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Abstract—The extraction of meaningful, accurate, and relevant
information is at the core of Big Data research. Furthermore, the
ability to obtain an insight is essential in any decision making
process, even though the diverse and complex nature of big data-
sets raises a multitude of challenges.

In this paper, we propose a novel method to address the
automated assessment of influence among concepts in big data
sets. This is carried out by investigating their mutual co-
occurrence, which is determined via topologically reducing the
corresponding network. The main motivation is to provide a
toolbox to classify and analyse influence properties, which can
be used to investigate their dynamical and statistical behaviour,
which would potentially lead to a better understanding and
prediction of the properties of the system(s) they model.

An evaluation was carried out on two real-world data-sets,
which were analysed to test the capabilities of our system.
The results show the potential of our approach, indicating both
accuracy and efficiency.

Keywords-Knowledge discovery; Large-scale Networks; Infor-
mation extraction; Data analytics

I. INTRODUCTION

Big Data is increasingly influencing the way we obtain,
assess, and manage information. In particular, a very powerful
and efficient approach to obtain an insight into real-world Big
Data, is by determining the main properties that characterise
such data-sets, and the factors that influence them.
There is extensive research on the automated extraction of
causal relations between semantic objects, such as events,
people, entities, factual data, etc. [4]. Evidence of causality
is used in a variety of contexts, such as Bayesian networks
(BNs), and decision trees. However, causality is a very strong
statement regarding two or more concepts, which implies a
direction (“A causes B” is not the same as “B causes A”),
a general agreement of the definition of causality, e.g. what
specific terms indicate a causal relationship, and a lack of
ambiguity, especially in the automated extraction from textual
sources. Although a detailed discussion of all the aspects
related to causality goes beyond the scope of this paper
(refer to [19] for an overview), we assume that influence
describes a somehow weaker, yet more general concept of
causality, at least from a semantic point of view. More
specifically, influence between two or more objects may not be
tied to a direction, or a well-defined, unambiguous semantic

definition. Rather than giving its definition in terms of its
specific semantic attributes, we regard the influence between
two objects as a type of relation based on of their mutual
co-occurrence. Clearly, co-occurrence does not imply any
influence, since their mutual existence might be completely
unrelated. However, when data-sets are modelled by networks
with specific properties, such as scale-free, nodes refer to data
that co-occur according to the types of connections defined
by mutual edges. In particular, this kind of co-occurrence is
likely to be associated with influence. In other words, when
analysing data, if we can determine the co-occurrence of two
or more elements, we can extract some intelligence which
could be of significant importance. As introduced in [23], big
data-sets can be topologically reduced to determine whether
the data follow a scale-free or a purely random structure.
This allows to classify the connections among elements in
the data-set according to the properties associated with the
corresponding network topology. In particular, if a data-set is
best approximated by a random network then the existence of
the edges follows a purely random distribution. In other words,
it is assumed that there is no influence between the elements
of the data-set. In fact, if a set of events is indeed random, no
determined links between its elements can be established.
In this paper, we introduce a novel method to assess influence
among concepts, based on co-occurrence, in big data-sets by
approximating their structures with a topologically reduced
network extracted from such data-sets. More specifically, given
a real network, we provide a method to assess whether it can
be approximated as either a random, or scale-free network to
allow a better understanding of the associated data. In fact,
when a data-set is shown to follow a scale-free topology, then
the different elements exhibit well-defined relations. Further-
more, they also have the preferential attachment property [3].
Broadly speaking, this is equivalent to the concept that highly
connected nodes are more likely to have new connections
than less connected nodes. This property will be exploited
in the method proposed in this paper, when the dynamical
properties of topologically reduced networks are investigated.
Subsequently, the level of influence between any two nodes is
assessed, via the introduction of a suitably defined measure.
The main motivation of this paper is twofold. We first deter-
mined whether a real-world network can be modelled by a
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specific network with reduced topology, as either a random or
scale-free network. If the latter is the best fit, we then propose
a method to assess the likelihood of an influence relation be-
tween two events based on their co-occurrence. Furthermore,
our investigation does not only focus on structured data-sets,
as we provide a text analysis capability to analyse textual
information contained in the dataset(s). Such information is
then converted into nodes in the extracted network to provide
a full analysis of the relevant information [23].
The paper is structured as follows: in sections II and III an
overview of the necessary theoretical background is discussed.
Section V-A focuses on the main contribution discussed in this
paper, namely influence measure and assessment. Section VI
introduces the dynamical properties associated with a real-
world Big Data system. Finally, sections VII and VIII address
the evaluation and interpretation of the results, as well as future
directions.

