
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Exploring decentralized dynamic scheduling for grids and clouds using the
community-aware scheduling algorithm
Ye Huang a,d,∗, Nik Bessis b,c, Peter Norrington b, Pierre Kuonen d, Beat Hirsbrunner a
a Department of Informatics, University of Fribourg, Switzerland
b Department of Computer Science and Technology, University of Bedfordshire, UK
c School of Computing and Mathematics, University of Derby, UK
d Department of Information and Communication Technologies, University of Applied Sciences of Western Switzerland (Fribourg), Switzerland

a r t i c l e i n f o

Article history:
Received 12 November 2010
Received in revised form
14 March 2011
Accepted 7 May 2011
Available online xxxx

Keywords:
Grid
Cloud
Scheduling
Meta-scheduling
Community-aware scheduling algorithm
(CASA)

SmartGRID

a b s t r a c t

Job scheduling strategies have been studied for decades in a variety of scenarios. Due to the new
characteristics of the emerging computational systems, such as the grid and cloud, metascheduling turns
out to be an important scheduling pattern because it is responsible for orchestrating resources managed
by independent local schedulers and bridges the gap between participating nodes. Equally, to overcome
issues such as bottleneck, single point failure, and impractical unique administrativemanagement, which
are normally led by conventional centralized or hierarchical schemes, the decentralized scheduling
scheme is emerging as a promising approach because of its capability with regards to scalability and
flexibility.

In this work, we introduce a decentralized dynamic scheduling approach entitled the community-
aware scheduling algorithm (CASA). The CASA is a two-phase scheduling solution comprised of a set of
heuristic sub-algorithms to achieve optimized scheduling performance over the scope of overall grid or
cloud, instead of individual participating nodes. The extensive experimental evaluation with a real grid
workload trace dataset shows that, when compared to the centralized scheduling scheme with BestFit as
the metascheduling policy, the use of CASA can lead to a 30%–61% better average job slowdown, and
a 68%–86% shorter average job waiting time in a decentralized scheduling manner without requiring
detailed real-time processing information from participating nodes.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Job scheduling strategies [1] have been extensively studied in
the last few decades within a variety of scenarios, such as manu-
facturing systems and distributed computation environments. The
increasing demand of computation resources has led to new types
of cooperative distributed systems, such as the grid [2] and cloud
computing [3]. Due to the new characteristics of emerging com-
putational systems, conventional scheduling techniques need to
evolve into more complex and sophisticated solutions in order
to cover new scheduling constraints, such as heterogeneous
resources, variety of job requirement, and dynamic and volatile
networks. Furthermore, scheduling techniques allowing jobs to be
shared between decentralized sites, virtual organizations (VOs), or

∗ Corresponding author at: Department of Informatics, University of Fribourg,
Switzerland.

E-mail addresses: ye.huang@unifr.ch, huangye177@gmail.com (Y. Huang),
nik.bessis@beds.ac.uk (N. Bessis), peter.norrington@beds.ac.uk (P. Norrington),
pierre.kuonen@hefr.ch (P. Kuonen), beat.hirsbrunner@unifr.ch (B. Hirsbrunner).

evendifferent grids/cloudproviders, have appeared to be a promis-
ing approach because of their capability with regards to scalability
and flexibility.

Metascheduling, also known as grid scheduling within the
context of grid computing, turns out to be an important scheduling
scheme because it is responsible for orchestrating resources
managed by independent local schedulers and bridges the gap
between isolated local computation resource pools. However,
current research and implementation work have several crucial
constraints and limitations, including: (a) scheduling for serving
the hosting node, instead of the entire grid; and (b) assuming
the detailed processing information of each participating node,
such as the status of local job queue and real-time resource
utilization, is known. In order to conquer such issues, a novel
scheduling approach is desired to serve the overall grid, instead
of each individual node, with a variety of preferred optimization
objectives. Furthermore, such an approach is also supposed to
work in a decentralized manner and be able to dynamically adapt
to the changes in the grid through time.

Since the mid-1990s, the vision of a grid as a computation
infrastructure has been widely accepted; numerous grid based

0167-739X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2011.05.006

http://dx.doi.org/10.1016/j.future.2011.05.006
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:ye.huang@unifr.ch
mailto:huangye177@gmail.com
mailto:nik.bessis@beds.ac.uk
mailto:peter.norrington@beds.ac.uk
mailto:pierre.kuonen@hefr.ch
mailto:beat.hirsbrunner@unifr.ch
http://dx.doi.org/10.1016/j.future.2011.05.006

2 Y. Huang et al. / Future Generation Computer Systems () –

resource sharing infrastructures such as Grid5000 [4], TeraGrid [5],
D-Grid [6], EGEE [7], PlanetLab [8], and NorduGrid [9] have
been established in different countries and continents serving
both for production work and scientific research. Meanwhile,
an obstacle has emerged since these grids are established for
different purposes and work in isolation from each other. Some
pilot work [10,11] has already observed that the next natural step
is to enable interoperation between multiple grids, in order to
serve much larger scientific communities and enhance the overall
performance of the joint grids. Regarding nontrivial issues such as
bottleneck, single point of failure, and impractical administrative
management, which are normally led by conventional centralized
or hierarchical design, these could get worse in an inter-
operational grid-based infrastructure; the desire for a complete
decentralized design has increased dramatically.

Meanwhile, research on the characteristics and performance of
groups of jobs in grids [12] has shown that 70% of jobs, which
consumed 80% of resource processing time, are submitted in a
batch pattern. In other words, most jobs are submitted by specific
batch engines with a very short interval time between each other.
In this case, users of grids normally submit many jobs as a single
batch with a single runtime estimation, instead of specifying
estimate processing time for each individual job. Consequently,
scheduling algorithms which rely on job estimate processing time,
such as shortest job first (SJF), longest job first (LJF), and backfilling
variants, are severely affected. Even concerning a centralized grid
wherein each node maintains complete global information and
is interconnected upon a static and stable network, the widely
adopted backfilling series algorithms [13,14] can still lead to
complex dynamic problems. Related research [15] has shown jobs
requesting short processing time and few processors are likely to
find ‘‘holes’’ easier in heavily loaded systems, which makes the
prediction of future system performance as static even harder.
In this case, a novel scheduling heuristic supporting dynamic
rescheduling through time has shown its great importance, which
is also covered in this paper.

As the extension to some pilot work [16], we propose a
novel decentralized dynamic scheduling approach named the
community-aware scheduling algorithm (CASA). In this work,
based on the previously proposed two-phase scheduling protocol,
a set of heuristic algorithms are designed to efficiently distribute
jobs amongst participating nodes without asking for detailed
node real-time processing information nor control authorities of
remote nodes. The remainder of the paper is organized as follows:
the related work in terms of decentralized scheduling is given
in Section 2. The problem statement and algorithm principle is
presented in Section 3, followed by the detailed discussion of
each heuristic algorithm in Section 4. Section 5 introduces the
experiment configuration for the algorithm evaluation, whilst
Section 6 discusses the results observed in this experiment. Finally,
Section 7presents the conclusion and some insights to futurework.

2. Related work

Metacomputing, the term firstly introduced by Smarr and
Catlett [17], is widely accepted in the field of grid computing [2]
to describe the computational pool formed from resources of
different participating nodes. In general, metascheduling solutions
are classified into three categories, namely the centralized,
hierarchy, and decentralized schemes [18,10,15]. Specifically, the
decentralized metascheduling scheme allows each node to own a
metascheduler to receive job submissions originated by local users,
and to assign such jobs to the local resource management system,
i.e., local scheduler, of the node. Meanwhile, metaschedulers of
different nodes are capable of exchanging information and sharing
jobs between each other in order to balance the resource load

amongst participating nodes. The nature of the decentralized
scheme brings better scalability compared to other scheduling
schemes, but leads to the issue of efficiency and overhead on the
other hand.

NWIRE (Net-Wide-Resources) [19] is a brokerage and trading
based metacomputing scheduling architecture. On the top logical
level, NWIRE consists of a set of MetaDomains, wherein each
MetaDomain is controlled by one MetaManager. By taking into
consideration several scheduling properties, the NWIRE relies on
a market mechanism [20] to trade resources between domains
via the MetaManager, wherein a description of the requests and
objectives appears to be a key element for the job allocation. In
addition, NWIREprovides high flexibility in terms of fault tolerance
because the failure of a single trader will not affect the whole
metascheduling system.

The K-Distributed and K-Dual Queue Models [15,21] propose
a distributed scheduling algorithm which redundantly distributes
jobs to different sites simultaneously, instead of only sending jobs
to the most lightly loaded sites. The K-Distributed model enables
each metascheduler of each site to distribute their jobs to the K
least loaded sites, whereby such jobs will be scheduled by all K
sites respectively. The K-Dual model works on the K-Distributed
model and gives priority to jobs originated by the local sites. Jobs
transferred from remote nodes will be executed only if they do not
adversely affect the start time of queued jobs which are originated
from the local sites.

InterGrid [22] is a cross-grid cooperation architecture com-
posed of a set of InterGrid Gateways (IGGs) responsible for man-
aging peering arrangements between grids. InterGrid promotes
interlinking of islands grids through peering arrangements to en-
able inter-grid resource sharing, and provides a scalable struc-
ture allowing grids to interconnect with each other and to grow
in a sustainable way. Although the structure of the overall Inter-
Grid ecosystem is hierarchical, the InterGrid Gateways employed
upon the top of each participating grid are distributed in a decen-
tralized manner. Each IGG is aware of the agreements with other
IGGs, and is capable of enabling resource allocation across multi-
ple gridswith pluggable policies. The InterGrid/IGG relies on exter-
nal decentralized approaches, such as a self-organizing economic
model [23], to meet its design objectives, including incentive-
oriented peering arrangements, decentralized resource manage-
ment, and reservation and brokering across grids.

