4 and K5 are technology dependent constants, Lg is the number of logic

gates in the circuit and Ij and Vbs are junction leakage current and body-bias voltage,

respectively.

As E = P × t, where t shows time so, the energy Ei consumed in executing a task vi on

pj is given as follows [35,130]:

Ei = CeffV
2
ddi
NCCi + Lg(VddK3e

K4VddeK5Vbs + |Vbs|Ij)ti (4.3)

where ti is the execution time of vi and is given by ti =
NCC(i,j)

fj
. The operating frequency,

f and supply voltage, Vdd are related by the following equation [203]:

f = (Vdd + Vth)
α/K6LdVdd (4.4)
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where Vth is the threshold voltage, K6 is the process dependent constant, Ld is the logic

depth of the processor critical path and α reflects velocity saturation ( 1.4 ≤ α ≤ 2). So,

according to Equation 4.4 energy consumption rely on the voltage and frequency level

assigned to the tasks.

The energy consumed by the processor when it is idle in an active mode is given as follows:

Eidle = Pa × tidle (4.5)

where Pa is the power consumed by the processor in active mode and tidle is the time

period for which the processor is idle. Similarly, the energy consumed by a processor in

the sleep mode is calculated by:

Esleep = Psleep × tsleep (4.6)

where Psleep is the power dissipated by the processor in sleep mode and tsleep is the

duration for which processor stays in sleep mode. Since Pa > Psleep, energy efficiency can

be achieved by switching the processor into a sleep mode. However, there are switching

costs associated in transitioning the processor between active and sleep modes. The

processor break even time, tBET represents the shortest duration of idle time interval

that justifies processor’s transition from active mode to sleep mode. Thus, if this interval

is shorter than tBET the mode switch overheads are larger than the energy saving and

therefore, transition to low power mode should be avoided. The definition of tBET is given

as follows:

tBET = max

{
tsw,

Esw
Pa − Psleep

}
(4.7)

where tsw and Esw are total switching time interval and total switching energy overhead

respectively.

Under the fixed operational frequency fl of the links the time taken to transmit the

message (χi,j) of a communication is in general dominated by the serialization delay. The

execution time ticom of transmitting a message for communication ei = (vs, vd) is given as
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follows [35]:

ticom =
χ(i,j)

fl × bw
(4.8)

Let the parent node vs of ei be mapped on pei and its child node vd be mapped on pej.

Then the hop count between pei and pej is η(i,j). The energy consumed in transmitting

one bit of a message ei is Ebit = ERbit(η(i,j) + 1) + η(i,j)Elbit, where ERbit is the energy

consumed by a router in transmitting one bit and Elbit is the energy consumed by links

in transmitting a bit. The energy Eci consumed in transmitting χ(i,j) volume of data is

calculated as follows [35,204]:

Eci = χ(i,j)ERbit(η(s,d) + 1) + χ(i,j)Elbitη(s,d) (4.9)

Elbit =
Pi

fj × bw
(4.10)

where Pi shows the total power consumption for one bit on the links that ei traverses at

fj. Thus, Pi is the sum of the static power (Ps) and dynamic power (Pd) i.e. Pi = Pdi+Psi

[203].

Inserting Equation 4.10 in Equation 4.9 yields the following equation:

Eci = χ(i,j)((η(s,d) + 1)ERbit + η(s,d)
Pi

fj × bw
) (4.11)

Equation 4.11 indicates that inter-processor communication energy can be reduced by

assigning optimal discrete frequency or voltage levels (as voltage and frequency are inter-

changeable according to Equation 4.4) to mesh topology NoC links for transmitting the

data.

4.1.2.2 VFI based NoC-MPSoC

Second, we consider a VFI based NoC-MPSoC architecture with M processors, P =

(pe1, pe2, pe3, . . . peM) demonstrated in Figure 4.4. Each tile consists of a processor, local
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memory, and network interface card. Processors of the target architecture are partitioned

into a set C = {c1, c2, c3, . . . cm} of m heterogeneous VFIs. Where each VFI, ci ∈ C

consists a set of k homogeneous processors. We assume processors within an island (VFI)

are of same type. Processors across different VFIs may be of different types i.e. inter-

VFI processors may be heterogeneous. Each VFI can operate independently at a set

{(Vdd1 , f1), (Vdd2 , f2), (Vdd3 , f3), . . . , (Vddn , fn)} of n discrete voltage and frequency levels

while a common supply voltage is shared by intra-VFI processors and routers.
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Figure 4.4: VFI based heterogeneous NoC-MPSoC architecture

1. Communication Model: We assume a 2D-mesh topology NoC as a communica-

tion interconnect for our VFI-NoC-HMPSoC shown in Figure 4.5. Each tile of the

computing system is associated with a router to communicate with other processors.

In NoC buffers are used in routers to host the incoming flits when immediate trans-

fer to next processor and/or Intellectual property (IP) is not possible because of the

congestion. NoC mesh consists of NR rows and NC columns therefore, number of

processors in VFI-NoC-HMPSoC is equal to NR × NC . Each router has five ports,

four ports are used to communicate with the neighbor routers and one is dedicated

for the purpose of communicating with the processor. A link is used to connect two

routers and/or a router with a processor. We consider that all links are identical,

full duplex, and have the same bandwidth, bw.

2. Switching and Routing Techniques: VCT and WH are the two most popular
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packet switching techniques for NoC interconnects. In WH each packet is split

into small pieces known as flits. When in the network a packet traverses the WH

immediately determines its next hop, forwards it and then the subsequent flits worm

their way through the network. In VCT routing the buffer size is large and the entire

packet is sent to the next node. Thus, VCT has lower latency, higher link utilization,

and lesser packet blocking probability. Though WH switching is simple and possesses

higher efficiency of flow control over VCT in case of congestion occurrence, the

stalling packet can block all the links and produces a low link utilization. Therefore,

we consider VCT packet switching technique in this chapter. Routing technique in

a network decides the path of a packet from source to the destination router. We

use a well known XY deterministic routing on NoC which is most suitable option

for 2D-mesh topology networks. Moreover, XY routing is a simple but yet effective

approach. In XY routing the packets at the routers are routed in X-direction first

and later on in the Y-direction.

3. Energy Model: We adopt the energy model described by Ogras et al. [205]. The

total energy consumption due to an application running on multiprocessor systems

is the sum of processing, Ep and communication energy consumptions Ec. The

parameter Ep is the energy consumed in the execution of tasks on the processor,

whereas inter-processor communication energy is consumed in transmission of com-

munications on the network that includes routers, links, and buffers. Ep and Ec are

discussed in detail in [205].
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The total energy E consumed by an application is given given as follows:

E = Ep + Ec (4.12)

Concisely, we consider a heterogeneous VFI-NoC-HMPSoC architecture with VCT

switching, XY routing, and energy consumptions that occur due to processors and

inter-processor communications.

4.1.3 Wireless Sensor Network

Offline/static SNs clustering is performed considering the following energy and network

scenarios:

1. Energy Model: We adopt the energy model used in [69, 151, 156, 206]. In this

energy model the total energy consumption (E) is due to the energy dissipated

by transmitter denoted by ETX(l, d) and receiver represented by ERX(l) given as

follows.

etotal(l, d) = ETX(l, d) + ERX(l) (4.13)

where ETX(l, d) occurs to run the power amplifier and radio electronics. Similarly,

ERX(l) is the energy consumption due to running the radio electronics. For each

sensor node in the network, the transmitter energy for transmitting a data of l bit

is given as follows:

ETX(l, d) =


l × Eelec + l × efs × d2 d ≤ do

l × Eelec + l × emp × d4 d ≥ do

(4.14)

where Eelec shows the energy consumed per bit for running the transmitter or receiver

circuit, efs and emp represent the amplification energy for free space model and multi-

path model while do denotes the threshold transmission distance and generally its

value is do =
√

efs
emp

. The transmitter energy consumption is dependent on the
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distance parameter d and the amount of data to be sent. If the data transmission

distance is within the threshold range then transmittance energy is proportional to

d2 otherwise this relationship increases to d4. Thus distance and workload play a

significant role in the sensor nodes clustering for network LT improvement.

Now the energy dissipation of the receiver to receive l bit of data is estimated as

follows:

ERX(l) = l × Eelec (4.15)

where Eelec is dependent on factors such as modulation, filtering, digital coding, and

signal spreading.

2. Network Model: We consider a WSN that has n number of sensor nodes and a

BS. We adopt the wireless network model presented in [69, 199, 207, 208] and this

scenario of the WSN possesses the following properties.

i. The sensor nodes are randomly distributed in 2D sensing field that is xy plane

such that there are no more than one sensor node existing on a single point.

ii. All the sensor nodes are homogeneous and possess similar processing and com-

munication capabilities while consume same amount of energy for processing

and communicating a data of l bit.

iii. After deploying the sensor nodes they are considered to be stationary with re-

spect to the BS while each sensor node in the sensing field has the capability

and equal probability to operate as a non-CH (normal node) or CH.

iv. Each sensor node has always a data ready to be sent to its CH. The number of

sensor nodes in the sensing field is always higher than the number of CHs.

v. In the clustered based WSN architecture, we assume that each CH aggregates

the collected data and transmits this aggregated data to the base station.

vi. The sensor nodes can use various transmission power levels depending upon the

distance to which the collected data to be sent.
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4.2 Research Method

The total energy consumption of a wireless network is due to sensing, processing and

communication energy dissipation given as follows:

Enetwork = Esensing + Eprocessing + Ecommunication (4.16)

The sensing energy consumption can be reduced at the fabrication level which is out

of the scope of this thesis. However processing energy dissipation can be minimized by

proper task scheduling at the node level. Similarly transmission energy consumption

can be significantly reduced by nodes clustering at the network level. Clustering may be

formulated as a scheduling problem and population based algorithms/heuristics developed

for scheduling can be extended to perform nodes clustering.

In this thesis we first, perform task scheduling to reduce the processing energy consump-

tion at the node level considering NoC-MPSoC and VFI-NoC-MPSoC heterogeneous com-

puting architectures. Second, we implement clustering at the network level to minimize

the transmission energy consumption. Thus these two steps significantly reduce the over-

all network energy consumption while prolongs the LT of the network. The methodology

of the task scheduling and nodes clustering is explained as follows:

4.2.1 Scheduling

A real-time application in IoT with precedence and deadline constraints represented by DAG

is scheduled on multiprocessor system considering two different architecture i.e. NoC-MPSoC

and VFI-NoC-MPSoC heterogeneous computing systems. The energy-efficiency of scheduling

is dependent on task mapping, task ordering, and voltage scaling. Therefore, all these pa-

rameters are considered during scheduling to achieve maximum energy savings. Unlike other

scheduling we perform task mapping, task ordering, and voltage assignment in an integrated

manner to minimize the processing energy while explicitly reducing contention between the

communications and inter-processor communication energy. Different novel meta-heuristics are
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developed to perform task scheduling on the MPSoCs. The important steps involved in our

task scheduling on MPSoCs are explained as follows:

4.2.1.1 Task Mapping

Heterogeneous MPSoCs consist of processors that have different energy-performance profiles

and may operate at different voltage and frequency levels. Thus tasks are mapped on the

processors of the MPSoCs by considering the energy performance profiles of the processors

such that the individual deadline of each task is not violated. Moreover, dependent tasks are

either mapped on the same processor or close to each other in order to reduce the inter-processor

communication energy consumption.

4.2.1.2 Task Ordering

During task scheduling as deadline and precedence constraints of the tasks must be observed.

Thus, the order in which tasks and communications execute may significantly impact the overall

energy consumption. Therefore we save considerable amount of energy by prioritizing tasks and

communications with shorter deadlines over tasks and communications with longer deadlines,

because the slack available for tasks can be efficiently utilized by DVFS technique to assign low

voltages and frequencies to them.

4.2.1.3 Voltage Scaling

We assign near optimal voltage to tasks on the processors in order to efficiently avail the

processor slack and reduce the overall processing energy consumption. Similarly, we minimize

the communication energy by assigning discrete voltage levels to the NoC links. Further, total

energy efficiency is achieved by putting the processor into a low-power state when feasible.

Moreover, we resolve the contention between communications that traverse the same link by

allocating links to communications with higher priority.



69

4.2.2 Clustering

We reduce the transmission energy consumption by performing clustering applicable to any-

sized network based using a meta-heuristic which is a population based algorithm. The steps

involved in clustering are explained as follows:

1. The suitable positions for a particular set of CHs are determined using our proposed

population based algorithms. Our clustering algorithm considers residual energy, different

distance parameters, and workload on the CHs during cluster formation.

2. In the this step each SN that has not chosen its CH tentatively selects one by one each

CH and calculates the rank ( Rank describes the LT of the network, explained in details

in Chapter 7).

3. The SNs join a particular CH based on the value of the ranking.

Concisely, we formulate Nodes clustering in itself as a scheduling problem and reduce the overall

transmission energy consumption of the network.

4.3 Experimental Setup and Data Collection

In this section we briefly explain our experimental setup and discuss how quantitative data is

produced. Moreover, we also discuss how heterogeneous computing platform is generated then

we describe the tools and resources used for data generation.

4.3.1 Experimental Setup

The experimental setup used in the simulations for both node and network levels is explained

as follows:
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Table 4.1: Operating frequency and power consumption of type 1 and type 2 processors

Type 1 (Cortex A15)

Frequency (GHz) 2.0 1.8 1.6 1.4 1.2 1.0 0.8
Power (mW) 2500 1750 1350 1000 850 650 400

Type 2 (Cortex A7)

Frequency (GHz) 1.4 1.2 1 0.8 0.6 0.4 0.2
Power (mW) 82.0 76.0 74.0 72.0 68.0 66.0 64.0

Table 4.2: Processors power consumption modes

Type 1 Type 2

Parameters Value Parameters Value

Pa 276 mW Pa 555 mW
Psleep 80.0 µ W Psleep 180 µW
Psw 385 µ W Psw 483 µ w

4.3.1.1 Node Level Experimental Setup

We use Samsung Exynos 5422 chip power and energy model for our simulations adopted from

[209] moreover, we use two types of processors i.e. type 1: high-performance Cortex A15 (big)

and type 2: low-power Cortex A7 (little). The Cortex A7 consumes ∼ 6− 12 times less power

compared to Cortex A15 [210]. The operating frequencies and relative power consumption of

both types are given in Table 4.1. The power and energy consumption for different power modes

of these processors are listed in Table 4.2. Moreover, we adopt 70 nanometers (nm) processor

technology parameters from Ali et al. [33] already listed in Table 2.5.

We build the simulation environment in Matlab version R2016a moreover, we conduct the ex-

periments using hardware platform of Intel (R) Xeon (R), i5-3570 CPU with the clock frequency

of 3.50 GHz and 16.00 GB memory, 10 MB cache. We use different real benchmarks in our

experimental analysis for task scheduling. The real benchmarks are adopted from Embedded

System Synthesis Benchmarks Suite (E3S) which is a widely used benchmark suit in the task

mapping and scheduling research. The benchmarks are selected with different complexities i.e.

different number of tasks while covering various applications in IoT.



71

4.3.1.2 Network Level Experimental Setup

We build the simulation environment in Python version 3.7.3 moreover, we conduct the experi-

ments using hardware platform of Intel (R) Xeon (R), i5-3570 CPU with the clock frequency of

3.50 GHz and 16.00 GB memory, 10 MB cache. We perform the simulation for different number

of sensor nodes various percentage of CHs at different locations of BS in the sensing field of area

200×200 m2. The sensor nodes change within a range of 100 to 400 and the number of selected

CHs vary from 15% to 30% while BS is positioned at (50, 50), (100, 100), (150, 150). We assume

that each sensor node carries equal initial residual energy of 2.0 J. Other constant parameters

used in this chapter for simulations are enlisted in Table 4.3 adopted from [69,151,156].