II. BIG DATA

Data is created around us at an increasing pace, raising
complex challenges and crucial opportunities in the way we
extract, assess and manage information. The ability to provide
cutting-edge methods and tools to address the complexity
posed by Big Data is extremely valuable, especially when
applied to multi-disciplinary contexts [2].
Big Data is defined by the following properties, also called
the 4 V’s [13]:
• Volume: the amount of data that is daily produced

is impressive. The combination of real-time data with
historical ones, can provide a crucial insight into the most
appropriate and best decision process.

• Velocity: the information flow is continuously changing
and pouring from a variety of data sources. The more of
it that can be processed and assessed within specific time
constraints, the better intelligence can be provided. How-
ever, this is raises a multitude of challenges, especially
when combined with a large volume of data.

• Variety: data take a variety of shapes and forms. Streams
of information can be collected from audio or video
sources, as well as from sensors and textual sources, to
name but a few. This diversity requires suitable tools and
techniques that can be applied to efficiently deal with the
different data types.

• Veracity: data contain erroneous, contradictory and miss-
ing information which potentially undermine the whole
process of acquisition, assessment, and management of
information. Therefore, tackling such issue is at the very
core of Big Data science.

The method introduced in this paper addresses the above
challenges specifically focusing on volume and velocity of Big
Data. Although a formal evaluation is not carried out, we have
noticed that the algorithms that define our approach, exhibit
speed, efficiency, and computational power.
A crucial assumption in this paper is that such data-sets are
based on one or more relation structures. In other words, it
is possible to identify and classify the different data elements
according to some semantic relationships. As an example, one

of the data-sets that are considered in this paper, and described
in section VII, contains unstructured data. However, its overall
structure is determined by specific parameters, which allow the
identification of some specific relations, such as geographical,
and temporal.

III. NETWORK THEORY

Network theory has increasingly attracted much interest
from a variety of interdisciplinary research fields, including
mathematics, computer science, biology, and the social sci-
ences. Their simple, yet effective formulation has allowed a
successful exploitation of their applications in a wide range of
real-world complex settings [27].
Formally, networks consist of a collection of nodes, called the
node set V = {vi}ni=1, which are connected as specified by
the edge set E = {eij}ni6=j=1 [3], excluding self-loops. We
say that there is a path p(vi, vj) between the nodes vi and vj ,
if we have a sequence of edges which connect a sequence of
distinct nodes, such that it starts from vi and ends at vj .
In this paper, we focus on a specific use of data and text mining
techniques to determine the best topological reduction that
approximates a real-world data set, based on the assumption
that it follows the “4 V’s” characterisations. As mentioned
above, this is based on research carried out in [23], which has
been subsequently improved and expanded, especially the text
and data mining capabilities. In fact, as described in section
IV, the text mining techniques proposed in [23] have been
further developed to provide a wider range of more accurate
results via the extraction of nodes from textual sources.
The topological properties of the network is then fully anal-
ysed to determine the path-connections, which provide an
insight into the co-occurrence, and subsequently the mutual
influence of any two concepts corresponding to specific nodes.
In the rest of this section, we give an overview of random and
scale-free networks, which are used to topologically reduce
real-world networks.

