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Abstract: Neurological diseases are increasingly diverse and prevalent, presenting signifi-
cant challenges for their timely and accurate diagnosis. The aim of the present study is to
conduct a bibliometric analysis and literature review in the field of neurology to explore
advancements in the application of artificial intelligence (AI) techniques, including machine
learning (ML) and deep learning (DL). Using VOSviewer software (version 1.6.20.0) and
documents retrieved from the Scopus database, the analysis included 113 articles published
between 1 January 2018 and 31 December 2024. Key journals, authors, and research collab-
orations were identified, highlighting major contributions to the field. Science mapping
investigated areas of research focus, such as biomechanical data and gait analysis including
AI methodologies for neurological disease diagnosis. Co-occurrence analysis of author
keywords allowed for the identification of four major themes: (a) machine learning and
gait analysis; (b) sensors and wearable health technologies; (c) cognitive disorders; and
(d) neurological disorders and motion recognition technologies. The bibliometric insights
demonstrate a growing but relatively limited collaborative interest in this domain, with
only a few highly cited authors, documents, and journals driving the research. Meanwhile,
the literature review highlights the current methodologies and advancements in this field.
This study offers a foundation for future research and provides researchers, clinicians, and
occupational therapists with an in-depth understanding of AI’s potentially transformative
role in neurology.

Keywords: machine learning; deep learning; computer vision; diagnosing; severity;
rehabilitation; occupational therapy; neurology
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1. Introduction
Neurological disorders are the leading cause of sickness and disability globally, pre-

senting significant challenges for early diagnosis and effective management [1]. From 1990
to 2021, there has been an 18% increase in disability-adjusted life years (DALYs) associated
with neurological diseases, which reflects the rising impact of neurological disease on
global health [2]. While age-standardized DALY rates have decreased due to advancements
in care, the absolute number of people affected continues to grow due to demographic
shifts and longer lifespans [3]. Importantly, there is a neurological health loss of over 80%
in low- and middle-income nations, where access to therapy and health facilities remains
limited [2,4]. In 2021, over three billion people worldwide had a neurological disorder [2],
including a wide range of diseases that affect the brain, spinal cord, and nervous system,
with symptoms ranging from motor and sensory impairments to cognitive dysfunction,
along with Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, epilepsy, and
stroke, as well as neurological damage caused by infections, tumors, and trauma [2].

The early detection and classification of neurological disorders are critical for miti-
gating disease progression and improving patient outcomes. However, the complex and
dynamic nature of the nervous system poses significant diagnostic challenges. Traditional
tools such as electroencephalograms (EEGs), magnetic resonance imaging (MRI), and com-
puted tomography (CT) scans provide valuable insights, but often fall short in precision
and scalability, particularly for early detection [5–9]. In this context, artificial intelligence
(AI) techniques, including machine learning (ML) and deep learning (DL), have emerged
as transformative solutions. By leveraging computational power and data-driven algo-
rithms, AI enables the advanced analysis of neuroimaging data and delivers quantitative
assessments that surpass conventional methods [10–13]. The integration of neuroscience
and AI has strengthened this relationship, facilitating practical applications for detecting
and classifying various neurological conditions, particularly in analyzing large datasets
like biomechanical data [14,15].

Advances in smart wearable technology, multi-modal sensors, and AI-driven plat-
forms have made it possible to assess gait and balance with unprecedented accuracy [16–18].
Furthermore, these technologies enable the precise detection of gait abnormalities that
are frequently observed in individuals with neurological disorders [19,20]. For instance,
Parkinson’s disease often manifests as a shuffling gait with reduced stride length, dimin-
ished arm swing, and episodic freezing, which reflects basal ganglia dysfunction [21,22].
Multiple sclerosis is typically associated with increased variability in step length and speed,
as well as balance impairments due to demyelination affecting motor pathways [23,24].
Stroke survivors commonly exhibit hemiparetic gait, characterized by asymmetrical step
lengths and decreased propulsion on the affected side, while cerebellar ataxia produces a
wide-based, unsteady gait with irregular timing and coordination [25,26]. Huntington’s
disease may lead to choreatic, unpredictable movements during walking [27]. These dis-
tinct patterns not only aid in early diagnosis but also guide the development of targeted
rehabilitative strategies.

Data derived from human motion, particularly detailed gait measurements, offer
valuable insights into the mechanisms underlying locomotion and the disruptions caused
by neurological conditions [28,29]. Disruptions at any level can lead to significant alter-
ations in kinematics, kinetics, and spatiotemporal gait parameters. Wearable sensors and
advanced imaging tools capture complex datasets that provide detailed insights into joint
angles, forces, and timing [30,31]. To manage and interpret these high-dimensional, non-
linear data, sophisticated computational models such as support vector machines (SVMs),
random forests (RFs), and neural networks (NNs) [32] are employed. Several studies
have underscored the effectiveness of these AI-driven approaches in quantifying subtle



Neurol. Int. 2025, 17, 45 3 of 21

motor impairments associated with neurological conditions, thereby enhancing clinical
diagnostics and informing rehabilitative interventions [33–35].