Delegated Matchmaking (DMM) [10] is a decentralized ap-
proach for grid inter-operation by temporarily binding resources
from remote sites to the local environment. First, the DMM lever-
ages a hierarchical architecture in which nodes represent comput-
ing sites, and nodes of the same hierarchical level are allowed to
inter-operate to form a completely decentralized network. Second,
the DMM employs two independent policies named the delega-
tion algorithm and local requests dispatching policy, to disseminate
resource requests within the established network. By delegating
resources instead of the traditional job delegation way, the DMM
aims to lower the administrative overhead ofmanaging user/group
accounts on each site during the inter-grid operations.

Grid-Federation [24,25] is a metascheduling framework which
highlights a bid-based SLA contract negotiation model. Benefitting
from the market-based SLA coordination mechanism, the Grid-
Federation framework allows resource owners to have finer
control over the resource allocation. An SLA is the agreement
negotiated between a metascheduler, entitled the Grid Federation
Agent (GFA), and the LRMSs of the local sites in terms of acceptable
job QoS constraints, such as job response time and budget spent.
Furthermore, the contract net protocol [26] based SLA bids are
restrictedwith a certain expiration time, and a variety of economic
parameters such as setting price, user budget and deadline.
A greedy backfilling heuristic is also proposed for application

Y. Huang et al. / Future Generation Computer Systems () – 3

on the participating LRMSs during their cooperation with the
metaschedulers.

Leal et al. [27] present a decentralized model consisting of a
set of metaschedulers for scheduling independent tasks in fed-
erated grids. Four simple, decoupled and coarse-grained solution
algorithms are considered as each metascheduler’s mapping strat-
egy. The advantage of this approach is no requirement for informa-
tion of remote nodes’ processing speed nor length of jobs; instead,
it only needs information about the past performance of the re-
sources for predicting a new objective. The results obtained from
a two-grid based infrastructure have shown that the algorithm
DO-AS outperforms other versions in reducing the makespan in all
evaluated scenarios.

Wang et al. [28] proposed a dynamic resource selection
heuristic for a non-reserved bidding-based grid environment,
wherein a set of deterministic and probabilistic resource selection
heuristics are evaluated to minimize the job turnaround time
in online systems. Five basic heuristics and various levels of
information released by resource providers are considered to yield
the corresponding variants under different scenarios. The results
have shown that heuristic Dissolve-P is superior to the otherswhen
information about competitors is not provided; on the other hand,
the MCT-D heuristic outperforms when the information of the
execution time of competitors is available.

Das et al. [29] introduced a combinatorial auction-based
resource allocation protocol in which a user bids a price value
for each of the possible combinations of resources required for
its tasks’ execution. In total, three main participants are involved,
namely (1) theUser Broker (UB) responsible for resource discovery,
generation of combinations of resources, bid and jobmanagement;
(2) the Grid Service Providers (GSPs) responsible for contributing
their resources to the grid and charging the users for services;
and (3) the Local Market for Auctions (LMA) supporting GSPs to
post their characteristics as well as enabling the users to find
the proper resources to fulfill their requirements. In addition, an
approximation algorithm developed by Zurel et al. [30] is also
involved for solving the combinatorial auction problem.

Unlike all aforementioned solutions, the community-aware
scheduling algorithm (CASA) is a two-phase solution which makes
job allocation decisions based on contacted nodes’ real-time
responses. In this case, each participating node does not need to
expose its resource processing information, such as status of local
job queue and resource utilization, during cooperation with other
nodes. Furthermore, the CASA is able to reschedule jobs through
time, in order to adapt to the unpredictable performance changes
of independent underlying resources.

3. Problem statement and algorithm principle

To achieve the aforementioned objectives in a decentralized
distributed grid environment, we propose a novel ‘‘phase-by-
phase’’ algorithm named the community-aware scheduling algo-
rithm (CASA). The CASA indicates a collection of implemented
interfaces and heuristics used to facilitate job scheduling across
decentralized distributed nodes. A variety of variables, such as
resource heterogeneity and unpredictable job characteristics, are
considered. The design of CASA yields a dynamic, adaptive schedul-
ing algorithm to promote job sharing/execution efficiency and
improves the job owners’ experience.

Suppose there are in total N = {n1, n2, . . . , nη} nodes distri-
buted in a decentralized manner in a grid system with the same
uptime T , wherein some of the nodes have local job submission.
Each time a node attempts to (re)assign a job to another node (or
the same node) for execution, the assignment initiator is called the
requester node, and the node receiving such a request is called the

responder node. Each job jα,θ sent from node nα requests a cer-
tain number of processing elements (PEs) jpeα,θ , i.e., CPUs, as well
as the estimated execution time jlengthα,θ , which together represent
the weight of the job by: wθ = jpeα,θ · j

length
α,θ . Furthermore, job jα,θ ’s

characteristic profile also contains the speed estimation of the pro-
cessing element jmips

α,θ , which facilitates calculation of the job load
by: loadθ = jpeα,θ · j

length
α,θ · j

mips
α,θ Considering job local submission

distribution and job characteristics are impractical, if not impossi-
ble, to predict in a real system. In this case, all the information will
be retrieved from the real grid workload trace in our work and is
unknown a priori.

Regarding jobs which are imbalanced when submitted to the
grid, and stochastic events through time, such as change of job
status and resource usages, can make the situation even worse.
CASA consists of two phases, namely the job submission
phase and the dynamic scheduling phase, which work
together to ensure both a rapid job distribution and an optimized
rescheduling process.
Job submission phase. This is the first phase of the community-
aware scheduling algorithm. Each time a node nα ∈ N receives
a job jα,θ submitted by its local user, node nα behaves as a re-
quester node and uses algorithm hrequest to generate a request
message reqα,θ for job jα,θ . Job characteristic information includ-
ing estimated execution time jlengthα,θ and requested amount of PEs
jpeα,θ will be appended to the generated request message. Further-
more, extra job information in terms of heterogeneity, such as the
required type of operating system, can also be included within the
request message reqα,θ . Then, an interface itneighbors(nα) will be
invoked by hrequest on node nα in order to find a list of contactable
remote nodes for the following job delegation attempts. A variety
of resource discovery approaches [31] can be used as the imple-
mentation of interface itneighbors(nα), which is out of the scope of
CASA itself. Afterwards, request message reqα,θ is replicated and
disseminated to each of the discovered remote nodes asking for the
job delegation possibilities.

For all nodes ∀nβ ∈ N receiving the job delegation request
message reqα,θ , including the requester node nα itself, are
considered as responder nodes. Each responder node nβ needs to
launch an algorithm named haccept to decide whether node nβ is
willing and able to execute the received job jα,θ . Algorithm haccept
takes various factors, such as the responder node’s capabilities and
administrative preferences, into consideration to decide whether
job jα,θ can be executed upon the responder node. If yes, an
accept[R] message accRβ,α,θ will be generated and sent back to
the requester node nα for the job delegation bidding. In addition,
the estimated response time if job jα,θ is executed by node nβ
is also appended to the generated accept[R] message accRβ,α,θ ,
which can be utilized by the requester node for responder node
evaluation and selection.

Each time a request message reqα,θ is generated by the
requester node and disseminated to contactable remote nodes,
the requester node waits and collects all received accept[R]
messages and invokes an algorithm hassign to select a proper remote
node towhich to delegate the job. Since no node has detailed global
information in a decentralized distributed grid environment, then
if all nodes greedily select a responder node offering the ‘‘best
job execution condition’’ (e.g., shortest execution time) but with
no reservation service, imbalanced job distribution can result and
some nodes will become overheated. In this case, a probabilistic
approach is adopted by the algorithm hassign, whereby powerful
nodes, e.g., a large number of processing elements or faster
processing speed, are prone to receiving and executing more jobs;
on the other hand, nodes with less powerful resources can still
receive job delegations, therefore working as part of the integrated
grid.

4 Y. Huang et al. / Future Generation Computer Systems () –

Table 1
List of notations and terminology.

Symbol Description

N Number of nodes of the grid.
T The uptime of each node of the same grid, also the uptime of the grid as well.
nα (nβ , nγ , nδ) A node of the grid.
jα,θ A job sent from node nα ∈ N for job delegation.
jγ ,ψ A job sent from node nγ ∈ N for job rescheduling.
jpeα,θ Number of processing elements (PEs) requested by job jα,θ .
jlengthα,θ Estimated processing time of job jα,θ .
wθ Weight of job jα,θ .
loadθ Load of job jα,θ .
t interval The interval between two neighboring calls of algorithm hresched .

reqα,θ A request message generated by node nα for job jα,θ .
accRβ,α,θ An accept[R] message sent from node nβ to node nα for accepting a received delegation request for job jα,θ .
assα,β,θ An assign message used to convey job jα,θ from its requester node nα to the selected responder node nβ .
recβ,α,θ A receipt message used to confirm the requester node nα with regards to the reception of assigned job jα,θ on the responder node nβ .
infγ ,ψ An inform message used to disseminate the information of to-reschedule job jγ ,ψ to remote nodes.
acc Iδ,γ ,ψ An accept[I] message sent from node nδ to node nγ for accepting a received delegation request for job jγ ,ψ .

itneighbors(nα) The interface of neighboring nodes discovery service of node nα .
hrequest The algorithm used to allocate a local arrival job to a node of the grid by means of a generated request message.
haccept The algorithm used to determine whether a remote job delegation request should be accepted.
hassign The algorithm used to select a targeting remote node and assign the corresponding job.
hresched The algorithm used to determine whether to reschedule jobs, and how to reschedule.
h′accept The algorithm used to determine whether a remote job delegation request should be accepted with regards to existing schedule made for

the to-schedule job.