A. Random Networks

Random graphs are defined by a random process which
governs their overall topology, as the existence of edges
between nodes depends on a probability p. Such networks
have been extensively investigated since the dawn of Graph
(and Network) theory, and a variety of properties have been
identified depending on their theoretical, or applied context.
In particular, the fraction pk of nodes with degree k follows

pk ≈
zke−z

k!
,

where z = (n− 1)p [5].
One of the crucial aspects of a random network is the fact that
the set of relationships among the concepts modelled by the
edges and nodes respectively, are purely random.
As mentioned above, when the nodes are associated with
events, or semantic objects, from a data-set containing infor-
mation semantically linked, we can interpret the edges as a
relationship between the nodes they connect. Therefore, if a
network is topologically reduced to a purely random structure,
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we will assume that the relationships captured by the edges do
not indicate a co-occurrence, and more specifically, influence.
This is due to the fact that a random network is associated to
a purely randomised system, and the co-occurrence of nodes
does not follow a determined law. This fact will be exploited
in our method as described in the next sections.

B. Scale-Free Networks

Scale-free networks appear in a multitude of contexts,
including the World Wide Web links, as well as biological and
social networks [3]. Furthermore, the continuous improvement
of data extraction tools is leading to the identification of more
instances of such networks.
The main property of scale-free networks is related to their
node degrees which are governed by a power law. More
specifically, for large values of k, the fraction pk of nodes
in the network having degree k, is modelled as

pk ≈ k−γ (1)

where γ has been empirically shown to be typically in the
range 2 < γ < 3 [3].
A direct consequence of Equation 1, is that there is a relatively
high likelihood to have hubs, which characterise the topolog-
ical properties of the corresponding networks, as well as the
way information spreads across them [9], [14].
As discussed above, an important feature of such networks
refers to the fact that new nodes are created over time, which
are likely to be connected to existing nodes that are already
well connected. This principle of “preferential attachment”
will be discussed in section VI. Furthermore, since the con-
nectivity of nodes follows a distribution which is not purely
random, we make the assumption that networks that are topo-
logically reduced to scale-free structures, the edges indicate
an co-occurrence-based influence between the corresponding
nodes. More specifically, the dynamical properties of such
networks provides an insight into their evolving which can
lead to predictive capabilities.

C. Reduced Network Topology Extraction

Big data-sets can be efficiently analysed by reducing their
topology [23], [25]. In other words, they can be automatically
“approximated” as either random or scale-free networks. The
importance of such process is twofold. Firstly, it allows the
identification of a topological structure which can give an
insight into the corresponding data-sets. Secondly, provided
the assumption of co-occurrence-based influence discussed in
section II, we can extract information on the system modelled
by such network that can be used to determine relevant
intelligence.
As discussed in section VII, his method has shown to produce
relevant and accurate results, with the important feature of
being computationally scalable and optimised to address Big
Data issues. Furthermore, a set of text mining techniques is
also integrated to provide analytical capabilities to analyse
both structured and unstructured data-sets. In [23], the algo-
rithms utilised for the reduced network topology extraction
process are introduced, and the reader can refer to that article

for further details. Furthermore, these algorithms also allow
the identification of the long-tail distribution in the case of
scale-free networks, resulting in a more accurate and relevant
extraction [25].

IV. INFORMATION EXTRACTION VIA TEXT MINING
TECHNIQUES

Due to the diverse nature of Big Data, it is essential to
provide information extraction capabilities from unstructured
data. In this paper, we consider text mining techniques to allow
the identification and assessment of relevant information from
textual data sources [7].
Depending of the general context and the given semantic
information, a variety of text mining techniques can be used,
which in general depend on the type of data and their
structure. In particular, sentiment analysis [15], focuses on the
detection of “opinions” or polarity from textual data sources.
The method introduced in [23] specifically targeted a data-
set containing information on air accidents and near misses
[1]. More specifically, some of the entries consisted of pilots
comments.
In this paper, we have expanded this method by, first of
all, improving the vocabulary containing the keywords as in
[23]. These included a list of words suitably describing the
associated polarity. An extensive set of new keywords and
cue phrases was created by automatically extracting them
from the tagged version of the Brown Corpus, which contains
approximately 500 samples of English-language texts [12].
This was carried out by considering the triples (NP1, VP,
NP2) where
• NP1 and NP2 are the noun phrases, i.e. phrases with a

noun as its head word [11], which had to contain one or
more keywords from [23]. Note this requirement had to
be satisfied for at least one of the NPs, and not just for
both of them.