To better understand the role of AI in diagnosing neurological diseases through
biomechanical data and gait analysis, this study employed a bibliometric analysis of the
existing literature. Bibliometric analysis is a well-established scientific method that provides
a comprehensive overview of a field by identifying influential publications, key researchers,
prominent institutions, and emerging research trends. A review of the literature revealed
that bibliometric techniques have been widely applied to explore various topics related to
neurological disorders [36–42]. Previous studies have employed these methods to examine
the trends and advancements in decoding the applications of DL in neuroscience, as well as
the broader use of AI in this field [43,44]. Similarly, bibliometric analyses have investigated
the contributions of AI in neurosurgery [45]. Additionally, the role of biomechanics in
stroke neurorehabilitation has also been explored through a bibliometric approach [46].
To date, no bibliometric study has integrated these three areas—AI, biomechanics, and
neurological diseases—into a single, comprehensive analysis. Therefore, further research is
required to not only clarify the intersection of these fields, but also to highlight existing
research gaps to provide a foundation for further investigations.

These gaps are particularly significant given that (a) neurological diseases are in-
creasingly diverse and prevalent; (b) AI represents a rapidly evolving field with immense
potential; and (c) advancements in biomechanics provide valuable data for understanding
and diagnosing these conditions. Therefore, the present study aims to examine the existing
international literature through a bibliometric analysis and to review key topics identified
using innovative bibliometric techniques to provide researchers and clinicians with a de-
tailed understanding of the current state of AI applications in neurology, laying a strong
foundation for future research and innovation.

2. Materials and Methods
2.1. Data Sources and Search Methods

The documents analyzed in this study were sourced from the Scopus database
(https://www.scopus.com/) on 16 January 2025. Scopus, recognized as one of the largest
curated repositories of abstracts and citations spanning multiple disciplines [47], is an
invaluable resource for bibliometric data analysis [48]. The advanced search function
was utilized with a search string comprising compound keywords, structured using the
BOOLEAN expression: (“neurological diseases” OR parkinson* OR alzheimer* OR epilepsy
OR “epileptic seizures” OR stroke OR dementia OR “idiopathic tremor” OR “multiple
sclerosis”) AND (“machine learning” OR “deep learning” OR “artificial intelligence”) AND
(diagnosis OR detection OR diagnos*) AND (“biomechanical data” OR biomechanics OR
“gait analysis”) between 1 January 2018 and 31 December 2024. Documents were included
if these terms appeared in their titles, abstracts, or keywords. The initial search yielded
315 documents. Only original, English-language articles were included, excluding reviews
(or other types of articles such as opinion papers) as well as articles published in confer-
ences, books, or other non-academic journal outlets. Accepted studies were required to
specifically focus on the application of artificial intelligence in diagnosing neurological
diseases. The first two authors systematically reviewed the titles and abstracts and reached
a consensus on their eligibility. After reviewing the 315 records, 202 were excluded as they
did not address the inclusion criteria (Figure 1).

https://www.scopus.com/
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Figure 1. Literature search and selection workflow.

2.2. Data Analysis

The CSV file exported from Scopus was processed using VOSviewer (version 1.6.20)
to perform a bibliometric analysis. VOSviewer, a free software tool, facilitates the creation,
visualization, and exploration of bibliometric networks, making it particularly effective
for mapping the trends and thematic structures of scientific fields [49]. Additionally, after
converting the file into an Excel (xls) format using Microsoft Excel (Office 365, Microsoft
Corporation, Redmond, WA, USA Excel 2024), the data were imported into Microsoft
Power BI (Office 365, Microsoft Corporation, Redmond, WA, USA, Power BI Desktop 2025)
for visualizing the distribution of documents over time. The bibliometric analysis included
both performance analysis and scientific mapping, with the latter involving clustering
techniques as part of the methodology [50–52].

2.3. Performance Analysis

The performance analysis included the following: (a) determining the annual num-
ber of published documents, (b) ranking the authors based on their citation count, and
(c) ranking the sources with the highest number of publications.

2.4. Scientific Mapping

The scientific mapping techniques applied in this study included the following:

(a) Co-authorship analysis: Authors, organizations, and countries were analyzed as the
unit of analysis, focusing on collaborations based on their co-authored documents.
The analysis using authors as the unit of analysis was limited to those with at least
two documents.

(b) Bibliographic coupling: Sources were examined as the unit of study to assess the
extent to which two or more sources shared common references.

(c) Co-citation analysis: Sources were used as the unit of analysis to determine how
frequently two or more sources were cited together in other documents. The analysis
was limited to sources with at least ten citations.

(d) Co-occurrence analysis: The unit of analysis was “author keywords”, investigating
how often two or more keywords appeared together within the same documents.
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“Author keywords” were limited to terms explicitly listed by the author as “keywords”.
The minimum number of occurrences was set at two.