Once a proper remote node, e.g., node nβ , is selected by the
algorithm hassign, node nβ is considered as an assignee node, an
assignmessage assα,β,θ will be generated and sent to the assignee
node, wherein the job jα,θ and its related data are enclosed.
Dynamic scheduling phase. This is a complementary phase which
dedicates facilitation of the community-aware scheduling algo-
rithm to adapt to the uninterrupted changing grid infrastructure.
For an arbitrary node nγ ∈ N , due to the effect of the job
submission phase, it has a set of jobs to execute which are ob-
tained either from local submissions or from remote nodes’ dele-
gations; thus, node nγ uses a local queue to store jobs that cannot
be executed instantly. Despite different adopted local scheduling
algorithms which can affect the sequence of queued jobs, e.g., the
backfilling [13] variants, node nγ can still identify which jobs are
supposed to wait for a long time at a specific instant.

As a federated resource infrastructure, a grid is a naturally
dynamic environment wherein resources contributed by different
sites can join and leave through time; furthermore, issues like
unexpected network delay, resource overhead, and job status
modificationmake the status of a grid evenmore unpredictable. In
this case, an optimal job distribution decisionmay not remain to be
optimized through time. Therefore, themotivation of thedynamic
scheduling phase is to keep the previous made scheduling
decision optimized by allowing queued jobs to be kept rescheduled
in accordance with the changes in the grid.

Suppose the arbitrary node ∀nγ ∈ N checks its local job queue
to find several jobs which have the longest waiting time by means
of an algorithm entitled hresched periodically with interval t intervalγ .
Such selected jobs will be tried in the following rescheduling
process to improve their own job makespans and the resource
utilization of the overall grid. The number of to-reschedule jobs is
decided by hresched by considering the status of node nγ itself, such
as length of local job queue and current node overhead. Afterwards,
interface itneighbors(nα) will be launched again to find a set of
contactable remote nodes for job rescheduling and re-allocation.
Algorithm hresched then generates an inform message infγ ,ψ
for each to-schedule job jγ ,ψ and disseminates those inform
messages to all remote nodes discovered for negotiating job
rescheduling possibilities. Each generated inform message infγ ,ψ
contains similar information to the aforementioned request

message, including estimated execution time jlengthγ ,ψ , requested
amount of PEs jpeγ ,ψ , and job characteristic profile. Further, each
inform message also includes the already made schedule for job
jγ ,ψ on current node nγ , i.e., the estimated job finish time, which
will be used for offer comparison by the contacted remote nodes
later. It is noteworthy that the algorithm hresched can be triggered
by other events as well depending on each node’s local setting.

Each time a responder node nδ ∈ N receives an inform
message infγ ,ψ , the responder node needs to launch the algorithm
h′accept to determine whether to accept this job delegation request
or not. Algorithm h′accept works in a similar way with the
aforementioned haccept except one crucial difference: regarding the
inform message infγ ,ψ contains the current schedule made for
job jγ ,ψ on the requester node nγ , the responder node nδ needs
to make sure a worthwhile benefit can be obtained from the job
rescheduling action based on the predefined system optimizing
objective. Finally, an approved job acceptance decision will lead to
the generation of a corresponding accept[I] message acc Iδ,γ ,ψ ,
wherein the offer provided by the responder node nδ is also
included and sent back the requester node. The requester node nγ
then collects and compares all received accept[I] messages for
job jγ ,ψ to launch the probabilistic based hassign algorithm to select
an appropriate remote node, and delegates job jγ ,ψ to the selected
remote node by means of a generated assign message assγ ,δ,ψ .

The notations used and algorithms introduced are listed in
Table 1.

4. Community-aware scheduling algorithm

As introduced above and then listed in Table 1, in total
5 heuristic algorithms form the community-aware scheduling
algorithm. Each scheduling algorithm is detailed in this section.

4.1. Job distribution

The algorithm for job distribution is represented as hrequest in
Section 3. Each time a node nα receives a job jα,θ submitted from
its local users, instead of allocating this job to the local resource
management system (LRMS) immediately, the hosting node nα

Y. Huang et al. / Future Generation Computer Systems () – 5

needs to launch the job submission phase of CASA to find
a proper node from the scope of the overall grid.

Unlike other approaches [32,33] which make instant job dele-
gation decisions depending on information periodically exchanged
fromall nodes of the grid; the hrequest first invokes interface itneighbors
to fetch an address list of known remote nodes, which is periodi-
cally updated by an external resource discovery service employed
for this. Later on, the hrequest sends a job delegation request, which
is comprised of information such as job characteristic and number
of message replicas, to each known remote node. The decision of
job delegation then depends on both the remote nodes’ responses
and the hosting node’s adopted algorithm, which will be discussed
in Sections 4.2 and 4.3 respectively.

Algorithm 1 Algorithm for Job Distribution hrequest

Require: nα: the requester node.
jα,θ : the new arriving job on node nα , which needs to be
allocated to either the local node or a remote node;
reqα,θ : the request message generated for job jα,θ ;
itneighbors(nα): address list of known remote nodes of hosting
node nα;
x: length of the known remote node list returned by
itneighbors(nα);
nβ : an arbitrary node from list itneighbors(nα);

Require: send: implementation methods.

1: nα → reqα,θ
2: (jpeα,θ , j

length
α,θ , jmips

α,θ)← jα,θ
3: reqα,θ ← (jpeα,θ , j

length
α,θ , jmips

α,θ)

4: reqα,θ ← 1
x

5: for all nβ ∈ itneighbors(nα) do
6: send reqα,θ to node nβ
7: end for

4.2. Job delegation request acceptance

The algorithm for job delegation request acceptance is repre-
sented as haccept in Section 3. Each node of the grid nβ ∈ N checks
the received job delegation requests periodically and filters out
jobs whose obligatory requirements, such as the type of operat-
ing system and requested number of processing elements, cannot
be fulfilled by the local resources. After that, the responder node
nβ needs to generate an accept[R] message and send the mes-
sage back to the delegation requester node nα , together with the
expected response time in case job jα,θ is assigned to node nβ itself.

Algorithm haccept calculates the estimated job response time by
adding up the time used to execute the job itself, and the time
used to execute already arrived/queued jobs before the job jα,θ .
Specifically, each node applying the CASA contains two queues
used to host already received jobs and ‘‘promises’’ made. The
local job queue of a node is the place where jobs have been
accepted for local execution but the execution has not started
yet. Despite the job sequence of this queue varying through time
depending on the adopted local scheduling policy, the total amount
of job execution workload of a local job queue LoadJQ can still
be calculated as depicted in Definition 1.

Definition 1 (Single Node’s Workload of Already Queued Jobs
(LoadJQ)).

LoadJQβ =
−
∀jθ∈Jβ

(jpeθ · j
length
θ · jmips

θ).

Assuming there are in total Jβ jobs queued on node nβ , then the
load of all queued jobs is the sum of each job’s load, namely the

product of each job’s number of requested processing elements
jpeθ , estimated processing element speed jmips

θ , and estimated job
execution time jlengthθ .

Besides, each time a node sends a generated accept[R]
message back to the requester node for job bidding, such a
‘‘promise’’ made will also be queued upon the responder node
since an accept[R] message represents a possible incoming job
delegation in the near future. In this case, each node applying
the CASA contains a shadow job queue to record the already
sent accept[R] messages, wherein each record of the shadow
job queue contains both the job characteristic profile and the
estimated accept[R]message approval probability. For instance,
if a node nα propagates x request messages reqα,θ for job jα,θ and
sends one of those generated request messages to a responder
node nβ , then when node nβ decides to accept the received job
delegation request by means of a response accept[R] message
accRβ,α,θ , the estimatedmessage approval probability is: 1

x , thus the
total amount of job execution work of a shadow job queue
LoadSQ is:

Definition 2 (Single Node’s Estimated Workload of Accepted Jobs
(LoadSQ)).

LoadSQβ =
−
∀jθ∈J ′β

(jpe
′

θ · j
length′
θ · jmips′

θ) ·
1
xθ
.

Assuming there are in total J ′β sent accept[R] messages queued
on node nβ , then the estimated load of all corresponding jobs is
the sumof each job’s loadwith its approval probability, namely the
product of each job’s number of request processing elements jpe

′

θ ,
estimated processing element speed jmips′

θ , estimated job execution
time jlength

′

θ , and the accept[R] message approval probability 1
xθ
.

Afterwards, as depicted in Algorithm 2, the estimated job
response time of a received job delegation request can be obtained
by adding up the time to execute the job itself, the time to execute
load of already queued jobs, and the time to execute estimated load
of already accepted jobs by the algorithm haccept . The responder
node then generates an accept[R] message with calculated
response time and sends it back to the job delegation requester
node, where the job delegation decision will be made later.

It is noteworthy that the estimated time to execute queued/
accepted jobs is a theoretical optimized value. In reality, regarding
the amount and scale of ‘‘scheduling holes’’ significantly relying
on the characteristic of received jobs as well as adopted local
scheduling policies, such estimated time is not equal to the
required real time. However, on the other hand, the estimated
time for executing queued/accepted jobs of a responder node
balances the node’s current load aswell as its processing capability,
which gives the requester node the leverage to distribute jobs
with regard to remote node load balance. Furthermore, the
accept[R] message generation procedure upon a responder
node is decoupled from the node’s local scheduling policies, which
makes the implementation of CASA in cooperation with variety of
locally adopted scheduling algorithm viable.