• VB is the linking verb.
Subsequently, the extracted NP1 and NP2 were manually
analysed to identify the appropriate keywords, and cue phrases.
A detailed evaluation of this approach goes beyond the scope
of this paper, since it specifically addresses issues that are not
directly relevant in this context. However, we tested it on two
randomly chosen papers [20], [21]. The automatic extraction
was compared with a manual one, which produced a recall of
65% and a precision of 74%.
Similarly to [23], the following steps were included:
• Textual fragments from input data-sets were first shallow

parsed via the Stanford Parser [7].
• A grammar-based extraction identified triples of the

form (NP, verb, keyword), where NP, is the noun
phrase, verb is the linking verb, and keyword consists
of one or more keywords as mentioned above.

The triples are used to populate the nodes and edges of the
corresponding network, by identifying any connection among
the keywords defined above, with the corresponding elements
of the data-sets. In order to avoid any redundancy, all the
extracted terms were normalised, where normalisation is the
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process of mapping different variants of a term to a unique
and standardised form [11]. For example, an entry such as

“A P180 was 10 left for traffic. CSV HI called and
gave me control of the P180 to turn him back on
course. As I cleared him to his destination; UES;
I said ’cleared direct Waukesha’ He hesitated and
then said ’where.’ Then I said ’cleared direct to your
destination’ He said oh; Ok. My D-Side and I were
still a little uneasy so I went back and asked to
verify his destination; which he said; was ’MKC.’
Atlanta Center must have changed the destination
in his routing. First of all; don’t say ’cleared direct
destination.’ Be specific with the name and/or iden-
tifier of the airport. Second of all; be careful when
using a splat or down arrow. I don’t see why this
was even used for him; but I don’t know the situation
in ZTL.”

would produce the output in table I

TABLE I
THE RESULT PRODUCED WITH THE METHOD DESCRIBED IN SECTION III-C

Term Normalisation
hesitated → hesitation
uneasy → uneasiness

don’t know → uncertainty
be careful → lack of carefulness
be specific → lack of specificity

In the above example, the term on the right hand side
column would define connected individual nodes as part of
the corresponding network.

V. DESCRIPTION OF THE METHOD

In this section, we describe the method by first introducing
the relevant mathematical background. This will be exploited
in section V-C, where the main algorithms are defined and
discussed.

A. Measuring Co-Occurrence-based Influence

Relation discovery is essential in assessing and predicting
how knowledge spreads and evolves. In [28], an automated
construction and annotation of biological networks is inves-
tigated, and an influence measure based on co-occurrence is
introduced. This is based on co-occurrence of specific (lin-
guistic) terms to establish semantic and linguistic relationships
between them. Furthermore, the frequency of this type of co-
occurrence usually follows a scale-free distribution, which is
then investigated to determine fuzzy-sets membership. The
method proposed in this paper follows, broadly speaking, the
opposite direction. In fact, we start from a real-world network,
provided it follows a scale-free network, and assess a co-
occurrence measure based on the topological properties of
such network.
In [22], a method to evaluate the influence and direction