3. Results
3.1. Performance Analysis

A total of 113 articles were considered suitable for inclusion in our analysis. The bar
chart (Figure 2) shows the annual number of documents published between the years 2018
and 2024. A noticeable upward trend can be observed, as depicted by the dotted trend line.
There has been a steady increase in the number of documents published over the years,
starting from seven in 2018 and peaking at thirty in 2024, despite a slight dip observed
in 2022.
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Figure 2. Annual publication trends (2018–2024). The bar chart shows the number of documents
published each year from 2018 through 2024, with a dotted line indicating the overall trend.

The key contributors and their significant impact within the field are presented in
Table 1 below, showing a list of authors with a minimum of 100 citations, along with the
number of documents they have contributed to. The authors Nöth, Orozco-Arroyave,
and Vasquez-Correa lead the rankings with 227 citations each across two documents.
Other notable contributors include Abdulhay, Arunkumar, Narasimhan, Vellaipapan, and
Venkatraman, all with 203 citations and a single document. Klucken has a slightly lower
citation count (193) with two documents.

Academic sources with a minimum of two published documents and their correspond-
ing citation counts are listed in Table 2. The journal Sensors stands out as the leading source,
with 16 documents and 373 citations, demonstrating its significant contribution to the
field. IEEE Transactions on Neural Systems and Rehabilitation Engineering follows with five
documents and 62 citations. Other notable sources include the IEEE Journal of Biomedical
and Health Informatics, which has four documents and a substantial 249 citations, and Expert
Systems, which has three documents and 201 citations.
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Table 1. Top contributing authors with over 100 citations and their document counts.

Author Citations Documents

Nöth, E 227 2

Orozco-Arroyave, Jr 227 2

Vasquez-Correa, Jc 227 2

Abdulhay, E 203 1

Arunkumar, N 203 1

Narasimhan, K 203 1

Vellaiappan, E 203 1

Venkatraman, V 203 1

Klucken, J 193 2

Bilodeau, Ga 189 1

Bouachir, W 189 1

El Maachi, I 189 1

Arias-Vergara, T 169 1

Eskofier, B 169 1

Fox, Sh 113 2

Li, Mh 113 2

Mestre, Ta 113 2

Taati, B 113 2

Table 2. Key academic sources with a minimum of two documents and their citation impact.

Source Documents Citations

Sensors 16 373

IEEE Transactions on Neural Systems and Rehabilitation Engineering 5 62

IEEE Journal of Biomedical and Health Informatics 4 249

Frontiers in Neurology 4 35

Expert Systems 3 201

Biomedical Signal Processing and Control 3 73

Gait & Posture 3 59

Journal of Alzheimer’s Disease 3 56

IEEE Access 3 43

Brain Sciences 3 35

Parkinsonism and Related Disorders 3 33

IEEE Sensors Journal 3 18

Multimedia Tools and Applications 3 13

Journal of Neuroengineering and Rehabilitation 2 98

Plos One 2 51

IEEE Sensors Letters 2 45

BMC Neurology 2 27

IEEE Transactions on Biomedical Engineering 2 27

Medical and Biological Engineering and Computing 2 12

International Journal of Advanced Computer Science and
Applications 2 8
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3.2. Science Mapping

The co-authorship networks presented in Figure 3 were analyzed at three levels: (a) au-
thors, (b) countries, and (c) organizations. In panel (a), each node represents an individual
author, while the connecting lines indicate co-authorship relationships. The visualization
reveals that while some authors are central within their respective clusters, the sparse
inter-cluster connections suggest limited collaboration between research groups in this
field. In panel (b), countries are the unit of analysis. The United States, South Korea,
and Germany emerge as key contributors, serving as central hubs within their networks.
However, the overall lack of dense interconnections among countries indicates a signifi-
cant gap in international collaboration, suggesting that greater global cooperation could
enhance research outcomes. Panel (c) illustrates organizational-level collaborations, where
nodes represent institutions. This panel similarly reveals minimal interaction between
organizations, with most collaborations being localized and isolated. This observation
highlights the need to foster stronger institutional partnerships to promote interdisciplinary
and cross-institutional research in AI-driven neurological diagnostics.
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A co-citation analysis of sources in Figure 4 shows the relationship between journals
based on the frequency with which they are cited together in other documents. Each node
represents a journal, while the size of the node reflects the number of times it has been cited.
The connections (edges) between nodes indicate the strength of the co-citation relationship,
with thicker lines representing stronger associations. The network is divided into distinct
clusters, represented by different colors, which highlight the thematic groupings of journals.
For instance, the red cluster includes journals such as Sensors and Gait & Posture, which
are heavily focused on sensor-based systems and gait analysis. The green cluster, on the
other hand, revolves around journals like Movement Disorders and Neurology, which are
more aligned with neurological research and disorders such as Parkinson’s disease.
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Figure 4. Co-citation analysis of sources. A network graph depicting how scientific sources (journals)
are co-cited in the literature. The nodes represent journals (scaled by number of citations), and
the edges connect journals that are often cited together, with thicker lines for stronger co-citation
relationships. Two main color-coded clusters are evident: the red cluster groups journals (e.g., Sensors,
Gait & Posture) that concentrate on sensor technologies and gait analysis, while the green cluster
includes journals (e.g., Movement Disorders, Neurology) focused on neurological research and disorders
(especially Parkinson’s disease).