4.3. Job assignment

The algorithm for job assignment is represented as hassign in
Section 3. Each time a request message or an inform message
is replicated and disseminated to a set of remote nodes, the
requester node nα needs to check the received accept messages
from diverse remote nodes in the next CASA execution cycle and
selects an appropriate one to receive the job assignment. In case no

6 Y. Huang et al. / Future Generation Computer Systems () –

Algorithm 2 Algorithm for Job Delegation Request Acceptance
haccept

Require: nα: the requester node.
nβ : the responder node.
reqα,θ : a request message sent from requester node nα to
responder node nβ .
jα,θ : the job associated with request message reqα,θ .
loadjqβ : load of the local job queue of responder node nβ .
loadsqβ : estimated load of theshadow job queue of responder
node nβ .
accRβ,α,θ : an accept[R] message generated by the responder
node nβ for answering the incoming request message reqα,θ .
mipsβ : average processing element speed of node nβ .
peβ : number of processing elements of node nβ .
t jobβ,θ : estimated time to execute job jα,θ on node nβ .
t jqβ : estimated time to execute load of local job queue of
node nβ .
tsqβ : estimated time to execute load of shadow job queue of
node nβ .
SQβ : the shadow job queue of responder node nβ .

Require: send: implementation methods.

1: jα,θ ← reqα,θ
2: (t jobβ,θ , t

jq
β , t

sq
β)← jα,θ

3: t jobβ,θ =
jpeθ ·j

length
θ ·jmips

θ

mipsβ ·peβ

4: t jqβ =
loadjqβ

mipsβ ·peβ

5: tsqβ =
loadsqβ

mipsβ ·peβ

6: nβ → accRβ,α,θ
7: accRβ,α,θ ← (t jobβ,θ , t

jq
β , t

sq
β)

8: SQβ ← accRβ,α,θ
9: send accRβ,α,θ to node nα

accept message is sent back from any remote node nor the local
node, then the job jα,θ appended to a request/inform message
is considered as a task not suited to known resources of the grid
and thus suspended.

Once a set of accept messages have been received, algorithm
hassign of the requester node nα needs to select a responder
node offering a shorter response time as the assignee node, and
delegates job jα,θ to such a selected assignee node for execution.
On the other hand, if all nodes of the grid greedily select responder
nodes offering the shortest job response time for job assignments,
then nodes with either sufficient processing elements or superior
processing capability could be simultaneously selected as the
assignee nodes and receive an imbalanced amount of jobs within
one CASA execution cycle. In order to avoid the ‘‘punishment’’
effect on nodes with better processing power, algorithm hassign
adopts a probabilistic approach, wherein nodes with better power
are prone to have a chance of receiving more jobs, but nodes
with less power still have the probability of being selected as the
assignee nodes for job delegations.

As shown in Definition 3, during CASA’s job submission
phase or dynamic scheduling phase, a responder node nβ ’s
probability of being selected as the assignee node ρreq

ass (β) is de-
termined by its estimated job response time when compared with
accept messages issued by other responder nodes. Furthermore,
since the estimated time for job jα,θ ’s execution upon node nβ
is a deterministic value, whereas the estimated time for already
queued/accepted jobs’ execution is an empirical and underlying

algorithm dependent value, a coefficient ω ∈ [0, 1] could be em-
ployed toweigh those two parts respectively depending on the set-
ting of participating nodes.

Definition 3 (Responder Node’s Probability of Being the Assignee
Node (ρreq

ass)).

ρreq
ass (β) =

1
t jobβ,θ+t

jq
β +ω·t

sq
β

1∑
∀ψ∈M

(1
tjob
ψ,θ
+tjq
ψ
+ω·tsq

ψ

)

.

Assuming after sending job jα,θ based request/inform mes-
sages to several remote nodes, the requester node nα receives in
total M accept messages from M diverse responder nodes. For
each responder node nβ , the estimated response time of job jα,θ
upon its local resources is the sum of time t jobβ,θ , t

jq
β , and tsqβ as dis-

cussed in Section 4.2. Then node nβ ’s probability of being selected
as the assignee node for job jα,θ (by the requester node nα) is then
ρ
req
ass (β).

When all responder nodes’ selection probabilities have been
calculated, the requester node nα launches a random number
generator in order to select an assignee node from all responder
nodes with regard to their selection probabilities. Afterwards, job
jα,θ is conveyed to the selected assignee node by means of a newly
created assign message. In addition, the requester node nα also
needs to contact other responder nodes, which are not selected
as the assignee node, to revoke the corresponding job accept
messages from their own shadow job queues respectively.

It is noteworthy that the assignee node is selected depending
on responder nodes’ estimated job response time by means of the
returned accept messages. The responder nodes do not need to
send confidential information such as current resource utilization
or current length of local job queue back to the requester node to
bid for job delegation; this is a crucial criterion for decentralized
metascheduling in reality because all participating nodes are
independent and may even have competition relationships with
each other.

Furthermore, as discussed in Section 4.2, a responder node’s job
response time is an averaged theoretical value calculated based on
its estimated workload regardless of the adopted local scheduling
algorithm. However, nodes with advanced local scheduling
algorithms are able to execute more queued and newly assigned
jobs during the interval between two CASA execution cycles, thus
representing themselves as nodes with higher probabilities of
getting job assignments due to less instant load and shorter job
response time in the next CASA execution cycle. In this case,
without knowing participating nodes’ local settings, the CASA can
still highlight nodes with advanced local scheduling algorithms
and promote their job assignment probabilities.

4.4. Job rescheduling

The algorithm for job rescheduling is represented as hresched
in Section 3. Once a node is selected as the assignee node for a
delegated job’s execution, numerous events such as newly arrived
jobs and resources are able to keep changing the status of the
overall grid dynamically through time. Therefore, if the assigned
job is still not executed yet after some time, the current assignee
node may not remain an optimal choice for the assigned job’s
execution because some other nodes could offer a shorter job
response timebecause of their volatile resource usages. In this case,
each node of the grid needs to check periodically whether some of
the already queued jobs could be re-assigned to other nodes for
obtaining better performance in terms of job execution and grid
resource utilization.

Y. Huang et al. / Future Generation Computer Systems () – 7

Algorithm 3 Algorithm for Job Assignment hassign

Require: ω: weight of estimated time to execute jobs of the
shadow job queue, default value: 1.

Require: nα: the requester node.
JQα: the local job queue of node nα .
jα,θ : the job requested for delegation by requester node nα .
msgα,θ : the request/inform message used to send delega-
tion request for job jα,θ .
M: all responder node answering the delegation request for job
jα,θ .
nβ : one arbitrary responder node, nβ ∈ M .
accβ,α,θ : the accept message (either accept[R] or
accept[I]) sent by responder node nβ .
t jobβ,θ : estimated time to execute job jα,θ on node nβ .
t jqβ : estimated time to execute load of local job queue of
node nβ .
tsqβ : estimated time to execute load of shadow job queue of
node nβ .
ρ
req
ass (β): node nβ ’s probability of being selected as the assignee

node by the requester node.
nϕ: the selected assignee node for job jα,θ ’s delegation.
assα,ϕ,θ : the assign message used to deliver job jα,θ from the
requester node nα to the assignee node nϕ .
fselector : the random number generator to select the assignee
node with regard to each known responder node’s selection
probability.

Require: send, revoke: implementation methods.

1: jα,θ ← msgα,θ
2: if jα,θ ∈ JQα then
3: for all nβ ∈ M do
4: (jα,θ , t

job
β,θ , t

jq
β , t

sq
β)← accβ,α,θ

5: ρ
req
ass (β)← (t jobβ,θ , t

jq
β , t

sq
β , ω)

6: fselector ← ρ
req
ass (β)

7: end for
8: nϕ ← fselector
9: for all nβ ∈ M do

10: if nϕ = nβ then
11: nα → assα,ϕ,θ
12: assα,ϕ,θ ← jα,θ
13: send assα,ϕ,θ to nϕ
14: JQϕ ← jα,θ
15: end if
16: revoke accβ,α,θ in nβ
17: end for
18: else
19: for all nβ ∈ M do
20: revoke accβ,α,θ in nβ
21: end for
22: end if

Tomake scheduling decisions adapt to changes of grid resource
usages, some already queued jobs on each participating node need
to be selected appropriately and re-assigned somewhere else. First,
each node of the grid nγ∈N needs to constantly update its average
queuing time T queuing

avg (γ) (shown in Definition 4) based on jobs
already executed by a local resource. Second, for each unexecuted
job jγ ,ψ waiting within node nγ ’s local job queue, its queuing
time will be used to divide node nγ ’s up-to-date average queuing
time to generate such a job’s relative queuing delay νγ ,ψ (shown in
Definition 5). If νγ ,ψ is greater than a predefined system coefficient
µ, job jγ ,ψ is then considered as having waited for a long enough
time and needs to be rescheduled if possible. All to-reschedule
jobs of node nγ are put into a temporary to-schedule array ϱγ

ordered according to the descending order of their relative queuing
delays.

Definition 4 (Single Node’s Average Queuing Time (T queuing
avg)).

T queuing
avg (γ) =

j
ι
JQ
γ∑
∀jψ

tqueueγ ,ψ

ι
JQ
γ

, jψ ∈ JQγ when ιJQγ ≠ 0

T queuing
avg (γ) =

j
ι
JC
γ∑
∀jψ

tqueueγ ,ψ

ι
JC
γ

, jψ ∈ JCγ when ιJQγ = 0&ιJCγ ≠ 0

T queuing
avg (γ) = 0, when ιJQγ = 0&ιJCγ = 0.