between two concepts in a semantic network is discussed.
In order to achieve this, the authors introduce a scalable
approach to assess the relevant parameters which determine the
way one semantic entity influences another one. In particular,
the dynamics of such parameters is a crucial aspect which
models the overall properties of information propagation and
its assessment. Despite in this paper we have not addressed
semantic networks in general, provided that a data-set can
be topologically reduced to a scale-free network, or in other
words it is not purely random, we must clarify some important
points.
First of all, and probably most importantly, the fact that two
nodes in the reduced topology network lie on the same path,
does not imply any influence. It is rather an indication of
co-occurrence, that is the two events, or concepts, associated
with those two nodes, may occur together depending on the
properties of the paths joining them. Assuming this entails
an influence relation, or even a causal relation, would clearly
be an erroneous supposition. For example, if whenever it
rains I open my umbrella, I can by no means assume that
raining causes my umbrella to open. However, ascertaining
co-occurrence is a fundamental step to determine, and often
super-impose, relation networks defined by the nodes of a
general network. These are, as the name suggest, defined by
nodes which are connected by edges whenever a relation exists
between them. Due to their nature, relational networks include
a large variety of examples, from general semantic networks
to causal networks. In particular, such networks can provide
the ability to extract intelligence from a data-set, which leads
to a better and more comprehensive understanding of the
information related to it. In fact, understanding and assessing
the interconnection among data provide useful modelling
frameworks which can be applied to risk and decision analysis
[26].

B. Mathematical Formalism
In this section, we introduce the mathematical formalism

used to measure and assess the co-occurrence-based influence
of two events. Furthermore, this will also show the main
computational issues and give an insight into our motivation
to provide a better approach.
Let pk,l(vi1 , vil) be the weighted probability of choosing the
k−path of length l between two nodes vi1 and vil . In other
words,

pk,l(vi1 , vil) =
w(vi1 ,vi2 )

deg (vi1)

l−1∏
j=2

w(vij ,vij+1
)

deg (vij )− 1
, (2)

where deg (v) is the degree of the node v, and w(via ,via+1
) ∈

(0, 1] is the weight of the edge joining via and via+1 . There-
fore, the (weighted) probability ∆l(vi1 , vil) of choosing a path
of length l between the two nodes (not necessarily edge-
independent) is

∆l(vi1 , vil) =

Nl(vi1 ,vil )∑
k=1

pk,l(vi1 , vil), (3)

where Nl(vi1 , vil) is the number of paths of length l. The
weight of the edges depends on a variety of parameters, which
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are established when defining the network.
However, one of the main drawbacks of Equations 2 and
3 is that their direct implementation can be quite expensive
from a computational point of view, and most of the existing
algorithms are based on the breadth-first search whose time
complexity is O(|V | + |E|) [6]. As a consequence, we are
proposing a method to assess co-occurrence between two
nodes based on the following aspects:
• The shortest path(s) between two nodes and their number,
• The degree of the nodes along those paths

More specifically, the first point gives crucial information
on the connected-ness of the two nodes, whilst the last
one provides information on the topological properties of
such paths. Furthermore, since many real-world networks are
based on big data-sets, there are clearly important issues in
terms of computational efficiency that need addressing. As a
consequence, we propose a method which is applicable in a
big data scenario, due to its computational efficiency, accuracy
and scalability.

C. Description of the Algorithm

As mentioned above, the above equations raise computa-
tional challenges that are often too complex to fully address,
especially when dealing with large data-set which may vary
in real time. The algorithm we are proposing, is specifically
designed to deal with this scenario, providing an accurate,
agile and scalable approach.
Rather than finding all the paths between two nodes, which
would be then compared with all the other ones in the network,
we only focus on the shortest path(s) between them. In fact
the computation of the shortest paths is based on much more
efficient algorithms [6]. Furthermore, we only consider the
local properties of the nodes, so that we will not consider the
overall edges in the network (which is typically very large).
An important property that we will exploit is that independent-
edge paths show a stronger co-occurrence-based influence
relationship than paths which share common edges. Menger’s
theorem [16] describes the fact that the maximum number
of pairwise edge-independent paths between two nodes is the
same as the size of the minimum edge cut for those two
nodes. However, the latter – also know as the min-max cut
flow problem – may not be solvable for general networks [5].
With this in mind, we propose the following algorithm

Fig. 1. Depiction of Algorithm 1 described in section V-C. Here, the shortest
path p(vis , vie ) has length 3, which is also the length of the path p(vA, vB).