The bibliographic coupling network of journals in Figure 5 shows that each node
represents a journal and the edges (connections) indicate the extent to which the journals
share common references. The network is organized into distinct clusters, represented by
different colors, highlighting thematic groupings based on shared references. The yellow
cluster, dominated by Sensors, is the most central and influential, reflecting its extensive
coupling with journals in fields like biomedical signal processing and sensor applications.
The red cluster includes journals such as IEEE Journal of Biomedical and Health Informatics
and IEEE Transactions on Neural Systems and Rehabilitation Engineering, which focus on health
informatics and neural systems. The green cluster is centered around interdisciplinary
journals like Expert Systems with Applications and Biomedical Signal Processing and Control,
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emphasizing computational and applied approaches. The blue cluster contains journals
like Gait & Posture and Brain Sciences, which are more specialized in movement analysis
and neuroscience.
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Figure 5. Bibliographic coupling network of sources. Network visualization of journals based on
bibliographic coupling (shared references). Each node is a journal (with node size reflecting its
number of publications or influence), and the edges link journals that cite similar references, forming
thematic clusters. Four prominent clusters are labeled by color: the yellow cluster (dominated by the
journal Sensors) is the most central, highlighting the strong interconnections in sensor technology and
biomedical signal processing journals. The red cluster features journals like IEEE J. Biomedical Health
Informatics and IEEE Trans. Neural Systems & Rehab Engineering, focusing on health informatics and
neuroengineering. The green cluster is centered on interdisciplinary applied journals (e.g., Expert
Systems with Applications), emphasizing computational approaches to biomedical problems. The blue
cluster includes specialized journals such as Gait & Posture and Brain Sciences, reflecting a focus on
movement analysis and neuroscience.

The thematic structure of the research field based on a co-occurrence analysis of key-
words is shown in Figure 6 and Table 3. The network in Figure 6 shows the relationships
between keywords, with the nodes representing individual keywords and the edges in-
dicating their co-occurrence in the same documents. The size of the nodes reflects the
frequency of keyword usage, while the colors correspond to distinct clusters, representing
different thematic areas. Table 3 complements the network by categorizing the clusters and
listing the keywords associated with each thematic area. Four main clusters are identified
(analyzed in detail in Section 4, the Discussion section).

Machine Learning and Gait Analysis (red cluster): This cluster includes keywords
related to computational methods, such as “deep learning” and “support vector machine”,
as well as applications in “gait analysis” and “pose estimation”. This theme highlights
research focusing on the application of AI models to analyze gait patterns for the early
diagnosis and monitoring of neurological diseases, such as Parkinson’s disease and multiple
sclerosis. The practical significance lies in advancing non-invasive diagnostic methods
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that can identify motor dysfunctions at an early stage, enabling timely intervention and
personalized care.
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lights research focusing on the application of AI models to analyze gait patterns for the 

early diagnosis and monitoring of neurological diseases, such as Parkinson’s disease and 

multiple sclerosis. The practical significance lies in advancing non-invasive diagnostic 
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Figure 6. Keyword co-occurrence network (research themes). Network of author keywords illus-
trating four major thematic clusters in the literature. Each node represents a keyword (with its size
proportional to its frequency of use), and the edges connect keywords that co-occur in the same
articles, indicating a related topic association. Nodes are color-coded by cluster, corresponding to the
distinct research themes identified in the field. Four clusters are highlighted (see also Table 3 for clus-
ter details): (a) machine learning and gait analysis (e.g., keywords on gait parameters, classification
algorithms), (b) sensors and wearable health technologies (keywords related to wearable devices,
IMUs, remote monitoring), (c) cognitive disorders (terms regarding Alzheimer’s, MCI, cognitive
testing with gait), and (d) neurological disorders and motion recognition (keywords on specific
diseases like Parkinson’s, PSP, and motion capture methods). This figure encapsulates the core
research themes, with closely connected keywords forming clusters that mirror the key topic areas
driving the AI-based neurological diagnosis research.

Sensors and Wearable Health Technologies (green cluster): Keywords in this cluster
focus on sensor-based systems and wearable technologies, such as “accelerometer”, “IMU”,
and “digital health”. This theme encompasses the development and use of wearable devices
equipped with AI for continuous health monitoring. The significance of this cluster is in its
potential to facilitate remote patient monitoring, reducing the need for hospital visits and
enabling proactive health management.

Cognitive Disorders (blue cluster): This cluster encompasses terms related to neuro-
logical and cognitive impairments, including “Alzheimer’s disease”, “cognitive decline”,
and “dual-task”. Studies in this cluster focus on using AI to analyze cognitive and motor
functions to detect disorders such as Alzheimer’s disease and mild cognitive impairment.
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The practical application of this cluster is the enhancement of early diagnostic accuracy,
allowing for timely interventions and better disease management.