Assuming there are in total ιJCγ executed jobs stored in node nγ ’s
job completion queue JCγ ; Meanwhile, there are in total ιJQγ jobs
waiting in node nγ ’s local job queue JQγ . Each job jψ ’s queuing
time upon node nγ is tqueueγ ,ψ . Then node nγ ’s average queuing
time T queuing

avg (γ) can be calculated according to different queue
conditions.

Definition 5 (Single Node’s Relative Queuing Delay (ν)).

νγ ,ψ =
tqueueγ ,ψ

T queuing
avg (γ)

, jψ ∈ JQγ when T queuing
avg (γ) ≠ 0

νγ ,ψ = 0, when T queuing
avg (γ) = 0.

For each unexecuted job jψ waiting to be executed in node nγ ’s
local job queue JQγ , its instant relative queuing delay νγ ,ψ can be
calculated by dividing its current queuing time tqueueγ ,ψ by the node’s
up-to-date average queuing time T queuing

avg (γ).

Next, a set ofinformmessages infγ ,ψ will be generated for each
to-reschedule job jγ ,ψ and disseminated to known remote nodes
discovered by interface itneighbors for job re-assignment negotiation.
To facilitate the responder nodes’ decision whether a better job
execution offer can be provided, two more associated values are
appended to the inform message, namely the average queueing
time of the requester node T queuing

avg (γ), and the estimated response
time of job jγ ,ψ on node nγ .

With regard to jobs continually rescheduled from one node to
another, this could make the load of the grid unstably imbalanced,
and sometimes lead to a ‘‘ping-pong’’ or even ‘‘deadlock’’ phenom-
ena. In this case, the design of the algorithm for job reschedul-
ing hresched only picks jobs which have been waiting for a long
enough time on the hosting node for rescheduling consideration.
Such a mechanism gives each just arrived job a period of ‘‘cooling
down’’ rather than being rescheduled immediately. The threshold
of rescheduling depends on the system coefficient µ.

The detail of job rescheduling is illustrated in Algorithm 4.

4.5. Job rescheduling request acceptance

The algorithm for job rescheduling request acceptance is
represented as h′accept in Section 3. It works in a similar way to the
algorithm for job delegation request acceptance haccept as discussed
in Section 4.2. Once a node nδ ∈ N receives a set of job rescheduling
requests from their own requester nodes within a CASA execution
cycle, responder node nδ first filters out jobs which cannot be
served by local resources, and then estimates the response time for
each remaining job jγ ,ψ by adding up the estimated time to execute
job jγ ,ψ , the time to execute load of already queued jobs on node nδ ,
and the time to executed estimated load of already accepted jobs
by node nδ . Furthermore, responder node nδ needs to update its job

8 Y. Huang et al. / Future Generation Computer Systems () –

Algorithm 4 Algorithm for Job Rescheduling hresched

Require: µ: system coefficient of rescheduling threshold.
Require: nγ : the requester node of job rescheduling.

JQγ : the local job queue of requester node nγ .
jγ ,ψ : an arbitrary job obtained from the corresponding queue
of node nγ .
ϱγ : the temporary to-schedule job array of node nγ .
T queuing
avg (γ): node nγ ’s job average queuing time.

tqueueγ ,ψ : job jγ ,ψ ’s queuing time on node nγ .
νγ ,ψ : job jγ ,ψ ’s relative queuing delay on node nγ .
infγ ,ψ : the inform message used to send re-assignment
delegation request for job jγ ,ψ .
itneighbors(nγ): address list of remote nodes discovered for node
nγ .
nδ: an arbitrary node from list itneighbors(nγ).
t jq,ψγ : estimated time to execute load of nγ ’s local job
queue before job jγ ,ψ .
t jobγ ,ψ : estimated time to execute job jγ ,ψ on node nγ .

Require: send: implementation methods.

1: nγ → T queuing
avg (γ)

2: index = 0
3: for all jγ ,ψ ∈ JQγ do
4: tqueueγ ,ψ ← jγ ,ψ
5: νγ ,ψ ← (tqueueγ ,ψ , T queuing

avg (γ))

6: if νγ ,ψ ≥ µ then
7: ϱγ ← jγ ,ψ j
8: end if
9: end for

10: for all jγ ,ψ ∈ ϱγ do
11: nγ → infγ ,ψ
12: infγ ,ψ ← T queuing

avg (γ)

13: infγ ,ψ ← (t jq,ψγ , t jobγ ,ψ)← jγ ,ψ
14: for all nδ ∈ itneighbors(nγ) do
15: send infγ ,ψ to node nδ
16: end for
17: end for

average queuing time T queuing
avg (δ), which is later used to determine

the answer of job jγ ,ψ ’s rescheduling request.
To ensure a better offer can be provided, when compared with

job jγ ,ψ ’s current schedule on its requester node nγ , the responder
node nδ needs to make sure: (i) the estimated response time of
executing job jγ ,ψ on its own resource is shorter than job jγ ,ψ ’s
estimated response time on the requester node; (ii) the weighted
average job queuing time of the responder node is shorter than
such time of the requester node, i.e., the current job assignee node.
The weightϖ here is a non-negative number, whereby its default
value 1 represents that a job will not be rescheduled until the
rescheduling bidding node’s average job queuing time is not less
than the current assignee node’s. Once both prerequisites can be
fulfilled, an accept[I] message acc Iδ,γ ,ψ will generated and sent
back to the requester node for job bidding. The same algorithm for
job assignment hassign as discussed in Section 4.3 is then used by
the requester nodes for returned accept[I]messages evaluation
and job assignment.

The detail of job rescheduling request acceptance is illustrated
in Algorithm 5.

5. Experiment configuration

To demonstrate the benefit of applying the community-
aware scheduling algorithm (CASA) to schedule jobs upon a

Algorithm 5 Algorithm for Job Rescheduling Request Acceptance
haccept ’
Require: ϖ : the weight of average queuing time comparison

during the process of job rescheduling, default value: 1.
Require: nγ : the requester node of job rescheduling.

nδ: the responder node of job rescheduling.
jγ ,ψ : the job expected to be rescheduled from node nγ .
infγ ,ψ : the inform message sent by requester node for job
jγ ,ψ ’s rescheduling delegation request.
T queuing
avg (γ): node nγ ’s job average queuing time.

t jq,ψγ : estimated time to execute load of nγ ’s local job
queue before job jγ ,ψ .
t jobγ ,ψ : estimated time to execute job jγ ,ψ on node nγ .
T queuing
avg (δ): node nδ ’s job average queuing time.

t jobδ,ψ : estimated time to execute job jγ ,ψ on node nδ .
t jqδ : estimated time to execute load of local job queue of
node nδ .
tsqδ : estimated time to execute load of shadow job queue of
node nδ .
acc Iδ,γ ,ψ : an accept[I] message generated by the responder
node nδ for answering the incoming inform message infγ ,ψ .
SQδ: the shadow job queue of responder node nδ .

Require: send: implementation methods.

1: (T queuing
avg (γ), t jq,ψγ , t jobγ ,ψ)← infγ ,ψ

2: (T queuing
avg (δ), t jobδ,ψ , t

jq
δ , t

sq
δ)← nδ

3: if (t jobδ,ψ + t jqδ + tsqδ) < (t jq,ψγ + t jobγ ,ψ) then
4: if T queuing

avg (δ) ·ϖ < T queuing
avg (γ) then

5: nδ → acc Iδ,γ ,ψ
6: acc Iδ,γ ,ψ ← (t jobδ,ψ + t jqδ + tsqδ)
7: SQδ ← acc Iδ,γ ,ψ
8: send acc Iδ,γ ,ψ to node nγ
9: end if

10: end if

fully distributed heterogeneous resource pool, the scenarios with
default CASA coefficients and different underlying information
systems are comparedwith two reference conventional scheduling
scenarios; thus in total four scenarios are evaluated.

5.1. Scenarios

As mentioned above, in total four scenarios are selected in this
experimental work. On the one hand, the Ind and Cen scenarios
are the reference scenarios which represent the conventional local
scheduling and centralized metascheduling contexts respectively.
In this regard, the observations of such reference scenarios reveal
the optimal results in the present computational ecosystem.On the
other hand, the Dec-G and Dec-P scenarios indicate the output of
CASA upon decentralized distributed nodes, so that the benefits of
the proposed algorithms can be observed and compared with the
conventional approaches. Specifically, theDec-G scenario discusses
the behavior of CASA with an information system with global
knowledge, which is a common choice in the reality; by contrast,
the Dec-P details the behavior of CASA upon a information system
with partial knowledge, which is more scalable and robust in a
variety of resource infrastructures.
Ind. The independent scheduling scheme is the first concerned
reference scenario wherein each participating node of the grid
receives the same amount of jobs submitted by the local users.
Because all nodes are isolated from each other, received jobs
can only be handled and processed by the local node’s resource

Y. Huang et al. / Future Generation Computer Systems () – 9

Fig. 1. Job success completion rate comparison between different scheduling schemes.

management system (LRMS) with regard to the adopted underly-
ing local scheduling algorithms.
Cen. The centralized scheduling scheme is the second reference
scenario, wherein the BestFit [34], a widely adopted scheduling
policy which has been proven to be efficient in both research
[35,18] and industry [36] scenarios, is utilized as the built-in
metascheduling algorithm. In this scenario, all jobs are submitted
to a unique centralized metascheduler which is aware of the
detailed information of all nodes of the grid, including each node’s
number of processing elements (PEs), as well as each node’s the
number of instantly available PEs at any given time. To respond to
the arrival of a newly submitted job, the centralizedmetascheduler
checks the overall grid to build a collection comprised of all nodes
that are able to execute such a job instantly. Afterwards, the node
leaving the least free PEs, if such a job is executed there, is selected
and will receive the job delegation from the metascheduler later.
The BestFit algorithm is known for its capability to promote job
response time; the centralized scheduling scheme is considered as
the optimized scenario with regard to job related criteria, such as
job response time, job waiting time and job slowdown.
Dec-G. Within the decentralized scenario, the metascheduler
of each individual node is running the CASA with its default
coefficients, wherein both the weight of estimated time to execute
jobs of the shadow job queue (discussed in Algorithm 3) and
the weight of node’s average queuing time for job rescheduling
(discussed in Algorithm5) is 1.0. Furthermore, the relative queuing
delay threshold for rescheduling (discussed in Algorithm 4) is set
to 1.0 aswell, whichmeans jobswaiting in each node’slocal job
queue longer than the average queueing time will be rescheduled
if possible.