This algorithm has shown to provide an efficient alternative
to the min-max flow problem for this particular context.
Similarly to Equations 2 and 3, an important property we
have to consider is the degree of the nodes along each path.

Algorithm 1: Relative strength between vA and vB .
Data: Two nodes vA and vB
Result: Relative strength L̃(vA, vB) between vA and vB

1 Obtain all the shortest paths between two nodes, say vA
and vB , and call them p1(vA, vB), . . . pn(vA, vB), with
length l(pi(vA, vB)) = n, for any 1 ≤ i ≤ n;

2 for All the couples (pi(vA, vB), pj(vA, vB))ni 6=j=1

consisting of the n! permutations of the different paths.
do

3 Choose vis and vje ( “s” stands for start, and “e” for
end) so that the former is the first node on pi after
vA and the latter is the node on pj(vA, vB) before
vB as depicted in Figure 1;

4 Find the shortest path(s) between vis and vje
5 if it has length equal to

l(pi(vA, vB))(= l(pj(vA, vB))) then
6 assume that Lk(vA, vB) = 1;
7 else
8 Lk(vA, vB) = 0.5;
9 end

10 end
11 Evaluate L̃(vA, vB) = average(Lk(vA, vB)).

Loosely speaking, we still want to determine the weighted
probability of reaching a specific node from another one. As
a consequence, from (2) we define

W(vi1 ,vi2 )
=
w(vi1 ,vi2 )

deg (vi1)
, (4)

where 0 ≤ w(vi1 ,vi2 )
≤ 1. The weights w(v1,v2) between any

two nodes v1 and v2, can be specified prior to the imple-
mentation of the different algorithms, or via machine learning
techniques, which can be integrated into the process. In this
paper, we assume that the weights w’s between nodes are all
equal to 1.
We then define the co-occurrence-based influence measure
Λ(vi1 , vil) between the nodes vi1 and vil as

Λ(vi1 , vil) =
1

(|P (vi1 , vil)| − 1)
∑
Pi∈P (vi1 ,vil )

WPi

(5)L̃((vi1 , vil))

|P (vi1 ,vil )|∑
i 6=j=1

(
l−2∏
i=2

W(vi,vi+1)

+

l−2∏
j=2

W(vj ,vj+1)

 .
where WPi =

w(vi1 ,vi2 )

deg (vi1)
, and P (vi1 , vil) is the set of shortest

paths between vi1 and vil . Also note that

0 ≤ Λ(vi1 , vil) ≤ 1. (6)

The co-occurrence-based influence measure Λ(vi1 , vil) not
only does give an insight on how likely two concepts are to
co-occur, but it also provides an evaluation of the way two
nodes are connected in a network. In algorithm 1, there are
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many parameters whose values depend on the network which
is being considered, and more importantly, how they were
described. Therefore, Λ(vi1 , vil) provides values that need to
be interpreted, either automatically or manually, to determine
the likelihood of co-occurrence. In this paper, we assume that
Λ(vi1 , vil) ≥ 0.5 indicates a high level of co-occurrence-based
influence. This has been determined by manually assessing the
co-occurrence-based influence measure for different nodes.
More specifically, we have algorithm 2:

Algorithm 2: Algorithm measuring the co-occurrence
between Λ(vA and vB)

Data: Two nodes vA and vB
L̃(vA, vB)
Result: Co-occurrence-based influence measure between

two nodes, say vA and vB
1 Obtain P (vA, vB) the set of all the shortest paths

between vA and vB ;