Table 3. Clustered keywords representing key research themes.

Machine Learning and Gait Analysis
(red cluster)

artificial neural network, classification, clinical gait analysis,
computer vision, decision tree, deep learning, feature

extraction, feature selection, finger tapping, gait analysis,
levodopa-induced dyskinesia, mobility, multiple sclerosis,

neurodegenerative diseases, pose estimation, random forest,
support vector machine, time-frequency spectrum

Sensors and Wearable Health Technologies
(green cluster)

accelerometer, aging, artificial intelligence, convolutional neural
network, dementia, digital health, electromyography,
handwriting, IMU, sensors, speech, stroke, wearables

Cognitive Disorders (blue cluster)
Alzheimer’s disease, cognitive decline, depth camera, dual-task,
gait, kinematics, machine learning, mild cognitive impairment,

signal processing, tremor, turning, vascular dementia

Neurological Disorders and Motion
Recognition Technologies (yellow cluster)

early detection, feature engineering, gait recognition, hand
tracking, movement disorders, Parkinson, progressive

supranuclear palsy, remote monitoring, UPDRS, vertical
ground reaction, wearable sensor

Neurological Disorders and Motion Recognition Technologies (yellow cluster): Key-
words in this cluster highlight technologies for the analysis and management of movement
disorders, such as “Parkinson”, “gait recognition”, and “remote monitoring”. This cluster
involves the application of AI-powered motion recognition tools to detect and monitor
motor impairments, particularly in diseases such as Parkinson’s disease. The practical
significance is the potential for continuous monitoring, improving rehabilitation strategies,
and enhancing personalized treatment plans.

4. Discussion
4.1. Thematic Areas

Our bibliometric science mapping included a co-occurrence analysis of author key-
words to identify major research themes. Using VOSviewer software, we built a keyword
co-occurrence network in which each node represented a keyword and the edges reflected
the frequency of two keywords appearing together in the same paper. We applied the asso-
ciation strength clustering algorithm (via VOSviewer) to detect groups of closely related
keywords, which represented distinct thematic clusters in the field. To focus on significant
and recurring topics, a minimum occurrence threshold was set—keywords had to appear in
at least two publications to be included. This threshold filtered out single-use or rare terms
that could create noise, ensuring that each identified cluster was built around a meaningful
research topic. As a result of this analysis, four thematic clusters emerged (visualized
in Figure 6 and detailed in Table 3), each corresponding to a prominent research theme
in AI-driven neurological disease diagnosis. The co-occurrence clustering revealed four
primary research themes. Each cluster highlighted a practical area of focus in which AI is
being leveraged to advance neurological diagnosis.

4.1.1. Machine Learning and Gait Analysis

The specific focus is on the development and application of ML techniques for analyz-
ing and diagnosing neurological disorders using gait data, with a particular emphasis on
conditions such as Parkinson’s disease, multiple sclerosis, and other neurodegenerative dis-
eases. Common themes across these studies include the use of gait data and ML techniques
to detect motor abnormalities, the enhancement of diagnosis through DL algorithms, and
the high accuracy achieved in classifying patients from healthy controls. Specifically, these
studies employ a variety of approaches for data collection and analysis, such as motion
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sensors, vGRF analysis, EMG, and 3D gait kinematics [53–60]. Furthermore, the included
studies often employ ML, including techniques such as RFs, decision trees, SVMs, and DL
to classify or assess neurological diseases based on gait characteristics.

The application of specialized tools and methods for detecting early motor changes
is also a recurring theme in the studies, enabling early diagnosis. Additionally, the per-
sonalization of approaches is crucial for enhancing accuracy and improving clinical moni-
toring. The findings indicate that the combined use of these techniques can significantly
improve diagnostic procedures and support the monitoring of therapeutic outcomes in
patients [54,55,61–63]. Ultimately, these studies highlight the versatility of modern ML
algorithms and data analysis methods in identifying motor disorders, offering new oppor-
tunities for the more accurate and earlier diagnosis of neurodegenerative diseases.

Overall, these studies demonstrate the importance of combining gait analysis with
ML and DL techniques for the accurate diagnosis and monitoring of neurological and
non-neurological disorders. These technologies not only provide new possibilities for early
diagnosis and patient monitoring, but also allow for a deeper understanding of the motor
problems associated with various diseases. Looking ahead, advancements in AI-powered
gait analysis hold the potential to revolutionize personalized healthcare.

4.1.2. Sensors and Wearable Health Technologies

AI-powered sensors and wearable devices are revolutionizing health monitoring,
enabling real-time data analysis for applications ranging from handwriting, movement
analysis, and speech tracking to stroke recovery and digital health management. Utiliz-
ing technologies such as inertial measurement units (IMU) and sensors can enable the
creation of personalized, continuous monitoring systems that process large-scale data
efficiently [64–68]. The integration of AI into wearable devices represents a significant step
forward in preventive care and long-term health management.