Table 4.3: Various parameters used in simulation

Parameter Value

Area of the Network 200× 200 m2

Base Station Location (50, 50), (100, 100), (150, 150)
Number of Sensor Nodes 100 to 400
Initial Sensor Node Energy 2.0 J
Eelec 50 nJ/bit
efs 10 pJ/bit/m2

emp 0.0013 pJ/bit/m4

dmax 100 m
do 30 m
Packet size 4000 bits
Percentage of CHs 10% to 30%

4.3.2 Data Collection

We generate energy consumption values (represented in joule) for different real benchmarks at

the node level. We generate results for different scenarios considering different metrics such as

number of processors, deadline, homogeneous MPSoC platform, heterogeneous multiprocessing

computing system etc. It is worth noticing that we randomly select the type of processor for

generating heterogeneous computing platform in order to ensure unbiased experimentation.

We compare the the results of our scheduling algorithms with state-of-the-art Energy-efficient

Contention-aware Mapping (ECM) for NoC-MPSoC architecture developed by Li and Wu



72

in [204]. ECM is a two-step scheduling heuristic. First, ECM formulated the application

mapping problem as a quadratic binary programming problem to minimize the overall inter-

processor communication energy consumption by deploying a relaxation-based iterative round-

ing algorithm. Once task mapping is performed then ECM determines the optimal voltage level

for each task and optimal frequency level for each communication in the application in order

to minimize the overall system energy consumption considering the application deadline.

Similarly, we use CA-TMES-Quick [95] and CA-TMES-Search [95] energy management algo-

rithms as baseline to determine the performance of our static task scheduling developed for

VFI-NoC-MPSoCs. CA-TMES-Quick and CA-TMES-Search select the processor for a task

where it can start earliest among all processor. CA-TMES-Quick first performs task assign-

ment and then determines routes for the communications that are sent to this task. CA-TMES-

Search calculates start time for each task while considering communication contention. The

processor offering earliest start time for a task is selected by CA-TMES-Search. Specifically,

CA-TMES-Search relatively performs better than CA-TMES-Quick because it coordinates the

task mapping in an exhaustive way therefore, make-span significantly reduces.

At the network level we consider different scenarios for our simulations to generate various

results. The parameter such as number of SNs is changed in the sensing field/target area and

results are produced. We also empirically observe impact of BS location and number of CHs

in the results.

We compare the results of our proposed clustering algorithm with a PSO based state-of-the-art

technique as a baseline developed by Rao et al. [69]. In their energy-aware clustering approach

they consider parameters such as intra-cluster distance, residual energy of the sensor node, and

sink distance in the fitness function. The network LT is increased by developing a PSO based

energy-efficient CH selection (PSO-ECHS). The PSO-ECHS determines the optimal positions

of a pre-determined numbers of CHs for a set of sensor nodes distributed over a specific area

of the sensing fields. The non-CH sensor nodes in the field join their elected CHs based on a

derived weight function. We also compare the performance of our algorithm with the widely

used LEACH [156] and PSO-C [151]. As a performance metric we consider LT to compare
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our clustering algorithm with other existing approaches. LT is the measure of the number of

rounds when the first sensor nodes dissipates all of its energy.

4.4 Summary

In this chapter we presented the relevant application model and explained its extended for-

mat. Then we explained our multiprocessor architectures, network, and energy models used

in our simulations for generating quantitative data to compare the energy performance. We

also explained our research approach for scheduling and clustering to decrease the processing

and transmission energy consumption both at the node and network levels. Furthermore, we

explained that different simulation scenarios have been used to generate and analyze that data

using metrics while comparing it with state-of-the-art heuristics.



Chapter 5

Energy-aware Static Task scheduling

on Heterogeneous NoC-MPSoCs

In this chapter, we investigate contention-aware and energy-efficient static scheduling using

heterogeneous NoC-MPSoC for real-time tasks with an individual deadline and precedence con-

straints. Unlike other schedulers task ordering, mapping, and voltage assignment are performed

in an integrated manner to minimize the processing energy while explicitly reduce contention

between the communications and communication energy. Furthermore, both dynamic voltage

and frequency scaling and dynamic power management are used for energy consumption opti-

mization. The developed Contention-aware Integrated Task Mapping and Voltage Assignment

(CITM-VA) static scheduler performs tasks ordering using Earliest Latest Finish Time First

(ELFTF) strategy that assigns priorities to the tasks having shorter Latest Finish Time (LFT)

over the tasks with longer LFT. It remaps every task to a processor and/or discrete voltage level

that reduces processing energy consumption. Similarly, the communication energy is minimized

by assigning discrete voltage levels to the NoC links. Further, total energy efficiency is achieved

by putting the processor into a low-power state when feasible. Moreover, this algorithm re-

solves the contention between communications that traverse the same link by allocating links

to communications with higher priority. The results obtained through extensive simulations

of real benchmarks demonstrate that CITM-VA outperforms state-of-the-art scheduling algo-

74
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rithms and achieves an average ∼ 30% total energy improvement. Additionally, it maintains

high Quality-of-Service (QoS) and robustness for real-time applications.

In this offline task scheduling investigation, NoC based heterogeneous MPSoC architecture with

DVFS-enabled processors is considered while contention and energy-aware static scheduling for

real-time DAG tasks with individual deadlines and precedence constraints is performed. Our

major contributions include as follows:

1. Task mapping, task ordering, and voltage scaling are performed in an integrated man-

ner. Unlike other approaches which map the tasks first and then assign voltage levels

separately. Our proposed Contention-aware Integrated Task Mapping and Voltage As-

signment (CITM-VA) algorithm guides the tasks and communications mapping to a more

energy efficient solution. Moreover, both DVFS and DPM are integrated to reduce the

total energy consumption.

2. The proposed CITM-VA static scheduling algorithm saves communication energy by min-

imizing the communication over the NoC. It further reduces the communication energy

by scaling the voltage levels of the NoC links and assigns communications voltage level

such that communication energy is minimized. Hence the available slack is efficiently

shared between the communications and tasks. Furthermore, contentions among concur-

rent tasks and communications are resolved by prioritizing the execution of high priority

tasks and communications over low priority ones.

3. Our experimental results are generated from simulations conducted on five real-world

benchmarks adopted from Embedded Systems Synthesis Benchmarks (E3S) [211]. The re-

sults are compared to state-of-the-art Energy-efficient Contention-aware Mapping (ECM)

static scheduler developed by Li and Wu in [204]. The proposed CITM-VA meta-heuristic

outperforms ECM in terms of energy savings and QoS. Compared to ECM, CITM-VA

reduces the average total energy consumption by ∼ 30%.

The rest of the chapter is organized as follows: Section 5.1 presents our proposed static con-

tention and energy-aware scheme. The results examined in Section 5.2, and Section 5.3 con-
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cludes this chapter.

5.1 Contention and Energy-aware Approach

In this section we discuss our proposed contention-aware energy-efficient task scheduling for a

set of tasks with precedence and deadline constraints represented by DAG. The heterogeneous

MPSoC architecture presented in Section 4.1.2.1 is adopted.

Heterogeneous-MPSoCs consist of processors that have different power-performance profiles

and may operate at different voltage and frequency levels. Moreover, deadline and precedence

constraints of the tasks must be observed. Thus, the order in which tasks and communications

execute may significantly impact the overall energy consumption. Considerable amount of

energy may be saved by prioritizing tasks and communications with shorter deadlines over

tasks and communications with longer deadlines, because the slack available for tasks can be

efficiently utilized by DVFS algorithm to assign low voltages and frequencies to them. Hence,

the quality of solution obtained by energy efficient scheduling of tasks with precedence and

individual deadline constraints on heterogeneous NoC-MPSoC is influenced by three factors:

task mapping, ordering, and voltage assignment. Furthermore, DPM also plays a vital role when

processor in idle mode because it increases the energy-efficiency by switching the processors into

a low-power mode. The state-of-the-art approach presented in [204] performs task orderings

and voltage scaling in an integrated manner and performs task mapping separately. However,

we believe that task and communication ordering and voltage scaling can be helpful in steering

the task mapping optimization process towards a more energy efficient solution. This is one

of the major factors that we consider in design of our CITM-VA algorithm. The CITM-VA

algorithm considers mapping, scheduling, and voltage scaling in an integrated manner while

also deploys DPM for achieving maximum energy savings.

Table 5.1 defines some terms and notations used by our algorithms. The details of CITM-VA

are given in Algorithm 1. There are four steps in the implementation of our energy optimization

CITM-VA algorithm outlined as follows:
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Table 5.1: Terms and notations

Term/ Notation Definition
κ Total number of mapping solutions to the problem.

Π
A matrix of κ mapping. Each row represents
processor to which task vi is mapped, 1 ≤ i ≤ |V |.

Ψ
A matrix of κ voltage assignments. Each row
represents the voltage level of task or communication
node vi, 1 ≤ i ≤ |V ||E|.

Π[η][i] Processor where task vi is mapped for η mapping.

Ψ[η][i]
Voltage level assigned to task vi for η voltage
assignment.

rand() Returns a uniform random number in interval (0, 1).
Ω Maximum number of iterations (Pre-defined).

Stagnation
No improvement achieved in energy reduction for a
predefined number of iterations

Solution
A row from Π and the same row from Ψ is together
is a solution.

G′e A copy of the extended graph Ge

cSet(vi) Set of concurrent nodes to vi
ISuc(vi) Set of immediate successors of vi.

PRI It shows priority of the tasks

NULL Processor is idle

Step 1 Initial Solutions: We first generate two matrices Π and Ψ of dimensions κ× |V | and

κ× |V ||E| where κ is an input parameter of CITM − V A algorithm. Each row of matrix Π is

generated by randomly mapping a task node vi to a random processor, 1 ≤ i ≤ |V | (Line 5).

Similarly a row of matrix Ψ is generated by assigning maximum processor voltage where a task

vi is mapped, in case if vi is a task node and maximum link voltage if vi is a communication

node 1 ≤ i ≤ |V ||E| (Lines 6-7). Each row of matrix Π and Ψ together forms a solution. For

each solution we next compute its fitness value by constructing a schedule using Earliest Latest

Finish Time First ELFTF algorithm (Lines 8-11). The ELFTF algorithm returns the energy

and feasibility of each solution. Given the feasibility and energy of a solution, its fitness value

is computed as follows:

Fitness(feasible, e) =


1
e

if feasible is true

−∞ otherwise

(5.1)
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Step 2 Initial Solutions Refinement: In each iteration of the while loop (Lines 12-40) we

sort the solutions in non-increasing order of fitness value and delete b1
3
κc solutions with smaller

fitness value. We then randomly select b1
3
κc solutions from the remaining solutions to generate

b1
3
κc new solutions (Lines 32-40). We generate a new solution from an existing solutions by

re-mapping a task node to a processor and/or voltage level or a communication to a voltage

level such that total energy is minimized and deadlines are satisfied by using ReMap algorithm

(Line 38). If such a task or communication node is found then the solution is updated to

from new solution otherwise the original solution is the new solution (Lines 2-40 Algorithm

ReMap). We calculate the fitness value of each solution and the new solutions are merged with

the existing solutions to form the κ solutions for the next iteration.

Step 3 Stagnation Control: Notice that CITM − V A algorithm follows an elitist approach

as the best solution in each iteration is always kept. Like all elitist approaches our CITM−V A

is also prone to stagnation. We assume that CITM − V A has converged to a stagnation state

if no improvement in energy reduction is observed for a predefined number of iterations. The

CITM − V A algorithm is checked against stagnation. If stagnation state is detected then we

use the following stagnation control technique to climb out of the local optimum (Lines 20-31).

We first delete b1
2
κc solutions with smaller fitness value (Line 22). From the remaining solution

we generate b1
2
κc new solutions. We generate each new solution from an existing solution by

selecting φ% of tasks and randomly remap them to other processors at maximum voltage levels

(Lines 25-28). The fitness value of each newly generated solution is computed and the newly

created solutions are merged with the existing solution to form κ solutions for next generation

(Lines 29-31).

Step 4 Termination: CITM−V A algorithm terminates when a predefined maximum number

of iterations Ω have been reached. Before it terminates we check if the solutions with the

maximum fitness is feasible. If it is feasible then it is the solution to the given problem otherwise

CITM − V A cannot find a solution (Lines 15-20).

Algorithm 2 illustrates the Earliest Latest Finish Time First (ELFTF ) algorithm that we utilize

to construct a schedule given task and voltage mapping. For each task and communication node
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Algorithm 1: CITM-VA
input : A DAG G, tasks Deadlines, an MPSoC, total number of iterations Ω and total

number of initial solutions κ
output: Task to processor mapping map and voltage levels vol corresponding to tasks and

communications.
1 Construct two matrices Π and Ψ of zeros having dimensions κ× |V | and κ× |V ||E|

respectively;
2 for η ← 1 to κ do
3 for all vi ∈ V do
4 Π[η][i]← drand()(|P |−1) + 1e;
5 Ψ[η][i]← Maximum Voltage Level;

6 for all ei ∈ E do
7 Ψ[η][i]← Maximum Link Voltage;

8 for η ← 1 to κ do
9 Construct an extended graph Ge given a mapping ;

10 [f, e]← ELFTF (Ge,Π,Ψ, η);
11 Compute the fitness(f, e) value of the solution according to equation (5.2) ;

12 while 1 do
13 Sort solutions in descending order of their fitness values;
14 if stopping criteria satisfied then
15 if the solution with highest fitness feasible then
16 Copy first row of Π to map and Ψ to vol;

17 else
18 No feasible solution found;

19 break;

20 if stagnation detected then
21 Sort solutions in descending order of their fitness values;
22 Delete b1

2κc solutions with smaller fitness value;
23 Construct two matrices Π′ and Ψ′ of zeros having dimensions

⌊
1
2κ
⌋
× |V | and⌊

1
2κ
⌋
× |V ||E|;

24 for j ← 1 to
⌊

1
2κ
⌋
do

25 φ← rand();

26 Copy jth row of Π and Ψ to jth row of Π′ and Ψ′ respectively;

27 Randomly re-map bφ|V |c tasks in jth row of Π′ to other processors at maximum
voltage level;

28 Construct the extended graph Ge for mapping given by jth row of Π′;
29 [f, e]← ELFTF (Ge,Π

′,Ψ′, j);

30 Compute the fitness fitness(f, e) of the jth solution;
31 Merge the matrix Π′ with Π and Ψ′ with Ψ;

32 Delete
⌊

1
3κ
⌋

solutions with smaller fitness values;
33 Construct two matrices Π′ and Ψ′ of zeros having dimensions

⌊
1
3κ
⌋
× |V | and⌊

1
3κ
⌋
× |V ||E|;

34 for j ← 1 to
⌊

1
3κ
⌋
do

35 η ← drand()(κ−
⌊

1
3κ
⌋
− 1) + 1e;

36 Copy the η row of Π and Ψ to jth row of Π′ and Ψ′ respectively;

37 Construct the extended graph Ge for mapping given by jth row of Π′;
38 [f, e]← ReMap(Ge,Π

′,Ψ′, j);

39 Compute the fitness fitness(f, e) of the jth solution;

40 Merge the matrix Π′ with Π and Ψ′ with Ψ;
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we first compute the latest finish time (Lines 2-12). We then schedule nodes based on their

priorities represented by PRI where PRI is equal to the sum of latest finish time and the earliest

start time (16-33). Nodes with smaller value of PRI have higher priority over nodes with larger

value of PRI. The nodes with higher priorities are scheduled earlier in time compared to nodes

with lower priorities. To achieve this goal we first define a set named cSet(vi). If vi is a task

node cSet(vi) is a set of task nodes concurrent to vi (task nodes not reachable from vi in Ge)

and mapped on the same processor where vi is mapped otherwise it is a set of communication

nodes concurrent to vi and have conflict with vi (communication nodes have conflicts if they

use same NoC links). Therefor, after we have scheduled a node the earliest start time of all

the nodes that belong to cSet(vi) and ImSuc(vi) are updated to finish time of vi. This ensures

that no two nodes that are concurrent are scheduled at the same time and the nodes with

smaller priority are scheduled later than nodes with higher priority. The schedule feasibility is

determined and its energy is also computed in the process.