In addition, each participating node adopts a ‘‘global’’ resource
discovery servicewhich is able to return the addresses of all remote
nodes of the grid for job delegation activities. It is noteworthy that
the ‘‘global’’ resource discovery service is fundamentally different
from the foregoing centralized schemebecause the ‘‘global’’ service
only enables a node to be aware of the existence of asmany remote
nodes as possible. Neither detailed information such as number of
PEs of a remote node, nor any control authority upon the remote
node will be conveyed, therefore the hosting node needs to rely on
the CASA for the following job delegation behaviors.
Dec-P. This is similar to the aforementioned Dec-G scenario, while
each node of the grid adopts a different ‘‘partial’’ resource discov-
ery service. Each time a node launches a resource discovery action,
the ‘‘partial’’ service is able to return the addresses of six randomly
selected remote nodes, and sends them back to the node for job

delegation related activities. In this case, each node employing the
‘‘partial’’ service has an incomplete ‘‘local perspective’’ with regard
to nodes distributed in the grid.

5.2. Simulation setup

The workload trace archive and resource deployment topology
of the Grid5000 [37] is selected to organize the experiment of
this work. To obtain stable results as a mean of ten iterations,
we took 1% of the overall input jobs (i.e., 10,201 jobs) averagely
distributed within the original workload running time, and submit
them to the simulated infrastructure (i.e., 26 nodes) with the same
frequencywithin 1% of original job arrival duration. Each simulated
job specifies the amount of required processing element as well as
the estimated processing time, which can both be obtained from
the workload trace.

In line with the underlying assumptions, metascheduling takes
places over a pool of heterogeneous resources, therefore each grid
node is characterized by a different profile. In this implementation,
each node’s profile is set by the installed operating system,
which is chosen from a simplified distribution generated according
to the list published on the TOP500 supercomputing site [38].
Specifically, we assume 80% of the grid nodes have Linux as
the installed operating system, and the other 20% of nodes have
Windows as the installed operation system. Meanwhile, it is
also assumed that each job is also characterized by the profile
of requested operating system which is chosen from the same
distribution.

Besides, all jobs are fairly submitted to each node of the grid,
thus each node receives the same number of local submitted jobs.
Finally, the local resource management system (LRMS) of each
participating node adopts the First-Come-First-Service (FCFS) as
the local scheduling algorithm.

6. Results

TheMaGateSim [39] is selected as the simulator for experiment
evaluation, and the observed results are then discussed in this
section.

6.1. Job success completion

As illustrated in Fig. 1, when the independent scheduling
scheme is concerned (scenario:Ind), if a submitted job requires an
operating system different from the one installed on the arrival
node, such a job cannot be delegated to any remote nodes and

10 Y. Huang et al. / Future Generation Computer Systems () –

Fig. 2. Resource usage comparison between different scheduling schemes.

has to be suspended and later marked as failed. In this case,
all successfully executed jobs are accomplished by their arrival
nodes, and the overall job success completion is 67%. When the
centralized scheduling scheme is evaluated (scenario:Cen), the
centralized scheduler has full control of every participating node
and is capable of assigning a received job to any competent node,
if it exists. Therefore, over 99% of submitted jobs are successfully
executed, wherein about 3% jobs are executed by the node hosting
the centralized scheduler.

With regard to the decentralized scheme on an information
system with ‘‘global perspective’’ (scenario:Den-G), each node is
dedicated to finding an appropriate node for each arrival job during
the job submission phase. Because the adopted ‘‘global’’
resource discovery service is able to find the addresses of all nodes
of the grid, as far as there exists a competent node for a specific
job, such a job can be executed sooner or later. In this case, the rate
of job success completion of the decentralized scheme is also over
99%, wherein about 6% jobs are executed by their arrival nodes.

By contrast, the decentralized scheme upon an information
system with ‘‘local perspective’’ (scenario:Den-P) leads to a job
success completion rate around 95%. This is because the employed
‘‘partial’’ resource discovery service can only provide at most
six remote candidate nodes each time for job delegation related
requests; therefore there exist more unprocessed jobs because
neither proper local resource nor remote nodes can be found for
job execution.Meanwhile, the original job arrival node has a higher
probability of being selected as the assignee node out of a total of
7 candidate nodes, from the scope of the overall grid, around 14.7%
jobs are accomplished by the resource of arrival nodes.

6.2. Resource usage

The manner of job assignment to each node’s local resource
management system (LRMS) in the independent scheduling
scenario is rather straightforward. As discussed above, more than
32% submitted jobs are not executed by any resource in the
independent scenario, as shown in Fig. 2; the average resource
uptime of the independent scheduling scenario (scenario:Ind) is
lower than both the centralized (scenario:Cen) and decentralized
(scenario:Dec-G, Dec-P) scenarios, wherein over 99% of jobs are
executed. Besides, the community resource utilization of the of the
independent scenario is about 5%, which is also lower than the
resource utilization of the centralized and decentralized scenarios.
This is because both the centralized and decentralized scenarios
are capable of allocating a job to a resource which could provide a
shorter job response time, which in turn promotes the utilization
of the local resources.

On the other hand, the average resource uptime and the
utilization of the decentralized scenario with ‘‘global perspective’’
information system is almost the same as the centralized scenario,
which demonstrates that dynamic scheduling in a decentralized
mannerwith CASA canpromote resource usage as good as the Best-
Fit based centralized scheduling approach. The metascheduler of
the centralized scenario requires all instant detailed information
and control authority of each participating node in order to ensure
the schedule made for each arrival job is optimized and will not be
denied by the responding node. On the contrary, the community-
aware scheduling algorithm (CASA) provides the same level of
resource utilization in a decentralized manner without asking for
detailed resource information nor control authorities from the
responding nodes, thus leaving great flexibility and autonomy to
the participating nodes.

Furthermore, when the ‘‘partial’’ service is adopted (scenario:
Dec-P), the obtained resource utilization is slighted decreased
to about 6%. This phenomenon is caused by fewer executed
jobs, while ‘‘partial’’ resource discovery service is employed. In
addition, it can also be observed that the resource uptime of
different scenarios is even as well, which means that using the
CASA with a less qualified resource discovery service with local
perspective does not lose much effectiveness when compared to
an information system with global perspective.

It is noteworthy that as far as there are still scheduled but
unfinished jobs remaining in the grid, all nodes of the grid are
considered to be in run status. Therefore, if there exist jobs
with a long execution time at the end of queues of some nodes,
other nodes of the grid need to wait for a long period until the
last job is executed, which is the case in this experiment. For
instance, with regard to the independent scheduling scenario, as
shown in Fig. 3, since about 17th May, the instant community
resource utilization (CE) has dropped to less than 2.5%, which
means most jobs submitted to the grid are either successfully
executed or suspended and considered as failed, thus most nodes
are idle. However, the remaining jobs on the grid take about 7
days to be executed, which keeps the status of all nodes of the
grid active for another 7 days and dramatically brings down the
performance in terms of resource uptime and resource utilization.
In this case, the performance benefit brought by the CASA cannot
be obviously illustrated by resource related criteria, but will be
better presented by job related criteria, which will be discussed in
the next subsection.

6.3. Job response time, job waiting time and job slowdown

The job response time represents the time used between a
job’s arrival time until its returned time. As shown in Fig. 4, the

Y. Huang et al. / Future Generation Computer Systems () – 11

Fig. 3. Average job running status archive of the grid using the independent scheduling scheme. This is the simulator graphic archive after executing the independent
scheduling scenario ten times, wherein the counts of some job states through time from all experimental iterations are recorded. Furthermore, the mean of some
aforementioned counts are plotted as well, such as the ‘‘mean of executed jobs’’ and the ‘‘mean of suspended jobs’’. It can be observed that execution of the experiment
is rather stable because the counts of job states from all iteration are compactly recorded, and the plotted means show little deviation from the original count
records.

Fig. 4. Job response time and slowdown comparison between different scheduling schemes.

average job response time of the independent scheduling scenario
(scenario:Ind) is 10,608 s, which is a little less than the average
job response time of the centralized scenario (scenario:Cen).
This is because over 32% of jobs of the independent scenario
are suspended and then considered as failed without execution
attempts due to various reasons, such as the expected number of
PEs cannot be provided by the arrival node’s underlying resource.
In other words, many ‘‘heavy’’ jobs which normally require a
large number of PEs and a long period of processing time are not
executed, thus the average job response time is brought down
because the average job processing time is reduced, instead of jobs
being efficiently scheduled. This is proven by the value of average
job slowdown and average job waiting time.