A common thread across these studies is the need for enhanced accuracy in AI al-
gorithms, particularly in applications for elderly patients and those with neurological
conditions such as Parkinson’s [69–72]. Another critical focus is developing devices that
can seamlessly and effectively integrate into patients’ daily lives, promoting independence
and improving quality of life. Although significant progress has been made in detecting
motor abnormalities, these systems must be fine-tuned for widespread clinical use.

In conclusion, wearable technologies powered by AI are aimed at transforming health-
care by offering new possibilities for the early diagnosis and continuous monitoring of
diseases such as Parkinson’s disease. As research advances, these innovations will en-
able clinicians to provide more personalized, effective treatments while improving patient
outcomes and quality of life.

4.1.3. Cognitive Disorders

The use of AI to understand and diagnose cognitive disorders is a vital focus in this
cluster. Researchers are particularly interested in age-related neurological conditions, such
as Alzheimer’s disease, mild cognitive impairment (MCI), and vascular dementia. AI is
being employed to analyze data from tools like depth cameras and sensors, which help
to assess behavior, cognition, and motor abilities. Techniques such as AI-driven dual-task
performance analysis and tremor pattern detection have shown promise in identifying early
signs of cognitive decline [73–82]. This study highlights the potential of AI to revolutionize
early diagnosis, clinical monitoring, and intervention strategies for cognitive disorders.

A common thread across these studies is the integration of AI, ML, and motion
analysis with other behavioral data to enable comprehensive assessments of cognitive
health. The combination of these technologies may allow researchers to provide an early
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and a more accurate diagnosis, enabling timely intervention and better management of
cognitive disorders. This holistic approach has the potential to significantly improve the
quality of life for patients and reduce the burden on caregivers.

Overall, this cluster underscores the importance of leveraging AI to address the grow-
ing challenges of cognitive decline. By offering tools for early diagnosis and personalized
care, these innovations open new pathways for clinical intervention to improve cognitive
health outcomes.

4.1.4. Neurological Disorders and Motion Recognition Technologies

This thematic area integrates motion recognition technologies and AI to study neu-
rological disorders like Parkinson’s disease, progressive supranuclear palsy, and other
movement disorders. Researchers have leveraged motion analysis for early detection using
tools such as remote monitoring, vertical ground reaction force data, and hand tracking.
These technologies, often paired with wearable sensors powered by AI, allow for the contin-
uous tracking of symptoms such as tremors and gait abnormalities. By improving remote
monitoring systems, these studies pave the way for the scalable and efficient management
of chronic neurological conditions.

Beyond Parkinson’s disease, the prediction of global cognitive function decline using
ML offers a valuable tool for identifying risk in older adults. By analyzing gait and physical
fitness parameters, researchers can enable earlier interventions that improve the quality of
life for the elderly [83–90]. Additionally, combining dual-task gait evaluations with ML may
provide more comprehensive cognitive assessments to enhance the diagnostic accuracy for
mild cognitive impairment, as well as to create opportunities for early intervention.

A recurring theme has been identified across these studies, which is the integration of
cutting-edge technologies, such as motion analysis and ML, to enable the precise and early
diagnosis of neurological and cognitive decline. By continuing to develop and refine these
tools, researchers are driving advancements in personalized care, offering hope for better
disease management and improved patient outcomes.

4.1.5. Qualitative Critique of AI Methodologies in Neurological Diagnosis

Model Explainability: A pervasive challenge in applying AI to neurological disease
diagnosis is the explainability of models. Many AI systems, particularly deep learning
networks, function as “black boxes”, making it difficult for clinicians to understand the
basis of their predictions. This lack of transparency can hinder clinical trust and adoption.
Explainable AI (XAI) frameworks are increasingly emphasized to address this issue. By
providing interpretable insights (e.g., highlighting which gait features or biomarkers influ-
enced a decision), XAI can enhance clinician and patient confidence in AI-driven diagnoses.
It also helps to meet the regulatory requirements for transparency and safety in medical AI.
Balancing high model performance with interpretability remains an active area of research,
but it is crucial to integrate AI into routine neurological practice.

Need for External Validation: Another critical limitation is the lack of robust external
validation for many AI models in neurology. Most studies have developed and tested
models on the same dataset or within a single center, which constrains their generalizability
to broader patient populations and clinical settings. External validation studies on medical
AI are relatively rare and often reveal a drop in performance on new data. For example, in
radiology AI, most algorithms show diminished accuracy on external datasets compared
with their original development data. This underscores the importance of validating
neurological AI diagnostic tools across diverse cohorts and settings. Prospective multi-
center trials and independent test sets should be used to ensure that models truly generalize
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to different hospitals, scanning devices, or patient demographics. Strengthening external
validation will improve the reliability and clinical utility of AI diagnostic systems.