Algorithm 3 shows the ReMap algorithm that we use to choose the best node to reassign and

also the processor and voltage to reassign it to for a given solution. The algorithm consider all

the nodes in the extended graph. If the node is a task node we tentatively remap it to all the

processors and on all voltage levels on those processor (6-20) and in case of a communication

node we tentatively remap it on all the voltages of the links (Lines 22-34). Each time we remap

a node to a new processor and or voltage level we invoke ELFTF algorithm to determine

the feasibility and energy consumption of the schedule. We calculate the Rank(vi) of the new

schedule generated by remapping the node vi if it is feasible as follows (Line 16 or 29):

Rank(vi) =


e−Enew

NC(i,k)
fnew
i

−NC(i,k)
fcur
i

if vi is task node

e−Enew
xi

bwf
new
i
− xi
bwf

cur
i

otherwise

(5.2)

The node with the maximum rank is selected and the solution is updated. Note that we

don’t invoke ELFTF algorithm for all voltage levels of a processor or link. Rather we first

find a maximum voltage level V L
dd such that energy consumption at this voltage is lower than

the current energy consumption (Lines 6 and 22). The voltage level higher than V L
dd are not
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Algorithm 2: ELFTF
input : An extended DAG Ge, matrix Π, matrix Ψ and current chromosome index η
output: Schedule feasibility indicated by binary variable Feasible, total energy eT .

1 Feasible← True; eT ← 0;
2 for each vi in reverse topological order of Ge do
3 if vi is a task node then
4 for each vj ∈ ISuc(vi) do
5 Compute frequency fj of node vj corresponding to voltage level Ψ[η][j];
6 if vj is a task node then

7 LFTi ← min{min{LFTi, di}, LFTj − NCC(j,Π[η][j])
fj

};
8 else
9 LFTi ← min{min{LFTi, di}, LFTj − xj

fjbw
};

10 else
11 Compute frequency fj of task vj ∈ ISuc(vi) corresponding to voltage level Ψ[η][j];

12 LFTi ← LFTj − NCC(j,Π[η][j])
fj

;

13 Create a copy G′e of Ge;
14 ∀vi ∈ Ge esti ← 0;. Set the earliest start time (est) of all the tasks and communication nodes

to zero
15 Insert all the source nodes in G′e to ready queue R;
16 while R is not empty do
17 for each vi ∈ R do
18 PRIi ← esti + LFTi;

19 Select the node vi with the smallest value of PRI from R;
20 if vi is a task node then
21 eT ← eT + E(i,Ψ[η][i],Π[η]][i]); tstarti ← esti;

22 tfinishi ← tstarti + NC(i,Π[η][i])
fi

;

23 for each unscheduled node vj ∈ cSet(vi) ∪ ISuc(vi) do

24 estj ← max{estj , tfinishi };

25 else
26 eT ← eT + Ec(i,Ψ[η][i]);tstarti ← esti;

27 tfinishi ← tstarti + voli
lwfi

;

28 for each unscheduled node vj ∈ cSet(vi) ∪ ISuc(vi) do

29 estj ← max{estj , tfinishi };

30 if tfinishi > di then
31 Feasible← False;

32 Delete vi and all its outgoing edges from G′e;
33 Insert all the source nodes in G′e to R;

considered.

There may be slack available after voltage scaling. As the processor can remain in active state

during the idle period or it can switch to sleep state. This is determined by Algorithm 4, Slack
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Algorithm 3: ReMap
input : A DAG Ge, matrix Π, matrix Ψ, index η.
output: Schedule feasibility indicated by f , Energy e.

1 Rankselect ← −∞;τ ← −1;ρ← −1;Γ← −1;e←∑
∀vi∈V E(i,Π[η][i],Ψ[η][i]) +

∑
∀vi∈V ∗ Ec(i,Ψ[η][i]);

2 f ← true if current solution if feasile otherwise false;
3 for each vj ∈ Ge do
4 if vi is a task node then
5 for each pek ∈ P do
6 Find the highest voltage level V L

dd on pek that minimize total energy consumption;
7 Υ← {V min

dd , . . . , V L
dd}; . V min

dd : lowest voltage, voltage levels higher than V L
dd not

considered
8 for each Vdds ∈ Υ do
9 tempProc← Π[η][i]; Π[η][i]← k; . Remap task to processor pek

10 Update Ge according to new mapping;
11 tempV ol← Ψ[η][i]; Ψ[η][i]← s;
12 [Feasible, Enew]← ELFTF (Ge,Π,Ψ, η);
13 Ψ[η][i]← tempV ol; Π[η][i]← tempProc;
14 if Feasible then
15 Compute frequencies f curi and fnewi corresponding to voltages ψ[η][i] and

Vdds respectively;

16 Rank(vi)← e−Enew
NC(i,Π[η][i])

fnew
i

−NC(i,Π[η][i])
fcur
i

;

17 if Rank(vi) > Rankselect then
18 Rankselect ← Rank(vi);τ ← i;ρ← s; e← Enew;Γ← k;

19 else
20 break;

21 else
22 Find the highest link voltage level V L

dd that minimizes the total energy consumption;
Υ← {V min

dd , . . . , V L
dd};

23 for each Vdds ∈ Υ do
24 tempV ol← Ψ[η][i]; Ψ[η][i]← s;
25 [Feasible, Enew]← ELFTF (Ge,Π,Ψ, η);
26 Ψ[η][i]← tempV ol;
27 if Feasible then
28 Compute frequencies f curi and fnewi corresponding to voltages ψ[η][i] and Vdds

respectively;

29 Rank(vi)← e−Enew
xi

bwf
new
i
− xi
bwf

cur
i

;

30 if Rank(vi) > Rankselect then
31 Rankselect ← Rank(vi);τ ← i;ρ← s; e← Enew;

32 else
33 break;

34 if τ 6= −1 then
35 if vi is a task node where i = τ then
36 Π[η][τ ]← Γ;Ψ[η][τ ]← ρ; f ← true ;

37 else
38 Ψ[η][τ ]← ρ; f ← true;
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Power Management (SPM). After scheduling a node we call SPM (in ELFTF, Line 22). We

first determine the length of idle time slot, tidle (Line 1) and then calculate break even time

tBET (Line 2). If idle interval is greater than or equal to break even time then the processor is

switched to sleep mode otherwise the processors stays in active mode (Lines 3-6).

Algorithm 4: SPM
input : Nodes vi and vj
output: Energy E consumed during the idle interval.

1 tidle ← ρj − ζi; . If vi is NULL then ζi ← 0
2 Calculate tBET using equation (4.7);
3 if tidle ≥ tBET then
4 E ← (tidle − tsw)Psleep + Esw;

5 else
6 return E ← Eidle;

5.2 Results and Discussions

In this section of this chapter we generate and discuss different results to compare with state-

of-the-art energy management techniques. Five real benchmarks listed in Table 5.2 are selected

from E3S. The experimental setup is explained in details in Section 4.3.1.1.

Table 5.2: Real benchmarks description

Real-world benchmark No.of Tasks

MP3-encoder 16
Consumer 7
Networking 4
Office-automation 5
Auto-industry 9

5.2.1 CITM-VA Energy performance

Different results have been generated considering the parameters such as dynamic energy (d),

static energy (s), number of tiles, and makespan. Table 5.3 shows the dynamic energy consump-

tion of the real benchmarks using a different number of tiles. Dynamic plus static energy con-

sumption is summarized in Table 5.4. Where the energy consumptions at 0.9×(Makespan)ECM
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Table 5.3: Real benchmarks dynamic energy consumption in Joule (J)

Application 20-Tiles 24-Tiles 28-Tiles

Benchmark ECITM−V A EECM ECITM−V A EECM ECITM−V A EECM

MP3-encoder 1.139 1.524 1.074 1.470 0.971 1.520
Consumer 0.309 0.382 0.302 0.377 0.296 0.371
Networking 0.401 0.533 0.384 0.517 0.358 0.522
Office-automation 0.257 0.346 0.249 0.341 0.244 0.337
Auto-industry 0.448 0.599 0.438 0.590 0.433 0.586

Table 5.4: Real benchmarks dynamic+static energy consumption in Joule (J)

Application 20-Tiles 24-Tiles 28-Tiles

Benchmark ECITM−V A EECM ECITM−V A EECM ECITM−V A EECM

MP3-encoder 1.415 1.994 1.402 1.960 1.361 1.941
Consumer 0.389 0.497 0.374 0.488 0.363 0.483
Networking 0.496 0.679 0.480 0.665 0.465 0.658
Office-automation 0.328 0.463 0.315 0.454 0.306 0.450
Auto-industry 0.549 0.778 0.527 0.762 0.511 0.753

and Makespan Multiplier (MM) ranging from 0.9 to 1.1 with 0.05 step are listed in Table 5.5,

and Table 5.6 respectively.

5.2.1.1 5× 4 NoC

Figure 5.1 shows the energy performance comparison of 5 real benchmarks using 5 × 4 NoC,

i.e. 20 tiles. The x-axis represents the benchmarks (task graphs) and y-axis denotes the energy

consumption in joules (J). The proposed CITM − V A performs better than ECM in terms

of energy savings. Numerically (CITM − V A)d achieves ∼ 23% total energy-efficiency over

(ECM)d. This energy performance improvement is because unlike (ECM)d our approach,

(CITM − V A)d deploys heterogeneous MPSoC architecture while explicitly considers energy

performance profiles of the processors and generates a feasible solution with lower energy con-

sumption. Moreover, (CITM − V A)d performs mapping, scheduling, and voltage scaling in

an integrated manner to guide the given task mapping problem to a more energy-efficient so-

lution. Some task nodes after execution on MPSoC platform may produce idle slack on the

processors which is not addressed by (ECM)d+s. Contrarily, beside the mapping and voltage
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Table 5.5: Real benchmarks dynamic+static energy in joule (J) at 0.9× (makespan)ECM

Application 20-Tiles 24-Tiles 28-Tiles

Benchmark ECITM−V A EECM ECITM−V A EECM ECITM−V A EECM

MP3-encoder 1.563 — 1.507 — 1.479 —
Consumer 0.411 — 0.401 — 0.409 —
Networking 0.527 — 0.510 — 0.496 —
Office-automation 0.347 — 0.332 — 0.324 —
Auto-industry 0.583 — 0.561 — 0.550 —

Table 5.6: Energy consumption (J) at different MM values using 28 tiles

Benchmarks

MM MP3-encoder Consumer Networking Office-automation Auto-industry

CITM−V A ECM CITM−V A ECM ECITM−V A ECM CITM−V A ECM CITM−V A ECM

0.90 1.479 — 0.409 — 0.496 — 0.324 — 0.550 —
0.95 1.403 — 0.388 — 0.481 — 0.317 — 0.534 —
1.00 1.361 1.941 0.363 0.483 0.465 0.658 0.306 0.450 0.511 0.753
1.05 1.258 1.873 0.357 0.471 0.450 0.642 0.289 0.435 0.490 0.732
1.10 1.187 1.805 0.345 0.458 0.441 0.624 0.278 0.420 0.473 0.718

scaling (CITM−V A)d+s also deploys DPM strategy to minimize the energy consumption dur-

ing processor idle slack period. An average ∼ 25% increase in the total energy consumption

(CITM −V A)d+s occurs compared to (CITM −V A)d because of the leakage power consump-

tion. Compared to (ECM)d+s the proposed energy management approach (CITM − V A)d+s

saves an average ∼ 27% total energy.
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Figure 5.1: 5× 4 NoC containing 20 tiles
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5.2.1.2 6× 4 NoC

The energy-efficiency of CITM−V A is further investigated for all 5 benchmarks when number

of tiles are increased to 24 ( from previously 20 tiles) as shown in the Figure 5.2. A reduction

in the overall energy consumption occurs when number of tiles are changed from 20 to 24. For

example, MP3 benchmark consumed 1.139 J, 1.415 J for (CITM−V A)d and (CITM−V A)d+s

respectively using 20 tiles NoC. These energy values reduce to 1.074 J and 1.402 J for (CITM−

V A)d and (CITM−V A)d+s respectively when 6×4 NoC with 24 tiles is deployed. This energy

reduction occurred due to the availability of more number of low energy performance processors

for task mapping. Relatively a smaller decrease in energy consumption resulted for ECM

because it uses MPSoC platform containing homogeneous processors with the same energy

performance profiles. The proposed approach (CITM − V A)d achieves an average ∼ 25%

energy improvement compared to (ECM)d. Moreover, ∼ 30% energy-efficiency is attained by

(CITM − V A)d+s over (ECM)d+s.
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Figure 5.2: 6× 4 NoC containing 24 tiles

5.2.1.3 7× 4 NoC

Figure 5.3 demonstrates the energy consumption comparison when 7 × 4 NoC with 28 het-

erogeneous processors on MPSoC architecture is used. A similar pattern like Figure 5.2 is

followed by the energy consumption in this case though, the energy savings increases for both

(CITM − V A)d and (CITM − V A)d+s respectively. For instance the energy consumption of
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(CITM − V A)d for MP3 reduces to 0.971 J from 1.074 J and (CITM − V A)d+s also mini-

mizes to 1.361 J from 1.402 J when number of tiles are increased from 24 to 28. A similar

decrease in the energy consumption is observed for the rest of the real benchmarks. The energy

consumption reduction using CITM − V A is steeper than ECM . Moreover, (CITM − V A)d

and (CITM − V A)d+s improve the energy-efficiency by ∼ 27% and ∼ 33% respectively over

state-of-the-art CITM − V A.
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Figure 5.3: 7× 4 NoC containing 28 tiles

5.2.1.4 Robustness and QoS

The robustness and QoS of both the schemes are analyzed when the makespan generated by

ECM is considered as baseline and multiplied with MM of 0.9 as demonstrated in Figure 5.4.