The job slowdown illustrates the ratio when comparing a job’s
response time with its actual processing time. Since the average
job slowdown of the centralized scenario is 135, it means that
averagely each job submitted to the independent scenario is

delayed for 135 times before execution and return. By contrast,
the average job slowdown of the centralized scenario is around
41, which is dramatically improved because the Best-Fit based
centralized metascheduler is aware of the existence as well as
the detailed information of all nodes of the grid, which facilitates
making optimal scheduling decisions for each arrival job. The job
waiting time is the duration between a job’s arrival time and
its execution start time. On average, each job in the centralized
scenario needs to wait for 5459 s to start the execution started,
which is around 1000 smore than the independent scenario. This is
because the centralizedmetascheduler takes time to decide where
to submit the jobs; furthermore, due to the lack of information
on adopted local scheduling algorithms, improper job distribution
decisions lead to more job waiting time on the delegated nodes.

The average job response time of the decentralized scenario
on a global perspective information system (scenario:Dec-G) is
7790 s, which is less than both the independent and centralized

12 Y. Huang et al. / Future Generation Computer Systems () –

Fig. 5. Number of generated CASA messages compared between different scheduling schemes.

scenarios. The decentralized scenario executes as many jobs as
the centralized scenario as shown in Fig. 1, the improvement
of job response time is then yielded due to better scheduling
efficiency, which is also proven by the obtained average job
slowdown and job waiting time. The average job slowdown of this
decentralized scenario is 29.15, which is about only 2/3 of the
centralized scenario. In addition, the observed average job waiting
time of the decentralized scenario upon the ‘‘global’’ resource
discovery service is 1719 s, which is significantly improved
compared to both the independent and centralized scenarios. This
is because the probability based resource selection policy of the
job assignment algorithm in CASA is able to find appropriate nodes
for job delegations and executionswithout causing imbalanced job
distribution. Furthermore, CASA’sdynamic scheduling phase
also helps to reschedule jobs to nodes with better performance
through time.

The behavior of the CASA with ‘‘partial’’ resource discovery
service is even more interesting. As shown in Fig. 4 (scenario:Dec-
P), when a less qualified information system, such as the ‘‘partial’’
service, is employed, although each time only maximum six
remote nodes can be found for the purpose of job delegation
negotiation, the observed results are surprisingly improved when
compared to the ‘‘global’’ service. Specifically, the job response
time is 6958 s, wherein the job waiting time is 764 s. Such results
are not only better than the independent and centralized scenarios,
but also improved from the global perspective information
system based decentralized scenario. In addition, the obtained
job slowdown upon the local perspective information system is
16.32, which is again the most optimized value out of all scenarios
evaluated. This phenomenon is because an information system
with global perspective generallymeans longer resource discovery
response time and heavier node workload; in this case, jobs
which should have been rescheduled to gain better processing
performance might have already been sent to a local resource
before receiving accept message responses from nodes with
better execution capability. In other words, some jobs might miss
rescheduling opportunities.

6.4. CASA messages

Fig. 5 represents the overhead of various generated CASA
messages. First of all, because the CASA is utilized by neither the
independent nor the centralized scenario (scenario:Ind, Cen), the
number of generated messages caused by the use of CASA is zero.

With regard to the decentralized scenario, when the ‘‘global’’
resource discovery service is adopted (scenario:Dec-G), the
addresses of all nodes of the grid can be found for each job
delegation attempt. In this case, for each submitted job, 26
request messages are generated so that each node of grid is
notified about the newly arrived job. Afterwards, on average
around 18 nodes of the grid respond to the job delegation
requester node concerning itswillingness and capability to process
such a job by means of the accept[R] messages. Finally, one
node is selected as the assignee node and receives the job
retrieved from the delivered assign[R] message. During the
dynamic scheduling phase, a total average of around 30
inform messages are generated for each job and disseminated to
nodes of the grid for searching nodes with better job execution
performance. Later on, each job has altogether around 10%
probability of finding a remote node with better execution
estimation (accept[I] message), and 4.8% probability to be
rescheduled once (assign[I] message).

By contrast, while the ‘‘partial’’ resource discovery service is
adopted (scenario:Dec-P), the message overhead is impressively
reduced. At first, during the job submission phase, on
average six request messages are generated for each arrival job,
whereby each job will receive 4.7 accept[R] messages for job
bidding, finally with a 96% probability of being delegated once to
an assignee node. Secondly, during the dynamic scheduling
phase, on average 2.3 inform messages will be generated for
each job looking for rescheduling opportunities, whereby each
job will have a 3.7% probability of finding a proper node for
rescheduling, and2.6%probability to be rescheduled once. It is then
obvious that the use of CASA with the ‘‘partial’’ resource discovery
service, an information system with ‘‘local perspective’’, leads to
only 18.4%message overhead compared with the use of CASAwith
an information system with ‘‘global perspective’’.

7. Conclusion and future work

In this work, we propose a decentralized dynamic scheduling
approach named the community-aware scheduling algorithm
(CASA). The CASA is a two-phase solution comprised of an
integrated collection of sub-algorithms used to facilitate job
scheduling across decentralized distributed nodes.

The observed experimental results presented show that CASA
is able to accomplish the same number of jobs as a centralized

Y. Huang et al. / Future Generation Computer Systems () – 13

approach in a decentralizedmanner. Furthermore, the CASA is able
to improve both the average job slowdownand average jobwaiting
time dramatically without asking for detailed information of
participating nodes nor centralized control of the grid. In addition,
while applying the CASA with a local perspective information
system, both the performance benefit (e.g., job slowdown, job
waiting time) and the overhead (e.g., generated/transferred
messages) are significantly improved compared to the use
of CASA upon a global perspective information system. This
phenomenon illustrates that the proposed community-aware
scheduling algorithm (CASA) has better performance while
working with an information system with faster response time,
instead of an information systemwith integrated global knowledge
but slow reaction speed. The dynamic scheduling phase
of the CASA can compensate for the fault of a local perspective
information system by continuous job rescheduling with up-to-
date ‘‘local knowledge’’.

Future work will include experiments using different grid
workload archive traces [40] in order to gain a better understand-
ing of CASA’s correlation with improved metascheduling perfor-
mance. Furthermore, additional widely adopted local scheduling
algorithms, such as EASY backfilling and Shortest Job First, would
need to be considered. Finally, the encouraging results observed
from this work serve as the motivation to apply a future imple-
mentation of CASA within the context of current developments in
cloud computing.

Acknowledgment

This research is financially supported by the Swiss Hasler
Foundation in the framework of the ‘‘ManCom Initiative’’, project
Nr. 2122.

References

[1] J. Ullman, NP-complete scheduling problems, Journal of Computer and System
Sciences 10 (3) (1975) 384–393.

[2] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: enabling scalable
virtual organizations, International Journal of High Performance Computing
Applications 15 (3) (2001) 200.

[3] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, et al., A view of cloud computing,
Communications of the ACM 53 (4) (2010) 50–58.

[4] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou,
S. Lanteri, J. Leduc, N. Melab, et al., Grid’5000: a large scale and highly
reconfigurable experimental Grid testbed, International Journal of High
Performance Computing Applications 20 (4) (2006) 481.

[5] C. Catlett, P. Beckman, D. Skow, I. Foster, Creating and operating national-scale
cyberinfrastructure services, CTWatch Quarterly 2 (2) (2006) 2–10.

[6] W. Gentzsch, D-grid, an e-science framework for German scientists, in:
ISPDC’06: Proceedings of the Proceedings of The Fifth International Sympo-
sium on Parallel and Distributed Computing, IEEE Computer Society, Wash-
ington, DC, USA, 2006, pp. 12–13. doi:10.1109/ISPDC.2006.16.

[7] F. Gagliardi, The EGEE European grid infrastructure project, High Performance
Computing for Computational Science-VECPAR 2004, 2005, pp. 194–203.

[8] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
M. Bowman, Planetlab: an overlay testbed for broad-coverage services, ACM
SIGCOMM Computer Communication Review 33 (3) (2003) 12.

[9] P. Eerola, B. Konya, O. Smirnova, T. Ekelof, M. Ellert, J. Hansen, J. Nielsen,
A. Waananen, A. Konstantinov, J. Herrala, et al. The Nordugrid production grid
infrastructure, status and plans, in: Fourth International Workshop on Grid
Computing, 2003, Proceedings, 2003, pp. 158–165.

[10] A. Iosup, T. Tannenbaum, M. Farrellee, D. Epema, M. Livny, Inter-operating
grids through delegated matchmaking, Scientific Programming 16 (2) (2008)
233–253.

[11] M. de Assunção, R. Buyya, Performance analysis of allocation policies for
interGrid resource provisioning, Information and Software Technology 51 (1)
(2009) 42–55.

[12] A. Iosup, M. Jan, O. Sonmez, D. Epema, The characteristics and performance of
groups of jobs in grids, Euro-Par 2007 Parallel Processing, 2007, pp. 382–393.

[13] D. Feitelson, A. Weil, Utilization and predictability in scheduling the IBM
SP2 with backfilling, in: 12th International Parallel Processing Symposium,
Citeseer, 1998, pp. 542–546.

[14] Y. Etsion, D. Tsafrir, A short survey of commercial cluster batch schedulers,
Tech. Rep., Citeseer, 2005.

[15] V. Subramani, R. Kettimuthu, S. Srinivasan, S. Sadayappan, Distributed job
scheduling on computational grids using multiple simultaneous requests,
in: 11th IEEE International Symposium on High Performance Distributed
Computing, 2002. HPDC-11 2002. Proceedings, 2002, pp. 359–366.