Ethical Considerations: The deployment of AI for neurological diagnoses raises impor-
tant ethical issues that must be addressed. Data privacy and security are foremost concerns,
since AI models require large volumes of sensitive patient data (e.g., neuroimaging, gait
sensor data) for training. Ensuring compliance with privacy regulations (such as GDPR and
HIPAA) and using stringent data anonymization and encryption protocols are essential to
protect patient confidentiality. Another concern is algorithmic bias and fairness. AI models
trained on homogeneous or unrepresentative data may inadvertently perpetuate healthcare
disparities. For instance, an algorithm developed mostly on data from one demographic
group might perform poorly in others, leading to unequal diagnostic accuracy. Researchers
must strive to use diverse training data and bias-mitigation techniques to ensure equity.
Moreover, the accountability of AI decisions is an ethical consideration: clear guidelines are
needed for how AI recommendations are used in clinical decisions and who is responsible
in cases of error or misdiagnosis. Addressing these ethical challenges—privacy, bias, and
accountability—will foster trust in AI systems and promote their safe integration into
neurological healthcare.

4.1.6. Underlying Causes, Implications, and Solutions for Research Gaps

Underlying Causes of Research Gaps: The research gaps identified in this study stem
from multiple underlying causes. Limited interdisciplinary communication, restricted
access to shared datasets, and a fragmented approach to AI development in neurology have
contributed to these gaps. Furthermore, many studies rely on single-center data, limiting
diversity and external validation. The lack of standardized protocols for data collection
and algorithm validation further exacerbates these challenges.

Implications for Research and Practice: These gaps have significant implications. Bi-
ased or under-validated AI models may result in a limited clinical applicability, reducing
their effectiveness in diverse real-world settings. Additionally, the absence of international
collaborations restricts the sharing of diverse data and insights, potentially slowing inno-
vation and limiting the global applicability of research findings. Addressing these gaps is
essential to improve diagnostic accuracy, ensure equity in care, and advance AI innovation
in neurology.

Potential Solutions: To mitigate these challenges, several actionable solutions are
proposed. Firstly, fostering interdisciplinary and international collaborations is essential for
sharing diverse perspectives and resources. Secondly, encouraging the development and
use of multi-center datasets will enhance model robustness and generalizability. Thirdly,
adopting explainable AI (XAI) frameworks will increase trust in AI models and promote
their clinical acceptance. Finally, promoting the development of standardized protocols
for AI validation and regulatory oversight will ensure ethical, reliable, and practical AI
applications in neurology.

4.2. Publication Trends and Patterns

Our study conducted a comprehensive bibliometric analysis to investigate research
trends in the field of AI for the diagnosis of neurological diseases using biomechanical data
from the current literature. The overall trend shows a consistent and steady growth from
2018 to 2024, with a slight dip observed in 2022, which confirms the increasing interest and
activity of research in this field over time.

The journals listed in Table 2 cover a wide range of scientific fields, reflecting the
interdisciplinary nature of the subject. Specifically, they represent areas such as electronics
and computational engineering in journals such as IEEE Transactions on Neural Systems
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and Rehabilitation Engineering, IEEE Journal of Biomedical and Health Informatics, and IEEE
Sensors Journal, which focus on the use of technology and computational systems for health
research and applications. In addition, journals belonging to the field of medicine, biomed-
ical science, and neuroscience, such as Sensors, Biomedical Signal Processing and Control,
Journal of Alzheimer’s Disease, Journal of Neuroengineering and Rehabilitation, and Parkinsonism
and Related Disorders, have also been included. Collectively, these journals emphasize the
multifaceted study and technological advancement of diagnostic, monitoring, and rehabil-
itation approaches for human health systems and neurological disorders. The inclusion
of journals like Expert Systems and Multimedia Tools and Applications highlights the grow-
ing role of intelligent systems and data analytics in modeling and addressing complex
health-related problems. These multifaceted advancements highlight the importance of
interdisciplinary collaboration across science, technology, and medicine to address intricate
research challenges.

The analysis of both the bibliographic coupling network and the co-citation network
of sources provides important insight into the structure and dynamics of the research
field. The bibliographic coupling network highlights a high level of thematic cohesion
among journals, with strong bibliographic ties indicating interconnectedness within the
field. At the same time, the presence of distinct clusters points to the diversity of subfields,
ranging from sensor technologies to movement analysis and computational applications.
On the other hand, the co-citation network reveals that, while there is strong interconnect-
edness within individual clusters, cross-cluster interactions remain relatively limited. This
thematic segmentation underscores the need for interdisciplinary approaches to bridge
the gaps between sensor-based technologies and neurological research. Addressing this
fragmentation could lead to a more integrated understanding and foster innovation by
connecting related but currently isolated areas of research to breach the gap.

Another very important finding of the present study is the lack of international collab-
oration. The limited connectivity at all three levels (authors, countries, and organizations)
of the co-authorship analyses underscores the fragmented nature of collaborative efforts
in the studied field, indicating potential opportunities to foster greater cooperation and
network development. Collaboration and networking in scientific research play a crucial
role in enhancing productivity and scientific progress [50–52]. Strengthening global part-
nerships and developing cross-institutional networks could lead to more comprehensive
and impactful research outcomes in the field.