The ECM approach can not produce energy consumption approximation at 0.9 ×makespan

because it does not implement ELFTF strategy to re-arrange the task nodes order according

to the deadline set. Therefore, QoS degrades at strict deadline and ECM fails to efficiently

perform task mapping and voltage scaling at strict deadlines for real applications. Thus, ECM

shows no robustness and exibits poor QoS. Contrarily, CITM − V A@(0.9 × makespan)ECM

converges at strict deadlines and produces energy consumption values. Though the energy-

efficiency reduces to ∼ 18%, ∼ 24% for (CITM − V A)d and (CITM − V A)d+s compared to

the normal makespan.
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to (ECM)d. Moreover, ∼ 30% energy efficiency is attained
by (CITM − V A)d+s over (ECM)d+s.
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FIGURE 6: 6× 4 NoC containing 24 tiles

3) 7× 4 NoC
FIGURE 7 demonstrates the energy consumption compari-
son when 7× 4 NoC deploying 28 heterogeneous processors
on MPSoC architecture is used. A similar pattern like FIG-
URE 6 is followed by the energy consumption in this case
though, the energy savings increased to ∼ 25% and ∼ 30%
for (CITM − V A)d and (CITM − V A)d+s respectively.
For instance (CITM − V A)d of MP3 reduces to 0.971 J
from 1.074 J and (CITM − V A)d+s minimizes to 1.361 J
from 1.402 J when number of tiles are increased from 24 to
28. A similar decrease in the energy consumption is observed
for other real-world benchmarks. The energy consumption
reduction using CITM − V A is steeper than ECM . More-
over, (CITM − V A)d and (CITM − V A)d+s improve the
energy efficiency ∼ 27% and ∼ 33% respectively.
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FIGURE 7: 7× 4 NoC containing 28 tiles

4) Robustness and QoS
The robustness and QoS of both the schemes are analyzed
when the makespan generated by ECM is considered as
baseline and multiplied with MM of 0.9 as exhibited in
FIGURE 8. The ECM approach can not produce energy
consumption approximation at 0.9 × makespan because it
does not implement ELFTF strategy to re-arrange the task
nodes order according to the deadline set. Therefore, QoS
degrades at strict deadline and ECM fails to efficiently

perform task mapping and voltage scaling at strict deadlines
for real-time applications. Thus, ECM shows no robustness
and exibits poor QoS. Contrarily, CITM − V A@(0.9 ×
makespan)ECM converges at strict deadlines and produces
energy consumption values. Though the energy efficiency
reduces to ∼ 18%, ∼ 24% for (CITM − V A)d and
(CITM − V A)d+s compared to the normal makespan.
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5) Energy and MM
FIGURE 9 demonstrates the total energy consumption of
real-world benchmarks for different makespain when 7 × 4
NoC with 28 tiles is used. The total energy consumption of
both CITM − V A and ECM decreases when makespain
multiplier value is increased from 0.9. This reduction of
energy consumption is due to the expansion in the common
deadline and lower discrete voltage levels can be applied to
the tasks and communication nodes. It is worth noticing that
CITM − V A generates energy consumption values even at
strict deadlines while ECM does not converge and fails to
produce output below 1.0 value of MM. Moreover, the total
energy consumption of ECM for all benchmarks is higher
than CITM − V A. So, CITM − V A performs better than
ECM at different values of the makespain multiplier.
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VI. CONCLUSION
In this paper, an investigation is performed on contention-
aware static mapping and voltage scaling for real-time DAG

12 VOLUME 4, 2016

Figure 5.4: Robustness

5.2.1.5 Energy and MM

Figure 5.5 illustrates the total energy consumption of real benchmarks for different makespan

when 7× 4 NoC with 28 tiles is used. The total energy consumption of both CITM −V A and

ECM decreases when MM value is increased from 0.9. This reduction of energy consumption

is due to the expansion in the common deadline and lower discrete voltage levels can be applied

to the tasks and communication nodes. It is worth noticing that CITM − V A generates

energy consumption values even at strict deadlines while ECM does not converge and fails to

produce output below 1.0 value of MM. Moreover, the total energy consumption of ECM for

all benchmarks is higher than CITM − V A. So, CITM − V A performs better than ECM at

different values of the MM.
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5.3 Summary

In this chapter, we performed investigation on contention-aware static mapping for real-time

task set with precedence constraints and individual deadlines using NoC-MPSoC architecture

with DVFS-enabled heterogeneous processors. We proposed CITM-VA meta-heuristic that op-

timizes the inter-processor communications, NoC links energy consumption, and computational

energy. The CITM-VA performs task mapping, scheduling, and voltage scaling in an integrated

manner to achieve higher energy-efficiency. It adopts ELFTF strategy and generates a priori-

tized task schedule to adequately utilize the available slack and links. ReMap algorithm is used

to efficiently map the task and communication nodes to the resources and discrete voltage levels

such that overall energy consumption is reduced. To further improve the energy savings we

deploy DPM when an idle processor is in a high-power consumption state. Contention between

the communications traversing the same link is eliminated by dedicating the links to higher

priority communications. The extensive evaluation results illustrate that compared to state-

of-the-art technique ECM, our proposed approach CITM-VA achieves better energy-efficiency.

CITM-VA attains an average energy savings of ∼ 30% for 5 real benchmarks. Moreover, it also

maintains high QoS and robustness at strict task deadlines with significant energy-efficiency.



Chapter 6

Energy-aware Static Task Scheduling

on Heterogeneous VFI-NoC-MPSoCs

In Chapter 5 we performed task scheduling considering NoC-MPSoC i.e. Non-VFI based MP-

SoC architecture. We developed a meta-heuristic, CITM-VA for task scheduling that changes

only one task at a time within a population member. Moreover, CITM-VA does not switch be-

tween an explorative and exploitative search modes at run-time. Now in this chapter, we study

energy-efficient and contention-aware static scheduling for tasks with precedence and dead-

line constraints on heterogeneous VFI based NoC-MPSoCs (VFI-NoC-HMPSoC) with DVFS-

enabled processors. Unlike the existing population-based optimization algorithms, we proposed

a novel population based algorithm called ARSH-FATI that can dynamically switch between

explorative and exploitative search modes at run-time. Our static scheduler ARHS-FATI col-

lectively performs task mapping, task ordering, and voltage scaling. Consequently, its perfor-

mance is superior to the existing state-of-the-art approach proposed for homogeneous VFI based

NoC-MPSoCs. We also developed a communication contention-aware Earliest Edge Consistent

Deadline First (EECDF) task ordering algorithm and gradient descent inspired voltage scaling

algorithm called Energy Gradient Decent (EGD). We introduced a notion of Energy Gradient

(EG) that guides EGD in its search for islands voltage settings and minimize the total energy

consumption. Conducted the experiments on 8 real benchmarks adopted from Embedded Sys-

90
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tems Synthesis Benchmarks (E3S). Our static scheduling algorithm, ARSH-FATI outperformed

state-of-the-art heuristics and achieved an average energy-efficiency of ∼ 24% and ∼ 30% over

CA-TMES-Search and CA-TMES-Quick respectively.

In this chapter, we studied first time ever the problem of energy-efficient and contention-aware

static task scheduling on the edge computing devices using heterogeneous VFI based NoC-

MPSoC (VFI-NoC-HMPSoC) system with DVFS-enabled processor for a set of tasks with

precedence constraints and deadline. Our main contributions and innovations in this chapter

are summarized as follows:

1. We performed task mapping, task ordering, and voltage scaling in an integrated way using

a novel search based meta-heuristic called ARSH-FATI. Our static scheduler also consid-

ers energy performance profiles of the processors, voltage levels within each processor,

communication contention at the NoC links, and inter-VFI communications during the

task scheduling.

2. Our meta-heuristic ARSH-FATI can dynamically switch between different search modes

to achieve a satisfactory trade-off between explorative and exploitative search during run-

time. Moreover, we presented a new a contention-aware Earliest Edge Consistent Dead-

line First (EECDF) scheduling algorithm and gradient descent inspired Energy Gradient

Decent (EGD) voltage scaling technique.

3. We compared the energy performance of our static scheduler ARSH-FATI with state-of-

the-art CA-TMES-Search [95] and CA-TMES-Quick [95] energy management algorithms

using 8 real benchmarks adopted from E3S benchmark suit. Our meta-heuristic based

static task scheduler achieved an average energy-efficiency of ∼ 24% and ∼ 30% over

CA-TMES-Search and CA-TMES-Quick respectively.

We organize the rest of the chapter as follows: Section 6.1 discusses our novel static contention-

aware energy optimization algorithm. The simulation results on different benchmarks are dis-

cussed in Section 6.2, while in Section 6.3 we conclude this chapter.
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6.1 Static Contention-aware Energy-efficient Scheduling

In this section we discuss our proposed contention-aware energy-efficient task scheduling for a

set of tasks with precedence and deadline constraints represented by DAG. The heterogeneous

MPSoC architecture presented in Section 4.1.2.2 is adopted.

Algorithm 5: ARSH-FATI
input : A DAG G, tasks Deadlines, an MPSoC, total number of iterations Ω and population

size µ
output: Task to processor mapping map and islands voltage levels vol

1 Construct two matrices Π and Ψ of zeros having dimensions µ× |V | and a vector f of zeros
having dimension µ× 1;

2 for η ← 1 to µ do
3 for each vi ∈ G do
4 Π[η][i]← drand()(|P |−1) + 1e;
5 for each cj ∈ C do
6 Ψ[η][j]← maximum island voltage;

7 for η ← 1 to µ do
8 Generate the extended graph Ge;
9 [m, e]← EGD(G,Ge,Π,Ψ, η);

10 f [η]← fitness(m, e);

11 while stopping criteria is not satisfied do
12 Find the best solution πb and the worst solution πw;
13 f ′b ← −∞;
14 for η ← 1 to µ do
15 for each vi ∈ G do
16 r ← rand();
17 θ ← Π[η][i];
18

Π[η][i]←
{

Υ(θ, πb[i], πw[i]) if r ≤ DR
Π[η][i] otherwise

19 Construct an extended graph Ge given a mapping ;
20 [m, e]← EGD(G,Ge,Π,Ψ, η);
21 f [η]← fitness(m, e);
22 if f ′b < f [η] then
23 f ′b ← f [η];

24

DR←
{
DR
λ if f ′b > fb

λDR otherwise

25 Set map and vol to mapping and islands voltage settings respectively with the highest fitness
in the population;

The details of ARSH-FATI are given in Algorithm 5. ARSH-FATI is a population-based algo-
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rithm in which only the best and worst solutions of the previous population are used to generate

µ number of candidate solutions for the current population. Such kind of selection algorithms

in the literature are commonly referred to as (1 + µ) selection algorithms.

Robustness of ARSH-FATI algorithm lies in the notion of updating the parameter dimensional

rate (DR) at run-time during the searching process. Our algorithm attains a satisfactory trade-

off between the exploitation and exploration attributes of the search process. We define the

parameter DR as the percentage of tasks that are re-mapped probabilistically to generate a

new solution (mapping) from current (best and worst) solutions. The need for only re-mapping

a percentage of tasks and not all the tasks stems from the sensitivity of energy consumption to

task mapping in this (energy optimization) problem. In other words re-mapping, even a small

subset of tasks may generate a schedule with energy consumption significantly different than

the schedule generated by original mapping. Hence, the role of DR is to adjust at run-time the

exploitation and exploration features of ARSH-FATI algorithm that we explain in the following.

Step1. Initial population generation: First we generate a matrix Π of dimensions µ×|V |,

where each row in this matrix represents a task to processor mapping. Each row is in matrix

Π is generated by randomly mapping tasks to processors.

Step2. Evaluation: We define the following fitness function to gauge the quality of each

member of the population:

fitness(m, e) =


1
e

if m ≤ D

−∞ otherwise

We define the following two terms:

1. Best solution: It is a member of the population that has the highest fitness value.

2. Worst solution: It is a member of the population that has the lowest fitness value.

Step3. Setting parameter DR: We set the value of DR to 0.3 for the initial population.
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This value is determined empirically after extensive experiments. The DR value for the other

populations generated during the optimization process is determined as follows:

DR =


DR
λ

if the best solution is improved

λDR otherwise

(6.1)

According to equation (6.1) if the best solution found so far is improved in the previous iteration

then the value of DR is increased by dividing it by 0 < λ < 1 otherwise we decrease DR by

multiplying it with λ. We refer to λ as the dimensional rate adaption parameter as it determines

the new value of DR during the optimization process. The larger the value of DR the more

explorative the search is as this enables the moves in the search space by re-mapping many

tasks at the same time, thereby leading to large and unconstrained step sizes. Compared to this

a small value of DR motivates a more exploitative search by allowing small and conservative

steps in the search space. The motivation behind Equation (6.1) is to encourage the re-mapping

of more tasks and thus, support more explorative search if the energy consumed by the schedule

generated by the mapping in the previous iteration reduces. On the other hand if the energy

does not reduce then the explorative search is rather restricted and ARSH-FATI takes small

steps near the current mapping.

It is worth noticing that ARSH-FATI also reduces the communication contention. The energy

function has two components, the communication energy, and the processing energy. Notice

that the most effective mechanism of minimizing communication energy is to reduce the traffic

over the network. As the traffic over the network reduces so does the communication contention.

In scenarios where the communication energy dominates the total energy, ARSH-FATI will

choose the solution that minimizes the traffic over the network and consequently, reduced

contention among the communications. The prime objective of ARSH-FATI is to minimize

the total energy. Therefore, in scenarios where the total energy is dominated by processing

energy, it may choose a solution that generates high contentions between communications but

minimizes the total energy consumption. Steps involved in the working principle of ARSH-FATI

are given as follows:
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New population: In every iteration for each candidate solution, we only re-map a subset of

tasks. These tasks are selected based on the value of DR. We re-map the selected task vi as

follows:

Π[η][i] =


Υ(θ, πb[i], πw[i]) if r ≤ DR

Π[η][i] otherwise

where θ is the processor where vi is currently mapped, r is a random numbers and πb[i] and

πw[i] are the processor where vi is mapped in the best and worst solutions respectively. The

function Υ(θ, πb[i], πw[i]) is defined as follows:

Υ(θ, πb[i], πw[i]) =


|υ(θ, πb[i], πw[i])| if υ ≤ |P |

|P | otherwise

υ(θ, πb[i], πw[i]) is defined as follows:

υ(θ, πb[i], πw[i]) = dθ + r1(πb[i]− θ)− r2(πw[i]− θ)e (6.2)

where r1 and r2 are random numbers. The term r1(πb[i] − θ) reflects the likelihood of the

solution to move closer to the best solution in the population and the term r2(πw[i]−θ) reflects

the likelihood of the solution to avoid the worst solution.

6.1.1 Earliest Edge Consistent Deadline First (EECDF ) Algorithm

Before we describe EECDF given in Algorithm 6 we define some notations. The worst case

execution time of a task node vi mapped on processor pek operating at frequency fj is et(vi) =

NCC(vi,k)
fj

, where NCC(vi, k) is the worst case clock cycles of vi on processor pek. The start

and finish times of a task node vi are respectively denoted by ρ(vi) and ζ(vi). Similarly for

a communication node vj (corresponding to edge (va, vb)) the transmission time on a link L

between processors pes and ped is et(vj, L) =
χa,b

bw min{fs,fd}
, where bw is the link width, fs and fd

are the frequencies of pes and ped respectively. The start and finish time of vj on link L are
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respectively denoted by ρ(vj, L) and ζ(vj, L), where ζ(vj, L) = ρ(vj, L) + et(vj, L).

Algorithm 6: EECDF
input : A DAG G, an extended DAG Ge, matrix Π, matrix Ψ and current chromosome

index η
output: Energy e and make-span m of schedule

1 Calculate the ECD, d′i of each task in vi ∈ G;
2 Insert all source node in a ready queue R;
3 while there are ready nodes in R do
4 Find a node vi in R with smallest d′i while ties are broken in favour of smallest index;
5 if vi is a task node then
6 Schedule vi subject to rules R1, R2 and R3;

7 else
8 Schedule vi subject to rules R4, R5, R6 and R7;

9 Delete vi from R;
10 Insert all ready nodes in R;

11 Calculate the energy e and make-span m of the schedule;

Scheduling, in general, is an NP-hard problem. Hence, in this work, we propose an earliest edge

consistent deadline first (EECDF ) heuristic algorithm. EECDF is a static list scheduler that

prioritizes nodes with shorter edge consistent deadline (ECD) over nodes with longer ECD.

The motivation behind this is to allow the DVFS algorithm to efficiently utilize the available

slack.

Given task to processor mapping, operating frequencies of processors and a DAG G we calculate

the ECD by the following dynamic programming algorithm.

Traverse the DAG G in the reverse topological order of G. If the task vi is a sink node then its

ECD, d′i is equal to its pre-assigned deadline di otherwise:

d′i = min{di,min{d′j − etj : ∀vj ∈ ISucci}} (6.3)

where ISucci is a set of immediate successors of vi. The ECD, d′j of a communication node is

same as its parent (task) node.

The EECDF algorithm is described in Algorithm 6. We performs four major steps.

1. Calculate the ECD of each task vi ∈ G (Line 1).
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2. Create a ready queue R and insert all the source nodes in Ge to R (Line 2).

3. Find a node vi that has minimum ECD in R and schedule it. Then delete vi from R and

insert all the ready nodes in Ge to R. Repeat this until R is empty (Line 3-10).

4. Calculate the energy E and make-span m of the schedule.

We define seven rules to schedule the highest priority node vi ∈ R. The first three rules deal with

the schedule of a task node and the remaining four deal with the schedule of a communication

node.

Task scheduling rules: The schedule of a task node vi is obtained by applying the following

rules collectively in order:

• R1: The start time of vi is equal to release time of vi, ρ(vi) = r(vi).