2 Evaluate Λ(vA, vB), using Equation 5.

VI. THE DYNAMICS OF CO-OCCURRENCE

As discussed earlier, the fact that an edge between two
nodes refers to their mutual co-occurrence, can be exploited
to provide some predictive power in terms of the dynamical
properties of the associated network. In fact, the properties
of preferential attachment for scale-free networks can give a
useful insight into the dynamics of the overall network when
the creation of new nodes and/or new edges is investigated
[3]. Since co-occurrence-based influence is assessed according
to the method introduced above, we can apply equation 5
when the shortest paths between two nodes are modified by
creating new nodes and/or adding more connecting edges. In
particular, the concept of velocity in Big Data can be regarded
as the addition and/or removal of either edges or nodes in the
corresponding network. As a consequence, in this paper we
consider the following two scenario:
A) A new edge is introduced at each “time” interaction, and

no new nodes are created;
B) A new node is introduced, corresponding to a new event,

which has to be investigated.
These scenarios can be re-phrased, and simplified, as follows:
assume we have a set of shortest paths between two nodes vA,
and vB . What happens to Λ(vA, vB) when a new node and/or
new edges are introduced?
Note that we have the following cases
• An extra edge between two nodes on the shortest paths

between vA, and vB , is added. This will create an extra
path p(vA, vB)N .

– If l(p(vA, vB)N ) is less or equal to the shortest path
length, then

Algorithm 3 provides a sequence of Λ(vA, vB)t, for t =
0, . . ., so that

1) If Λ(vA, vB)t tends to a specific (finite) value, we have
stability, and

Algorithm 3: Algorithm assessing the co-occurrence-
based influence measure.
Data: Two nodes vA and vB
Result: Sequence of Λ(vA, vB)t, for t = 0, . . . between

vA and vB
1 Obtain P (vA and vB), i.e. the set of all the shortest

paths between vA and vB ;

2 if An extra edge between two nodes on two separate
shortest paths between vA, and vB , is added. This will
create an extra path p(vA, vB)N then

3 if l(p(vA, vB)N ) is less or equal to the shortest path
length then

4 update Λ(vA, vB)t+1;
5 else
6 Λ(vA, vB)t = Λ(vA and vB)t+1;
7 end
8 end

9 if One of the nodes, vh, on a shortest path between vA,
and vB , has an extra edge connected to another node not
part of any shortest paths then

10 Update Λ(vA, vB)t+1 with new value of degree;
11 end

Fig. 2. Example of scenario A, when N = 4.

2) If Λ(vA, vB)t oscillates within a range, we might not
have stability. In fact, this would depend on the oscillation
range, and in what case this would be considered too big.

A full investigation of the dynamical properties goes beyond
the scope of this paper, and will be the focus of future research.

VII. EVALUATION

In this section, we discuss our evaluation of our approach
which is based on the data sets [10], and [1], which were inves-
tigated in [23] and [24]. The first data-set has structured data
types, and in this case no text mining method was applicable.
We had a generated a network with 3, 046 nodes and 11, 794
edges. As described above, we implemented our algorithm to
reduce the topology of the networks associated with the given
dataset. More specifically, we considered specific parameters,
namely the date of the earthquake activity, its geographical
location, time of the day, and its intensity, and assessed their
corresponding reduced-topology networks, see [24] for more
details. This produced, using the notation introduced in section
III-B, the results shown in table II.



7

TABLE II
THE RESULTS OF THE REDUCED-TOPOLOGY ALGORITHM, AS IN [24]