[16] Y. Huang, A. Brocco, N. Bessis, P. Kuonen, B. Hirsbrunner, Community-Aware
Scheduling Protocol for Grids, in: 2010 24th IEEE International Conference on
Advanced Information Networking and Applications, IEEE, 2010, pp. 334–341.

[17] L. Smarr, C. Catlett,Metacomputing, Communications of the ACM35 (6) (1992)
44–52.

[18] V. Hamscher, U. Schwiegelshohn, A. Streit, R. Yahyapour, Evaluation of job-
scheduling strategies for grid computing, Grid Computing GRID 2000, 2000,
pp. 191–202.

[19] U. Schwiegelshohn, R. Yahyapour, Resource allocation and scheduling in
metasystems, in: High-Performance Computing and Networking, Springer,
1999, pp. 851–860.

[20] C. Ernemann, V. Hamscher, R. Yahyapour, Economic scheduling in grid
computing, in: Job Scheduling Strategies for Parallel Processing, Springer,
2002, pp. 128–152.

[21] G. Sabin, R. Kettimuthu, A. Rajan, P. Sadayappan, Scheduling of parallel jobs
in a heterogeneous multi-site environment, in: Job Scheduling Strategies for
Parallel Processing, Springer, 2003, pp. 87–104.

[22] M. De Assunção, R. Buyya, S. Venugopal, InterGrid: a case for internetworking
islands of Grids, Concurrency and Computation: Practice and Experience 20
(8) (2008) 997–1024.

[23] D. De Roure, On self-organization and the semantic grid, IEEE Intelligent
Systems 18 (4) (2003) 77–79.

[24] R. Ranjan, A. Harwood, R. Buyya, SLA-based coordinated superscheduling
scheme for computational Grids, in: 2006 IEEE International Conference on
Cluster Computing, 2006, pp. 1–8.

[25] R. Ranjan, A. Harwood, R. Buyya, SLA-based coordinated superscheduling
scheme for computational Grids, in: Cluster Computing, 2006 IEEE Interna-
tional Conference on, IEEE, 2007, pp. 1–8.

[26] R. Smith, The contract net protocol: High-level communication and control in
a distributed problem solver, IEEE Transactions on Computers 100 (29) (1980)
1104–1113.

[27] K. Leal, E. Huedo, I. Llorente, A decentralizedmodel for scheduling independent
tasks in federated grids, Future Generation Computer Systems 25 (8) (2009)
840–852.

[28] C. Wang, H. Chen, C. Hsu, J. Lee, Dynamic resource selection heuristics for a
non-reserved bidding-based Grid environment, Future Generation Computer
Systems 26 (2) (2010) 183–197.

[29] A. Das, D. Grosu, Combinatorial auction-basedprotocols for resource allocation
in grids, in: 19th IEEE International Parallel and Distributed Processing
Symposium, 2005. Proceedings, 2005, p. 8.

[30] E. Zurel, N. Nisan, An efficient approximate allocation algorithm for
combinatorial auctions, in: Proceedings of the 3rd ACM Conference on
Electronic Commerce, ACM, 2001, p. 136.

[31] S. Zanikolas, R. Sakellariou, A taxonomy of grid monitoring systems, Future
Generation Computer Systems 21 (1) (2005) 163–188.

[32] L. Anand, D. Ghose, V. Mani, ELISA: an estimated load information scheduling
algorithm for distributed computing systems, Computers &Mathematics with
Applications 37 (8) (1999) 57–85.

[33] R. Shah, B. Veeravalli, M. Misra, On the design of adaptive and decentralized
load balancing algorithms with load estimation for computational grid
environments, IEEE Transactions on Parallel and Distributed Systems 18 (12)
(2007) 1675–1686.

[34] D. Feitelson, Packing schemes for gang scheduling, in: Job Scheduling
Strategies for Parallel Processing, Springer, 1996, pp. 89–110.

[35] C. Ernemann, V. Hamscher, A. Streit, R. Yahyapour, Enhanced algorithms for
multi-site scheduling, Grid Computing GRID 2002, 2002, pp. 219–231.

[36] D. Jackson, Q. Snell, M. Clement, Core algorithms of theMaui scheduler, in: Job
Scheduling Strategies for Parallel Processing, Springer, 2001, pp. 87–102.

[37] GWA, Grid5000 workload trace archive, http://gwa.ewi.tudelft.nl/pmwiki/
pmwiki.php?n=Workloads.Gwa-t-2, 2010.

[38] TOP500, List statistics: operating system share for 06/2010,
http://www.top500.org/, 2010.

[39] Y. Huang, A. Brocco, M. Courant, B. Hirsbrunner, P. Kuonen, MaGate Simulator:
a simulation environment for a decentralized grid scheduler, Advanced
Parallel Processing Technologies (2009) 273–287.

[40] GWA, Grid workload trace archive, http://gwa.ewi.tudelft.nl/, 2010.

Ye Huang obtained his Master degree from Chongqing
University (China) in 2007. Since the end of 2007, he has
worked on his Ph.D. (100% funded by the Swiss Hasler
Foundation) at the University of Fribourg, Switzerland, as
well as on the SmartGRID project. Meanwhile, Ye Huang
also works for the Grid and Ubiquitous Computing Group,
University of Applied Sciences ofWestern Switzerland. His
research interests concern grid and distributed systems,
service oriented interoperation and negotiation. Ye Huang
is an IEEE member and an OGFmember, and is involved in
programcommittees ofmultiple conferences and journals.

Ye Huang loves snowboarding, basketball, jogging, traveling and music.

http://dx.doi.org/doi:10.1109/ISPDC.2006.16
http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Gwa-t-2
http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Gwa-t-2
http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Gwa-t-2
http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Gwa-t-2
http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Gwa-t-2
http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Gwa-t-2
http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Gwa-t-2
http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Gwa-t-2
http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Gwa-t-2
http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Gwa-t-2
http://www.top500.org/
http://gwa.ewi.tudelft.nl/

14 Y. Huang et al. / Future Generation Computer Systems () –

Nik Bessis is currently a Principal Lecturer (Associate
Professor) in the Department of Computer Science and
Technology at the University of Bedfordshire (UK). He
obtained a BA from the TEI of Athens and completed
his MA and Ph.D. at De Montfort University (Leicester,
UK). His research interest is the analysis, research, and
delivery of user-led developments with regard to trust,
data integration, annotation, and data push methods
and services in distributed environments. These have a
particular focus on the study and use of next generation
and grid technology methods for the benefit of various

virtual organizational settings. He is involved in and leads a number of funded
research and commercial projects in these areas. Dr. Bessis has published numerous
papers and articles in international conferences and journals, and he is the editor
of three books and the Editor-in-Chief of the International Journal of Distributed
Systems and Technologies (IJDST). In addition, Dr. Bessis is a regular reviewer of
several journals and conferences and has served as a keynote speaker, an associate
editor, a conference chair, a scientific program committee member, and a session
chair in numerous international conferences. More information is available from:
http://www.beds.ac.uk/departments/computing/staff/nik-bessis.

Peter Norrington obtained an M.Sc. in Internet Technolo-
gies from the University of Luton in 2004. He received his
Ph.D. in Web Security and Human Computer Interfaces
from the University of Bedfordshire (UoB) in 2009. Since
2008 he has been an Educational Developer in the Centre
for Excellence in Teaching and Learning at UoB, where he
leads the deployment of itsWeb2.0 Personal Development
Planning platform.

Pierre Kuonen obtained a Master degree in electrical
engineering from the Swiss Federal Institute of Technology
(EPFL) in 1982. After six year of experience in industry
he joined the Computer Science Theory Laboratory at
EPFL in 1988 and started working in the field of parallel
and distributed computing. He received his Ph.D. degree
from EPFL in 1993. Since 1994 he has steadily worked in
the field of parallel and distributed computing. First at
EPFL where he founded and managed the GRIP (Parallel
Computing Research Group) then at the University of
Applied Science of Valais. Since 2003 he has been a Full

Professor at the University of Applied Science of Fribourg in the Information
and Communication technologies department (TIC) where he is leading the GRID
& Ubiquitous Computing Group. Besides his teaching activities he continues to
actively participate in national and international research projects. Pierre Kuonen
is the author or co-author of more than 50 scientific publications.

Beat Hirsbrunner is Full Professor and leader of the
Pervasive and Artificial Intelligence research group at the
University of Fribourg. He holds a diploma and Ph.D.
in theoretical physics from ETHZ Zurich and University
of Lausanne. He has been a postdoc, visiting researcher
and Professor at the universities of Rennes and Berkeley,
EPFL Lausanne, and IBM Research Labs San José. He has
conducted researchworks on topics of parallel, distributed
and pervasive computing, coordination languages, and
human- computer interaction. He has been involved in
several Swiss, European and US research projects. He

served as dean of the Faculty of science of the University of Fribourg, and has since
2001 been a member of the Swiss NSF Council and vice-president of SARIT.

http://www.beds.ac.uk/departments/computing/staff/nik-bessis

	Exploring decentralized dynamic scheduling for grids and clouds using the community-aware scheduling algorithm
	Introduction
	Related work
	Problem statement and algorithm principle
	Community-aware scheduling algorithm
	Job distribution
	Job delegation request acceptance
	Job assignment
	Job rescheduling
	Job rescheduling request acceptance

	Experiment configuration
	Scenarios
	Simulation setup

	Results
	Job success completion
	Resource usage
	Job response time, job waiting time and job slowdown
	CASA messages

	Conclusion and future work
	Acknowledgment
	References