• R2: The release time of each node vj ∈ ISucc(vi) is equal to r(vj) = max{ζ(vi), r(vj) :

∀vj ∈ ISucc(vi)}.

• R3: The release time of each unscheduled task node vj mapped on same processor of vi

is r(vj) = max{ζ(vi), r(vj)}.

R3 enforces EECDF rule on the schedule of task nodes. Under this rules task nodes with

shorter ECD have higher priority than task nodes with longer ECD. High priority tasks are

scheduled earlier in time than low priority tasks.

Communication scheduling rules: In communication scheduling, network resources such as links

are treated as processors in a way that each communication can only use one resource at a time.

Hence, communication nodes are scheduled on the links for the time they occupy them.

Consider a communication node vj whose source is mapped on pesrc and destination is mapped

on pedest, the routing algorithm used by the network generates the route Rj from pesrc to pedst.

The route Rj =< L1, L2, . . . , Ll > is an ordered list of links, where L1 is the first link and Ll is

the last link on the route.
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Note that the route depends only on the source and destination of the communication because

in our network model we assume deterministic (XY ) routing. Furthermore, the entire com-

munication must be transmitted on the established route because in the network model we

suppose circuit switching. A communication node utilizing this route must be scheduled on all

the links (of this route). The data traverses these links in the order they appear in the route

vector.

Link causality constraints: The schedule of a communication node vj on links of route Rj must

abide by the link causality constraints defined as follows:

ρ(vj, L1) ≤ ρ(vj, Lk) (6.4)

ζ(vj, Lk−1) ≤ ζ(vj, Lk) (6.5)

for 1 < k ≤ l

The causality constraints impose bounds on the schedule of vj on the links of Rj. The finish

time of vj must not be sooner on link Lk than its predecessor link Lk−1.

Given a communication node vj whose parent node is va and child node is vb, the schedule of a

vj on Rj =< L1, L2, . . . , Ll > is obtained by applying the following rules collectively in order:

• R4: The start time of vj is equal to finish time of va, ρ(vj) = ζ(va).

• R5: The start time of vj on each link Lk ∈ Rj is:

ρ(vj, Lk) =


max{β, ρ(vj)} if k = 1

max{β, α, ρ(vj, L1)} if k > 1

where α = ζ(vj, Lk−1)− et(vj, Lk) and β is the finish time of latest communication node

scheduled on link Lk. On the link L1 the start time of vj is constrained only by the

finish time of its parent node va and on all subsequent links the schedule of vj follows

the causality constraints. Note that R5 enforces the EECDF rule on the schedule of

communication nodes. Under rule R5 communication nodes with shorter ECD have
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Algorithm 7: Energy Gradient Descent (EGD)

input : A DAG G, an extended DAG Ge, matrix Π, matrix Ψ and index η.
output: Schedule make-span m and energy e.

1 [e,m]← EECDF (G,Ge,Π,Ψ, η);
2 if m ≤ D then
3 while there are extensible islands do
4 Γ← −1;
5 for each extensible island cj ∈ C do
6 EGbest ← −∞;
7 Find the voltage V L

dd of island cj exactly one level lower than current voltage level
Ψ[η][j];

8 for each Vdd ∈ {V min
dd , . . . , V L

dd} do
9 temp← Ψ[η][j];Ψ[η][j]← V L

dd;
10 [e′,m′]← EECDF (Ge,Π,Ψ, η);
11 Ψ[η][j]← temp;

12 if m ≤ D then
13 Calculate EG(cj);

14 if EGbest < EG(cj) then
15 EGbest ← EG(cj);
16 Γ← Vdd;τ ← j;e′′ ← e′;m′′ ← m′;

17 if Γ 6= −1 then
18 Ψ[η][τ ]← Γ;e← e′′ ;m← m′′;

priority over nodes with longer ECD.

• R6: The finish time of vj is equal to the finish time of vj on the last link Ll, ζ(vj) =

ζ(vj, Ll).

• R7: The release time of vb is equal to finish time of vj, r(vb) = ζ(vj)

6.1.1.1 Energy gradient descent (EGD)

EGD in Algorithm 7 is inspired by gradient descent. Given task mapping and the initial islands

operating voltages, EGD explores the solution space to find voltage settings for islands such

that total energy consumption is minimized and the resulting schedule under these settings is

feasible.

Before we describe EGD we define the two terms, an extensible island and an island energy

gradient.
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An island cj ∈ C is extensible, if by reducing its operating voltage the resulting schedule under

the new voltage settings is feasible.

EGD is guided by energy gradient in its search for the island voltage setting that minimize

energy consumption. Given the operating voltage Vdd of an island cj, the energy consumption

E and make-span m of the schedule, the energy gradient of cj is defined as:

EG(cj, E,m,E
′,m′) =


γ(E − E ′) if E > E ′,m ≥ m′

E−E′
m′−m otherwise

where γ is a large number, E ′ and m′ is the energy consumption and make-span of the schedule

respectively, when cj operates at V ′dd, where V ′dd is a voltage level lower than Vdd.

EGD repeats the following two steps until there are no extensible islands:

Step 1: First find a set of extensible islands. Then for each extensible island cj do the following:

• Find a set {V min
dd , . . . , V L

dd} of operating voltages, where V L
dd is the maximum operating

voltage of cj under which the energy consumption of the schedule reduces.

• Tentatively adjust the operating voltage of cj to each voltage level in set {V min
dd , . . . , V L

dd},

call EECD to calculate the make-span, the energy consumption of the schedule under

new voltage settings and calculate the EG.

Step 2: Find the island cj and its operating voltage Vdd that maximizes the energy gradient

and adjust the operating voltage of cj to Vdd.

EGD may repeat the above mentioned two steps several times before it converges. In each

iteration EGD can find many extensible islands and can adjust their operating voltages to

many different levels. Each of these island voltage pairs may lead to some reduction in energy

consumption. EGD chooses the pair that maximizes the EG. This is because for each island

voltage pair the energy consumption of the schedule under the new voltage settings reduces

without or with an increase in the make-span of the schedule. Both of these cases are reflected



101

in the EG function. The first case is an ideal one because energy is reduced without any

reduction in the available slack. Hence, the EG gives more weight to island voltage pairs

that lie in case 1 by multiplying the energy difference with a large integer γ. In the second

case energy reduces but with an increase in schedule make-span. In this case EG is the ratio

between energy difference and the make-span difference. Higher the ratio the better the island

voltage pair. A large value of this ratio is an indication of a large numerator and a small

denominator. A large numerator reflects a big energy difference. This is desirable because it

indicates that by changing the voltage level the schedule under new voltage settings reduces

energy significantly. A small denominator reflects a small make-span difference. This is also

desirable as this indicates more slack will be available for the nodes in the subsequent iterations.

6.2 Experimental Results and Discussions

In this section, we explain the experimental set up used for our simulations. We also generate

energy consumption values for different real benchmarks and explicitly discuss the results. The

experimental setup is explained in details in Section 4.3.1.1.

We use 8 real benchmarks in our experimental analysis on VFI-NoC-MPSoC computing archi-

tecture while generate results for different scenarios. The real benchmarks are adopted from

Embedded System Synthesis Benchmarks Suite (E3S). Automatic Target Recognition (ATR)

benchmark is a real-time streaming application used for pattern recognition. Benchmark MP3-

decoder performs Huffman decoding and Inverse Discrete Transform (IDCT). JPEG-encoder

contains tasks for Huffman encoding and Discrete Cosine Transform (DCT). Office benchmark

contains tasks for text processing, image rotation, and gray-scale to binary conversion. Auto-

industry represents an embedded application that includes tasks such as Fast Fourier Transform

(FFT), finite/infinite impulse response filter, IDCT, Inverse Fast Fourier Transform (IFFT),

matrix arithmetic, table lookup, road speed calculation, and interpolation. Consumer-1 and

Consumer-2 benchmarks perform JPEG compression and/or decompression, conversions such

as from RGB to CMYK and RGB to YIQ.
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Figure 6.1 shows the impact of DR on ARSH − FATI performance. We set DR = 0.3

initially though it can acquire values 0.1 ≤ DR ≤ 0.5 with small impact on the total energy

performance for static task scheduling. The results indicate that the energy performance of

the ARSH −FATI slightly decreases when DR = 0.1 and DR = 0.5. However, our algorithm

automatically sets the DR value to produce maximum energy-efficiency but initially setting

DR = 0.10 means ARSH − FATI performs an insufficient exploration while DR = 0.5 leads

to an excessive exploration. Thus, DR = 0.3 is the nominal initial value for our meta-heuristic.

ARSH − FATI converges i.e. DR value relatively stabilizes at 200 number of iterations (NI)

and a minute variation occurs till 500 while no variations occur when NI > 500. Therefore, we

consider NI = 500, µ = 5, and λ = 0.98 for our experiments.

0.5

0.4

0.3

0.2

0.1

0.0

D
R

5004003002001000
Iterations

 JPEG-encoder
 Consumer-2
 ATR
 Auto-1
 Office
 MP3-decoder
 Auto-2
 Consumer-1

Figure 6.1: Dimensional rate parameter variations

Table 6.1: List of parameters used in results

Parameters Description

NVFI Number of Voltage Frequency Island
PPI Processors per Voltage Frequency Island
M Total number of processors
CCR Communication to Computation Ratio
MULT Multiplier
∆E Change in Energy
Task Set-1 ATR, MP3-decoder, JPEG-encoder
Task Set-2 Consumer, Office, Auto

We generate results for four scenarios considering different metrics such as homogeneous MPSoC

platform, heterogeneous multiprocessing computing system, PPI, deadline, and CCR. In this

section, we refer to different parameters listed in Table 6.1.
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Table 6.2: Real benchmarks energy consumption in joule (J) at NV FI = 4 and PPI = 2× 2

Benchmarks
ARSH − FATI
( Homogeneous)

ARSH − FATI
(Heterogeneous)

ARSH − FATI
+EGD

(Heterogeneous)

CA− TMES
(Search)

CA− TMES
(Quick)

ATR 1.1201 1.0324 0.9586 1.2115 1.2501
MP3-decoder 1.3208 1.2828 1.1627 1.4950 1.5793
JPEG-encoder 1.3808 1.3593 1.2396 1.5439 1.6415
Office 0.4431 0.4107 0.3981 0.4906 0.4910
Auto-1 0.5136 0.4931 0.4682 0.5748 0.5791
Auto-2 0.2850 0.2546 0.2381 0.2915 0.3064
Consumer-1 0.4321 0.4121 0.3917 0.4701 0.4920
Consumer-2 0.3802 0.3602 0.3334 0.4043 0.4201

6.2.1 Scenario 1

We set the default parameters NV FI = 4, PPI = 2 × 2, M = 16, DR = 0.30, and perform

experiments on 8 real benchmarks deploying both homogeneous and heterogeneous VFI-NoC-

MPSoC computing architectures.

We use CA-TMES-Quick [95] and CA-TMES-Search [95] energy management schemes as base-

line in order to determine the performance of our static task scheduling approach, ARSH −

FATI. First, we consider a homogeneous VFI-NoC-MPSoC system where all the processors

are of type 1. We set the operating frequencies of the processors to their maximum (fmax =

2.0 GHz). Second, we use a VFI-NoC-HMPSoC deploying both type 1 and type 2 processors

without voltage scaling technique. We randomly select the type of processor for each VFI to

generate a heterogeneous computing platform in order to ensure unbiased experimentation.

Third, we consider a VFI-NoC-HMPSoC computing architecture and use EGD in order to ef-

ficiently avail the slack in the processors. Table 6.2 summarizes the energy consumption values

for these three cases on 8 real benchmarks.

Figure 6.2 demonstrates the energy performance of our static task scheduler ARSH − FATI

compared to CA-TMES-Search and CA-TMES-Quick. The x-axis denotes real benchmarks

while y-axis represents energy consumption in joule (J). Not surprisingly when all the pro-

cessors are of type 1, (ARSH − FATI)homogeneous consumes lower energy because our popu-

lation based meta-heuristic performs better solution space exploration during task mapping
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and subsequently, reduces communication energy. In other words (ARSH − FATI)homogeneous

schedules dependent tasks closer to each other in order to avoid energy dissipation occur-

ring due to the utilization of links, switches, and buffers for communications. Specifically,

(ARSH − FATI)homogeneous achieves an average energy-efficiency of ∼ 15%, ∼ 8% over CA-

TMES-Quick and CA-TMES-Search respectively.
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Figure 6.2: Energy consumption at NV FI = 4 and PPI = 2× 2

The energy savings further increase when both type 1 and type 2 processors are deployed

to form VFI-NoC-HMPSoC system. Task scheduler, (ARSH − FATI)heterogeneous attains an

average-efficiency of ∼ 13%, ∼ 20% compared to CA-TMES-Search and CA-TMES-Quick

respectively. Unlike, CA-TMES-Quick and CA-TMES-Search energy management approaches

our static scheduler (ARSH − FATI)heterogeneous is aware of the energy performance profiles

and generates a task schedule such that higher energy consuming tasks are mapped on low

performance and high energy-efficient processor.

Our static scheduler ARSH −FATI when integrated with voltage scaling algorithm EGD i.e.

(ARSH−FATI)heterogeneous+EGD achieves the highest energy-efficiency. It produces an average

energy savings of ∼ 24%, ∼ 30% over CA-TMES-Search and CA-TMES-Quick respectively.

EGD tends to find the voltage settings for islands such that energy consumption is minimized

and the deadline constraints are satisfied. In other words, EGD reduces the computation

energy consumption by intelligently exploiting the available slack in the processors.

Summarizing the observations in these experiments in scenario 1, ARSH − FATI reduces

both the communication and computation energy consumptions while does not sacrifice the
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constraints. Our novel approach ARSH−FATI for static task scheduling on VFI-NoC-MPSoC

architecture outperforms both CA-TMES-Search and CA-TMES-Quick.

6.2.2 Scenario 2

Next, we examine the impact of PPIs on energy consumption while determining the ability of

ARSH−FATI to utilize the resources experimenting on 9 real benchmarks. We setNV FI = 4,

heterogeneous computing system, and systematically upgrade PPI = 2× 2, 4× 2, 4× 3 i.e. M

= 16, 32, 64.

Figure 6.3 illustrates that except MP3-decoder, JPEG-encoder, and Robot other benchmarks

do not show a significant decrease in the energy consumption when PPI is gradually increased.

These benchmarks contain relatively higher number of task nodes and degree of parallelism.

MP3-decoder consumes 1.1627 J energy at PPI = 2×2 while it decreases to 1.0936 J and 1.0728

J for PPI = 4×2 (∆E = 0.0.0691 J), and PPI = 4×3 (∆E = 0.0899) respectively. Similarly,

JPEG-encoder depletes 1.2396 J energy at PPI = 2× 2 and this energy consumption reduces

to 1.1722 J (∆E = 0.0674 J), 1.1517 J (∆E = 0.0879 J) at PPI = 4 × 2, 4 × 3 respectively.

We also evaluate the performance of our static scheduler ARSH−FATI on more complex real

benchmark, Robot containing 88 tasks. Compared to PPI = 2× 2 (M = 16), ARSH −FATI

achieves energy savings of ∼ 13% and ∼ 18% for robot when PPI = 4 × 2 (M = 32) and

PPI = 4× 3 (M = 64) are used respectively.
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These results demonstrate that our meta-heuristic ARSH − FATI is scalable and it can ef-

ficiently utilize the resources and degree of parallelism in the benchmarks to reduce the total

energy consumption.

6.2.3 Scenario 3

We now conduct experiments to analyze the robustness of ARSH − FATI under deadline

variations and compare its performance with CA-TMES-Search. We consider voltage scalable

heterogeneous computing architecture with NV FI = 4, PPI = 1× 2 and M = 8. We set the

baseline deadline for each benchmark in set-1 and set-2 (described in Table 6.1) to the makespan

of the schedule generated by CA-TMES-Search under the condition of all VFIs operating at

maximum frequencies.