Our study identified several critical research gaps in the application of AI in the diag-
nosis of neurological diseases. One major limitation is the lack of robust external validation
for AI models, which constrains their generalization with diverse populations and clinical
settings. Furthermore, the explainability and interpretability of AI systems, particularly
deep learning models, remain significantly challenging. Often functioning as “black boxes”,
these systems make it difficult for clinicians to understand or trust their predictions, thus
emphasizing the need for explainable AI frameworks that enhance clinical acceptance.
Another notable issue is the reliance on small or homogeneous datasets, which fail to
capture the variability present in broader patient populations. Larger, multi-center datasets
are essential to ensure the reliability and applicability of AI models across different settings.
Additionally, the thematic segmentation observed in bibliometric networks highlights the
fragmented nature of research efforts, underscoring the importance of interdisciplinary
collaboration among experts in AI, biomechanics, and neuroscience. Enhanced collabo-
ration across these fields could drive innovation by integrating complementary expertise.
Lastly, there is a pressing need for studies that assess the performance of AI systems across
diverse populations, including variations in age, ethnicity, and socioeconomic backgrounds.
Addressing these gaps will not only improve the accuracy and reliability of AI diagnostic
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tools but also promote equity and inclusivity in their application. Coordinated efforts from
interdisciplinary research teams will leverage advanced computational techniques and
foster collaboration across institutions and countries. By overcoming these limitations, the
field can move towards more accurate, explainable, and widely applicable AI systems for
the diagnosis and management of neurological disorders.

Overall, the increasing research focus on AI-driven gait analysis has direct implica-
tions for early diagnosis and remote monitoring in clinical practice. AI-based diagnos-
tic tools could also influence healthcare policy by optimizing patient triage, enhancing
resource allocation, and improving access to specialized care. Recognizing these connec-
tions underscores the transformative potential of AI in enhancing patient outcomes and
healthcare efficiency.

4.3. Limitations

Although valuable insights have been identified in research trends and thematic areas
in the field of AI for the diagnosis of neurological diseases using biomechanical data, the
present study has certain limitations: (1) the analysis was based solely on data sourced
from the Scopus database, which, while comprehensive, may exclude relevant articles
indexed in other databases such as PubMed or Web of Science; (2) the focus on English-
language articles might have led to the exclusion of significant contributions published
in other languages; (3) the exclusion of articles from conferences and books might have
overlooked some important contributions to the field that have not yet been published
in academic journals; (4) the bibliometric approach inherently emphasizes quantitative
metrics, which may not fully capture the qualitative impact of specific studies; although,
a brief qualitative synthesis of the four main thematic areas was conducted in our study;
and (5) despite the fact that the search terms employed in this study generally covered
neurological diseases and some common conditions, they did not encompass several spe-
cific neurological conditions—including migraines (where gait problems are typically not
expected), hydrocephalus, spinal disease, motor neuron disease, neuropathy, myasthenia
gravis, and myopathies. To sum up, future research should consider integrating multi-
database searches and expanding the inclusion of diverse languages to achieve a more
comprehensive overview of this field.

5. Conclusions
The present study provides a strong foundation for the development of robust and

effective AI-driven healthcare solutions, which is crucial for future research and for the
need for interdisciplinary collaboration among researchers. The bibliometric analysis
focuses specifically on the application of AI in diagnosing and managing neurological
disorders related to biomechanics and gait analysis, bridging the gap of current trends
and research patterns. The analysis of 113 studies published between 2018 and 2024
identified key thematic areas—machine learning and gait analysis, sensors and wearable
health technologies, cognitive disorders related to movement impairments, and motion
recognition technologies—which reflect the diverse and interdisciplinary nature of AI
applications in neurology, particularly within the scope of biomechanics. The analysis
revealed a clear trend of increasing research interest over the years, underscoring the
growing recognition of AI’s transformative potential in neurological disorders associated
with movement and motor function. Furthermore, the present findings highlight how the
convergence of disciplines such as neurology, data science, and occupational therapy can
foster collaboration to address complex motor-related neurological conditions. By focusing
on the intersection of biomechanics and AI, this study contributes to a more specialized
understanding of the role of AI in neurological healthcare applications.
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To advance the integration of AI technologies into clinical applications for neurological
disease diagnosis, future research should prioritize several key areas. First, interdisciplinary
collaboration is essential to bring together AI experts, neurologists, data scientists, and
healthcare policymakers to ensure the development of clinically relevant and ethically
sound AI tools. Establishing standardized datasets, including diverse demographic and
clinical data, will improve the generalizability and robustness of the AI models. Moreover,
emphasis should be placed on developing explainable AI (XAI) frameworks that enhance
transparency and trust among clinicians and patients. Real-world clinical validation,
through multi-center trials and diverse population testing, is crucial for transitioning AI
models from research to practice. Finally, healthcare systems and policymakers must
collaboratively establish regulatory guidelines and frameworks that facilitate the safe
and effective adoption of AI in clinical settings. Addressing these areas will bridge the
gap between AI technology and its practical application, ultimately improving diagnostic
accuracy, patient outcomes, and healthcare delivery.
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