Type of Seismic Event γ Values
Date of seismic activity 2.17

Geographical Location of
Seismic Activity 2.74

Time of Seismic Activity 2.93
Intensity of Seismic Activity 2.89

The second data-set contains information regarding air
accidents and near-misses, which we have been re-valuated
with the improved text mining method discussed in section IV.
Notably, an increased number to nodes were extracted, due to
the better extraction capabilities. In particular, the generated
network had 3, 237 nodes and 12, 803 edges. However, this
change in the number of nodes and edges was not reflected
in the reduced topology, which is still best approximated by a
scale-free network with parameters γ = 2.04, and σ = 0.34.
Note that this was evaluated using the algorithm described in
[25], which addresses the long-tail distribution in scale-free
networks. Note that γ is in interval between 2 and 3, which
is consistent with the experimental findings in [3].
The data-set [10] was also used to investigate the method
proposed in section V, was carried out automatically and
subsequently compared with a manual extraction. However,
due to the size of the network, we only concentrated on
a smaller sub-network, containing approximately 400 nodes,
to facilitate the task. Note that the data-set contains entries
related to the time of seismic activity. When populating the
corresponding network, these were grouped into the same node
if they were within 10 minutes apart. Clearly, this type of
grouping is open to interpretation as we will discuss shortly.
Three particular scenarios were considered focusing on the
geographical location of seismic activity. More specifically,
we obtained the results as described in table III.

TABLE III
THE EVALUATION OF Λ BY USING ALGORITHM 3

Node 1 Node 2 Λ
Adriatic (area) Southern Italy 0.77

Aegean Sea Central Italy 0.54
Estonia Crete 0.39

This was subsequently assessed manually to determine
whether these results were relevant and accurate. Interestingly,
the only instance that caused some disagreement between
the automatic and manual evaluation related the two nodes
“Aegean Sea” and “Central Italy”. In fact, it was suggested that
there were indeed a co-occurrence-based influence between
them. However, the relatively low value of Λ = 0.54, was
due to the time entries. If nodes were created by merging
times within 30 minute slots, Λ increased to 0.63, suggesting
a stronger level of co-occurrence between the two nodes.
Intuitively, the above results appear consistent as one would

Fig. 3. The Scale-Free Network Structure of the data-set introduced in [23],
focusing of the geographical, date, hour and intensity of the seismic activity,
respectively.

expect some kind of influence of seismic activity between
geographical locations relatively close to each other.
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Fig. 4. Example of a small section of the sub-network around the
nodes“Adriatic” and “Southern Italy”, as discussed in section VII. Two
shortest paths connecting them are highlighted in red.

Fig. 5. Another example of a small sub-network, which is centred at nodes
“Aegean Sea”, and “Central Italy”. Note the three shortest paths which are
highlighted in red.

VIII. DISCUSSION AND FUTURE WORK

The use of co-occurrence as an indication of influence,
has many potential applications. In fact the associated
networks provide an insight into the relational structure of
the corresponding data-set. Their extraction from data is
typically a complex task, which greatly depends on its nature,
what type of relations are to be modelled, and what purpose
such representation needs to serve. A specific example is
Bayesian Networks. These are acyclic networks, i.e. no loops
are present, so that nodes represent random variables and
edges represent conditional dependencies. Two nodes which
are not connected by an edge correspond to variables that
are conditionally independent of each other. Each node is
associated with a probability function that takes as input a
particular set of values for the node’s parent variables and
gives the probability of the variable represented by the node.
The automatic extraction of BNs has been extensively
investigated [18], based on textual properties which describe
the types of relationships the concepts associated with
nodes are linked by. However, defining and populating
BNs is typically a complex task, due to their probabilistic
and mathematical constraints. We believe that the method
described in this paper, would provide an effective approach
to this challenge. In fact, much research on BNs has focused
on the analysis of causal relationships [18]. On the other
hand, the conditional dependencies among variables can
successfully described by influence relationships. However,
this is beyond the scope of our paper, and more research is
needed in order to achieve meaningful and complete BNs.

In this paper, we propose a novel method to assess the
influence between nodes of topologically reduced networks
extracted from data, by investigating their co-occurrence. The

aim was to provide an efficient and accurate tool to generate
intelligence from Big Data. The evaluations that we have
carried out indicate the potential of our approach, as well
as promising new research directions that will be pursued in
future research. This will include the extraction of BNs as
described in the previous section, which is part of a larger line
of inquiry focusing on the creation of a toolbox to facilitate
and guide the decision making process, supported by the
identification of intelligence from Big Data.
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