Figure 6.4 and Figure 6.5 show the energy consumption of ARSH − FATI and CA-TMES-

Search for set-1 and set-2 respectively. In Figure 6.4 blue, green, and red colors represent

ATR, MP3-decoder, JPEG-encoder respectively. Similarly, blue, green, and red colors denote

Consumer, Office, Auto benchmarks respectively in Figure 6.5. The MULT represents the

factor multiplied to the baseline deadline. For example, MULT = 1.00 at the horizontal axis

in Figure 6.4 and Figure 6.5 indicates the deadline of each benchmark is set to 1.00 × baseline

deadline. The dotted lines represent our ARSH − FATI while the straight lines show CA-

TMES-Search. The condition MULT < 1 indicates a strict deadline while MULT > 1 shows

a relaxed deadline.
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The energy-efficiency of ARSH − FATI gradually reduces starting from MULT < 1 to

MULT = 0.95. This increase in energy consumption occurs due to the reduction in slack.

Though, energy consumption slightly increases under the strict deadline conditions (of MUL <

1), ARSH − FATI can still successfully generate a feasible schedule. Moreover, as deadline

decreases ARSH-FATI tends to schedule more tasks on high-performance processors. These

processors reduce task execution time at a cost of higher energy consumption. This is another

reason in the increase of energy consumption along with the reduction in slack. The same is

not true for CA-TMES-Search because it neglects to consider the energy performance profiles

of the processors during the task mapping phase. The EECDF prioritizes nodes with shorter

ECD thereby, increasing the chance of generating a feasible schedule. This is because ECD

of a node depends on the pre-assigned deadline. As the deadline varies so does ECD conse-

quently, the relative urgency of nodes may change. This additional information reflected by

ECD can be exploited by EECDF . On the contrary, CA-TMES-Search uses b-level (differ-

ent basic scheduling attributes of list scheduling are discussed with details in [212]) to reflect

the relative urgency of tasks. The metric b-level is independent of the application deadlines

hence, the CA-TMES-Search is unaware of the deadline variations and is unable to respond

accordingly.

Under the condition MULT > 1 the energy-efficiency of ARSH − FATI rapidly increases.

ARSH − FATI being aware of processor energy performance profiles tends to map more

tasks on lower performance but energy-efficient processors. Contrarily CA-TMES-Search is

inadequate to avail energy performance profiles consequently, it maps more tasks on high per-

formance, lower energy-efficient processors. The ARSH − FATI schedules nodes in EECDF
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manner hence EGD can efficiently utilize the slack because nodes with longer ECD are not

blocked by nodes with shorter ECD. The same is not true for CA-TMES-Search. Furthermore,

uniform voltage scaling used by CA-TMES-Search is inefficient technique for a heterogeneous

system.

Thus, ARSH − FATI maintains its remarkable energy performance, robustness, and QoS for

real benchmarks at 0.95 ≤MULT ≤ 1.05.

6.2.4 Scenario 4

Now, we evaluate the energy performance of ARSH − FATI at NV FI = 4, PPI = 2 × 2,

M = 16, and CCR = 0.2− 3.0.

Figure 6.6 illustrates the impact of CCR on ARSH − FATI energy performance while CA-

TMES-Quick (represented by blue line) being used as a baseline. Evidently, ARSH − FATI

static scheduler consumes lesser energy compared to CA-TMES-Search due to performing task

mapping, scheduling, and voltage scaling in an integrated manner. With the increase in com-

munication volume, the energy consumption of ARSH − FATI reduces and reaches to its

minimum value at CCR = 1.0. ARSH − FATI maps the dependent tasks (parent and child

nodes) on the same processor when 0.2 ≤ CCR ≤ 1.0 in order to decrease the communication

energy. ARSH − FATI at CCR > 1 tends to map all the dependent tasks on the closest

possible processors which leads to a slight increase in energy consumption. Our static sched-

uler ARSH − FATI performs relatively better when 0.5 ≤ CCR ≤ 2.0 i.e. when network

contention is medium. Our static scheduler ARSH −FATI outperforms CA-TMES-Search in

terms of energy-efficiency for 0.2 ≤ CCR ≤ 3.0.

Table 6.3 summarizes the energy performance of ARSH − FATI compared to the base-line

state-of-the-art CA − TMES − Search and CA − TMES − Quick energy management ap-

proaches when NV FI = 4 and PPI = 2 × 2 are deployed in the multiprocessor computing

system. Energy consumption of the dependent DAG tasks decreases when computing plat-

form is changed from homogeneous to heterogeneous. The energy-efficiency further improves
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Table 6.3: ARSH-FATI energy performance summary

Our Static Scheduler CA-TMES-Search CA-TMES- Quick

(ARSH − FATI)Homogeneous 08% 15%
(ARSH − FATI)Heterogeneous 13% 20%
(ARSH − FATI)Heterogeneous+EGD 24% 30%

when voltage scaling technique EGD is deployed. Concisely, ARSH − FATI outperforms

CA-TMES-Search and CA-TMES-Quick in terms of energy savings while maintains higher

robustness.

6.3 Summary

In this chapter unlike other scheduling techniques presented in [95,173,175,213], we investigated

a harder scheduling problem i.e. contention-aware and energy-efficient DAG tasks scheduling

on heterogeneous VFI based NoC-MPSoC (VFI-NoC-HMPSoC) computing architecture with

DVFS-enabled processors. We proposed a novel static task scheduler ARSH-FATI that per-

forms task mapping, scheduling, and voltage scaling in an integrated manner while considering

the energy performance profiles of the processors and contention at the NoC links. Our meta-

heuristic ARSH-FATI can intelligently switch at run-time between explorative and exploitative

search modes for performance trade-off. We also integrated communication contention-aware

Earliest Edge Consistent Deadline First (EECDF) scheduling approach and Energy Gradient

Decent (EGD) algorithm for voltage scaling in ARSH-FATI to reduce the computation en-
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ergy consumption. We performed experiments on eight real benchmarks considering different

scenarios. Our static scheduler outperformed state-of-the-art CA-TMES-Search [95] and CA-

TMES-Quick [95] energy management approaches. Our task scheduling approach ARSH-FATI

achieved an average energy-efficiency of ∼ 24% and ∼ 30% over CA-TMES-Search and CA-

TMES-Quick respectively. Moreover, our static scheduling approach showed robustness while

maintained higher QoS and energy-efficiency at restricted deadlines.



Chapter 7

Energy-aware Clustering for Enhancing

Wireless Sensor Network Lifetime

In this chapter we develop a novel ARSH-FATI based Cluster Head Selection (ARSH-FATI-

CHS) algorithm integrated with a heuristic called Novel Ranked based Clustering (NRC) in

order to reduce the transmission energy consumption of the sensor nodes while efficiently en-

hancing Lifetime (LT) of the network. Unlike other population based algorithms ARSH-FATI-

CHS dynamically switches between exploration and exploitation of the search process during

run-time to achieve higher performance trade-off and maximally increase network LT. ARSH-

FATI-CHS considers the residual energy, communication distance parameters, and workload

during Cluster Heads (CHs) selection. We simulate our proposed ARSH-FATI-CHS and gen-

erate various results to determine the performance of the WSN in terms of network LT. We

compare our results with state-of-the-art PSO based clustering and we prove that our developed

ARSH-FATI-CHS energy-efficient sensor nodes clustering approach improves the network LT

by ∼ 25%. ARSH-FATI-CHS also outperforms LEACH and PSO-C while achieving an average

LT improvements of ∼ 60% and ∼ 40% respectively. Concisely in this chapter we reduce the

transmission energy consumption of the sensor nodes in WSN while in chapter 6 and chapter

5 we decreased their processing energy by proper tasks scheduling and mapping using DVFS

and DPM.

111
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In this chapter we investigate to reduce the transmission energy consumption of the sensor

nodes in WSN and present ARSH-FATI [96] based Cluster Head Selection (ARSH-FATI-CHS)

meta-heuristic integrated with Novel Ranked based Clustering (NRC) heuristic. The major

innovations and contributions of this chapter are given as follows:

1. We develop ARSH-FATI-CHS algorithm that can dynamically switch between exploration

and exploitation search modes during run-time of the CHs selection process for better

performance trade-off.

2. We present an algorithm NRC that estimate the LT of the sensor nodes and guides the

ARSH-FATI-CHS to a better and energy-efficient clustering to enhance the LT of the

network.

3. We propose a fitness function that considers various parameters such as residual energy,

the communications distance of the sensor nodes, and workload on the selected CHs in

the network.

4. We compare our clustering scheme with state-of-the-art PSO based approach presented

by Rao et al. [69]. We generate different results and achieve an overall LT improvement of

∼ 25% when simulated for various number of sensor nodes. Similarly, ARSH-FATI-CHS

outperforms LEACH [156] and PSO-C [151] while attains an average LT improvement of

∼ 40% and ∼ 60% respectively.

We organize the rest of the chapter as follows; Section 5.1 discusses the related work performed

so far. Section 5.2 presents the preliminaries. Section 5.3 explains our novel CHs selection and

clustering algorithms. Experimental results are presented in Section 5.4 followed by conclusion

of this chapter in Section 5.5.

7.1 ARSH-FATI based Cluster Head Selection

In this section we explain our CHs selection approach, ARSH-FATI-CHS for improving LT of

the network and reducing sensor nodes transmission energy consumption.
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The ARSH-FATI is a population based algorithm, hence first a fitness function is required to

determine the quality of each member of the population. In this chapter our objective is to

maximize the minimum LT or in simpler words maximize the LT of the network. Therefore,

the fitness function is the LT of the network:

f = min{LT (sni, chj) : ∀sni ∈ SNs} (7.1)

where the chj is the CH of sensor node sni.

Before we proceed with our discussion we define the following two terms and then explain

briefly explain the an important term LT:

1. Global Best, gBest, is a member of the population that has the highest fitness value

gBestF it in all generations.

2. Generation worst, πw is a member of the population that has the lowest fitness value

in a generation.

Before we describe the LT of the sensor network first we define the LT of a sensor node and a

CH. The LT of a sensor node sni ∈ SN when it chooses chj as its CH is defined as follows:

LT (sni, chj) =
⌊ eiresidual
etotal(l, di)

⌋
(7.2)

where di is the euclidean distance between the sni and chj and eiresidual is the residual energy

of sni.

The LT of a CH, chj is defined as follows:

LT (chj) =
⌊ ejresidual
ETX(l, dj) +

∑
sni∈ψ ERX(l)

⌋
(7.3)

where dj is the euclidean distance between the chj and Base Station (BS) and ψ is the set of

sensor nodes whose CH is chj.
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Though there are are different definitions to describe the LT of the wireless network but we use

the definition of LT given as follows:

LT Definition: According to this definition the LT of the network is the number of rounds

until the First Node Dies (FND).

We use FND as a metric to describe the LT of a network and produce various simulations

results based on this definition.

7.1.1 ARSH-FATI-CHS

The objective of ARSH-FATI-CHS described in Algorithm 8 is to find a set of CHs among the

sensor nodes such that energy consumption reduces and LT of the network maximize. ARSH-

FATI-CHS improves the network LT by maximizing the minimum LT in the network. The

steps followed by ARSH-FATI-CHS are explained as follows:

1. Setting the initial value of DR: We set DR to and initial value DR0 (Line 3). DR0

can take on any value between the range 0 < DR0 ≤ 1. The higher DR value means more

explorative search that leads to large and unconstrained step sizes. Compared to this a

small value of DR motivates a more exploitative search by allowing small and conservative

steps in the search space. Therefore we set DR0 = 0.4.

2. Population Generation: We initially generate a matrix Π of dimensions µ×m of zeros

(Line 1), where µ is the size of the population and m is the total number of CHs. We

use the notation Π[i, :] to access the ith member of the population. Each member of the

population has m elements and the notation Π[i, j] is used to access the jth element of ith

member. The value of an element is a positive integer that indicates a sensor node chosen

as a CH. For example if the value of an element is 2 this reflects that sensor node sn2 is

selected as a CH. Each member of the population reflects one possible CH selection and

the entire population reflects µ different CH selections.
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Algorithm 8: ARSH-FATI-CHS

input : Set SNs = {sn1, sn2, . . . , snn} of n sensor nodes, total number of CHs m, maximum
generations maxGens, β, T1, T2 and DR0 the initial value of DR

output: a set CHs = {ch1, ch2 . . . chm} of m CHs
1 Generate a matrices Π of zeros having dimensions µ×m ;
2 Generate a vector f of zeros having dimension µ× 1;
3 Set DR to DR0;
4 for η ← 1 to µ do
5 for i← 1 to m do
6 Π[η][i]← drand(0, 1)(n− 1) + 1e;
7 f [η]← Clustering(SNs,Π[η, :]);

8 Find the generation best πb and worst πw members;
9 gBest′ ← πb; T ← T2;

10 gBestF it′ ← fb; ; // where fb is the fitness value of πb
11 repeat
12 for η ← 1 to µ do
13 π ← Π[η, :];
14 for i← 1 to m do
15 r ← rand(0, 1); r1 ← rand(0, 1); r2 ← rand(0, 1);

16 π[i]←


min(abs(dπ[i] + r1(gBest[i]− π[i])−
r2(πw[i]− π[i])e),m) if r ≤ DR
π[i] otherwise

17 f ← Clustering(SNs,Π[η, :]);
18 if f > f [η] then
19 f [η]← f ; Π[η, :]← π;
20 if f > gBestF it′ then
21 gBestF it′ ← f ; gBest′ ← π;

22 else

23 if e
(f−f [η])

T > rand(0, 1) then
24 f [η]← f ; Π[η, :]← π;

25 DR←
{

min(DRλ , DRmax) if gBestF it > gBestF it′

max(λDR,DRmin) otherwise
;

26 gBestF it← gBestF it′; gBest← gBest′;
27 Update the generation worst πw; T ← λ1T ;

28 until termination;
29 CHs← gBest;

We generate and initial value of the member of the population by randomly selecting m

CHs among the sensor nodes and its fitness value is calculated by executing the clustering

algorithm 9. We repeat this for the other members of the population to generate an initial

population (Lines 4-7).

3. Population Refinement: We refine the initial population until the termination criteria
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satisfy (Lines 10-28). In each generation we update the members of the population. The

jth element of the ith member is updated as follows:

Π[i, j]←


min(abs(dΠ[i, j] + r1(gBest[i]−

Π[i, j])− r2(πw[i]− π[i])e),m) if r ≤ DR

Π[i, j] otherwise

where r1 and r2 are the random numbers. The term r1( gBest[i] − Π[η, i]) reflects the

likelihood that the member moves closer to global best and the term r2(πw[i] − Π[η, i])

reflects the likelihood that it moves away from the worst member of the population.

We use an acceptance probability function P (∆f, T ) to adopt or reject the new value of

the member Π[i, :] (Lines 18-24). The parameter ∆f is the difference of the new and old

fitness value of Π[i, :], ∆f = fnew − fold. parameter T is referred to as temperature. We

define function P (∆f, T ) as follows:

P (∆f, T ) =


1 if fnew > fold

e
∆f
T otherwise

(7.4)

When the new CH selection increase the network LT then it is always accepted. If the

new CH selection is worse than the current selection, probability still exists that may be

accepted. We have included this feature in ARSH-FATI-CHS to prevent it getting stuck

in a local optimum. The value of temperature T reduces in each iteration by multiplying

it with a cooling factor λ1, (0 < λ1 < 1) (Line 27). The value of λ1 is calculated from

maxGens:

λ1 =
(T1

T2

)
1

maxGens (7.5)

Where T2 is a very large number and T1 is a very small number. Initially the value of

temperature is set to T2 and it reduces to T1 as optimization finishes.

In each generation we update DR (Line 25):
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DR =


min

{
DR
λ
, DRmax

}
if gBest improves

max{λDR,DRmin} otherwise

(7.6)

where the λ is dimensional rate adaption parameter and its value lies within the range

0 < λ < 1. In this work λ is set to 0.98. The parameter λ sets the new value of the DR

during the optimization process.

The values of DRmin and DRmax are respectively the upper and lower bound on DR. The

values of DRmin and DRmax must be set subject to constraint 0 < DRmin < DRmax < 1.

We avoid excessive exploration and exploitation by setting DRmin and DRmax to 0.2 and

0.6 respectively.

4. Termination criteria: ARSH-FATI-CHS terminates if either the generation count

reaches maximum generation maxGens or no improvement is observed in gBest for con-

secutive β generations.

7.1.2 Cluster Formation

In this section we describe our cluster formation technique. Given a set of CHs the objective

of our cluster formation approach is to maximize the network LT. Algorithm 9 describes our

cluster formation approach. It is based on the ranking function Rank(sni, chj) that sensor

nodes use to choose a CH. The ranking function is based on the following parameters:

1. sni residual energy: Larger the residual energy of the sensor node larger its LT. There-

fore,

Rank(sni, chj) ∝ eiresidual (7.7)

2. sni total energy: The sensor node energy consumption negatively impacts its LT. The

sensor node should join the CH such that its transmission energy minimizes. Therefore,

Rank(sni, chj) ∝
1

etotal(l, di)
(7.8)
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3. chj residual energy: The sensor node sni should join the CH that has large residual

energy. Therefore,

Rank(sni, chj) ∝ ejresidual (7.9)

4. chj total energy: The CH total energy consumption negatively impacts its LT. There-

fore,

Rank(sni, chj) ∝
1

etotal(l, dj)
(7.10)

Combining equations (7.7), (7.8), (7.9) and (7.10) we get the following function:

Rank(sni, chj) ∝
eiresiduale

j
residual

etotal(l, di)etotal(l, dj)
(7.11)

Rank(sni, chj) = κ
⌊ eiresidual
etotal(l, di)

⌋⌊ ejresidual
etotal(l, dj)

⌋
(7.12)

Rank(sni, chj) = κLT (sni, chj)LT (chj) (7.13)

where κ is the constant of proportionality. We assume κ = 1 here without any loss of generality

and performance.

Algorithm 9 describes our cluster formation approach.It is a greedy heuristic algorithm that at

each stage finds a set of valid choices and makes a locally optimal choice.

The following two steps repeat until each sensor node has chosen a CH:

1. Step 1 (Search): In the this step each sensor node that has not chosen its CH tentatively

selects one by one each CH and calculates the rank using equation (7.13) (Lines 3-6). Then

find the sensor node sni and CH chj pair that has the highest value of the rank.

2. Step 2 (Choose): In this step sensor node sni joins chj
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Algorithm 9: Clustering

input : A set SNs = {sn1, sn2, . . . , snn} of n sensor nodes and a set
CHs = {ch1, ch2 . . . chm} of m CHs

1 repeat
2 Step 1: Search
3 for each sni ∈ SNs whose CH has not been selected do
4 for each chj ∈ CHs do
5 Tentatively select chj as CH of sni;
6 Calculate the rank, Rank(sni, chj) using equation (7.13);

7 Find the sensor node sni and the CH, chj pair with the highest value of the rank;
8 Step 2: Choose
9 Choose chj as the CH of sni;

10 until each sensor node has selected a CH ;
11 return min{LT (sni, chj) : ∀sni ∈ SNs};

7.2 Experimental Results and Discussions

The experimental setup is explained in details in Section 4.3.1.2. In this section we generate

different results considering various scenarios. The results are compared with state-of-the-

art clustering approaches to prove the superiority of ARSH-FATI-CHS over other existing

technique.

We consider different scenarios for our simulations to generate various results. The list of

abbreviations used in results are listed in Table 7.1. The parameter such as NSNs is changed

in the sensing field/target area and results are produced. We also empirically observe IoBSL

and IoNCHs in the results.
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Table 7.1: List of abbreviations used in results

Parameter Description

TA Target Area

BS Base Station

NSNs Number of Sensor Nodes

NCHs Number of Cluster Heads

FND First Node Death

ISNE Initial Sensor Node Energy

NoR Number of Rounds

NoANs Number of Alive Nodes

IoBSL Impact of Base Station Location

IoNCHs Impact of Number of Cluster Heads

7.2.1 Scenario 1(NoR)

In this scenario we set TA = 200 × 200 m2, NSNs = (100, 200, 300, 400), ISNE = 2.0 J,

BS = (50, 50), and NCHs = (10%, 15%, 20%, 25%) while we compare the performance of

ARSH-FATI-CHS combined with NRC in terms of NoR after FND in the network. This

scenario basically describes the LT of the network. LT is an important metric to evaluate the

performance and efficiency of an algorithm as discussed in detail by Wang et al. [214].

Figure 7.1 demonstrates the performance improvement of ARSH-FATI-CHS integrated with

NRC over the existing approaches. A set of different sensor nodes are used for simulations such

as, Figure 7.1(a) deploys NSNs = 100, similarly, Figure 7.1(b) uses NSNs = 200 while Figure

7.1(c) and Figure 7.1(d) deploy NSNs = 300 and NSNs = 400 respectively. ARSH-FATI-CHS

outperforms clustering approaches such as LEACH, PSO-C, and PSO-ECHS. ARSH-FATI-CHS

achieves an average improvement of ∼ 60%, ∼ 40%, and ∼ 25% over LEACH, PSO-C, and

PSO-ECHS respectively in terms of NoR after FND. This improvement of ARSH-FATI-CHS

over LEACH occurs because LEACH is a probabilistic approach and randomly selects CHs
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which results into uneven distribution of clusters so, increasing the energy consumption of the

network while reducing the overall performance i.e. LT of the network. Moreover, LEACH

can select a sensor node with least residual energy as a CH thus, it adversely impacts the NoR

after FND. Contrarily our fitness function in ARSH-FATI-CHS considers the residual energy,

different distance parameters, and work load on the CHs during the cluster formation. Similarly,

ARSH-FATI-CHS outperforms population based clustering approach, PSO-C. Though, PSO-

C improves the intra-cluster distance i.e. the Euclidian distance of the sensor nodes to their

selected CHs during cluster formation but neglects the workload on them. Compared to PSO-

ECHS our proposed clustering approach ARSH-FATI-CHS achieves higher NoR after FND.

ARSH-FATI-CHS also performs better solution space exploration during the cluster formation.

Moreover, it is stagnation controlled meta-heuristic and determines the global optimal solution.

In other words ARSH-FATI-CHS efficiently maximizes the minimum LT of a sensor node in the

network. ARSH-FATI-CHS associates a sensor node having the least residual energy to a CH

such that it consumes minimal possible transmission energy for data transmission. Concisely,

ARSH-FATI-CHS performs better than LEACH, PSO-C, and PSO-ECHS in terms of NoR after

FND when different sensor nodes and CHs are deployed in the network.

7.2.2 Scenario 2(NoANs)

In this scenario 2 we set the parameters as TA = 200× 200 m2, NSNs = (100, 200, 300, 400),

ISNE = 2.0 J, BS = (50, 50), and NCHs = 25%. We observe the performance of the ARSH-

FATI-CHS in terms of NoANs. Specifically this scenario describes the amount of alive nodes

after certain number of rounds.

Figure 7.2 shows the performance analysis of ARSH-FATI-CHS integrated with NRC over

LEACH, PSO-C, and PSO-ECHS in terms of NoANs. The x-axis represents NoR and y-

axis denotes the NoANs. Figure 7.2 (a) and Figure 7.2 (b) show the NoANs comparison

for NSNs = 100 and NSNs = 200. Similarly Figure 7.2 (c) and Figure 7.2 (d) represent

the simulation results for NSNs = 300 and NSNs = 400 respectively. ARSH-FATI-CHS

significantly improves the NoANs when compared to LEACH, PSO-C, and PSO-ECHS. ARSH-
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(a) NoR after FND at NSNs = 100
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(b) NoR after FND at NSNs = 200
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(c) NoR after FND at NSNs = 300
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(d) NoR after FND at NSNs = 400

Figure 7.1: Performance analysis in terms of NoR after FND using different NSNs

FATI-CHS attains an average efficiency of ∼ 60%, ∼ 40%, and ∼ 25% over LEACH, PSO-C,

and PSO-ECHS respectively. Unlike LEACH, ARSH-FATI-CHS performs re-clustering when

death of a CH occurs and associates the sensor nodes to other CHs in the network. On

the contrary the biggest drawback of LEACH is that when a CH dies then that particular

cluster becomes useless and the gathered data would never reach to the destination i.e. BS.

Furthermore, LEACH may select a CH at the boundary of the network which potentially can

lead to the improper clustering resulting performance degradation. Moreover, ARSH-FATI-

CHS also performs uniform distribution of CHs. Furthermore, as the NoR increases the residual

energy of the sensor decreases. Subsequently, effective CHs selection plays an important role

to increase the LT of the network. Our meta-heuristic performs efficient CHs selection using

a novel fitness function. Therefore, our algorithm ARSH-FATI-CHS significantly improves the

NoANs compared to LEACH. Now, compared to PSO-C our meta-heuristic produces better

results because of our fitness function not only considers the intra-cluster distance but also the

workload on the CHs. Similarly, it outperforms PSO-ECHS by dynamically switching between

an exploitative and exploitative search modes to achieve better solution space search. Concisely,
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though ARSH-FATI-CHS is a simple but yet effective approach for CHs selection and enhancing

the overall LT of the network.

(a) NoAN at NSNs = 100 (b) NoAN at NSNs = 200

(c) NoAN at NSNs = 300 (d) NoAN at NSNs = 400

Figure 7.2: NoAN using different NSNs and NCHs = 25% at BS = (50, 50)

7.2.3 Scenario 3(IoBSL and IoNCHs)

We set the parameters as TA = 200× 200 m2, NSNs = (100, 200, 300, 400), and ISNE = 2.0

J. In this scenario 3 we observe the impact of the BS location and variations in CHs percentage

on NoR after FND. These two specific cases are discussed as follows:

1. First we consider NCHs = 25% and BS = (50, 50), (100, 100), (150, 150) for observing

IoBSL on NoR after FND. Figure 7.3(a) demonstrates IoBSL on NoR after FND. The

horizontal axis shows NoSNs and the vertical axis represents NoR. The NoR depends

on the position of the BS. The NoR significantly increases when BS is positioned at the

center of the network i.e. (100, 100). The NoR decreases when BS is moved towards

positions (50, 50) and (150, 150). This performance degradation occurs because data
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packets from the selected CHs travel longer distance when BS is positioned at the coroner

of the network. Thus, transmitting the gathered data for a longer distance adversely

affects the LT and therefore, FND occurs at lower NoR. An average ∼ 70% improvement

in terms of NoR after FND occurs when BS is placed at the centre compared to when BS

is positioned at the corners of the network. The bottom line is that the ideal place of BS

is the centre of the network.

2. Second to analyze the IoNCHs on network performance we consider BS = (50, 50) and

NCHs = 10%, 15%, 20%, 25%, 30% as shown in Figure 7.3(b). The x-axis denotes

NSNs while y-axis represents NoR after FND. A significant improvement in NoR occurs

when percentage of CHs is increased. The NoR increases until reaching CHs = 25%

while starts decreasing at CHs = 30%. It is a proven fact that CHs usually consume

more energy as compared to non-CHs because they collect data from the sensor nodes

within the cluster and transmit it to the BS [69]. If lower percentage of CHs are used

then clusters with higher NSNs are formed. This increases the receiving and transmission

energy of the CH and there is higher chance of dying quickly. Therefore, NoR increases

when higher number of CHs are used in the network. In result it reduces the workload on

the CHs and prolongs the overall LT of the network. An average ∼ 25% improvement in

NoR is observed when CHs = 15 is changed to CHs = 25 in the network. It is also worth

noticing that after certain percentage of CHs despite of improvement in NoR, it starts

decreasing. This reduction in NoR is due to the fact that the number of transmissions to

the BS increases which can adversely affect the NoR. Subsequently, an optimal number

of CHs are required to maximize the overall NoR and LT of the network.

Concisely we achieve an average LT improvement of ∼ 25%, ∼ 40%, ∼ 60% over PSO-ECHS

PSO-C, and LEACH when ARSH-FATI-CHS integrated with NRC heuristic is used for cluster

formation. Moreover, we also observed that LT of the network also depends on the position of

the BS and the percentage of CHs deployed in the network. The LT performance of ARSH-

FATI-CHS over other existing techniques is summarized in Table 7.2.
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Figure 7.3: Impact of base station and cluster heads on LT of the network

Table 7.2: ARSH-FATI-ECHS performance improvement comparison

Clustering Technique ARSH-FATI-CHS

LEACH 60%
PSO-C 40%
PSO-ECHS 25%

7.3 Summary

Transmission energy consumption reduction is one of the major concerns in designing clustering

algorithms for large-sized Wireless Sensor Networks (WSNs). The existing population based

meta-heuristics are complex and need different parameters tuning to achieve higher energy-

efficiency. Furthermore, state-of-the-art clustering approaches neglect to consider residual en-

ergy of the nodes, different distance parameters, and workload on the Cluster Heads (CHs)

to enhance LT of the network. In this chapter we developed ARSH-FATI based Cluster Head

Selection (ARSH-FATI-CHS) integrated with a heuristic called Novel Ranked based Cluster-

ing (NRC) for efficient cluster formation to enhance the overall LT of the network. ARSH-

FATI-CHS is a simple yet effective clustering algorithm that dynamically switches between the

exploitative and explorative search modes for achieving higher performance trade-off. Our fit-

ness function considers various parameters such as residual energy, node distance, base station

distance location, and work load on the CHs. The experimental results show that ARSH-FATI-

CHS outperforms the existing population based clustering algorithms in terms of network LT

enhancement. ARSH-FATI-CHS achieves an average LT improvement of 60%, 40%, and 25%

over LEACH, PSO-C, and PSO-ECHS. Furthermore, we also investigated that the position of
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Base Station (BS) and percentage of CHs in the network also play an important role in the

improvement of LT.



Chapter 8

Conclusion and Future Work

Precisely, we successfully achieved our objectives to reduce the energy consumption both at

the node and network level. We summarize our contributions and then discuss several future

research problems related to energy-aware scheduling and nodes clustering for enhancing the

overall Lifetime (LT) and energy savings of the network.

8.1 Conclusion

Wireless Sensor Network (WSN) is one of the main constituents of Internet-of-Things (IoT) and

provides assistance to humans and machines for interacting with the environment and real world

events. WSN is composed of a number of SNs that are the integration of digital electronics,

wireless communication and micro-electro-mechanical systems. The SNs have the capability to

sense the physical or environmental conditions, process the information and communicate with

each other. They are assimilated through a wireless network and data synthesis is performed

to acquire accurate and meaningful information. The SNs are energy constrained and normally

powered by a battery source with limited residual energy.

System-on-Chip (SoC) is gaining popularity because it integrates power management circuits,

multiprocessor functions, input and output peripherals on a small sized single chip. Moreover,
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SoC consumes low power and exhibits high computational capability. Multiprocessor System-

on-Chips (MPSoCs) emerged due to the demand for higher power computation and throughput.

These MPSoCs can be either homogeneous or heterogeneous based upon the nature of the pro-

cessors utilized. The heterogeneous MPSoCs contain interconnected processors with different

power performance profiles. IoT applications exhibit diversity and heterogeneous MPSoCs

have the advantage of adapting hardware modules required for the application additionally

they achieve higher energy-efficiency compared to homogeneous processors.

The ITRS report shows that MPSoCs will have enormous number of processors in the future

required to process real-time data extensive applications either at the edge-device or edge/fog

level of the network. Thus, the traditional bus based interconnect for inter-processors commu-

nications on chip architecture will become bottle neck due to the poor scalability and limited

band width.The Network-on-Chip (NoC) based communication has several advantages over hi-

erarchical (STBus, Advance Micro-controller and Bus Architecture) as well as traditional bus

architecture in terms of scalability, flexibility and performance [35].

Modern embedded systems use MPSoCs as the computing platform for real-time computational

extensive applications in WSN due to their higher performance, exceptional Quality-of-Service

(QoS), and remarkable reliability. Reducing energy consumption in these modern embedded

systems used as SNs is one of the elementary objective because higher energy consumption

not only increases the heat dissipation and carbon footprints but also decreases the overall

network lifetime. Dynamic Voltage and Frequency Scaling (DVFS) is a useful technique ap-

plied on embedded systems for minimizing the processing energy consumption by dynamically

varying the operating frequency and supply voltage. Dynamic Power Management (DPM) is

another powerful technique to reduce the energy consumption. DPM shutdowns the processor

or switches it to a low-power state i.e. sleeping mode when it is in an idle state and similarly

wakes it up when needed.

Scheduling and mapping integrated with DVFS and/or DPM can be used to properly allocate

set of tasks on the processors of MPSoC architecture in order to reduce energy consumption.

Real-time applications impose some restrictions such as precedence and deadline constraints.
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The consequences on the application can be observed when the task deadlines are not met.

Precedence constraints enforce to perform application task ordering. Thus, these constraints

complicate the task mapping and scheduling on multiprocessor system and consequently, this

N-hard problem of scheduling becomes more challenging. Heuristics are required to find a near

optimal solutions for energy-aware scheduling for task with precedence and deadline constraints.

The communication unit of a sensor node consumes higher energy compared to the sensing and

processing units [67,68]. Therefore, sensor nodes clustering is an effective technique deployed to

increase the energy-efficiency of the WSN. In clustering process, the non-cluster nodes basically

join a neighboring Cluster Head (CH) to form a cluster. This process of cluster formation plays

a significant role to decrease the energy consumption of a network. Clustering in WSN not

only provides data aggregation, scalability, bandwidth conservation but also prolongs LT of

the network by decreasing the communication energy consumption of the sensor nodes. In

clustering process, the sensor nodes are partitioned into groups called clusters. Where each

cluster has its own leader known as CH. The CH collects the data within the cluster from its

member sensor nodes, aggregates the collected data and transmits it to the Base Station (BS).

Data collected by the CH is either transmitted directly to the BS or through intermediate CHs

and/or sensor nodes i.e. using multi hop communication. The information from the BS is

transmitted to the Cloud for further processing and visualization purposes.

We investigate three distinct problems in this thesis. We study the contention-aware energy-

efficient scheduling for set of task with deadline and precedence constraints on heterogeneous

NoC-MSoCs. The problem of dependent task scheduling on heterogeneous NoC-MPSoCs with

processors having different energy performance profiles is also highlighted as a future research

direction by Ishak in [215]. Furthermore, we also investigate energy-efficient clustering of the

sensor nodes to increase the lifetime of the network.

1. Contribution of Chapter 5: In this chapter, we investigate contention-aware and

energy-efficient static scheduling using heterogeneous NoC-MPSoC for real-time tasks

with an individual deadline and precedence constraints. Unlike other schedulers task or-

dering, mapping, and voltage assignment are performed in an integrated manner to mini-



130

mize the processing energy while explicitly reduce contention between the communications

and communication energy. Furthermore, both dynamic voltage and frequency scaling

and dynamic power management are used for energy consumption optimization. The de-

veloped Contention-aware Integrated Task Mapping and Voltage Assignment (CITM-VA)

static scheduler performs tasks ordering using Earliest Latest Finish Time First (ELFTF)

strategy that assigns priorities to the tasks having shorter Latest Finish Time (LFT) over

the tasks with longer LFT. It remaps every task to a processor and/or discrete voltage

level that reduces processing energy consumption. Similarly, the communication energy

is minimized by assigning discrete voltage levels to the NoC links. Further, total en-

ergy efficiency is achieved by putting the processor into a low-power state when feasible.

Moreover, this algorithm resolves the contention between communications that traverse

the same link by allocating links to communications with higher priority. The results

obtained through extensive simulations of real benchmarks demonstrate that CITM-VA

outperforms state-of-the-art scheduling algorithms and achieves an average ∼ 30% to-

tal energy improvement. Additionally, it maintains high Quality-of-Service (QoS) and

robustness for real-time applications.

2. Contribution of Chapter 6: In this chapter, we study energy-efficient and contention-

aware static scheduling for tasks with precedence and deadline constraints on hetero-

geneous VFI based NoC-MPSoCs (VFI-NoC-HMPSoC) with DVFS-enabled processors.

Unlike the existing population-based optimization algorithms, we proposed a novel pop-

ulation based algorithm called ARSH-FATI that can dynamically switch between ex-

plorative and exploitative search modes at run-time. Our static scheduler ARHS-FATI

collectively performs task mapping, task ordering, and voltage scaling. Consequently, its

performance is superior to the existing state-of-the-art approach proposed for homoge-

neous VFI based NoC-MPSoCs. We also developed a communication contention-aware

Earliest Edge Consistent Deadline First (EECDF) task ordering algorithm and gradient

descent inspired voltage scaling algorithm called Energy Gradient Decent (EGD). We

introduced a notion of Energy Gradient (EG) that guides EGD in its search for islands

voltage settings and minimize the total energy consumption. Conducted the experiments
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on 8 real benchmarks adopted from Embedded Systems Synthesis Benchmarks (E3S).

Our static scheduling algorithm, ARSH-FATI outperformed state-of-the-art heuristics

and achieved an average energy-efficiency of ∼ 24% and ∼ 30% over CA-TMES-Search

and CA-TMES-Quick respectively.

3. Contribution of Chapter 7: Wireless Sensor Network (WSN) consists of a large num-

ber of sensor nodes distributed over a certain target area. The WSN plays a vital role in

surveillance, advanced healthcare, and commercialized industrial automation. Enhancing

energy-efficiency of the WSN is a prime concern because higher energy consumption re-

stricts LT of the network. Clustering is a powerful technique widely adopted to increase

LT of the network and reduce the transmission energy consumption. In this chapter

we develop a novel ARSH-FATI based Cluster Head Selection (ARSH-FATI-CHS) algo-

rithm integrated with a heuristic called Novel Ranked based Clustering (NRC) in order

to reduce the communication energy consumption of the sensor nodes while efficiently

enhancing LT of the network. Unlike other population based algorithms ARSH-FATI-

CHS dynamically switches between exploration and exploitation of the search process

during run-time to achieve higher performance trade-off and maximally increase network

LT. ARSH-FATI-CHS considers the residual energy, communication distance parameters,

and workload during CHs selection. We simulate our proposed ARSH-FATI-CHS and

generate various results to determine the performance of the WSN in terms of network

LT. We compare our results with state-of-the-art Particle Swarm Optimization (PSO)

based clustering and we prove that our developed ARSH-FATI-CHS energy-efficient sen-

sor nodes clustering approach improves the network LT by ∼ 25%. ARSH-FATI-CHS also

outperforms LEACH and PSO-C while achieving an average LT improvements of ∼ 60%

and ∼ 40% respectively. Concisely in this chapter we reduced the transmission energy

consumption of the sensor nodes in WSN while in chapter 5 and chapter 6 we decreased

their processing energy consumption by proper tasks scheduling using DVFS and DPM.
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8.2 Future Work

Though we have made significant advances in the field of energy-aware dependent task schedul-

ing on Network-on-Chip based Multiprocessor System-on-Chips (NoC-MPSoCs) and energy-

efficient clustering for sensor nodes in Wireless Sensor Network (WSN) however, there are

several other open research problems that can be addressed in the future.

1. Coarse-grained software pipelining also known as re-timing is a powerful technique applied

at the task level to transform the intra-period precedence constraints into inter-period

precedence constraints of the application represented by a Directed Acyclic Graph (DAG).

Re-timing primarily reduces the wasted slack and it can be applied to periodic/streaming

applications. Re-timing is and effective system level energy optimization technique that

can be integrated with DVFS for achieving maximum energy savings. However, unfor-

tunately re-timing causes increased latency and memory overhead. Memory-overhead

introduced due to re-timing is a considerable issue because in the worst case it may in-

troduce violations of the memory capacity bounds. One of the future research problem

can be integrating re-timing technique with our static scheduling approach while aiming

to decrease the memory-overhead and prologue along with energy consumption reduction

for dependent tasks with precedence and deadline constraints. Moreover, the voltage

levels for both the tasks and communication messages are applied using heuristic in our

scheduling approach. An Integer Linear Programming (ILP) can also be deployed in our

scheduling approach to assign discrete voltage and frequency levels to the tasks for ex-

ecutions on the processors. Similarly this ILP based voltage scaling technique can also

be deployed for reducing the NoC links energy consumption for inter-processor communi-

cations. Furthermore, the optimal voltage and frequency levels can be determined using

Linear Programming (LP) for reducing both the processing and inter-processor communi-

cations. This LP based voltage scaling approach can provide maximum energy-efficiency

as it would apply the voltage level at which there is no idle slack available in the pro-

cessor. However, the disadvantage of this continuous frequency assignment approach is

that unlimited number of frequencies would be required to execute the tasks or perform
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communications on NoC. The extended our contention-aware energy-efficient static task

scheduling scheme can be tested on various other types of tasks e.g. DAG, Conditional

Task Graphs (CTGs) and sporadic tasks.

2. One of our future research investigation would be performing energy-aware online task

scheduling for tasks with precedence and deadline constraints on heterogeneous NoC-

MPSoCs. In online scheduling the application can change at run-time moreover, there

no prior knowledge available about the actual execution time during run-time. Thus,

online scheduling problem is even more complex and harder than offline task scheduling.

A task in online scheduling can execute before its worst case execution time subsequently,

generating an idle slack in the processor which can be utilized by using voltage scaling

technique. Moreover, Dynamic Power Management (DPM) can be deployed to further

reduce the energy consumption and minimize the idle slack. One of the biggest challenge

in the designing online algorithms for energy-aware task scheduling is the overhead and

degree of complexity. Subsequently, an energy-aware online scheduling approach with low

degree of complexity for NoC-MPSoCs can be developed in the future. Moreover, though

both the DVFS and DPM are energy saving techniques however a balanced integration

of both is necessary for total energy consumption reduction. For example, a task can be

run on high frequency and DPM can be used to switch the processor into sleep mode

for static power consumption reduction but it will increase switching overhead and the

dynamic power consumption. Similarly using lower voltage level for task execution may

reduce the dynamic power but there may be still some idle slack available. Therefore, an

optimal integration of both the energy savings techniques would be required to develop

low complexity energy-efficient online scheduling technique for dependent tasks.

3. Often the energy consumed on information transmission from sensors nodes to the based

station is higher than the processing energy. Therefore, clustering approach is adopted

to intelligently divide the sensor nodes in groups for communication energy reduction. In

chapter 5 we performed heuristic based energy-aware clustering to efficiently enhance the

energy-efficiency and network lifetime. We performed only static energy-aware clustering,

this work can be extended to perform dynamic energy-efficient clustering. Low complexity,
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efficient, and fast running heuristic can be developed for dynamic clustering. Moreover,

experimental results can be produced for different scenarios such as when the base station

is static while sensor nodes are dynamic and when both the sensor nodes and base station

are dynamic. Security and protection of privacy is also one of the major challenges in

Internet-of-Things (IoT). The IoT being as a technological revolution has already started

to integrate in our everyday lives where a large volume of data is collected and distributed.

This has also attracted malicious intruders to access the valuable information. If the

data and information are not properly handled then there is a high risk of attack in the

process of data transmission and sharing which results in a serious security threat. Thus

our clustering approach can also be integrated privacy protection mechanism to provide

energy-aware and secure environment. Furthermore, we transmit the gathered data from

CHs to the BS in one hope Thus, multi-hop routing can be adopted by using the shorted

Euclidean distance between the CH and BS.

8.3 Summary

We successfully reduced the overall energy consumption of a wireless network using task schedul-

ing and nodes clustering. Two computing architecture NoC-MPSoC and VFI-NoC-MPSoC have

been deployed for task scheduling. Furthermore, clustering is formulated as a scheduling prob-

lem to reduce the transmission energy consumption. Summarizing the future work re-timing

techniques can be applied at the application level to increase the degree of parallelism and

efficiently utilizing the processors slack. Online algorithms for tasks mapping and scheduling

can be developed for DAG tasks with deadline and precedence constraints. Similarly at the

network level multi-hop routing can be used to further reduce the transmission energy of the

CHs. Moreover, energy-aware clustering algorithms can be developed for scenario when sensor

nodes and BS are changing their positions.
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[212] T. Hagras and J. Janeček, “Static vs. dynamic list-scheduling performance comparison,”

Acta Polytechnica, vol. 43, no. 6, 2003.

[213] J. D. Monte and K. R. Pattipati, “Scheduling parallelizable tasks to minimize make-span

and weighted response time,” IEEE Transactions on Systems, Man, and Cybernetics-Part

A: Systems and Humans, vol. 32, no. 3, pp. 335–345, 2002.

[214] J. Wang, Y. Cao, B. Li, H.-j. Kim, and S. Lee, “Particle swarm optimization based

clustering algorithm with mobile sink for wsns,” Future Generation Computer Systems,

vol. 76, pp. 452–457, 2017.

[215] S. A. Ishak, Energy-Aware Task Scheduling for MPSoC-based Embedded Systems. PhD

thesis, University of New South Wales, Sydney, Australia, 2018.


	Abstract
	Introduction
	Internet-of-Things (IoT)
	Wireless Sensor Network (WSN)
	MPSoCs in IoT
	Multimedia Surveillance
	Healthcare and Automated Assistance
	Environment Monitoring
	Industrial Applications

	Challenges
	Research Approach

	Aim and Objectives
	Contributions
	Thesis Organization

	Background Study
	Sensor Nodes Architectures
	Architecture
	Homogeneous MPSoCs
	Heterogeneous MPSoCs 

	Interconnect
	Bus
	NoC
	Bus based MPSoCs
	 NoC based MPSoCs
	Voltage Frequency Islands based MPSoCs


	Task Scheduling
	System Level Energy Management Techniques
	Other Energy Reduction Techniques

	Summary

	Literature Review
	Scheduling using NoC-MPSoCs
	Computational Energy Reduction
	Inter-processor Communication Energy Reduction
	Total Energy Savings

	Scheduling using VFI-NoC-MPSoC
	Independent Task Scheduling
	Single-processor Per VFI 
	VFI based MPSoC

	Sensor Nodes Clustering
	Summary

	Research Methodology
	Preliminaries
	Extended Graph
	Multiprocessor Computing Platforms
	Non-VFI based NoC-MPSoC
	VFI based NoC-MPSoC

	Wireless Sensor Network

	Research Method
	Scheduling
	Task Mapping
	Task Ordering
	Voltage Scaling

	Clustering

	Experimental Setup and Data Collection
	Experimental Setup
	Node Level Experimental Setup
	Network Level Experimental Setup

	Data Collection

	Summary

	Energy-aware Static Task scheduling on Heterogeneous NoC-MPSoCs
	 Contention and Energy-aware Approach
	Results and Discussions
	CITM-VA Energy performance
	54 NoC
	64 NoC
	74 NoC
	Robustness and QoS
	Energy and MM


	Summary

	Energy-aware Static Task Scheduling on Heterogeneous VFI-NoC-MPSoCs
	Static Contention-aware Energy-efficient Scheduling
	Earliest Edge Consistent Deadline First (EECDF) Algorithm
	Energy gradient descent (EGD)


	Experimental Results and Discussions
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4

	Summary

	Energy-aware Clustering for Enhancing Wireless Sensor Network Lifetime
	ARSH-FATI based Cluster Head Selection
	ARSH-FATI-CHS
	Cluster Formation

	Experimental Results and Discussions
	Scenario 1(NoR)
	Scenario 2(NoANs)
	Scenario 3(IoBSL and IoNCHs)

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Summary


